(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024054414
(43)【公開日】2024-04-16
(54)【発明の名称】電力プラントを制御するためのシステムおよび方法
(51)【国際特許分類】
F02C 9/00 20060101AFI20240409BHJP
F02C 9/28 20060101ALI20240409BHJP
F02C 7/22 20060101ALI20240409BHJP
F02C 3/30 20060101ALI20240409BHJP
F02C 7/141 20060101ALI20240409BHJP
F02C 9/40 20060101ALI20240409BHJP
【FI】
F02C9/00 B
F02C9/28 C
F02C7/22 Z
F02C3/30 D
F02C7/141
F02C9/40 A
【審査請求】有
【請求項の数】23
【出願形態】OL
(21)【出願番号】P 2024029459
(22)【出願日】2024-02-29
(62)【分割の表示】P 2021211549の分割
【原出願日】2017-02-23
(31)【優先権主張番号】62/300,504
(32)【優先日】2016-02-26
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】312000387
【氏名又は名称】8 リバーズ キャピタル,エルエルシー
(74)【代理人】
【識別番号】100114775
【弁理士】
【氏名又は名称】高岡 亮一
(74)【代理人】
【識別番号】100121511
【弁理士】
【氏名又は名称】小田 直
(74)【代理人】
【識別番号】100202751
【弁理士】
【氏名又は名称】岩堀 明代
(74)【代理人】
【識別番号】100191086
【弁理士】
【氏名又は名称】高橋 香元
(72)【発明者】
【氏名】フェトヴェデト,ジェレミー エロン
(57)【要約】 (修正有)
【課題】本開示は、電力生産プラントの1つまたは複数の態様の制御に有用なシステムおよび方法に関する。
【解決手段】電力生産プラントであって、以下の:燃焼器;前記燃焼器からの燃焼生成物流を受容し、且つ前記燃焼生成物流を膨張させて、発電機を用いて電力を生産するように位置するタービン;冷却流として使用可能な流体を通過させるように構成された、1つ又は複数のライン;及び前記電力生産プラントの作動中の少なくとも1つの動作を自動的に制御するように構成された制御システムであって、前記制御システムが、前記タービンの1つ又は複数の構成要素の冷却を引き起す手段で、前記タービンへの前記冷却流の自動通過を制御するように構成された1つ又は複数の制御経路を備える、制御システムを備える電力生産プラント。
【選択図】
図1
【特許請求の範囲】
【請求項1】
電力生産プラントであって、以下の:
燃焼器;
前記燃焼器からの燃焼生成物流を受容し、且つ前記燃焼生成物流を膨張させて、発電機を用いて電力を生産するように位置するタービン;
冷却流として使用可能な流体を通過させるように構成された、1つ又は複数のライン;及び
前記電力生産プラントの作動中の少なくとも1つの動作を自動的に制御するように構成された制御システムであって、前記制御システムが、前記タービンの1つ又は複数の構成要素の冷却を引き起す手段で、前記タービンへの前記冷却流の自動通過を制御するように構成された1つ又は複数の制御経路を備える、制御システム
を備える電力生産プラント。
【請求項2】
前記1つ又は複数の制御経路は、質量流、圧力、温度、及び前記冷却流の供給源のうちの1つ又は複数を制御するように構成される、請求項1に記載の電力生産プラント。
【請求項3】
冷却流として使用可能な前記流体は、二酸化炭素を含有する、請求項1に記載の電力生産プラント。
【請求項4】
復熱型熱交換器を更に備える、請求項1に記載の電力生産プラント。
【請求項5】
前記復熱型熱交換器は、異なる温度範囲で作動する少なくとも2つの熱交換部を備える、請求項4に記載の電力生産プラント。
【請求項6】
冷却流として使用可能な前記流体は、前記復熱型熱交換器を通過する流体である、請求項4に記載の電力生産プラント。
【請求項7】
前記復熱型熱交換器を通過する前記流体は、前記復熱型熱交換器を通過する間に加熱される、請求項6に記載の電力生産プラント。
【請求項8】
前記1つ又は複数の制御経路は、前記冷却流として使用可能な前記流体が通過するように構成された前記1つ又は複数のラインに位置した、1つ又は複数のバルブの作動を制御するように構成される、請求項1に記載の電力生産プラント。
【請求項9】
前記1つ又は複数のバルブの作動は、前記冷却流のための冷却温度の設定点の範囲を維持するようにバイアスされる、請求項8に記載の電力生産プラント。
【請求項10】
前記1つ又は複数の制御経路は、前記冷却温度の設定点と、前記冷却流の実際の測定温度との間の差分を比較する、請求項9に記載の電力生産プラント。
【請求項11】
前記1つ又は複数の制御経路は、前記冷却流のための質量流量の設定点と、前記冷却流の実際の測定された質量流量との間の差分を更に比較する、請求項10に記載の電力生産プラント。
【請求項12】
前記1つ又は複数のバルブは、異なる温度で前記冷却流を提供するように、前記1つ又は複数のラインに位置した少なくとも2つのバルブを備える、請求項11に記載の電力生産プラント。
【請求項13】
前記1つ又は複数の制御経路は、前記冷却流として使用可能な前記流体が通過するように構成された前記1つ又は複数のラインに位置した、少なくとも第1のバルブ及び第2のバルブの作動を制御するように構成され、
前記第1のバルブは、前記冷却流として使用可能な前記流体が第1の温度となる、前記1つ又は複数のラインの位置に位置付けされ、且つ
前記第2のバルブは、前記冷却流として使用可能な前記流体が、前記第1の温度よりも高い第2の温度となる、前記1つ又は複数のラインの位置に位置付けされる
請求項1に記載の電力生産プラント。
【請求項14】
前記1つ又は複数の制御経路は、前記冷却流の前記冷却温度の設定点と、前記冷却流の実際の測定温度との間の差分に基づき前記第1のバルブを制御する、請求項13に記載の電力生産プラント。
【請求項15】
前記1つ又は複数の制御経路は、前記冷却流のための質量流量の設定点と、前記冷却流の実際の測定された質量流量との間の差分に基づき前記第2のバルブを制御する、請求項13に記載の電力生産プラント。
【請求項16】
電力生産プラントであって、以下の:
燃料を燃焼して燃焼生成物流を形成するように構成された燃焼器;
前記燃焼生成物流を膨張させて電力を生産するように構成されたタービン;
前記タービンから前記燃焼生成物流を受容するように位置し、且つ前記燃焼生成物流を冷却するように構成された復熱型熱交換器;
1つ又は複数の構成要素であって、前記復熱型熱交換器内で冷却された前記燃焼生成物流を精製して再循環流を形成するように構成された1つ又は複数の構成要素;
1つ又は複数のラインであって、前記再循環流の少なくとも一部を前記復熱型熱交換器を通過させることにより前記再循環流が加熱されるように位置した、1つ又は複数のライン;及び
前記電力生産プラントの作動中の少なくとも1つの動作を自動的に制御するように構成された制御システムであって、前記制御システムが、1つ又は複数の制御経路を備え、前記再循環流の一部が冷却流として前記タービンを通過するように、少なくとも第1のバルブ及び第2のバルブを制御可能に操作するように構成され、
前記第1のバルブは、第1の温度範囲で前記再循環流の一部を通過させるように操作可能であり、前記第2のバルブは、前記第1の温度範囲よりも高い第2の温度範囲で前記再循環流の一部を通過させるように操作可能である、制御システム
を備える電力生産プラント。
【請求項17】
流量制御部が、前記第1のバルブ及び前記第2のバルブのうちの片方と連通し、且つ温度制御部が、もう片方と連通するように構成される、請求項16に記載の電力生産プラント。
【請求項18】
前記1つ又は複数の制御経路は、前記冷却流の温度が冷却温度の設定範囲にバイアスされるように、前記第1のバルブ及び前記第2のバルブのうち片方又は両方を通過する前記再循環流の一部の通過を制御するように構成される、請求項16に記載の電力生産プラント。
【請求項19】
前記1つ又は複数の制御経路は、前記冷却温度の設定点と、前記冷却流の実際の測定温度との間の差分を比較する、請求項18に記載の電力生産プラント。
【請求項20】
前記1つ又は複数の制御経路は、前記冷却流のための質量流量の設定点と、前記冷却流の実際の測定された質量流量との間の差分を更に比較する、請求項19に記載の電力生産プラント。
【請求項21】
前記1つ又は複数の制御経路は、前記冷却流のための冷却温度の設定範囲と、前記冷却流の実際の測定温度との間の差分に基づき、前記第1のバルブを制御する、請求項16に記載の電力生産プラント。
【請求項22】
前記1つ又は複数の制御経路は、前記冷却流のための質量流量の設定点と、前記冷却流の実際の測定された質量流量との間の差分に基づき、前記第2のバルブを制御する、請求項21に記載の電力生産プラント。
【請求項23】
前記再循環流が前記復熱型熱交換器を通過する前に、前記再循環流を圧縮するように構成された圧縮器を更に備える、請求項16に記載の電力生産プラント。
【発明の詳細な説明】
【技術分野】
【0001】
開示分野
本明細書中開示される主題は、電力プラントの様々な態様を制御するためのシステムおよび方法に関する。より具体的には、本システムおよび方法は、電力プラントの起動、作動、およびシャットダウンの複数の段階の間の、圧力、温度、流量、スイッチ、バルブなどを制御するための様々なシグナルおよび関数を利用することができる。
【背景技術】
【0002】
電力生産に関して世界規模で需要が高まっているため、このようなニーズに応えるためにさらなる電力生産プラントが絶えず必要とされている。市場の需要のため、このような電力生産を最大限の効率で達成させることが望ましい;しかしながら、高まる炭素の回収の必要性により技術的な進歩が必要である。たとえば、本明細書中参照として援用されているAllamらに対する米国特許第8,596,075号は、CO2が、比較的純粋な高圧の流れとして回収されているリサイクルCO2流を利用した酸素-燃料燃焼システムにおいて望ましい有効性を提供している。このような高度な電力生産システムは、これまで提供されていない制御に関する検討を必要としている。よって、電力プラント、特に実質的に完全な炭素の回収を伴う高効率の電力生産のために構成された電力プラントの複数の態様の制御に適した、さらなるシステムおよび方法が必要とされている。
【発明の概要】
【発明が解決しようとする課題】
【0003】
本開示は、電力生産のためのシステムおよび方法であって、1つまたは複数の制御経路が、1つまたは複数の作業の自動化制御のために利用されている、システムおよび方法を提供する。この自動化制御は、様々なシグナルの入力、計算値、既定値、測定値、論理関数、コンピュータアルゴリズム、またはコンピュータプログラムの入力に基づくことができる。
【0004】
1つまたは複数の実施形態では、本開示は、電力生産プラントのための制御システムに関することができる。たとえばこの制御システムは、燃焼器に燃料を流すためのFUEL FLOW DEMANDシグナルおよびタービンの入口温度のためのTURBINE INLET TEMPERATUREシグナルのうち小さいほうを選択し、燃料供給システムから燃焼器までを流れる燃料の質量および圧力のうちの1つまたは両方を調節するように適合させた流量制御ロジカルシーケンスを含むことができる。さらなる実施形態では、電力生産プラントのための制御システムを、任意の数または順序で組み合わせてもよい以下の記載のうちのいずれか1つまたは複数と関連させて説明することができる。
【0005】
本制御システムは、所定の時間での電力生産プラントによる実際の電力生産を中継(伝達)するPOWER ACTUALシグナルと、同じ所定の時間でのプラントによる望ましい電力生産を中継するPOWER DEMANDシグナルとを含むことができ、制御システムは、POWER DEMANDシグナルとPOWER ACTUALシグナルとの間の差分を計算し、この差分をFUEL FLOW DEMANDシグナルに変換するように構成されている。
【0006】
本制御システムは、それぞれがタービンの入口温度を計算するための異なる計算手順に由来する、複数の計算された温度シグナルのうち最も高いシグナルを選択することにより、TURBINE INLET TEMPERATUREシグナルを生成することができる。
【0007】
本制御システムは、燃料流供給システムから燃焼器までの2つ以上の異なる燃料ラインを流れる燃料の質量または体積の比率を調節するように適合させることができる。
【0008】
本制御システムは、2つ以上の異なる燃料ラインのそれぞれで、流量制御バルブを開口/閉鎖するように適合させることができる。
【0009】
本制御システムは、2つ以上の異なる燃料ラインのそれぞれで、少なくとも1つの圧力制御バルブを開口/閉鎖するように適合させることができる。
【0010】
本制御システムは、酸化剤供給システムから燃焼器までの2つ以上の異なる酸化剤ラインの中を流れる酸化剤の質量または体積の比率を調節するように適合させることができる。
【0011】
電力生産プラントは、少なくとも、第1の燃料ラインおよび酸化剤ラインのセット、ならびに第2の燃料ラインおよび酸化剤ラインのセットを含むことができ、制御システムは、第2の燃料ラインおよび酸化剤ラインのセットにおける燃料:酸化剤の比率とは無関係に、第1の燃料ラインおよび酸化剤ラインのセットにおける燃料:酸化剤の比率を調節するように適合されている。
【0012】
電力生産プラントは、リサイクルされるCO2の流れを提供するラインを含むことができ、リサイクルされるCO2の流れの一部は、酸化剤ラインのうちの1つまたは複数に添加され、制御システムは、酸化剤ラインに添加されたリサイクルされるCO2の量を調節することにより、酸化剤ラインのうちの1つまたは複数における酸素濃度を調節するように適合されている。
【0013】
1つまたは複数の酸化剤ラインのそれぞれにおける酸素濃度は、残りの酸化剤ラインとは無関係に調節することができる。
【0014】
本制御システムは、第1の酸化剤ラインおよび第2の酸化剤ラインの中を流れる酸化剤の質量または体積の間の当量比を調節するように適合させることができる。
【0015】
本制御システムは、燃料供給システムから燃焼器までの第1の燃料ラインの流量制御バルブを閉鎖することにより、実質的に燃料が1番目第1の燃料ラインの中を流れないように適合させることができ、かつ、燃料供給システムから燃焼器までの第2の燃料ラインの流量制御バルブを開口することにより、燃焼器へと流れる燃料の実質的に全てが、2番目第2の燃料ラインの中を流れるように適合させる。
【0016】
本制御システムは、第1の燃料ラインおよび第2の燃料ラインの中を流れる燃料の質量または体積の間の当量比を調節するように構成することができる。
【0017】
本制御システムは、電力生産プラントの起動の間、第1の燃料ラインの流量制御バルブおよび第2の燃料ラインの流量制御バルブの構成を提供するように適合させることができ、タービン、および燃焼器へ流れるリサイクルされるCO2の流れを圧縮する圧縮器のうちの1つまたは両方の作動状態に、第1の燃料ラインのバルブの開口を同期するように構成されている。
【0018】
本制御システムは、熱交換器の作動温度が、既定の最大作動温度または熱の増加率に近づいているまたは超えていることを示す入力シグナルに応答して、燃料供給システムから燃焼器までの2つ以上の異なる燃料ラインのうち少なくとも1つの中を流れる燃料の質量または体積を保持するかまたは低くするように適合させることができる。
【0019】
1つまたは複数の実施形態では、本開示は、さらに電力生産システムに関することができる。たとえば、本開示に係る電力生産プラントは、燃焼器;タービン;発電器;燃料供給システム;酸化剤供給システム;電力生産プラントの作動における少なくとも1つの作業の自動化制御のための複数の制御経路を有する制御システムを含み、上記制御システムが、燃焼器へ燃料を流すためのFUEL FLOW DEMANDシグナルと、タービンの入口温度のためのTURBINE INLET TEMPERATUREシグナルとの比較の関数である制御シグナルを生成するように適合させた制御経路を含み、上記燃料流制御経路が、FUEL FLOW DEMANDシグナルおよびTURBINE INLET TEMPERATUREシグナルのうち小さいほうを選択するように適合させたロジカルシーケンスを含み、上記生成された制御シグナルが、燃料供給システムから燃焼器までを流れる燃料の質量および圧力のうちの1つまたは両方を調節するのに有効である。さらなる実施形態では、電力生産システムは、任意の数または順序で組み合わせてもよい以下の記載のうちのいずれか1つまたは複数に関連させて説明することができる。
【0020】
FUEL FLOW DEMANDシグナルは、所定の時間での電力生産プラントによる実際の電力生産を中継するPOWER ACTUALシグナルと、同じ所定の時間でのプラントによる望ましい電力生産を中継するPOWER DEMANDシグナルとの比較の関数であり得る。
【0021】
本制御システムは、それぞれがタービンの入口温度を計算するための異なる計算手順に由来する複数の計算温度シグナルのうち最も高いシグナルの選択としてTURBINE INLET TEMPERATUREシグナルを生成するように構成することができる。
【0022】
燃料供給システムは、燃料を燃焼器に通すように構成された、少なくとも2つの別々に制御された燃料ラインを含むことができる。
【0023】
燃料供給システムは、少なくとも2つの別々に制御された燃料ラインのそれぞれにおいて、少なくとも1つの流量制御バルブおよび少なくとも1つの圧力制御バルブを含むことができる。
【0024】
酸化剤供給システムは、酸化剤を燃焼器に通すように構成された、少なくとも2つの別々に制御された酸化剤ラインを含むことができる。
【0025】
酸化剤供給システムは、少なくとも2つの別々に制御された酸化剤ラインのそれぞれにおいて、少なくとも1つの流量制御バルブを含むことができる。
【0026】
酸化剤供給システムは、少なくとも2つの別々に制御された酸化剤ラインの中を流れる酸化剤の質量または体積の間の当量比を調節するように構成された当量比制御部を含むことができる。
【0027】
電力生産プラントは、少なくとも2つの別々に制御された酸化剤ラインのうちの1つが、フローセンサーを含む第2の酸化剤流ラインであるように構成することができ、ここで少なくとも2つの別々に制御された燃料ラインのうちの1つが、フローセンサーを含む第2の燃料流ラインであり、制御システムが、第2の燃料流ラインの中を流れる燃料の質量また体積に基づき、第2の酸化剤流ラインの流量制御バルブを開口または閉鎖するように構成された比率制御部を含む。
【0028】
さらなる実施形態では、本開示はまた、電力生産プラントの起動のための方法に関することができる。たとえば、このような方法は、一連の制御シグナルを実行することを含むことができ、ここで、燃料供給源から燃料が燃焼器へ流れ始める際に、燃料が第1の燃料流ラインにおいて燃料供給源から燃焼器まで実質的に流れないように、第2の燃料流ラインの流れバルブは少なくとも部分的に開口され;酸化剤供給源から酸化剤が燃焼器へと流れ始める際に、酸化剤が第1の酸化剤流ラインにおいて酸化剤供給源から燃焼器まで実質的に流れないように、第2の酸化剤流ラインの流れバルブは少なくとも部分的に開口されており;タービンは、第1の速度からより速い第2の速度に上昇し;タービンが少なくとも第2の速度に上昇した後、第1の燃料流ラインの燃料流の第2の燃料流ラインの燃料流に対する当量比が、第1の燃料流ラインのバルブが開口して、燃料供給源からの燃料が第1の燃料流ラインで燃焼器へと流れるように調節され;およびタービンが少なくとも第2の速度に上昇した後、第1の酸化剤流ラインの酸化剤流の第2の酸化剤流ラインの酸化剤流に対する当量比が、第1の酸化剤流ラインのバルブが開口して、酸化剤供給源から酸化剤が第1の酸化剤流ラインで燃焼器へと流れるように調節されている。
【0029】
本発明は、限定するものではないが、以下の実施形態を含む。
【0030】
実施形態1:電力生産プラントのための制御システムであって、
燃焼器に燃料を流すためのFUEL FLOW DEMANDシグナルおよびタービンの入口温度のためのTURBINE INLET TEMPERATUREシグナルのうち小さいほうを選択するように、ならびに燃料供給システムから前記燃焼器までを流れる燃料の質量および圧力のうちの1つまたは両方を調節するように適合させた、流量制御ロジカルシーケンスを含む、制御システム。
【0031】
実施形態2:前記制御システムが、
所定の時間での前記電力生産プラントによる実際の電力生産を中継するPOWER ACTUALシグナルと、
同じ所定の時間での前記プラントによる望ましい電力生産を中継するPOWER DEMANDシグナルと
を含み、
前記制御システムが、前記POWER DEMANDシグナルと前記POWER ACTUALシグナルとの間の差分を計算し、前記差分をFUEL FLOW DEMANDシグナルに変換するように構成されている、
上述または後述の実施形態のいずれかに記載の電力生産プラントのための制御システム。
【0032】
実施形態3:前記制御システムが、それぞれが前記タービンの入口温度を計算するための異なる計算手順に由来する、複数の計算された温度シグナルのうち最も高いシグナルの選択として、TURBINE INLET TEMPERATUREシグナルを生成する、上述または後述の実施形態のいずれかに記載の電力生産プラントのための制御システム。
【0033】
実施形態4:前記制御システムが、前記燃料供給システムから前記燃焼器までの2つ以上の異なる燃料ラインの中を流れる燃料の質量または体積の比率を調節するように適合されている、上述または後述の実施形態のいずれかに記載の電力生産プラントのための制御システム。
【0034】
実施形態5:前記制御システムが、2つ以上の異なる燃料ラインのそれぞれの流量制御バルブを開口/閉鎖するように適合されている、上述または後述の実施形態のいずれかに記載の電力生産プラントのための制御システム。
【0035】
実施形態6:前記制御システムが、2つ以上の異なる燃料ラインのそれぞれにおける少なくとも1つの圧力制御バルブを開口/閉鎖するように適合されている、上述または後述の実施形態のいずれかに記載の電力生産プラントのための制御システム。
【0036】
実施形態7:前記制御システムが、酸化剤供給システムから前記燃焼器までの2つ以上の異なる酸化剤ラインの中を流れる酸化剤の質量または体積の比率を調節するように適合させた、上述または後述の実施形態のいずれかに記載の電力生産プラントのための制御システム。
【0037】
実施形態8:前記電力生産プラントが、第1の燃料ラインおよび酸化剤ラインのセット、ならびに第2の燃料ラインおよび酸化剤ラインのセットを含み、前記制御システムが、前記第2の燃料ラインおよび酸化剤ラインのセットにおける燃料:酸化剤の比率とは無関係に、前記第1の燃料ラインおよび酸化剤ラインのセットにおける燃料:酸化剤の比率を調節するように構成されている、上述または後述の実施形態のいずれかに記載の電力生産プラントのための制御システム。
【0038】
実施形態9:前記電力生産プラントが、リサイクルCO2の流れを提供するラインを含み、前記リサイクルCO2の流れの一部が、前記酸化剤ラインのうちの1つまたは複数に添加され、前記制御システムが、前記酸化剤ラインに添加されたリサイクルCO2の量を調節することにより、前記酸化剤ラインのうちの1つまたは複数における酸素濃度を調節するように適合されている、上述または後述の実施形態のいずれかに記載の電力生産プラントのための制御システム。
【0039】
実施形態10:前記1つまたは複数の酸化剤ラインのそれぞれにおける酸素濃度が、残りの酸化剤ラインとは無関係に調節される、上述または後述の実施形態のいずれかに記載の電力生産プラントのための制御システム。
【0040】
実施形態11:前記制御システムが、第1の酸化剤ラインおよび第2の酸化剤ラインの中を流れる酸化剤の質量または体積の間の当量比を調節するように適合されている、上述または後述の実施形態のいずれかに記載の電力生産プラントのための制御システム。
【0041】
実施形態12:前記制御システムが、前記燃料供給システムから前記燃焼器までの第1の燃料ラインの流量制御バルブを閉鎖することにより、実質的に燃料が第1の燃料ラインを流れないように適合されており、かつ、前記燃料供給システムから前記燃焼器までの第2の燃料ラインの流量制御バルブを開口することにより、前記燃焼器へ流れる燃料の実質的に全てが第2の燃料ラインの中を流れるように適合されている、上述または後述の実施形態のいずれかに記載の電力生産プラントのための制御システム。
【0042】
実施形態13:前記制御システムが、前記第1の燃料ラインおよび前記第2の燃料ラインを流れる燃料の質量または体積の間の当量比を調節するように構成されている、上述または後述の実施形態のいずれかに記載の電力生産プラントのための制御システム。
【0043】
実施形態14:前記制御システムが、前記電力生産プラントの起動の間、前記第1の燃料ラインの流量制御バルブおよび前記第2の燃料ラインの流量制御バルブの構成を提供するように適合されており、かつ、タービン、および前記燃焼器に流れるリサイクルCO2の流れを圧縮する圧縮器のうちの1つまたは両方の作動状態に、前記第1の燃料ラインのバルブの開口を同期させるように構成されている、上述または後述の実施形態のいずれかに記載の電力生産プラントのための制御システム。
【0044】
実施形態15:前記制御システムが、熱交換器の作動温度が、所定の最大作動温度または熱の増加率に近づいているまたはこれを超えていることを示す入力シグナルに応答して、前記燃料供給システムから前記燃焼器までの2つ以上の異なる燃料ラインのうちの少なくとも1つの中を流れる燃料の質量または体積を保持または低くするように適合されている、上述または後述の実施形態のいずれかに記載の電力生産プラントのための制御システム。
【0045】
実施形態16:電力生産プラントであって、
燃焼器と、
タービンと、
発電器と、
燃料供給システムと、
酸化剤供給システムと、
前記電力生産プラントの作動における少なくとも1つの作業の自動化制御のための複数の制御経路を有する制御システムであって、前記制御システムが、
前記燃焼器へ燃料を流すためのFUEL FLOW DEMANDシグナルおよび前記タービンの入口温度のためのTURBINE INLET TEMPERATUREシグナルの比較の関数である制御シグナルを生成するように適合させた制御経路であって、前記制御経路が、前記FUEL FLOW DEMANDシグナルおよび前記TURBINE INLET TEMPERATUREシグナルのうち小さいほうを選択するように適合させたロジカルシーケンスを含み、前記生成された制御シグナルが、前記燃料供給システムから前記燃焼器までを流れる燃料の質量および圧力のうちの1つまたは両方を調節するために有効である、制御経路
を含む、制御システムと
を含む、電力生産プラント。
【0046】
実施形態17:前記FUEL FLOW DEMANDシグナルが、所定の時間での前記電力生産プラントによる実際の電力生産を中継するPOWER ACTUALシグナルと、同じ所定の時間での前記プラントによる望ましい電力生産を中継するPOWER DEMANDシグナルとの比較の関数である、上述または後述の実施形態のいずれかに記載の電力生産プラント。
【0047】
実施形態18:前記制御システムが、それぞれが前記タービンの入口温度を計算するための異なる計算手順に由来する、複数の計算温度シグナルのうち最も高いシグナルの選択として、TURBINE INLET TEMPERATUREシグナルを生成するように構成されている、上述または後述の実施形態のいずれかに記載の電力生産プラント。
【0048】
実施形態19:前記燃料供給システムが、前記燃焼器へ燃料を通すように構成された、少なくとも2つの別々に制御された燃料ラインを含む、上述または後述の実施形態のいずれかに記載の電力生産プラント。
【0049】
実施形態20:前記燃料供給システムが、前記少なくとも2つの別々に制御された燃料ラインのそれぞれにおいて、少なくとも1つの流量制御バルブおよび少なくとも1つの圧力制御バルブを含む、上述または後述の実施形態のいずれかに記載の電力生産プラント。
【0050】
実施形態21:前記酸化剤供給システムが、前記燃焼器へ酸化剤を通すように構成された、少なくとも2つの別々に制御された酸化剤ラインを含む、上述または後述の実施形態のいずれかに記載の電力生産プラント。
【0051】
実施形態22:前記酸化剤供給システムが、前記少なくとも2つの別々に制御された酸化剤ラインのそれぞれにおいて、少なくとも1つの流量制御バルブを含む、上述または後述の実施形態のいずれかに記載の電力生産プラント。
【0052】
実施形態23:前記酸化剤供給システムが、前記少なくとも2つの別々に制御された酸化剤ラインを流れる酸化剤の質量または体積の間の当量比を調節するように構成された当量比制御部を含む、上述または後述の実施形態のいずれかに記載の電力生産プラント。
【0053】
実施形態24:前記少なくとも2つの別々に制御された酸化剤ラインのうちの1つが、フローセンサーを含む第2の酸化剤流ラインであり、前記少なくとも2つの別々に制御された燃料ラインのうちの1つが、フローセンサーを含む第2の燃料流ラインであり、前記制御システムが、前記第2の燃料流ラインの中を流れる燃料の質量または体積に基づき、前記第2の酸化剤流ラインの流量制御バルブを開口または閉鎖するように構成されている比率制御部を含む、上述または後述の実施形態のいずれかに記載の電力生産プラント。
【0054】
実施形態25:電力生産プラントの起動のための方法であって、一連の制御シグナルを実行することを含み、
前記燃料供給源から燃料が前記燃焼器へ流れ始める際に、燃料が第1の燃料流ラインにおいて燃料供給源から燃焼器まで実質的に流れないように、第2の燃料流ラインの流れバルブが少なくとも部分的に開口され、
前記酸化剤供給源から酸化剤が前記燃焼器へ流れ始める際に、酸化剤が第1の酸化剤流ラインにおいて酸化剤供給源から前記燃焼器まで実質的に流れないように、第2の酸化剤流ラインの流れバルブが少なくとも部分的に開口され、
タービンが、第1の速度からより速い第2の速度まで上昇し、
前記タービンが少なくとも第2の速度まで上昇した後、前記第1の燃料流ラインの燃料流の前記第2の燃料流ラインの燃料流に対する当量比が、前記第1の燃料流ラインのバルブが開口され、前記燃料供給源から燃料が前記第1の燃料流ラインにおいて前記燃焼器に流れるように、調節されており、
前記タービンが、少なくとも第2の速度まで上昇した後、前記第1の酸化剤流ラインの酸化剤流の前記第2の酸化剤流ラインの酸化剤流に対する当量比が、前記第1の酸化剤流ラインのバルブが開口され、前記酸化剤供給源から酸化剤が前記第1の酸化剤流ラインにおいて前記燃焼器に流れるように、調節されている、
方法。
【0055】
本開示のこれら特徴および他の特徴、態様、および利点は、以下に簡単に記載されている添付の図面と共に以下の詳細な説明を読むことから、明らかとなるであろう。本発明は、上述の実施形態のうち2つ、3つ、4つ、またはそれ以上のいずれかの組み合わせ、および本開示に記載されているいずれか2つ、3つ、4つ、またはそれ以上の特徴または要素の組み合わせを、当該特徴または要素が本明細書中の特定の実施形態の記載で明らかに組み合わされているかどうかに関わらず、含む。本開示は、開示される発明のいずれかの分離可能な特徴または要素が、様々な態様および実施形態のいずれかにおいて、文脈で特段明示されていない限り組み合わせ可能なものとみなすべきであるように、総体的に読まれることが意図されている。
【0056】
ここで、添付の図面を参照するが、これらは必ずしも縮尺通りに描かれてはいない。
【図面の簡単な説明】
【0057】
【
図1】本開示の実施形態に係る電力生産プラントに関するフローチャートである。
【
図2】本開示の実施形態に係る電力生産プラントの作動における制御システムにより実行される制御経路を示すファンクションブロックダイアグラムである。
【
図3】本開示の実施形態に係る電力生産プラントで使用される、燃料ガスシステムおよびその特定の制御部に関するフローチャートである。
【
図4a】例として、本開示の実施形態に係る電力生産プラントにおける定常状態および電力制御要求に有用な制御経路を示す、一連のファンクションブロックダイアグラムのSHEET 1である。
【
図4b】例として、本開示の実施形態に係る電力生産プラントにおける起動の開始に有用な制御経路を示す、一連のファンクションブロックダイアグラムのSHEET 2である。
【
図4c】例として、本開示の実施形態に係る電力生産プラントの起動中のタービンクランクおよび負荷転流形インバータ(LCI)リファレンスの開始に有用な制御経路を示す、一連のファンクションブロックダイアグラムのSHEET 3である。
【
図4d】例として、本開示の実施形態に係る電力生産プラントの起動中のクランキングおよび点火に有用な制御経路を示す、一連のファンクションブロックダイアグラムのSHEET 4である。
【
図4e】例として、本開示の実施形態に係る電力生産プラントの起動中の点火に有用な制御経路を示す、一連のファンクションブロックダイアグラムのSHEET 5である。
【
図4f】例として、本開示の実施形態に係る電力生産プラントの起動中の燃料要求に応じるために有用な制御経路を示す、一連のファンクションブロックダイアグラムのSHEET 6である。
【
図4g】例として、本開示の実施形態に係る電力生産プラントに関する熱交換器の保護および燃焼比率の計算に有用な制御経路を示す、一連のファンクションブロックダイアグラムのSHEET 7である。
【
図4h】例として、本開示の実施形態に係る電力生産プラントに関する発電器の同期に有用な制御経路を示す、一連のファンクションブロックダイアグラムのSHEET 8である。
【
図4i】例として、本開示の実施形態に係る電力生産プラントにおけるタービン入口温度の計算に有用な制御経路を示す、一連のファンクションブロックダイアグラムのSHEET 9である。
【
図4j】例として、本開示の実施形態に係る電力生産プラントにおける燃料の圧力制御バルブおよび吐出圧力設定点の制御に有用な制御経路を示す、一連のファンクションブロックダイアグラムのSHEET 10である。
【
図4k】例として、本開示の実施形態に係る電力生産プラントにおける酸化剤の吐出圧力設定点の確立に有用な制御経路を示す、一連のファンクションブロックダイアグラムのSHEET 11である。
【
図4l】例として、本開示の実施形態に係る電力生産プラントにおけるタービン翼を冷却する温度および流れの設定点の構成に有用な制御経路を示す、一連のファンクションブロックダイアグラムのSHEET 12である。
【
図4m】例として、本開示の実施形態に係る電力生産プラントにおけるタービンの推進力の制御に有用な制御経路を示す、一連のファンクションブロックダイアグラムのSHEET 13である。
【
図4n】例として、本開示の実施形態に係る電力生産プラントにおける燃料ラインのパージ流の制御に有用な制御経路を示す、一連のファンクションブロックダイアグラムのSHEET 14である。
【
図5】本開示の実施形態に係る電力生産プラントに関する複数の機能的な構成要素および制御部を含むフローチャートを示す。
【発明を実施するための形態】
【0058】
詳細な説明
ここで、本発明の主題は、その例示的な実施形態を参照して本明細書中以下でより完全に説明されている。これらの例示的な実施形態は、本開示が徹底的かつ完全であり、当業者に主題の範囲を完全に伝達するように記載されている。実際に、本主題は、多くの異なる形態に具現化することができ、本明細書中記載されている実施形態に限定されると解釈するべきではなく、むしろ、これら実施形態は、本開示が適用可能な法的必要条件を満たすように提供されている。本明細書および添付の特許請求の範囲で使用されているように、単数形「a」、「an」、「the」は、文脈で他の意味が明記されていない限り、複数形を含む。
【0059】
本開示は、電力生産プラントの作動における1つまたは複数の作用を制御するように構成されたシステムおよび方法に関する。また、本開示は、さらに、当該制御システムを含む様々な要素を含む電力生産プラントに関する。本開示に係る電力生産プラントに含まれ得る要素の非限定的な例は、米国特許第8,596,075号、同第8,776,532号、同第8,959,887号、同第8,986,002号、同第9,068,743号、米国特許公開公報第2010/0300063号、同2012/0067054号、同2012/0237881号、および同2013/0213049号に記載されており、これら開示は、本明細書中参照として援用されている。
【0060】
1つまたは複数の実施形態では、電力生産プラントは、
図1に示されている要素のうちのいくつかの組み合わせを含み得る(しかしながら、同様にさらなる要素を含み得ることが理解されている)。この中で明らかなように、電力生産プラント100は、燃料供給部115からの燃料および酸化剤供給部120からの酸化剤を受容するように構成されている燃焼器111を含むことができる。燃料は、燃料供給部115から、第1の燃料ライン116および/または第2の燃料ライン117を流れることができる。燃料供給部115および燃料供給ライン116、117は、燃料システムを形成することができる。同様に酸化剤は、酸化剤供給部120から、第1の酸化剤ライン121および/または第2の酸化剤ライン122を流れることができる。酸化剤供給部120および酸化剤供給ライン121、122は、酸化剤システムを形成することができる。複数の燃料供給ラインおよび酸化剤供給ラインが例示されているが、単一の燃料供給ラインのみを使用してもよく、および/または単一の酸化剤供給ラインのみを使用してもよいと理解される。同様に、2超の燃料供給ラインを使用してもよく、および/または2超の酸化剤供給ラインを使用してもよい。燃料は、ライン160で提供され、および/またはライン121で酸化剤と混合され、および/またはライン122で酸化剤と混合されるリサイクルCO
2流の存在下で、酸化剤と共に燃焼器111で燃焼される。ライン112の燃焼生成物流が、タービン125を通して膨張されることで、組み合わせた発電器130で発電が行われる。燃焼器111およびタービン125は別々の要素として例示されているが、一部の実施形態では、タービンは燃焼器に含まれるように構成され得ると理解される。言い換えると、単一のタービン部は、燃焼部および膨張部を含んでもよい。よって、流れを燃焼器へ通す本明細書中の論述は、燃焼および膨張のために構成されているタービンに流れを通すと読むことができる。
【0061】
流れ126におけるタービン排気は、熱交換器135で冷却される。単一の熱交換器135が例示されているが、熱交換器は、異なる温度範囲で作動する複数の区域を備えた単一の部品であってもよいと理解される。同様に、異なる温度範囲で作動する複数の別々の熱交換器を利用してもよい。分離器140で水のライン141を通して水を分離することにより、実質的に純粋なリサイクルCO2流145を生成する(しかしながら、この流れの一部は、プラントから回収されてもよく、および/またはプラントの他の部分に送達されてもよく(たとえばタービンを冷却するため)、または他のラインに送達されてもよい(たとえば、酸化剤および/または燃料と混合するため))。リサイクルCO2流145は、第1段階の圧縮器151、第2段階の圧縮器155、および段階間の冷却器153を含む複数の段階の圧縮器で圧縮される。任意に、1つまたは複数のさらなる圧縮器またはポンプを追加してもよい。さらに、圧縮器は、複数の段階の圧縮器を必要としない。ライン160の圧縮したリサイクルCO2流は、熱交換器を介して燃焼器に戻される。ライン160の圧縮したリサイクルCO2流の全てまたは一部を、燃焼器111へ直接通してもよい。ライン161、161a、および161bに例示されるように、リサイクルCO2流の全てまたは一部は、第1の酸化剤ライン121および第2の酸化剤ライン122のうちの1つまたは両方に投入することができる。例示されてはいないが、ライン161および161bのうちの1つまたは両方が、あるいはまたはさらに、燃料供給ライン116、117のうちの1つまたは両方にCO2を提供してもよいことが理解されている。
【0062】
さらに、例示されている電力生産プラントは、電力生産プラントの作動における少なくとも1つの作業の自動化制御を提供するように構成されている複数の制御経路(例示されているようにCP1、CP2、CP3、およびCP4)を有する制御システム170を含む。各制御経路は、1つまたは複数の応答作用を起こさせるのに有効な少なくとも1つの制御シグナル(SIG1、SIG2、SIG3、およびSIG4)を生成するように構成することができる。このような応答作用の非限定的な例として、コンピュータのサブルーチンの実行、数学的計算の実行、論理関数の実行、バルブの状態の変更、流体流の質量流の変更、流体流の圧力の変更、さらなる制御シグナルの生成などを挙げることができる。単一の制御経路を、単一の制御シグナルを生成するように構成してもよく、または複数のシグナルを生成するように構成してもよい。さらに、電力生産プラントは、単一の制御システムを含むことができ、または複数の制御システムを含んでもよい。たとえば制御システム170は、電力生産プラントの全ての構成要素をトップダウン制御するように構成することができる分散制御システム(DCS)であってもよい。必要に応じて、電力生産プラントの1つまたは複数の要素は、DCSと組み合わせて、またはDCSから実質的に自立して機能できる別々の制御システムを有することができる。たとえばタービン制御システム(TCS)は、DCSとは独立して機能することができる。さらに、DCSは、電力生産方法の様々な機能を行うために、TCSにシグナルを送ることができる(逆も同様である)。よって、電力プラントは単一の制御システムを含むことができ、または電力プラントは複数の制御システムを含むことができる。さらに、1つの単一の制御システムで、1つまたは複数のサブ制御システムを管理することができる。
図1では、制御システム170は、TCSであり得て、システムは別々のDCSを含み得る。
【0063】
制御システムまたは複数の制御システムは、様々な制御のニーズに対処するように構成することができる。一部の実施形態では、制御システムは、特に、電力生産プラントの電力の出力を制御する方法に関することができる。一部の実施形態では、制御システムは、特に、電力生産システムにおける燃料流および/または酸化剤流を制御する方法に関する。一部の実施形態では、制御システムは、特に、実質的に定常状態のシステムを提供するための制御に関する。特定の制御経路および/または制御シグナルが供される定常状態の条件の非限定的な例として、TURBINE INLET TEMPERATUREのモニターおよびアラーム、酸化剤要求シグナル(OXIDANT DEMAND signal)、ケース冷却流および温度(case cooling flow and temperature)、ノズル冷却流および温度、翼の冷却流量および温度、釣り合いピストン制御、ならびに熱交換器の保護が、挙げられる。1つまたは複数の実施形態では、複数の制御経路および/または制御シグナルを、組み合わせて利用してもよい。たとえば、プラントの起動は、プラントが、安全かつ効率的な方法で、シャットダウン状態から作動状態まで確実に推移するように、複数の制御経路および制御シグナルを利用してもよい。特に起動は、複数のウェイポイントを利用して実行してもよく、ここで各ウェイポイントの必要な作動状態が適切に達成された後に、制御システムにより起動が次のウェイポイントに進行しなければならない。よって、制御システムは、特に、複数のステップを定義されたシーケンスで実行して定義された結果を確実に達成するように構成されてもよい。よって、本開示は、特に、電力生産の燃焼サイクルの1つまたは複数の態様を制御するための1つまたは複数の方法を提供することができる。
【0064】
本明細書中記載の制御機能は、特に、電力生産システムの制御部から機能的な構成要素まで送達される制御シグナルに応答する、電力生産システムの1つまたは複数の作動状態の特定の変化に関する。たとえば、制御機能は、1つまたは複数のバルブを開口および/または閉鎖すること、特定の流れのラインの圧力を上げるまたは下げること、流れのラインの中の流量の比率を上げるまたは下げること、圧縮器またはポンプにおける圧縮を増やすまたは減らすことなどを含むことができる。よって、作動上の変化を、制御部からの制御シグナルに応答して引き起こすことができる。さらに、制御シグナルは、圧力センサー、フローセンサー、レベルセンサー、および温度センサーなどの1つまたは複数のセンサーからの入力シグナルに基づき、制御部により生成されてもよい。
【0065】
1つまたは複数の実施形態では、電力生産システムにおける電力の出力は、制御シグナルとしての電力要求を利用することにより、調節することができる。そのため、本開示は、電力生産システム用の1つまたは複数の制御経路を含む制御システム、ならびに同制御経路(複数可)の実施に適したシステムおよび方法に関することができる。適切な制御経路の実施形態を、
図2に例示する。
図2に示す制御経路を、さらに
図4aに示す(SHEET 1)。
図2に例示する制御経路は、燃料流および/または酸化剤流が、(自動的にまたは相互に)2つ以上のライン―たとえば、第1の燃料ライン(または高流量燃料ライン)および第2の燃料ライン(または低流量燃料ライン)の間、または第1の酸化剤ライン(または高流量酸化剤ライン)および第2の酸化剤ライン(または低流量酸化剤ライン)の間で切り替えることができる実施形態を例示する。制御経路は、それぞれのラインの間の各流れに関して様々な当量比を利用する能力を可能にする。たとえば、制御システムは、第1の燃料ライン(
図1の116)および第2の燃料ライン(
図1の117)の中を通る燃料の量を制御するように特に適合させた1つまたは複数の制御経路、ならびに/または、第1の酸化剤ライン(
図1の121)および第2の酸化剤ライン(
図1の122)の中を通る酸化剤の量を制御するように特に適合させた1つまたは複数の制御経路を定義することができる。燃料流および/または酸化剤流の制御は、制御部からの制御シグナルに応答した、1つまたは複数のバルブの開口および閉鎖を含むことができる。さらに、制御シグナルは、1つまたは複数のセンサーからの入力シグナルに基づき、制御部により生成されてもよい。特定の実施形態では、このような制御は、特に、電力プラントの起動の間、および/または起動と完全な作動との間の切り替え期間の間に、適用することができる。本明細書中使用されているように、「完全な作動」は、燃焼器が作動中であり、タービンおよび主圧縮器(複数可)が同期しており、タービンが電力生産用の発電器を作動させるのに十分な速度で作動していることを、示すことができる。
【0066】
図2では、POWER DEMANDシグナル202およびPOWER ACTUALシグナル204は、DCSおよび発電器制御システム(GCS)によりそれぞれ、出力することができる。POWER DEMANDは、所定の時間に必要とされている電力の出力を伝達し、POWER ACTUALは、発電器により測定された、所定の時間での実際の電力出力を伝達する。POWER DEMANDを、POWER ACTUALと比較し、ウェイポイント206で計算された差分を使用して、FUEL FLOW DEMANDシグナルを生成することができる。よって、制御シーケンスは、POWER DEMANDシグナルを燃料流シグナルに変換するように構成されており、ここで燃料流シグナルは、第1の燃料ラインおよび第2の燃料ラインに様々な比で燃料を流すシグナルを伝達することができる。FUEL FLOW DEMANDシグナルを、ウェイポイント208で計算するか、または代わりに電力対流れの関数を、従来の燃料ストロークリファレンス(fuel stroke reference)(FSR)シグナルを生成するように構成することができる。たとえば、ウェイポイント208での関数は、他の方法で上述されているように燃料の流量の比率を出力する代わりに、0%~100%の出力シグナルを有することができる。FSRモードを使用する場合、以下の制御器を、手動制御下に置いてもよい。ウェイポイント208での関数から生じたFUEL FLOW DEMANDシグナルを、ウェイポイント210で1つまたは複数の追加の要求で修正することができる。たとえば、FUEL FLOW DEMANDシグナルを、起動シーケンスからの起動燃料(SU-FUEL)シグナルなどの燃料要求シグナルで修正することができる。起動の間、POWER DEMANDは、本質的に0であり得て、よって、SU-FUELシグナルは、燃料流の要求を指示する。起動を超えてプロセスが進行すると、POWER DEMANDは増加し、SU-FUELシグナルは最終的に0に移行する。この方法では、燃料流は、POWER DEMANDシグナルの変化として自動的に調節される。
【0067】
図2に示されている制御経路のウェイポイント208で生成されたFUEL FLOW DEMANDシグナルは、1つの制御器または複数の制御器により読み取ることができる。さらに、FUEL FLOW DEMANDシグナルは、複数の異なる燃料ラインおよび酸化剤ラインに適用することができ、これらは、電力生産システムで利用される燃料ラインの数に応じて変動することができる。
図1に例示されるように、制御システムは、第1のライン(たとえば
図1のライン116)の燃料制御バルブの中を通る燃料流が制御される経路;第2のライン(たとえば
図1のライン117)の燃料制御バルブの中を通る燃料流が制御される経路;第2のライン(たとえば
図1のライン122)を通る酸化剤流が制御される経路;および酸化剤要求シグナルが計算される経路を含み、ここでシグナルは、第1のライン(たとえば
図1のライン121)を通る酸化剤流を制御するために使用することができる。用語「第1の燃料ライン」、「第2の燃料ライン」、「第1の酸化剤ライン」、および「第2の酸化剤ライン」の使用は、概して、使用することができる複数の燃料ラインおよび酸化剤ラインを説明するために使用でき、これら用語は、実際のラインの特定の目的に関係することができる。たとえば、特定の実施形態では、第1の燃料ラインおよび第1の酸化剤ラインは、電力生産プラントの通常の作動時に、燃料流および/または酸化剤流の大半を燃焼器へ提供するように適合させることができ、第2の燃料ラインおよび第2の酸化剤ラインは、主にプラントの起動時に、燃料流および/または酸化剤流を提供するように適合させることができる。2つの燃料流および酸化剤の経路が例示されているが、2つ以上の燃料流の経路および2つ以上の酸化剤流の経路(たとえば3つ、4つ、5つ、またはそれ以上の経路)が包有されると理解される。一部の実施形態では、燃料および/または酸化剤に対する流れの要求は、TCSにより提供される分配した留分(SPLIT-FRAC)に基づき分配することができる(以下にさらに詳細に論述されている)。
【0068】
本開示に係る制御システムは、さらに、電力生産タービン(
図1の要素125)のタービン入口温度(「TIT」)に少なくとも部分的に基づき、燃料流および/または酸化剤流を計算することができる。
図2に例示されている制御経路では、計算されたタービン入口温度、TIT CALCULATEDを、ウェイポイント212で入力することができ、これを、あらかじめ設定することができ、たとえばタービンまたは電力生産システムの他の構成要素の作動限界(たとえば熱交換器の作動限界)に基づくことができる、ウェイポイント214で入力された最高タービン入口温度MAX TITと比較することができる。ウェイポイント216での差分の計算を、ウェイポイント210で任意に調節されたFUEL FLOW DEMANDシグナルと比較し、この最小値が、
図2に例示されているさらなる制御経路で使用するためのウェイポイント218での出力である。
【0069】
図2の上部の制御経路は、選択された低値218を利用して、高流量ライン―すなわち、
図1の第1の燃料流ライン116の燃料制御バルブの中を通る燃料流を計算する。選択された低値218は、本明細書中他の方法で生成されている分配シグナル(SPLIT FRAC)に基づき調節される。SPLIT FRACの値を1から減算し、その結果に、ウェイポイント220で選択された低値218を乗算する。起動モードの例示的な実施形態では、シグナル発生器から「ゼロ」シグナルを受信することにより、制御経路における自動スイッチを閉じることができる。
図2のウェイポイント222を参照されたい。このようにして制御経路を強制的にゼロにし、これにより高流量ライン用の流量制御バルブ(FCV-FH)232を閉鎖し、実質的に燃料が高流量燃料ラインに流れないようにする。よって、燃料要求シグナル全体が第2の制御経路を介して送られることにより、燃料流の実質的に全てが、低流量燃料制御バルブ―FCV-FL246により制御される低流量燃料ラインの中を流れる。この点で生成された制御シグナルは、高流量ラインの流量制御バルブ(FCV-FH)および/または低流量ラインの流量制御バルブ(FCV-FL)を開口/閉鎖するように適合させることができる。燃料流ライン(たとえば
図1のライン116および117)のバルブのこのような開口および閉鎖は、必要な質量流量または体積流量を提供するために、必要に応じて、漸増させることができる。作動モードとは無関係に、燃料流量制御バルブ(FCV-FHおよびFCV-FL)は、好ましくは、
図2に例示されているさらなる修正に基づき、POWER DEMANDシグナルに応答するように構成されている。このようにして、POWER DEMANDシグナルは、最終的には、いずれかの燃料流ラインを介して燃焼器に入る燃料の量を増加および/または減少させるように機能することができる。
【0070】
シグナル発生器は、本明細書中他の方法で生成されているMODEシグナルを受信するまで、ウェイポイント222をデフォルトの0にしたままにする。MODEシグナルは、電力生産工程が、高流量ラインを通る燃料流が望ましい状態にあることを示すいずれかのシグナルであり得る。たとえば、上述のように、起動の間、低流量燃料ラインのみを介して燃料流を提供することが望ましくなり得る。定義された作動状態のセットが一致した後、MODEシグナルを生成することができ、燃料が、高流量ラインを流れ始めることができる。この時点で、ウェイポイント222を制御する自動スイッチにより、制御経路は、ウェイポイント220からの計算を使用する。次に、この計算を、流れ変換器226で測定された、高流量ラインを通る燃料の実際の流れ、FLOW-FH228と比較する。次に、ウェイポイント224で計算された差分を、ウェイポイント230で自動スイッチに通す。この値を使用して、たとえばプラントの機能不良の場合に作動状態がSTOP FUELを生成しない限り、FCV-FH232を制御する。STOP FUELシグナルは、生成される場合、ウェイポイント230を通る流量シグナルを0に切り替えることにより、燃料がFCV-FH232の中を流れないようにする。別の方法では、FCV-FH232は、上述の制御経路により計算された質量流量または体積流量を許容するように自動的に開口/閉鎖する。
【0071】
同様の制御経路では、ウェイポイント218で生成された、SELECT LOW VALUEを使用して、低流量ラインの燃料制御バルブ―FCV-FL246の開口および閉鎖を指示することにより、低流量燃料ラインを通る燃料流を自動的に制御することができる。特に、ウェイポイント234の自動スイッチは、ウェイポイント218からのLOW VALUEを使用してデフォルトに設定することにより、燃料を、FCV-FL246を通る低流量燃料ラインのみに通すことができる。前述のように、SPLIT FRACシグナルは、自動スイッチを、LOW VALUEにSPLIT FRACの値を乗じる関数と交互にすることができる。ウェイポイント234を通過するいかなる値も、FLOW-FL238に関する流れ変換器236により測定される低流量ラインを通る実際の燃料流と比較する。次に、ウェイポイント240で得られた差分を、ウェイポイント242で自動スイッチを通してデフォルトとして伝達する。しかしながら、自動スイッチは、制御器が、燃焼器における実際の点火を表すシグナル―すなわちFUEL IGNITION ONシグナルを生成する場合、あらかじめ設定した流れの値と交互にすることができる。あらかじめ設定した流れは、任意の値であり得る;しかしながら、これは、概して、通常のプラント作動の間、すなわち燃焼器の点火の後に、燃料流の大部分が、高流量燃料ラインを通るように比較的低いレベルで維持され得る。前述のように、低流量燃料の制御経路はまた、流れが、STOP FUELシグナルが生成される場合に0となるような、ウェイポイント244での自動スイッチをも含む。別の方法では、FCV-FL246は、上述の制御経路により計算された質量流量または体積流量を許容するように自動的に開口/閉鎖する。
【0072】
低流量酸化剤ライン(たとえば
図1のライン122)を通る燃焼器への酸化剤流はまた、低流量燃料ラインの制御経路に部分的に基づき制御され得る。この酸化剤流の経路は、最初に、最初の低流量ラインに対して酸化剤流をデフォルトとするように生成されているバイアスシグナル(LOW BIAS)および様々な酸化剤流ラインに割り当てられている酸化剤流の総量を特定するように生成された当量(EQ-RATIO)シグナルに基づく。ウェイポイント248では、LOW BIASシグナルおよびEQ-RATIOシグナルを加算し、この合計を、低流量燃料の制御経路でウェイポイント234の出口での値の除数として使用する。関数ウェイポイント252で、低流量ラインにおける燃料:酸化剤の流量の比率を計算し、次に、ウェイポイント258で、流れ変換器254により測定される、低流量酸化剤ラインを通る実際の酸化剤流-LOW FLOW256と比較する。この流量の比率は、それぞれのラインを流れる物質の相対的な質量流量に基づくことができ(たとえばキログラム(kg)/秒)、またはそれぞれのラインを流れる物質の相対的な体積流量に基づくことができる(たとえば立方メートル/秒)。ウェイポイント258で得た差分を、ウェイポイント260に伝達し、ここで自動スイッチは、ウェイポイント258からの差分の使用をデフォルトとする。しかしながら、自動スイッチは、制御器が燃焼器における実際の酸化剤の点火を示すシグナル―すなわちOX-LF IGNITION ONシグナルを生成する場合、あらかじめ設定した流れの値と交互にすることができる。あらかじめ設定した流れは任意の値であり得る;しかしながら、概して、通常のプラント作動の間、すなわち燃焼器の点火の後で、酸化剤流の大部分が高流量酸化剤ラインを通るように、比較的低いレベルで維持され得る。よって、低流量酸化剤ラインの流量制御バルブFCV-OL262は、上述の制御経路により計算された質量流量または体積の流量を許容するように自動的に開口/閉鎖する。
【0073】
高流量酸化剤ラインを通る酸化剤流は、低流量酸化剤ラインに関して上述されているものと同様の専用経路により制御され得る。一部の実施形態では、しかしながら、OXIDANT DEMANDシグナルを生成し、DCSに送ることにより、高流量酸化剤ライン用の酸化剤流の制御バルブの開口および閉鎖を制御することができる。
図2に示されているように、ウェイポイント218からのLOW VALUEを、ウェイポイント264で上述のEQ-RATIOにより除算することができる。その後、計算関数をウェイポイント266で実行し、全ての酸化剤流ラインを通る総酸化剤流に対する、全ての燃料流ラインを通る総燃料流の流量の比率を計算することができる。次に、ウェイポイント266での関数の結果を、シグナル268としてDCSに送る。次に、高流量酸化剤ラインを通る酸化剤流を、OXIDANT DEMANDシグナルおよび上述のように計算されたFCV-OL262を通る流れに基づき自動的に計算することができる。流量の比率は、それぞれのラインを流れる物質の相対的な質量流量に基づくことができ(たとえばkg/秒)、またはそれぞれのラインを流れる物質の相対的な体積流量に基づくことができる(たとえば立方メートル/秒)。
【0074】
上記に加え、
図4gに例示されている関数のシーケンス(SHEET 7)により、燃料対酸化剤の比率を、燃料流、タービンの速度、システムの圧力などのうちの1つまたは複数に基づき計算することができる。ここで、SPLIT-FRACは、FCV-FHとFCV-FLとの間の燃料の分布に関する燃料の留分の比率であり;LO-BIASは、FCV-FLの当量比であり;EQ-RATIOは、燃料対酸化剤の比率である。SPLIT-FRAC、LO-BIAS、およびEQ-RATIOのそれぞれは、流れ変換器により測定される、燃料ラインを通る質量または体積に関する燃料流の合計の関数として計算される。3つのうちそれぞれに関して、シグナルは、起動モードからフルファンクションモードへと変化する準備を示すREADY TO MODE SWシグナルの生成まで、シグナル発生器を介して定義した値(「XX」)に偏らせることができる。そのため、SPLIT-FRAC、LO-BIAS、およびEQ-RATIOの全ては、電力プラントの起動の際に、低流量ラインを通る適切な流れに関して定義された開始値を有することができる。また、SHEET 7は、熱交換器の過熱を予防するための計算手順を例示している。たとえば、一部の実施形態では、TCSは、高流量燃料ラインおよび低流量燃料ラインのうちの1つまたは両方を通る、燃焼器への燃料の投入を保持または低くするように構成することができる。このような制御は、1つもしくは複数のセンサーおよび/またはTCSの補助となる制御部からのフィードバックシグナルに少なくとも部分的に基づくことができる。このようなフィードバックシグナルは、たとえば一部の実施形態では、速度制限に基づくことができる。他の実施形態では、フィードバックシグナルは、温度、圧力、ひずみ、またはさらなる変数に関する絶対的な限界などの、入力変数に基づくことができる。一部の実施形態では、フィードバックシグナルは、あらかじめ定義した最大値に近づくかまたはこれを超える、1つまたは複数の復熱型熱交換における熱のレベルを示し得る。このような例では、制御システムは、タービンの出力温度、よって復熱型熱交換器の作動温度を制御するために記載されるように燃料の投入を保持または低くするように構成することができる。
【0075】
LO-BIASシグナルの提供により、起動モードでの酸化剤流は、通常の作動モードにおける酸化剤流と異なる当量比を有することができる。さらに、LO-BIASシグナルは、互いに独立して高流量ラインおよび低流量ラインに関する当量比(燃料対酸化剤の比率)の操作を可能にする。燃焼器に入る燃料対酸化剤の全体の比率が存在する場合、高流量ラインにおける燃料対酸化剤の比率は、低流量ラインにおける燃料対酸化剤の比率と異なる場合がある。これにより、燃焼器の機能をより正確に制御する能力を有意に上げることができる。燃料対酸化剤の比率を変えることに加えて、本開示は、酸化剤流の化学的性質を変化させることをも提供する。たとえば、酸化剤流は、CO2で希釈したO2を含むことができ、酸化剤流に含まれるCO2の量を、高流量ラインおよび低流量ラインに関連する酸化剤流とは無関係に変化させることができる。よって高流量ラインから燃焼器へ入る酸素濃度は、低流量ラインから燃焼器へ入る酸素濃度とは無関係に変動し得る。よって、燃焼器にもたらされる燃料/酸化剤の経路の全てに関して、本制御システムは、当量比を異なるようすることができ、酸化剤流の化学的性質も同様に異なるようにすることができる。上記の観点で、本開示に係る制御部は、特に、燃料供給システムから燃焼器までの2つ以上の異なる燃料ラインを流れる燃料の質量または体積の比率を調節するように適合させることができる。同様に、本開示に係る制御部は、特に、酸化剤供給システムから燃焼器までの2つ以上の異なる酸化剤ラインを流れる酸化剤の質量または体積の比率を調節するように構成することができる。さらに、本開示に係る制御部は、特に、燃焼器へと燃料ラインを流れる燃料の質量または体積と比較して、燃焼器へと酸化剤ラインを流れる酸化剤の質量または体積の比率を調節するように構成することができる。全ての場合で、流量の比率は、それぞれのラインを流れる物質の相対的な質量流量に基づくことができ(たとえばkg/秒)、またはそれぞれのラインを流れる物質の相対的な体積流量に基づくことができる(例えば立方メートル/秒)。
【0076】
上記からわかるように、本開示は、2つ以上の流量ラインを通る燃料流の間を自動的に切り替える能力を提供する。2つ以上の流量ラインを通る燃料流は多様であり得て、流量の比率は、定義される投入に基づき自動的に変化させることができる。よって、任意の所定のポイントで、燃焼器への燃料流の0~100%を、2つ以上の燃料流ラインのいずれかに割り当てることができる。
【0077】
図2に関連して記載されている制御経路に加えて、燃焼器への燃料流および酸化剤流の制御に利用される様々なシグナルおよび値を計算するために、さらなる様々な制御経路を制御システムにより実施することができる。たとえば、
図1で明らかなように、タービン入口温度(TIT)を、適切な燃料流の制御シグナルを決定するために、制御経路で利用することができる。
【0078】
電力生産方法の高温、高圧の条件のため、タービン入口で温度を直接測定することは、極めて困難である場合がある。よって、本開示の実施形態では、制御システムは、様々な入力に基づき得る複数の計算手順を使用して、TITを計算する。
図4iに例示されているように(SHEET 9)、TITは、3つの異なる計算手順のうち最も大きな値[>H]として得られる。必要に応じて、より多数の計算手順を利用することができる。さらに、単一の計算手順のみを使用してもよい。
【0079】
図4i(SHEET 9)では、TITを計算するための第1の手順は、電力生産システム全体の様々な流れからの直接の計算である。これは、たとえば、温度、圧力、質量流量、流れの条件に基づく特定の熱、および生成物の形成の熱に基づく燃料の熱の値に関連する入力の受容を含むことができる。以下のそれぞれの流れ(質量流量または体積流量として得られる)は、それぞれの流量検知部(「FE」)で測定される:高流量燃料ライン(HF FUEL)を通る燃料流;低流量燃料ライン(LF FUEL)を通る燃料流;低流量酸化剤ライン(LF-OXIDANT)を通る酸化剤流;高流量酸化剤ライン(HF-OXIDANT)を通る酸化剤流;燃焼器への投入のためのリサイクルCO
2(たとえばリサイクル圧縮器を出たCO
2)の流れ(RECYCLE);およびノズル冷却流用のCO
2の流れ(NOZZLE COOLING)。以下の圧力のそれぞれを、それぞれの圧力変換器(「PT」)で測定する:低流量酸化剤ライン(LF-OXIDANT)の圧力;高流量酸化剤ライン(HF-OXIDANT)の圧力;および燃焼器への流入用のリサイクルCO
2流(RECYCLE)の圧力。以下の温度のそれぞれを、それぞれの温度変換器(「TT」)で測定する:低流量酸化剤ライン(LF-OXIDANT)を通る流れの温度;高流量酸化剤ライン(HF-OXIDANT)を通る流れの温度;および燃焼器への流入のためのリサイクルCO
2流(RECYCLE)の温度。このような直接の計算は、燃焼器へ入る総エネルギーおよび総質量を利用することができ、理論的なTITを計算することができる。
【0080】
TITを計算するための第2の手順は、タービンの圧力比に基づくことができるタービン特性の計算である。燃焼器に投入するためのリサイクルCO2流(RECYCLE)の圧力を、それぞれの圧力変換器(「PT」)により測定したタービンを出たタービン流(EXHAUST)の圧力により除算する。タービンの性能を、この圧力比およびタービン排気(EXHAUST)が流れるタービンの出口温度の関数として計算する。このタービン出口温度(「TOT」)は、温度変換器(「TT」)で測定される。このような手順は、TITの有意な過小予測を回避するために、タービンへの流れを冷却すること、およびこのような流れからのTOTを低下させることを考慮して、必要に応じて修正することができる。
【0081】
TITを計算するための第3の手順は、タービンのケーシングまたは軸距の測定温度に基づき推定することができる。このような手順は、温度変換器(「TT」)を介したタービンにおける金属温度の直接測定(INNER CASING)を可能にするための、BIASまたはオフセットの使用を含むことができる。
【0082】
上記の3つの手順を実行する場合、制御システムは、3つの計算のうちの高いものを得て[>H]、これを出力シグナルTIT-CALCを形成するために使用する。この出力は、上述のように、必要に応じて、
図2などのさらなる制御経路に送られる。
【0083】
一部の実施形態では、TITは、直接制御されていなくてもよく、むしろタービン出口温度(TOT)および実際のタービン電力の組み合わせに依存してもよい。特に、DCSは、タービンへの質量流量を制御することによりTOTを制御するように構成することができる。これは、第1の熱交換器における温度プロファイルを制御し、パイプおよび熱交換器における熱機械的な疲労を制限し、起動およびシャットダウンの間の温度変化の速度を制御するように適合させることができる。よって、TCSは、燃料流を制御することにより、タービンの電力の出力を制御することができる。TITは、直接制御されていない場合があるため、安全の目的のため、TITをモニタリングすることが必要であり得る。
【0084】
一部の実施形態では、燃料の制御経路は、流れの変化に対して実質的に線形の応答を提供するように適合され得る。また、燃料の制御経路が、1つまたは複数の流量制御バルブ、ならびに1つまたは複数の圧力制御バルブを含む、複数のバルブの構成を利用してもよい。圧力制御バルブは、下流の燃料流量制御バルブの前後の圧力低下を制御するために利用してもよく、または下流の燃料流量制御バルブの前の圧力を制御するために利用してもよい。これら(および他の制御ポイント)を使用して、燃料流制御バルブの応答を線形にしてより線形の予測可能な制御を可能にし、また燃料供給システムの上流の圧力の圧力変動から燃料流制御バルブを切り離すことができる。
【0085】
上述の燃料圧力制御バルブを含む制御経路を、
図4jに例示する(SHEET 10)。この中でわかるように、高流量の流量制御バルブFCV-FH(
図2の要素232)および低流量の流量制御バルブFCV-FL(
図2の要素246)の両方の制御経路に、シグナル発生器を含めることができる。それぞれの場合において、圧力の設定点は、それぞれのFCVの前後での圧力低下が、最小圧力の設定点(すなわち「XXbar」)であり得る定義した圧力で保持されるように確立することができる。対応するバルブのストロークのパーセンテージもまた、高流量および低流量に関して設定することができ(ここで「XX%」は、可変のバルブのストロークのパーセンテージを表す)、これにより、バルブのストロークの設定点に達する場合、圧力低下の設定点は、燃料の送達を増加させるために上昇する。このことは、各ラインでのバール(%)のf(x)関数および高い選択(>H)の関数から明らかである。このような制御経路の構成は、電力プラントのモードに関わらず(たとえば起動対完全な作動)自動的な作動を提供することができる。
【0086】
上記に加えて、圧力制御バルブの前後の最小の圧力低下が固定値で保持されるように、1つまたは複数の圧力変換器を制御経路に含めることができる。
図4j(SHEET 10)では、PRESSURE UPSTREAM OF FCV-FH、燃料ガスの圧縮器吐出圧力またはFG COMP DISCHARGE、およびPRESSURE UPSTREAM OF FCV-FLに関連する圧力シグナルを提供するために、3つの圧力変換器を利用する。3つの測定した値のうち最小の値[>L]を選択するために、ロジカルシーケンスを利用することができる。その後、制御器は、この最小の圧力低下に基づき燃料のガスの圧縮器の排気圧力(FG PRES SET POINT)に関する値を生成し、シグナルをDCSに送達する。また、PCV-FHおよびPCV-FLを通る流れの計算もまたそれぞれ、PRESSURE DOWNSTREAM OF FCV-FHおよびPRESSURE DOWNSTREAM OF FCV-FLを考慮し、これらのそれぞれは、各圧力変換器により測定される。これらは、上述の最小値と比較される実際の流れの圧力を提供する。
【0087】
一部の実施形態では、単一の圧力低下のみを利用してもよい。たとえば、起動の間、PCV-FLの前後の圧力低下のみを使用することが可能である。好ましくは、最小の設定は、最小の圧縮器特性の定格に基づき利用される。最小の圧力(たとえば「min bar」)は、シグナル発生器による入力であり、最も高い圧力は、高い選択関数[>H]により記載されるように選択される。燃料流制御バルブの上流の1つまたは複数の圧力制御バルブの利用は、一部の実施形態では、燃料ガスの圧縮器からの多様な圧力出力のみを通して一定の燃料ガスの圧力制御の維持を提供することができる。さらに、起動モードの際に特別な検討を提供することができる。たとえば、シグナル発生器を使用して、バルブが確実に閉鎖したままで、PCVとFCVとの間の高流量燃料ラインに確実に圧力がないように、起動の際に圧力制御バルブを強制的に0%にすることができる。適切な時点で、READY TO MODE SWシグナルは、起動モードからフルファンクションモードへの変化を示すことができ、このシグナルによって、シグナル発生器は、PCV-FHバルブを所定の設定(Y%)まで開口させることができる。必要な切り替えは、自動スイッチ(「ASW」)を利用して行われる。起動モードから通常の作動モードへの変化が起こると、バルブの前後の圧力低下が、上述のように正常に制御される。
【0088】
本開示に係る電力プラント用の燃料ガスシステムの簡略図を、
図3に示す。この中で明らかなように、燃料ガスの圧縮器300を出た主燃料ライン301が、第1のまたは高流量のライン310および第2のまたは低流量のライン320に分配されている。高流量燃料ライン310は、圧力制御バルブ312、流量制御バルブ314、および流れ検知部316を含む。圧力センサー313は、圧力制御バルブ312と流量制御バルブ314との間に位置し、圧力センサー315は、流量制御バルブ314と流れ検知部316との間に位置している。同様に、低流量燃料ライン320は、圧力制御バルブ322、流量制御バルブ324、および流れ検知部326を含む。圧力センサー323は、圧力制御バルブ322と流量制御バルブ324との間に位置し、圧力センサー325は、流量制御バルブ324と流れ検知部326との間に位置している。また、圧力センサー305は、高流量ライン310と低流量ライン320との間の分配の上流の主要な燃料ライン301に位置している。特定の実施形態では、バルブ312は、PCV-FHに対応することができ、バルブ314は、FCV-FHに対応することができ、バルブ322は、PCV-FLに対応することができ、およびバルブ324は、FCV-FLに対応することができる。
図3および
図4j(SHEET 10)を参照すると、PT 305は、FG COMP DISCHARGEを測定することができ、PT 313は、PRESSURE UPSTREAM OF FCV-FHを測定することができ、PT 315は、PRESSURE DOWNSTREAM OF FCV-FHを測定することができ、PT 323は、PRESSURE UPSTREAM OF FCV-FLを測定することができ、およびPT 325は、PRESSURE DOWNSTREAM OF PCV-FLを測定することができる。
【0089】
燃焼器への燃料流に対して特定の制御を提供することに加えて、本開示の制御システムは、燃焼器への酸化剤流の様々な態様を制御するように構成することができる。
図4kに例示されているように(SHEET 11)、制御システムは、酸素の低流量制御バルブ(FCV-OL POSITION)の前後での圧力低下を定義した値に維持するように構成された経路を含むことができる。あらかじめ設定したパーセンテージは、シグナル発生器を介して提供することができ(SG-XX%)、いずれかのパーセンテージを、最大パーセンテージとして選択することができる。この最大値を、TCSによる入力としてのFCV-OLを通る実際の流れと比較する。また、制御経路は、所望の(SG-BB bar)としてあらかじめ設定することができる最小流量の圧力を入力するためのシグナル発生器を含み、高い選択(>H)関数を使用して、必要な値を次の制御経路に送る。制御システムは、FCV-OLの前後での圧力低下に関する設定点を増加させるように構成することができる。この設定点の変化は、DCSに送られる酸化剤の圧力設定点(OX PRES SET POINT)の変化をシグナル伝達することができ、ここでシグナルは、電力プラントで使用される圧縮器および/またはポンプに関連する制御経路で使用される。これにより、様々な作動モードでの円滑で連続した制御が可能となる。酸化剤の圧力設定点を満たす能力は、圧力変換器PTからのCOMBUSTOR PRESSUREバルブおよび圧力変換器PTからのOXIDANT DELIVERY PRESSUREバルブに関連する、酸化剤圧縮器および酸化剤のポンプの協調に依存している。ポンプをオンラインにすると、酸化剤流が燃料シグナルに依存するため、DCSは燃料シグナルを保持するようTCSに通知するように適合させることができる。このようにして、酸化剤の圧力制御システムが単純化され、燃料流と連携し、自動化となる。
【0090】
上記でわかるように、本発明の制御システムは、電力要求が、燃料投入により制御されるように構成することができる。特に、TCSは、POWER DEMANDシグナルと一致するように燃料投入を制御することができる。流量制御バルブおよび圧力制御バルブの組み合わせは、自動制御することができ、タービンの作動に関して必要な制御範囲全体の円滑な制御および作動を提供することができる。よって、得られた電力サイクルは、従来のガスタービンの場合より燃料投入の変化に対する応答性が低い。本開示によって、燃料制御の変化は、あまり精度が必要とされないためより寛容となり、より遅い応答時間が作動の安全性を増加させることができる。
【0091】
一部の実施形態では、タービンの冷却に関連して様々な制御経路を利用してもよい。たとえば、自動化制御を提供して、リサイクルCO2流の一部などの1つまたは複数の冷却流を、冷却のためタービンに向けてもよく、制御経路を利用して、質量流量、圧力、温度、および冷却流の供給源のうちの1つまたは複数を制御することができる。一部の実施形態では、CO2流は、復熱型熱交換器(たとえば
図1の構成要素135)を通る再加熱経路における1つまたは複数の位置から回収することができる。
図4lを参照すると(SHEET 12)、2つの代替の制御経路が例示されている:上部の経路での温度バイアス流量制御および下部の経路における個々の制御スキーム。上の制御経路では、翼冷却流の質量流量設定点(BLD COOL FLOW SP)は、TCSにより設定することができ、これを使用して、翼冷却流(BLADE COOLING FLOW)の流れ変換器(「FT」)により提供される実際に測定されたBLADE COOLING FLOWに対する差分(Δ)に基づき、2つの異なる温度範囲で2つの冷却バルブ―BLADE COOLING COLD VALVEおよびBLADE COOLING HOT VALVE(しかしながらこれより多いまたは少ないバルブを使用できる)を制御することができる。「冷たい(cold)」と「熱い(hot)」との間の識別は、CO2流が熱交換器から回収される際の相対的な温度を参照する。たとえば、BLADE COOLING HOT VALVEは、
図5でバルブ553として例示されており、BLADE COOLING COLD VALVEは、
図5でバルブ552として例示されている。例として、流量制御部は、バルブ552と連通するように含まれてもよく、温度制御部は、バルブ553と連通するように含まれていてもよい。温度制御部は、温度制御を維持するために、BLADE COOLING流量制御バルブに送られる制御シグナルにバイアスをかけるように構成することができる。制御経路では、翼冷却温度の設定点(BLD COOL TEMP SP)は、TCSを介して提供することができ、温度変換器(「TT」)により測定される実際のBLADE COOLING TEMPと比較することができる。定義される許容範囲を設定するために、最大許容温度は、シグナル発生器を介した入力であり得て(SG MAX°C)、低い選択(>L)関数を使用して、最大温度をBLD COOL TEMP SPと比較することができる。選択した値を、高い選択(>H)関数に伝達され、シグナル発生器を介した入力である最小許容温度(SG MIN°C)と比較される。最終的な値は、微分関数(Δ)において、BLADE COOLING TEMPと比較される。
【0092】
下の制御経路では、加熱冷却バルブ(BLADE COOLING HOT VALVE)を使用して、TCSからのBLD COOL FLOW SPの入力と、流れ変換器(「FT」)からのBLADE COOLING FLOWとの間の比較手順に基づき、翼冷却ラインに入る流れを制御する。前述のように、冷却温度設定点(BLD COOL TEMP SP)を、許容範囲の確認を含む温度変換器(「TT」)からの測定されたBLADE COOLING TEMPと比較し、この差分を使用して、BLADE COOLING COLD VALVEを制御する。上記からわかるように、制御システムは、特に、過熱から熱交換器のうちの1つまたは複数を保護するために、燃料供給システムから燃焼器までの燃料流ラインのうちの少なくとも1つの中を流れる燃料の質量または体積を保持または低くするように適合させることができる。この制御機能は、熱交換器の作動温度が、所定の最大作動温度または熱の増加率に近づいているかまたは超えていることを示す入力シグナルに応答することができる。
【0093】
様々な制御経路は、特に、TCSとDCSとの間の協調した手順を使用することを含む電力生産プラントの起動に利用することができる。また、本開示は、特に、電力生産システムの起動のための方法および制御に関することができる。起動の手法は、特に、燃焼器としての燃料流および酸化剤流の協調した制御に依存することができ、タービンはオンラインとなる。プラントの起動の開始に関連する例示的な制御経路を、
図4bに示す(SHEET 2)。このような実施形態では、DCSは、プラント全体のシステムの準備ができていることを確保した後に、PREPARE TO STARTシグナルを送る。TCSは、起動および点火に必要ないずれかの必要なサブシステム-START EHC(電気水力学制御);START LUBEOIL;START LCI(負荷転流形インバータ);START OTHERSを可能にし、起動する。これらの開始シグナルは、メインシャフトの回転を開始でき(START TURN GEAR)、いずれかの燃料が燃焼器の点火を開始する前にラインからパージされていることを確保するためにFUEL PURGE SEQ(シーケンス)を開始できる、準備シグナルと相関している。追加的なREADYシグナル-LUBEOIL READY;LCI READY;OTHERS READY;EHC READYは、これらの開始前に、許容されるものとして必要とされてもよい。特定の例として、LUBE OIL圧力を、最小圧力(「min P」)が達成されたことを確認するために、圧力変換器(PT)から読み取ることができる。次に、制御経路は、システムからの燃料をパージするための作用が完了していることを示すTCSからの必要な入力(PURGE COMPLETE シグナル)、および、SHAFT SPEEDが最小範囲(「min rpm」)を達成している必要な読み取りを含むことができる。この時点で、READY TO STARTシグナルを、DCSにより開始することができる。
【0094】
電力プラントの起動の制御に有用な追加的な制御経路を、
図4c(SHEET 3)に例示する。この中でわかるように、起動制御は、必要なラインが、作業流体(たとえばCO
2)で充填されていることを示す充填シグナルに関する必要条件を含むことができる。DCSからのSYSTEM FILLEDシグナルは、起動を継続するために上述のように生成できるREADY TO STARTシグナルと組み合わせてもよい。また、他の許容されるシグナルが必要されてもよい。例示されるように、圧力変換器(PT)により測定されるCO
2 COMPRESSOR SUCTIONは、最小圧力の必要条件(“XX bar”)を満たさなければならない。これら必要条件を満たすことにより、回転ギアのメインシャフトをオフにするようにTCSをシグナル伝達でき(STOP TURN GEARシグナル)、これをLCI制御下に置くことができる(START LCIシグナル)。LCIは、0rpmまたは多様なrpm(「ZZ」rpm、「XX」rpm、「YY」rpm、および「QQ」rpmとして示されている)に設定されている複数のシグナル発生器(SG)、ならびに圧縮器とタービンとの間の速度同期を確認するシグナル(SYNC SPEED)、燃焼器の点火に必要な速度と一致したことを確認するシグナル(IGNITION SPD)、および特定のシステムの構成要素の同期を確認するシグナル(SYNC COMPLETE 8)に基づき、回転速度の自動調節を含み得るあらかじめ定義した設定点によりタービンを確実に上昇させるための自動スイッチにより、制御することができる。様々なタービン速度の設定点の確認は、TCSへのLC SPEED REF.シグナル送達を引き起こす。メインシャフトが所定の速度(ZZrpm)で回転する場合、タイマーが作動する。停止時間が完了してタービン速度の設定点に達した後に、READY TO CRANKシグナルが生成され、DCSに送られ、電力プラントの完全な作動への切り替えのためにさらなる経路で続けて使用される。
【0095】
電力プラントの起動の制御に有用ななおさらなる制御経路を、
図4d(SHEET 4)に例示する。この中でわかるように、起動の制御経路は、タービンを、点火速度まで加速させるために、上述のREADY TO CRANKシグナルおよびDCSからのOK TO CRANKシグナルの受信を必要とする。測定した軸速度が、なおも点火速度未満である場合、TCSは、DCSにIGNITION PREPAREシグナルを送り、DCSは、点火のプリセットボタンで、電力生産プラントのさらなる要素を作動させることにより応答する。次に、OXYGEN READYシグナルを、DCSから受信し、TCSは、以下のさらなる必要条件を満たす限り、DCSにSTART OXYGENシグナルを送ることにより応答する:1)軸速度が、所望通りにあらかじめ設定することができる点火値(YYrpm)であること;2)DCSが、IGNITION PREPAREシグナルの後に点火準備シグナル(IG PREPARE READY)と応答すること;3)他のいずれかの許容されるシグナル(OTHER PERMISSIVES)が存在すること;4)システムのパージが必要ではない―すなわちSYSTEM PURGE REQが負であることが確認されていること;および5)点火シーケンスが終了していない―すなわちIGNITION FINISHEDが負であることが確認されていること。DCSからのOXYGEN READYシグナルおよびSTART OXYGENシグナルの受信の後、DCSは、点火シーケンスを開始する。次に、燃料遅延タイマーが起動され、低流量燃料バルブ(FCV-FL)が、所定の位置に開口される。これにより、酸化剤ラインを充填する時間が与えられ、燃料および酸化剤が、実質的に同時に燃焼器に導入される。その後、制御システムは、さらなる制御経路に使用するための複数のシグナルを送達する。点火シーケンスが開始されると、点火システム用のシグナルは、TCS(IGNITOR ON)となり、燃料始動のためのタイマーが起動する。燃焼の開始は、点火検出のための第2のタイマーを起動する。点火の失敗により点火シーケンスがリセットされるように、リターンループ(return loop)を含めることができる。タイマーシグナルが失効する前に点火が検出されない場合、IGNITION FAILUREシグナルが送られる。このシグナルは、DCSが、SYSTEM PURGE REQシグナルを処理および設定し、必要に応じて再点火の試みを休止させるために必要な時間を可能にするために、設定時間の間、高い値で保持することができる。FLAME DETECTIONは、点火シグナルがフレームスパッタリングを排除するために伝達されるまで、あらかじめ設定したタイマーの持続時間の間、一定でなければならない。点火検出システムは、点火が検出されると点火装置を停止させ、IGNITION SUCCESSシグナルが、さらなる制御経路に送られる。
【0096】
図4eでわかるように(SHEET 5)、IGNITION SUCCESSシグナルが、起動から完全な作動までを推移する間、システムを通して圧力を制御するように適合させた制御経路で使用される。制御経路は、たとえば、起動の際に、システムの圧力を低く保つように適合させることができる。たとえば、DCSに送られるAT POINT 1シグナルは、約10barの圧力である圧縮器と相関することができる。次に、制御システムは、圧力器が完全な速度で機能すると、圧力を上げる。たとえば、AT POINT 2シグナルは、約30barの圧力の圧縮器と相関することができる。
【0097】
図4f(SHEET 6)および
図4h(SHEET 8)は、起動手順に沿ったウェイポイントを示すさらなる制御経路を、なおさらに例示する。たとえば、SHEET 6では、制御システムは、他の作動の中でも、完全な作動速度までタービンの加速に関連して流量を変化させることができる様々なシグナルを利用する。SHEET 8は、起動から完全な作動までを推移する間、様々なシステムの同期と、発電器制御システム(GCS)の相互作用を例示する。
図4m(SHEET 13)は、測定した値をTCSから受信したALLOWABLE THRUSTシグナルと比較することによりタービンの推進力を制御するための制御経路を例示する。
図5n(SHEET 14)に例示されているように、さらなる制御経路を、安全な作動を確保するために提供することができる。たとえば、制御システムを、点火が失敗した、および/または以前の点火がフレームアウトしたことを示すさらなるシグナル―すなわちUNSYNC FLAMEOUT;IGNITION FAILURE;およびSYNC FLAMEOUTシグナルをさらに受信することに応答して、STOP FUELシグナルを起動するように適合させることができる。STOP FUELシグナルの起動は、また、ラインにおける燃料および/または酸化剤が安全に放出できるように、様々なバルブおよび通気口の開口を開始することができる。
【0098】
上述の説明に加えて、
図4a~
図4nのSHEET1からSHEET14への言及は、本開示の実施形態により利用され得る、および別の流路における流入として使用される1つの流路に由来するシグナルに関する言及を容易にするための、例示的な制御経路を例示するために提供されている。それぞれのフローチャートは、個別に見てもよいが、同様に、本開示の態様は、上記SHEETのうちの1つの単一のフローチャートの全てまたは一部と関連させて定義することができる。他の実施形態では、それぞれのフローチャートを、組み合わせて読み取ってもよく、また、本開示の態様は、上記SHEETのうちの2つ以上の全てまたは一部の組み合わせと関連させて定義することができる。言い換えると、SHEET1からSHEET14(
図4a~
図4n)のいずれか1つに由来する1つまたは複数の要素を、SHEET1からSHEET14(
図4a~
図4n)の他のいずれかのうちの1つまたは複数の要素と組み合わせてもよい。様々なフローチャートの起こり得る組み合わせは、本明細書中提供されているさらなる開示に基づき明らかである。
【0099】
図4a~
図4nでは、様々な記号は普遍的な意味を有する。先の尖ったバナー状の枠は、制御経路への入力、または制御経路による出力であるシグナルを表す。様々な関数計算の枠は、当該分野で一般に理解されている意味を有する。「Δ」シグナルと書かれた枠は、入力に基づき差分を計算することを表している。「f(x)」と書かれた枠、計算関数を行うことを表している。「P」または「I」と書かれた枠は、それぞれ「比例」および「積分)」を表している。「P」および「I」の枠のみを示しているが、例示された制御経路は、典型的な制御ループフィードバック機構を利用することができると理解され、ここで「PID」制御器(比例、積分、微分)は、所望の設定点と測定した処理変数との間の差として誤差を計算し、比例、積分および微分の用語に基づく補正を適用する。よって、P、I、およびDのいずれかまたは全てを、本開示で使用してもよい。「+」、「-」、「×」、または「÷」の記号が書かれた枠は、値の加算、値の減算、値の乗算、および値の除算をそれぞれ表す。「ASW」と書かれた枠は、自動スイッチの存在を表している。「SG」と書かれた枠は、あらかじめ定義された入力値が生成されるシグナル発生器を示し、このシグナルは特定の値を有してもよく(枠に数字で表されている)、または多様な値を有し得る(たとえば「xx」、「nn」などのジェネリック型変数の指標により表されている)。「AM」と書かれた枠は、アナログメモリの構成要素に記憶されている値を表している。>Hまたは>Lと書かれた枠は、入力値のうち最も高い値を選択することまたは入力値のうち最も低い値を選択することをそれぞれ表している。「1」および「2」と番号付けされた入力が書かれた枠は、番号「1」の入力が、番号「2」の入力にとって代わられる、第3の(番号付けされていない)入力が受信されまで「1」の入力を使用することを示している。「※H」と書かれた枠は、シグナルが、実際の入力が設定値を超える場合にのみ存在する、高流量経路を示している。「※L」と書かれた枠は、シグナルが、実際の入力が設定値未満である場合にのみ存在する、低流量経路を示している。枠の代わりに円を使用する場合は、センサーからの入力を示している。
【0100】
本開示に係る電力生産のシステムおよび方法の制御における様々な制御経路の使用を、
図5に例示する。この中でわかるように、電力生産システム500は、タービンを通して膨張し、冷却され、精製され、作業流体として燃焼器にリサイクルされる燃焼流を形成するために、高圧の酸素で燃焼するように構成されている複数の構成要素を含む。電力生産システム500は、以下により詳細に記載されている複数のさらなる通信ラインを備える通信ライン501aを通る作業通信下にある主要な制御システム501を含む。例示されているように、単一の制御システム501は、本明細書中他で記載されているようにDCSであってもよく、本明細書中他で記載されているようにTCSであってもよく、本明細書中他で記載されているようにGCSであってもよく、または例示される電力生産システム500で行われる電力生産方法の制御のための入力の読み取りおよび出力の提供に適した、任意のさらなる一般的な制御システムであってもよい。複数の制御システムを利用してもよいと理解され、単に便宜上、単一の制御システム501を例示する。制御システム501は、さらに、DCS、TCS、およびGCSのいずれかの組み合わせなどの、複数の別々の制御システムの組み合わせを含むと考えられ得る。
【0101】
本開示に係る電力生産の実践において、燃料(たとえば燃料供給源からのメタン、合成ガス、または他の気体の燃料、
図1における要素115参照)は、燃料ガス圧縮器502で圧縮され、圧縮された燃料は、第1の燃料ライン503(または高流量燃料ライン)および第2の燃料ライン504(または低流量ライン)のうちの1つまたは両方を通って燃焼器511へと伝達され得る。第1の燃料ライン503および第2の燃料ライン504を通る流れは、高流量燃料制御バルブ505(たとえばFCV-FH)および低流量燃料制御バルブ506(たとえばFCV-FL)のそれぞれの自動化された開口および閉鎖により、制御することができる。第1の燃料ライン503は、第2の燃料ライン504と比較して大容量のラインであり得て、電力生産システム500の完全な作動時に、燃焼器への燃料流の大部分は、第1の燃料ラインの中を通り得る。また燃料は、完全な作動時に第2の燃料ライン504を流れてもよいが、このラインは、本明細書中他で記載されているように、主に電力生産システム500の起動時に使用され得る。
【0102】
酸化剤供給部(たとえば
図1の要素120)からの酸化剤は、主酸化剤ライン507の中を流れることができ、バルブ508を介して制御することができる。酸化剤(たとえば、空気分離部からの実質的に純粋な酸素の流れであり得る)は、流れ546からのリサイクルCO2と組み合わせて、ライン509で希釈した酸化剤流を形成し、これは熱交換器510を通り、次に酸化剤圧縮器512で圧縮される。圧縮し希釈した酸化剤流は、次に、熱交換器513で冷却され、ポンプ514およびバルブ515を通してくみ上げられる。次に、圧縮した酸化剤流を、復熱型熱交換器529、528、527、および526の中に通過させることにより順次加熱した後、第1の酸化剤ライン516における燃焼器511に通される。圧縮し希釈した酸化剤流の留分を回収して、バルブ571を介して第2の酸化剤ライン517における燃焼器511に通すことができる。酸化剤圧縮器512と熱交換器513との間で、希釈した酸化剤の一部は、バルブ564を出たラインへの再循環のためおよび最終的にライン509に戻すために、バルブ566を通ってライン565で回収することができる。任意に、ポンプ514とバルブ515との間の希釈した酸化剤流の一部は、圧縮器512と熱交換器513との間のライン509への再循環のために、バルブ568を通ってライン567で回収することができる。同様に任意に、バルブ515と復熱型熱交換器529との間の希釈した酸化剤流の一部を、熱交換器513とポンプ514との間のライン509への再循環のために、バルブ570を通ってライン569で回収することができる。
【0103】
第1の燃料ライン503および/または第2の燃料ライン504からの燃料を、第1の酸化剤ライン516および/または第2の酸化剤ライン517を通る酸化剤と共に、燃焼器511で燃焼して、高圧(たとえば約100bar~約500bar、好ましくは約150bar~約400barの範囲)および高温(たとえば約400℃~約1500℃、好ましくは約600℃、好ましくは約600℃~約1200℃の範囲)の燃焼生成物流を生成し、これを燃焼圧力より低い、好ましくはCO2の超臨界圧より低い圧力(たとえば約1bar~約75bar)へとタービン525で膨張させる。また、CO2の流れを、ライン521(任意の流れを表すように破線で例示されている)を通して、グランドシール圧縮器520へと伝達するためのバルブ519を通してライン518に導入してもよい。タービン排気の留分は、グランドシール522の中を通過する。その後、この流れは熱交換器523で冷却された後、グランドシール圧縮器520を通過する。グランドシール圧縮器520を出た流れは、ライン524を通して放出されてもよく、またはライン530の熱交換器523の上流点(point upstream)に再循環されもよい。ライン524を通る通路は、バルブ531および532で制御されており、再循環ライン530を通る通路は、バルブ533で制御されている。電力生産システムにおけるグランドシールおよび関連する要素に関連するさらなる構成要素は、Fetvedtらに対する米国特許公開公報第2016/0363009号に記載されており、この開示は、参照として本明細書中援用されている。
【0104】
主なタービン排気流は、ライン534のタービン525を出て、復熱型熱交換器526、527、528、および529の中を順次通過する。副流を、バルブ535を通してライン534から回収し、復熱型熱交換器526を通るライン536を通った後に、ライン534に再度合流させてもよい。任意に、ライン536の流れの一部または全てを、バルブ537を通して回収し、復熱型熱交換器529の下流のライン534におけるタービン排気に再度合流させもよい。さらに、ライン534におけるタービン排気の一部を、ライン538を通して放出ライン524へ放出してもよい。任意に、ライン524におけるグランドシール圧縮器520からのタービン排気の一部を、バルブ531の上流で回収し、バルブ539の中を通って、復熱型熱交換器529の下流で、ライン534のタービン排気と再度合流させてもよい。
【0105】
次に、ライン534のタービン排気流は、凝縮器540の中を通過して、タービン排気流から水が除去される。凝縮した水は、バルブ542を介してライン541で回収される。凝縮した水の留分は、ポンプ544および熱交換器545を通るライン543で凝縮器に戻るように再循環させることができる。水が分離されると、実質的に純粋な流れであるリサイクルCO2は、凝縮器540からライン546の中に送達される。リサイクルCO2は、様々な流れを希釈するため、作業流体として燃焼器にリサイクルするため、冷却剤として使用するため、および任意の放出のため、様々なラインの中を通過することができる。リサイクルCO2の一部は、隔離するため、EORで使用するため、または他の用途のために、生成物として回収することができる。
【0106】
ライン546のリサイクルCO2は、特に、ライン547を介してCO2リサイクル圧縮器548へと通される。圧縮されたリサイクルCO2は、熱交換器549を通過してリサイクルCO2の密度を増加させた後、燃焼器511への投入のための圧力で、CO2ポンプ550でくみ上げられる。次に、高圧のリサイクルCO2流は、順次、復熱型熱交換器529、528、527、および526を通してライン551に戻され、燃焼器511への投入のための温度に再度加熱される。高圧のリサイクルCO2の一部は、組み合わせた燃焼器511およびタービン525における冷却剤として使用するため、異なる温度で回収することができる。特に、これは、復熱型熱交換器527と528との間の中間の温度で、バルブ552を通して回収され、復熱型熱交換器526と527との間のより高い温度でバルブ553を通して回収され、ライン554の中に伝達することができる。バルブ552および553のそれぞれに関して単一のバルブを例示しているが、一連のバルブ(たとえば2つ、3つ、またはそれ以上)を各例で使用できることが理解されている。任意の実施形態では、リサイクルCO2流の一部は、熱交換器549とポンプ550との間のライン547から得ることができ、ライン556のバルブ555を介してポンプ550と復熱型熱交換器529との間のライン551に伝達することができる。上記に加えて、ライン534のタービン排気の一部を回収した後、凝縮器540を通過させ、ライン547のリサイクルCO2流と組み合わせることができる。特に、タービン排気は、ライン558のバルブ557を介して回収され、高温ガス圧縮器559で圧縮される。高温ガス圧縮器559を出たガスの一部は、熱交換器561を介してライン560で再循環することができる。ガスの残りの部分は、ライン562を通り、復熱型熱交換器528および529で冷却された後、バルブ563を通過し、圧縮器548と熱交換器549との間のライン547のリサイクルされるCO2流と組み合わせられる。このポイントの上流で、リサイクルされるCO2流の一部は、ライン573のバルブ574を介して、復熱型熱交換器529と凝縮器540との間のタービン排気流534に通される。
【0107】
また、圧縮器548と熱交換器549との間で、リサイクルCO2流の一部は、酸化剤圧縮器512への投入のためライン572で回収される。これは、主酸化剤ライン507を流れる酸素に加えられるために、バルブ564から通るリサイクルCO2流の一部に加わる。さらに、ライン572の流れの一部は、バルブ531と圧縮器520との間のライン524への投入のため、回収することができる。
【0108】
図5でわかるように、電力生産システム500は、破線を介して例示されている、上述の作業構成要素と相互接続した、多くの制御部(影のついた円)および関連するセンサー(影のついた長方形)を含む。このようなセンサー、制御部、および制御ラインのネットワークは、1つまたは複数の流量制御ロジカルシーケンスを定義することができ、これにより、電力プラントの1つまたは複数の構成要素を介した1つまたは複数の流体の流れが制御されている。たとえば、本明細書中上述したように、本制御システムは、タービン525により送達されるために必要な電流に関するPOWER DEMANDシグナルを受信するように構成された電力制御部10を含むことができる。電力制御部10は、電力要求を満たすために、燃焼器511へ適切な量の燃料を送達するため必要に応じて開口および/または閉鎖させるよう、第1の燃料ライン503および第2の燃料ライン504それぞれにおけるバルブ505および506のうちの1つまたは両方に指示するように構成することができる。
図5には示されていないが、
図3に関連してすでに記載されているように、電力制御部10は、第1の燃料ライン503および第2の燃料ライン504と連通する圧力センサーおよびフローセンサーからのシグナルをさらに受信することができる。
【0109】
さらに
図5でわかるように、グランドシール圧縮器520へ戻る再循環ライン530を通る流れは、グランドシール圧縮器の上流の、ライン524の圧力センサー14から受信した圧力データに少なくとも部分的に基づく圧力制御部12を介して、制御することができる。圧力制御部12は、特に、それを介して流れを許容または防止するためにライン530のバルブ533を開口および閉鎖するように構成することができる。放出ライン524を介したグランドシール圧縮器520を出た流れは、圧力センサー18から受信した圧力データに少なくとも部分的に基づき、圧力制御部16により制御することができる。圧力制御部16は、特に、それを介した流れを許容または予防するためにライン524のバルブ531を開口および閉鎖するように構成することができる。ライン524のバルブ532は、圧力制御部20から受信した制御シグナルに基づき開口および閉鎖することができ、これ自体は、復熱型熱交換器529の下流のタービン排気ライン534の圧力に関して、圧力センサー22からデータを受信する。圧力制御部20は、さらに、グランドシール圧縮器520へのCO
2流れに関連して、バルブ519の開口および閉鎖を制御するように構成することができる。
【0110】
液体レベル制御部24は、ライン534からのタービン排気流から分離した液体の水の、凝縮器540からの流出を制御するように構成することができる。液体レベル制御部24は、レベルセンサー26から受信したデータに少なくとも部分的に基づき、ライン541のバルブ542を開口および閉鎖することができる。
【0111】
燃焼器511および電力生産システムの様々なさらなる構成要素に戻る、リサイクルCO2の流れは、異なる目的を達成するように構成された、いくつかの異なる制御部に依拠することができる。たとえば、凝縮器540から直前の上流でタービン排気ライン534へ戻る圧縮器548を出た圧縮したリサイクルCO2流の一部の分流は、熱交換器549と圧縮したリサイクルCO2流のポンプ550との間のライン547の圧力センサー30から受信したデータの少なくとも一部に基づき、圧力制御部28により制御することができる。圧縮したリサイクルCO2流のポンプ550と復熱型熱交換器529との間のライン551の圧縮したリサイクルCO2流の任意の再循環は、ポンプ550とバルブ577との間のライン551の圧縮したリサイクルCO2流の一部が、圧縮器548と熱交換器549との間のライン547に戻り再循環されるように、流量ライン576のバルブ575をいつ開口および閉鎖するかを決定するため、フローセンサー34からデータを利用する制御部32により制御することができる。リサイクルCO2流のポンプ550からの流れは、タービン525と復熱型熱交換器526との間のライン534におけるタービン排気ラインの温度を提供する温度センサーから受信したデータを利用する温度制御部36を使用して、制御することができる。温度制御部36は、燃焼器511へと向かうリサイクルされるCO2流の量を変動させるため、ライン551のバルブ577を開口および閉鎖するように構成することができる。また、温度制御部36は、熱交換器549とポンプ550との間のライン547に戻る、ポンプ550と復熱型熱交換器529との間のライン551におけるリサイクルCO2流の少なくとも一部の再循環を引き起こすため、ライン556のバルブ555を開口および閉鎖するようにも構成することができる。
【0112】
上述のように、ライン546のリサイクルCO2流の一部は、酸化剤ライン507の酸素と組み合わせるため、バルブ564の中を通ることができる。バルブ564の開口および閉鎖は、熱交換器510と酸化剤圧縮器512との間のライン509の圧力センサー40から受信したデータに少なくとも部分的に基づき、圧力制御部38により制御することができる。圧力制御部38は、ライン509中の希釈した酸化剤の一部を、ライン579を介して放出させるためバルブ578の開口および閉鎖をさらに制御することができる。さらなる圧力制御部42は、圧力センサー44から受信したデータの少なくとも一部に基づき、酸化剤圧縮器512と熱交換器513との間のライン509から再循環ライン565のバルブ566の開口および閉鎖を制御することができる。温度制御部46は、温度センサー48を使用して、熱交換器513を出たライン509の流れの温度をモニタリングするように構成されている。流量制御部50は、ポンプ514からすぐの上流のフローセンサー52から受信したデータの少なくとも一部に基づき、ポンプ514とバルブ515との間のポイントから、ライン509中の圧縮し希釈した酸化剤の再循環を制御するために、ライン567のバルブ568を開口および閉鎖するように構成することができる。
【0113】
圧力制御部54は、第1の酸化剤流ライン516および第2の酸化剤流ライン517を流れる酸化剤の量を有意に制御することができる。特に、圧力制御部54は、ポンプ514の上流点に再循環される流れに対して、ライン509の希釈した酸化剤がどれほど多く燃焼器へ流れるかを決定するために、ライン509のバルブ515およびライン569のバルブ570の開口および閉鎖を制御することができる。圧力制御部54は、さらに、バルブ580を制御し、特に、それほど多くの希釈した酸化剤が、第1の酸化剤ライン516を通過し、または第2の酸化剤ライン517を通過させられるかを決定することができる。このような制御は、圧力センサー56および圧力センサー58から受信したデータの少なくとも一部に基づくことができる。圧力制御部54は、さらに、ポンプ514が流れを作動および制御するまで、バルブが酸化剤流を制御できることを確保するために、起動の間酸化剤システムの上流の圧力を制御するように構成することができる。
【0114】
比率制御部60は、酸化剤ライン509中の酸素対CO2の比率を制御するように構成することができる。特に、比率制御部60は、フローセンサー62からのライン546のCO2の流れに関するデータを受信することができ、ライン507のセンサー64から酸素の流れに関するデータを受信することができる。さらに、バルブ115と復熱型熱交換器529との間のライン509の酸素濃度は、酸素センサー66から提供することができる。受信したデータに基づき、比率制御部60は、ライン507のバルブ508を開口および閉鎖してライン509のCO2の流れに添加される酸素の量を調節し、所望の酸素対CO2の比率を提供することができる。たとえば、一部の実施形態では、酸素対CO2の比率は、好ましくは約10:90~約90:10、より好ましくは約10:90~約50:50、または約15:85~約30:70であり得る。
【0115】
さらに、当量制御部68および流量制御部70は、第2の燃料流ライン504に入る燃料の量に基づき第2の酸化剤ライン517に入る酸化剤の量を制御するように構成することができる。この目的のため、データは、第2の燃料流ライン504のフローセンサー72から、第1の燃料流ライン503のフローセンサー74から、および第2の酸化剤ライン517のフローセンサー76から、受信することができる。このようなデータに基づき、バルブ571は、第2の酸化剤ライン517を介して燃焼器511へ入る酸化剤の量を調節するために開口または閉鎖することができる。
【0116】
流量制御部78は、ライン581および582を介したCO2の任意のパージ流を制御するように構成することができる。このパージ流は、このようなラインに酸化剤流が存在しない場合、高流量酸化剤ライン516に必要である可能性がある。このことは、復熱型熱交換器526、527、528、および529への燃焼生成物の流れを戻さないことを確約する。またこれは、必要に応じて第1の燃料流ライン503をパージする特性をも提供することができる。
【0117】
本明細書中開示された主題の多くの修正および他の実施形態は、この主題が上述の説明および関連する図面に提示された技術の利点を有するにふさわしいことを、当業者に想起するであろう。よって、本開示は、本明細書中記載の特定の実施形態に限定されるものではなく、修正および他の実施形態が、添付の特許請求の範囲内に含まれると意図されていることを、理解するべきである。特定の用語が、本明細書中使用されているが、これらは、単に総称的な説明の意味で使用されており、限定を目的とするものではない。