(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024054599
(43)【公開日】2024-04-17
(54)【発明の名称】溶接方法及び溶接装置
(51)【国際特許分類】
B23K 9/095 20060101AFI20240410BHJP
B23K 9/127 20060101ALI20240410BHJP
B23K 9/12 20060101ALI20240410BHJP
B23K 9/028 20060101ALN20240410BHJP
【FI】
B23K9/095 510E
B23K9/127 508B
B23K9/127 509D
B23K9/12 331K
B23K9/028 J
【審査請求】未請求
【請求項の数】5
【出願形態】OL
(21)【出願番号】P 2022160921
(22)【出願日】2022-10-05
(71)【出願人】
【識別番号】000001373
【氏名又は名称】鹿島建設株式会社
(71)【出願人】
【識別番号】520291168
【氏名又は名称】新東スマートエンジニアリング株式会社
(74)【代理人】
【識別番号】100088155
【弁理士】
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100113435
【弁理士】
【氏名又は名称】黒木 義樹
(74)【代理人】
【識別番号】100122781
【弁理士】
【氏名又は名称】近藤 寛
(72)【発明者】
【氏名】水谷 亮
(72)【発明者】
【氏名】遠藤 明裕
(72)【発明者】
【氏名】岡崎 隼也
(72)【発明者】
【氏名】菊地 望
(72)【発明者】
【氏名】鍋田 武志
(72)【発明者】
【氏名】田中 将太
(72)【発明者】
【氏名】高倉 直哉
【テーマコード(参考)】
4E081
【Fターム(参考)】
4E081BA02
4E081BA27
4E081BB01
4E081EA17
4E081EA54
4E081FA14
(57)【要約】
【課題】未溶接状態の開先の実測情報がない状態で当該開先の溶接を実行することが可能な溶接方法及び溶接装置を提供することを目的とする。
【解決手段】溶接方法は、溶接ロボット13の開先センサ23によって、開先Wのうち溶接されずに残っている残存断面55の輪郭線51を取得するセンシング工程と、輪郭線51に基づいて残存断面55の形状を推定して推定残存断面56を算出する断面推定工程と、推定残存断面56に基づいて、推定残存断面56内における狙い位置Kを設定する狙い位置設定工程と、狙い位置Kを狙って溶接ロボット13が溶接ツール21で残存断面55内に溶接ビードHを形成していく溶接工程と、を備える。断面推定工程では、未溶接状態における開先Wの断面について実測された情報を使用せずに、推定残存断面56が算出される。
【選択図】
図6
【特許請求の範囲】
【請求項1】
溶接用のエンドエフェクタとセンサとを有する溶接ロボットを用いて溶接対象物の開先に対して多層盛溶接を行う溶接方法であって、
前記開先内に所定の厚さの既溶接部分が存在している状態で、前記溶接ロボットの前記センサによって前記開先近傍をセンシングし、前記開先のうち溶接されずに残っている部分の断面である残存断面の輪郭線を取得するセンシング工程と、
前記センシング工程で得られた前記輪郭線に基づいて、前記残存断面の形状を推定して推定残存断面を算出する断面推定工程と、
前記断面推定工程で得られた前記推定残存断面に基づいて、前記推定残存断面内における前記エンドエフェクタの狙い位置を設定する狙い位置設定工程と、
前記狙い位置設定工程で設定された前記狙い位置を狙って、前記溶接ロボットが前記エンドエフェクタで前記残存断面内に溶接ビードを形成していく溶接工程と、を備え、
前記断面推定工程では、
前記既溶接部分が形成される前の未溶接状態における前記開先の断面について実測された情報を使用せずに、推定残存断面が算出される、
溶接方法。
【請求項2】
前記推定残存断面は、
前記溶接対象物の表面と前記開先の内側面とが交差してなる2箇所の角部にそれぞれ対応する点A及び点Dと、2つの前記内側面上の点としてそれぞれ推定される点B及び点Cと、を頂点とする四角形ABCDであり、
前記断面推定工程では、
前記センシング工程で得られた前記輪郭線から検出される2つの変曲点がそれぞれ前記点A及び前記点Dとして定義され、
前記輪郭線のうち前記点Aを始点とする直線的な区間に沿ったベクトルALが定義され、
前記輪郭線のうち前記点Dを始点とする直線的な区間に沿ったベクトルDLが定義され、
前記既溶接部分の厚さと、前記既溶接部分が形成される前の未溶接状態の前記開先の設計上の深さと、に基づいて、前記ベクトルALの延長線上に前記点Bが定義されるとともに前記ベクトルDLの延長線上に前記点Cが定義される、
請求項1に記載の溶接方法。
【請求項3】
前記センシング工程及び前記溶接工程は、
前記溶接対象物である鋼管柱の周囲に設置されたレール上に当該レール上を移動可能な前記溶接ロボットが設置された状態で行なわれる、請求項1又は2に記載の溶接方法。
【請求項4】
前記鋼管柱同士がエレクションピース及び建方治具を含む仮接続部を介して上下に仮接続された状態で、前記溶接ロボットを用いない溶接手法によって前記開先内に前記既溶接部分が形成される仮溶接工程と、
前記仮溶接工程の後、前記仮接続部が除去される仮接続部除去工程と、
前記仮接続部除去工程の後で且つ前記センシング工程の前に、前記鋼管柱の周囲に前記レールが設置されるとともに、当該レール上に前記溶接ロボットが設置されるロボット設置工程と、を更に備える請求項3に記載の溶接方法。
【請求項5】
溶接用のエンドエフェクタとセンサとを有する溶接ロボットと、前記溶接ロボットと前記エンドエフェクタと前記センサとを制御する制御部と、を備え溶接対象物の開先に対して多層盛溶接を行う溶接装置であって、
前記制御部は、
前記開先内に所定の厚さの既溶接部分が存在している状態で、前記溶接ロボットの前記センサに前記開先近傍をセンシングさせ、前記開先のうち溶接されずに残っている部分の断面である残存断面の輪郭線を取得するセンシング処理制御部と、
前記センシング処理制御部で得られた前記輪郭線に基づいて、前記残存断面の形状を推定して推定残存断面を算出する断面推定部と、
前記断面推定部で得られた前記推定残存断面に基づいて、前記推定残存断面内における前記エンドエフェクタの狙い位置を設定する狙い位置設定部と、
前記狙い位置設定部で設定された前記狙い位置を狙って、前記溶接ロボットに前記エンドエフェクタで前記残存断面内に溶接ビードを形成させる溶接処理制御部と、を備え、
前記断面推定部は、
前記既溶接部分が形成される前の未溶接状態における前記開先の断面について実測された情報を使用せずに、推定残存断面を算出する、
溶接装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、溶接方法及び溶接装置に関するものである。
【背景技術】
【0002】
従来、このような分野の技術として、下記特許文献1に記載の溶接方法が知られている。この溶接方法は、溶接ロボットの開先センサによって開先の情報が取得され、取得した開先情報に基づいて開先に対する複数の溶接パスが計画される。その後、計画に基づいて溶接ロボットの溶接ツールによる溶接処理が繰り返し実行されて開先の溶接が進行する。溶接ロボットは、上記溶接処理を行ないながら開先センサによって開先の情報を取得し、溶接ツールの位置を調整する。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
上記溶接方法は、開先が未溶接の状態から溶接を開始することが前提とされている。しかしながら、この種の溶接方法においては、途中までの開先の溶接が既になされている状態から溶接を開始することが望まれる状況もあり、このとき未溶接状態における開先情報が存在するとは限らない。本発明は、未溶接状態の開先の実測情報がない状態で当該開先の溶接を実行することが可能な溶接方法及び溶接装置を提供することを目的とする。
【課題を解決するための手段】
【0005】
本発明の要旨は以下の通りである。
【0006】
〔1〕溶接用のエンドエフェクタとセンサとを有する溶接ロボットを用いて溶接対象物の開先に対して多層盛溶接を行う溶接方法であって、前記開先内に所定の厚さの既溶接部分が存在している状態で、前記溶接ロボットの前記センサによって前記開先近傍をセンシングし、前記開先のうち溶接されずに残っている部分の断面である残存断面の輪郭線を取得するセンシング工程と、前記センシング工程で得られた前記輪郭線に基づいて、前記残存断面の形状を推定して推定残存断面を算出する断面推定工程と、前記断面推定工程で得られた前記推定残存断面に基づいて、前記推定残存断面内における前記エンドエフェクタの狙い位置を設定する狙い位置設定工程と、前記狙い位置設定工程で設定された前記狙い位置を狙って、前記溶接ロボットが前記エンドエフェクタで前記残存断面内に溶接ビードを形成していく溶接工程と、を備え、前記断面推定工程では、前記既溶接部分が形成される前の未溶接状態における前記開先の断面について実測された情報を使用せずに、推定残存断面が算出される、溶接方法。
【0007】
〔2〕前記推定残存断面は、前記溶接対象物の表面と前記開先の内側面とが交差してなる2箇所の角部にそれぞれ対応する点A及び点Dと、2つの前記内側面上の点としてそれぞれ推定される点B及び点Cと、を頂点とする四角形ABCDであり、前記断面推定工程では、前記センシング工程で得られた前記輪郭線から検出される2つの変曲点がそれぞれ前記点A及び前記点Dとして定義され、前記輪郭線のうち前記点Aを始点とする直線的な輪郭部に沿ったベクトルALが定義され、前記輪郭線のうち前記点Dを始点とする直線的な輪郭部に沿ったベクトルDLが定義され、前記既溶接部分の厚さと、前記既溶接部分が形成される前の未溶接状態の前記開先の設計上の深さと、に基づいて、前記ベクトルALの延長線上に前記点Bが定義されるとともに前記ベクトルDLの延長線上に前記点Cが定義される、〔1〕に記載の溶接方法。
【0008】
〔3〕前記センシング工程及び前記溶接工程は、前記溶接対象物である鋼管柱の周囲に設置されたレール上に当該レール上を移動可能な前記溶接ロボットが設置された状態で行なわれる、〔1〕又は〔2〕に記載の溶接方法。
【0009】
〔4〕前記鋼管柱同士がエレクションピース及び建方治具を含む仮接続部を介して上下に仮接続された状態で、前記溶接ロボットを用いない溶接手法によって前記開先内に前記既溶接部分が形成される仮溶接工程と、前記仮溶接工程の後、前記仮接続部が除去される仮接続部除去工程と、前記仮接続部除去工程の後で且つ前記センシング工程の前に、前記鋼管柱の周囲に前記レールが設置されるとともに、当該レール上に前記溶接ロボットが設置されるロボット設置工程と、を更に備える〔1〕~〔3〕の何れか1項に記載の溶接方法。
【0010】
〔5〕溶接用のエンドエフェクタとセンサとを有する溶接ロボットと、前記溶接ロボットと前記エンドエフェクタと前記センサとを制御する制御部と、を備え溶接対象物の開先に対して多層盛溶接を行う溶接装置であって、前記制御部は、前記開先内に所定の厚さの既溶接部分が存在している状態で、前記溶接ロボットの前記センサに前記開先近傍をセンシングさせ、前記開先のうち溶接されずに残っている部分の断面である残存断面の輪郭線を取得するセンシング処理制御部と、前記センシング処理制御部で得られた前記輪郭線に基づいて、前記残存断面の形状を推定して推定残存断面を算出する断面推定部と、前記断面推定部で得られた前記推定残存断面に基づいて、前記推定残存断面内における前記エンドエフェクタの狙い位置を設定する狙い位置設定部と、前記狙い位置設定部で設定された前記狙い位置を狙って、前記溶接ロボットに前記エンドエフェクタで前記残存断面内に溶接ビードを形成させる溶接処理制御部と、を備え、前記断面推定部は、前記既溶接部分が形成される前の未溶接状態における前記開先の断面について実測された情報を使用せずに、推定残存断面を算出する、溶接装置。
【発明の効果】
【0011】
本発明によれば、未溶接状態の開先の実測情報がない状態で当該開先の溶接を実行することが可能な溶接方法及び溶接装置を提供することができる。
【図面の簡単な説明】
【0012】
【
図1】実施形態に係る溶接装置を示す斜視図である。
【
図2】本実施形態の溶接装置が備える溶接ロボットの側面図である。
【
図3】本実施形態の溶接装置が備える制御部のブロック図である。
【
図4】本実施形態の溶接方法のフローチャートである。
【
図5】(a)、(b)は、本実施形態の溶接方法における開先近傍の断面図である。
【
図6】(a)、(b)は、本実施形態の溶接方法における開先近傍の断面図である。
【
図7】(a)は、開先の残存断面を示す断面図であり、(b)は、開先の推定残存断面を示す断面図である。
【
図8】(a)は、狙い位置設定工程を説明する断面図であり、(b)は、溶接工程を説明する断面図である。
【
図9】推定残存断面を設定するための断面推定部による演算処理のフローチャートである。
【
図10】(a)~(d)は、推定残存断面を設定するための断面推定部による演算処理を説明する断面図である。
【発明を実施するための形態】
【0013】
以下、図面を参照しながら本発明の溶接方法及び溶接装置の実施形態について説明する。以下の説明においては、同一要素又は同一機能を有する要素には同一の符号を付し、重複する説明を省略する場合がある。
【0014】
図1に示される溶接装置1は、建物の施工現場において、柱部品3同士の多層盛溶接を行うための現場溶接装置である。柱部品3は例えば角形の鋼管であり、複数の柱部品3が鉛直方向に重ねられ互いに溶接されることで角形の鋼管柱が構築される。溶接される柱部品3,3同士は、互いの材軸を一致させ、柱部品3,3の水平な端部同士が全周に亘って近接し対向するように配置される。この端部同士が対向する箇所に開先Wが形成され、開先Wは、柱部品3の全周に亘って水平面内に延在している。
【0015】
開先Wの近傍において、柱部品3,3の4つの外壁面の各中央部には、それぞれエレクションピース4が予め溶接されている。上の柱部品3に設けられたエレクションピース4と、下の柱部品3に設けられたエレクションピース4とが鉛直方向に並び、開先Wを跨いで延びる建方治具5によって互いに接続されている。このようなエレクションピース4,4及び建方治具5を含む仮接続部7により、溶接前の柱部品3,3同士が仮接続されている。
【0016】
溶接装置1は、レール11と、レール11上を移動可能な溶接ロボット13と、溶接ロボット13を制御する制御部15と、を備えている。
【0017】
(レール)
レール11は、柱部品3,3の材軸を中心とする円環状をなし、柱部品3,3の全周を囲むように設置される。レール11は、所定の固定具11aを介して下側の柱部品3に支持され開先Wよりもやや低い位置に配置される。レール11にはキャリッジ17がスライド可能に取り付けられており、キャリッジ17は溶接ロボット13を搭載するとともにレール11上を走行する。
【0018】
(溶接ロボット)
図2は溶接ロボット13の側面図である。溶接ロボット13は6軸垂直多関節ロボットであり、溶接ロボット13のアーム13aは、キャリッジ17の取付座面17aに固定されるベースL0(架台)と、ベースL0に対して第1軸線J1周りに旋回可能な第1リンクL1と、第1リンクL1に対して第2軸線J2周りに回転可能な第2リンクL2と、第2リンクL2に対して第3軸線J3周りに回転可能な第3リンクL3と、第3リンクL3に対して第4軸線J4周りに回転可能な第4リンクL4と、第4リンクL4に対して第5軸線J5周りに回転可能な第5リンクL5と、第5リンクL5に対して第6軸線J6周りに回転可能な最先端リンクL6と、を備えている。なお、上記の軸線J1,J4,J6は
図2の紙面に平行な軸線であり、軸線J2,J3,J5は
図2の紙面に直交する軸線である。溶接ロボット13は、各リンクL1~L6をそれぞれ回転させるモータ等の駆動源(図示せず)を備えており、当該駆動源は制御部15の制御信号に従って動作する。
【0019】
なお、キャリッジ17の取付座面17aは鉛直面に対して傾斜しており、キャリッジ17の移動方向に対して平行である。この取付座面17aに取付けられた溶接ロボット13の第1軸線J1(旋回軸)は、取付座面17aに直交し、鉛直方向及び水平面の両方に対して傾斜している。すなわち第1軸線J1は鉛直軸でもなく水平軸でもない。この構成によれば、アーム13aの先端のエンドエフェクタを開先Wに沿って水平移動するときに、エンドエフェクタの移動範囲を、溶接ロボット13の可動域の中で好適な可動範囲に合せることが容易になる。すなわち、例えば溶接ロボット13がアーム13aの可動限界の付近で動作するといった状態を回避し易くなる。
【0020】
溶接ロボット13のアーム13aの先端(最先端リンクL6)には、溶接用エンドエフェクタとしての溶接ツール21が搭載されている。溶接ツール21としては、例えば、アーク溶接用の溶接トーチ、又はレーザ溶接用のレーザヘッド等が採用され得るが、本実施形態の溶接ツール21はアーク溶接用の溶接トーチであるものとする。更に溶接ロボット13のアーム13aの先端には、開先Wの情報を取得するための開先センサ23が搭載されている。開先センサ23は、例えば、開先Wの断面をセンシングするレーザセンサである。開先センサ23は、溶接ツール21の側方に張出すように、所定の取付治具を介して溶接ツール21に固定されている。
【0021】
(制御部)
制御部15は、レール11上における溶接ロボット13の移動(キャリッジ17の走行)、溶接ロボット13のアーム13aの駆動、溶接ツール21の溶接動作、開先センサ23のセンシング動作等を統合的に制御するコンピュータシステムである。制御部15が各リンクL1~L6の回転を制御することにより、溶接ツール21及び開先センサ23の位置及び姿勢が制御される。
【0022】
図3は、制御部15の機能上の構成を示すブロック図である。
図3に示されるように、制御部15は、機能的な構成(以下、「機能モジュール」という。)として、情報を記憶する記憶部27と、各演算を実行する演算部29と、センシング処理を実行するセンシング処理制御部31と、溶接処理を実行する溶接処理制御部33と、を有している。演算部29は、断面推定部29aと、狙い位置設定部29bと、を有している。
【0023】
これらの機能モジュールは、制御部15の機能を便宜上複数のモジュールに区切ったものに過ぎず、制御部15を構成するハードウェアがこのようなモジュールに分かれていることを必ずしも意味するものではない。例えば、制御部15を構成するハードウェアが複数の制御用コンピュータで構成され、各機能モジュールは複数の制御用コンピュータの各機能が組み合わされて実現されてもよい。各機能モジュールは、制御用コンピュータがコンピュータプログラムを実行することにより実現されるものであってもよく、専用の電気回路(例えば論理回路)、又は、これを集積した集積回路(ASIC:Application Specific Integrated Circuit)により実現されるものであってもよい。
【0024】
センシング処理制御部31は、溶接ロボット13の動作を制御するとともに開先センサ23の動作を制御し、溶接ロボット13と開先センサ23とを協働させて、開先Wに関する情報(以下「開先情報」)を取得するセンシング処理を行なう。具体的には、センシング処理制御部31は、溶接ロボット13の動作によって開先センサ23を開先Wに沿って移動させながら、開先センサ23では開先Wの近傍をスキャンして所定のピッチ(例えば50mmピッチ)の各々の断面における開先情報を取得していく。取得された開先情報は記憶部27に記憶される。この開先情報には、開先Wの各位置における開先W近傍の断面の輪郭線の情報が含まれる。
【0025】
なお、センシング処理制御部31により制御される溶接ロボット13の動作には、レール11上での溶接ロボット13の移動(キャリッジ17の走行)や溶接ロボット13のアーム13aの駆動が含まれるが、上記センシング処理は、レール11上での溶接ロボット13の移動が停止した状態で実行されることが好ましい。この場合、溶接ロボット13のアーム13aの動作のみで開先センサ23が移動されるので、スキャン中における開先センサ23の位置精度が高く、その結果、取得される開先情報の精度も高くなる。
【0026】
溶接処理制御部33は、溶接ロボット13の動作を制御するとともに溶接ツール21の動作を制御し、溶接ロボット13と溶接ツール21とを協働させて開先W内の溶接を行なう溶接処理を実行する。具体的には、溶接処理制御部33は、溶接ロボット13の動作によって溶接ツール21を開先Wに沿って当該開先Wの延在方向に移動させながら、溶接ツール21では開先W内に溶接ビードを形成していく。このとき溶接処理制御部33は、溶接ツール21のON/OFF制御や、溶接ツール21による溶接状態(例えば、溶接電流値、溶加材の供給速度)の制御を行なう。
【0027】
なお、溶接処理制御部33により制御される溶接ロボット13の動作には、レール11上での溶接ロボット13の移動(キャリッジ17の走行)や溶接ロボット13のアーム13aの駆動が含まれるが、上記溶接処理は、レール11上での溶接ロボット13の移動が停止した状態で実行されることが好ましい。この場合、溶接ロボット13のアーム13aの動作のみで溶接ツール21が移動されるので、溶接中における溶接ツール21の位置精度が高く、その結果、溶接精度も高くなる。
【0028】
(溶接方法)
続いて、上記の溶接装置1を用いて実行される柱部品3,3の溶接方法の詳細について
図4~
図8を参照しながら説明する。以下では、互いに溶接される柱部品3,3同士を区別するときには、既設の柱部品3を「柱部品3A」と呼び、その上方に接続される柱部品3を「柱部品3B」と呼ぶ。本実施形態の溶接方法は、開先Wに対して多層盛溶接を行う溶接方法であって、
図4のフローチャートに示されるように、仮溶接工程S102と、仮接続部除去工程S104と、ロボット設置工程S106と、センシング工程S108と、断面推定工程S110と、狙い位置設定工程S112と、溶接工程S114と、を備えるものである。
【0029】
〔初期状態〕
図5(a)は、本実施形態の溶接方法が実行される前の初期状態の開先W近傍を示す断面図である。図に示されるように、柱部品3Aと柱部品3Bとが、エレクションピース4,4及び建方治具5を含む仮接続部7を介して仮接続されている。柱部品3Aの上端面41は略水平面として形成され、柱部品3Bの下端面42は傾斜平面として形成されている。この上端面41と下端面42とが所定の間隔をあけて鉛直方向に対向するように配置され、柱部品3Aの内壁面と柱部品3Bの内壁面とに亘って裏当金物6が設けられ両者の隙間が塞がれている。このように柱部品3Aと柱部品3Bとの間に形成された開先Wは、柱部品3A,3Bの肉厚と同じ深さで水平に延びる台形断面の溝をなしている。開先Wの内側面49は、柱部品3Aの上端面41と、柱部品3Bの下端面42と、柱部品3A,3Bの内壁面に設けられた裏当金物6の表面40と、によって画成されている。また、柱部品3Aにはレール11(
図1)が未だ取付けられておらず、溶接ロボット13(
図1)が設置されていない。開先Wは未溶接の状態である。
【0030】
〔仮溶接工程S102〕
上記の初期状態から、
図5(b)に示されるように、開先Wの底部(裏当金物6側)に仮溶接が施される。具体的には、柱部品3Aの上端面41と裏当金物6の表面40との角部45と、柱部品3Bの下端面42と裏当金物6の表面40との角部46と、を含め裏当金物6の表面40上に2層程度の溶接ビードが形成され、柱部品3Aと柱部品3Bとが仮溶接される。ここでは未だレール11及び溶接ロボット13は設置されていないので、当然ながらこの仮溶接工程は溶接ロボット13を用いない溶接手法によって実行される。例えば本実施形態では、作業者による手作業の溶接によって仮溶接工程が実行される。これにより、開先W内の底部には溶接ビードの2層分程度の厚さの既溶接部分91が形成された状態となる。
【0031】
〔仮接続部除去工程S104〕
上記の仮溶接工程S102の後、仮接続部7が除去される。具体的には、建方治具5が取り外され、柱部品3Aの表面43のエレクションピース4が熱切断で除去され、柱部品3Bの表面44のエレクションピース4が熱切断で除去される。これにより、仮接続部7を介した柱部品3Bと柱部品3Aとの仮接続は解除されるが、
図6(a)に示されるように、既溶接部分91による仮溶接によって柱部品3Aが柱部品3Bを十分に支持することができる。
【0032】
〔ロボット設置工程S106〕
上記の仮接続部除去工程S104の後、柱部品3A,3Bの周囲にレール11(
図1)が設置される。ここでは、固定具11aを介してレール11が柱部品3Aに取付けられる。そして、このレール11上にキャリッジ17及び溶接ロボット13(
図1)が設置される。このようなロボット設置工程S106によって溶接装置1が使用可能になる。
【0033】
〔センシング工程S108〕
このセンシング工程S108以降は、使用可能になった溶接装置1を用いて各工程が実行される。センシング工程S108では、
図6(b)に示されるように、溶接ロボット13の開先センサ23によって開先Wがセンシングされ、開先W近傍の断面の輪郭線が取得される。具体的には、制御部15のセンシング処理制御部31(
図3)が、溶接ロボット13の動作によって開先センサ23を開先Wに沿って移動させながら、開先センサ23は開先Wの近傍をスキャンして各断面における開先情報を取得していく。ここでは、開先Wの所定のピッチ(例えば50mmピッチ)の断面ごとに、開先W近傍の断面の輪郭線51が取得される。輪郭線51には、柱部品3Bの表面44の一部の輪郭と、柱部品3Bの下端面42の輪郭と、既溶接部分91の表面92の輪郭と、柱部品3Aの上端面41の輪郭と、柱部品3Aの表面43の一部の輪郭と、が含まれる。
【0034】
なお、
図6(b)に示されるように、開先センサ23は、必ずしも水平姿勢ではなく、所定の俯角θをもって開先Wのセンシングを行なう場合がある。この場合には、俯角θに基づいて、輪郭線51上の点の各位置座標が補正される。また、このセンシング工程S108では、既溶接部分91の設計上の厚みに基づいて、開先Wに対する開先センサ23の水平方向の距離が調整されてもよい。この場合、開先センサ23が備えるカメラが、必要な部位(例えば、既溶接部分91の表面92)に対して良好に焦点を合わせることができる。
【0035】
〔断面推定工程S110〕
断面推定工程S110では、開先Wの所定のピッチ(例えば50mmピッチ)の断面ごとに、上記のセンシング工程S108で得られた輪郭線51に基づいて、開先Wの残存断面55の形状が推定され推定残存断面が算出される。ここで残存断面55とは、
図7(a)に示されるように、開先Wのうち現時点で残存している断面を意味し、換言すれば、開先Wのうち溶接されずに残っている部分の断面を意味する。例えばここでは、未溶接状態における開先W(
図5(a)参照)の断面から既溶接部分91(
図5(b)参照)の断面を除いた断面が残存断面55である。この断面推定工程S110では、演算部29の断面推定部29aが、前述の輪郭線51に基づいて演算を実行し、
図7(b)に示されるように、残存断面55を四角形に近似した四角形ABCDを推定残存断面56として設定する。この四角形ABCDを設定するための演算処理については後述する。
【0036】
〔狙い位置設定工程S112〕
狙い位置設定工程S112では、開先Wの所定のピッチ(例えば50mmピッチ)の断面ごとに、上記の断面推定工程S110で得られた推定残存断面56の形状(四角形ABCDの形状)に基づいて、当該推定残存断面56内における溶接ツール21の狙い位置が設定される。具体的には、演算部29の狙い位置設定部29bの演算により、
図8(a)に示されるように、推定残存断面56内に含まれるべき溶接層の層数(開先Wの深さ方向の溶接層の積層数)と、各溶接層に含まれるべき溶接パスPの段数と、が算出されて推定残存断面56内に溶接パスPが割付けされる。より具体的には、例えば、四角形ABCDの下辺CDに含まれる各溶接層の深さ方向の厚みD1が所定範囲内(例えば9mm未満,4.5mm未満など)になるように溶接層の層数が決定され、推定残存断面56内に均等な厚みで各溶接層が割付けられる。また、各溶接層に含まれる溶接パスPの段数は、溶接層毎に決定される。例えば、ある溶接層に含まれる溶接パスPの段高さD3が所定範囲内(例えば9mm未満,4.5mm未満など)になるように、当該溶接層に含まれる溶接パスPの段数が決定され、当該溶接層に均等な上下幅で溶接パスPの各段が割付けられる。このように推定残存断面56内に二次元的に溶接パスPが割付けられ、各溶接パスPの境界縁上の所定の位置に各狙い位置Kが設定され、記憶部27に記憶される。
【0037】
〔溶接工程S114〕
続いて溶接工程S114では、上記の狙い位置設定工程S112で設定された狙い位置Kを狙って溶接ロボット13の溶接ツール21により残存断面55に溶接ビードが形成される。具体的には、
図8(b)に示されるように、溶接ツール21が開先Wに沿って当該開先Wの延在方向(
図8(b)の紙面に直交する方向)に移動しながら残存断面55内に溶接ビードHを形成する溶接処理が行なわれる。このとき、溶接ツール21の先端が、開先Wの所定のピッチ(例えば50mmピッチ)の断面ごとに、各狙い位置Kを通過するように溶接ツール21の移動が制御される。従って、溶接ツール21の先端の移動軌跡上に形成される溶接ビードHは、狙い位置Kに対応する溶接パスP上に形成される。このような溶接処理が繰り返されることにより残存断面55内に溶接ビードHが繰返し重ねて形成される。この溶接処理は、溶接処理制御部33が、記憶部27に記憶された狙い位置Kに基づいて、溶接ロボット13及び溶接ツール21の動作を制御することで実現される。
【0038】
また、上記の溶接処理中には、溶接ツール21の移動方向前方に開先センサ23が先行するように、溶接ツール21が移動される。このとき溶接処理制御部33は、移動中の溶接ツール21の直ぐ前方の残存断面55の情報を開先センサ23からリアルタイムで取得する。そして、溶接処理制御部33が、取得された直ぐ前方の残存断面55の情報に基づいて、溶接ツール21の先端の位置を進行方向に直交する面内で微調整する。このように溶接ツール21の位置のフィードバック制御を行なうことで、溶接ツール21の先端が正確に狙い位置Kを通過する。
【0039】
〔完了S116〕
上記溶接工程S114によって所定回数の溶接処理が行なわれた場合、処理が終了する。この終了時には、開先W内に多層の溶接ビードHが充填された状態であり、柱部品3A,3Bの溶接は完了する。
【0040】
〔狙い位置の再設定S118〕
上記の溶接工程S114での溶接処理の誤差等により、設定済みの残りの狙い位置Kが溶接処理を継続するために適さなくなる場合があり得る。そこで、上記完了(S116)の前で、溶接工程S114の溶接処理がある程度の層数進行した段階で、処理はセンシング工程S108に戻る。すなわち、ある程度の溶接工程S114の後の新たな残存断面55の輪郭線が再度のセンシング工程S108により得られ、断面推定工程S110及び狙い位置設定工程S112を経ることで、新たな残存断面55に基づく狙い位置Kが改めて設定され、溶接工程S114が実行される。なお、この狙い位置の再設定S118は省略されてもよい。
【0041】
上述したようなS108~S118が繰返し実行されることで、最終的には、開先W内に多層の溶接ビードHが充填された状態となり開先Wの溶接が完了する(S116)。そして、このような開先Wの溶接が柱部品3A,3Bの全周に亘って完了することにより、柱部品3A,3B同士の溶接が完成する。その後、レール11から溶接ロボット13が取り外され、柱部品3Aからレール11が撤去される。
【0042】
〔推定残存断面56の設定の詳細〕
続いて、前述の断面推定工程S110において推定残存断面56(四角形ABCD)を設定するための断面推定部29aによる演算処理について
図9及び
図10を参照しながら説明する。
図9は、この演算処理のフローチャートであり、
図10(a)~
図10(d)は開先Wの断面図である。
【0043】
この断面推定工程S110の前工程であるセンシング工程S108の時点では開先W内に既溶接部分91が存在しているので、もはや未溶接状態の開先Wの情報を実測することはできない。また、初期状態(
図5(a))の時点ではレール11及び溶接ロボット13は未だ設置されていなかったので、未溶接状態の開先Wの実測情報は得られていない。したがって、この演算処理のアルゴリズムは、未溶接状態の開先Wの実測情報を使用することなく、四角形ABCDを設定するものである。
【0044】
前述の通りセンシング工程S108により、
図10(a)に示されるように、開先W近傍の断面の輪郭線51が取得される。その後、演算部29の断面推定部29aの演算処理により、開先センサ23側に位置する2つの変曲点が輪郭線51から検出され、点A及び点Dとして定義される(
図9のS202)。
【0045】
次に、
図10(b)に示されるように、輪郭線51のうち点Aから点Dまでの区間の中から、点Aを始点とする直線的な輪郭部が直線ALとして抽出され、この直線ALが正規化されて点Aを始点とするベクトルALが定義される(
図9のS204)。ここでは、抽出された上記直線ALの傾斜角度が、柱部品3Bの下端面42(
図5)の設計上の傾斜角度に近い所定の範囲内にあるか否かが確認され、当該範囲内にない場合に抽出のリトライがされるようにしてもよい。また、所定のリトライでベクトルALが定義できなかったときには、柱部品3Bの下端面42(
図5)の設計上の傾斜角度に基づいてベクトルALが定義されてもよい。
【0046】
次に、ベクトルALの延長線上に点B’が定義される。具体的には、ベクトルALの延長線上にあり、且つ、点Aからの水平距離が、未溶接状態の開先Wの設計上の深さと既溶接部分91の厚さとの差分の長さである点が、点B’として定義される(
図9のS206)。ここで、未溶接状態の開先Wの設計上の深さは柱部品3の肉厚として既知である。既溶接部分91の厚さは、当該既溶接部分91を構成する溶接ビードの設計上の厚み(例えば5mm)と仮溶接工程S102で形成された溶接層数とに基づく値であり既知である。これらの既知の数値情報は、制御部15を構成するコンピュータシステムにユーザによって予め入力され、記憶部27に記憶されていてもよい。
【0047】
同様にして、輪郭線51のうち点Aから点Dまでの区間の中から、点Dを始点とする直線的な輪郭部が直線DLとして抽出され、この直線DLが正規化されて点Dを始点とするベクトルDLが定義される(
図9のS208)。ここでは、抽出された上記直線DLの傾斜角度が、柱部品3Aの上端面41(
図5)の設計上の傾斜角度に近い所定の範囲内にあるか否かが確認され、当該範囲内にない場合に抽出のリトライがされるようにしてもよい。また、所定のリトライでベクトルDLが定義できなかったときには、柱部品3Aの上端面41(
図5)の設計上の傾斜角度に基づいてベクトルDLが定義されてもよい。次に、ベクトルDLの延長線上に点C’が定義される。具体的には、ベクトルDLの延長線上にあり、且つ、点Dからの水平距離が、未溶接状態の開先Wの設計上の深さと既溶接部分91の厚さとの差分の長さである点が、点C’として定義される(
図9のS210)。
【0048】
続いて、
図10(c)に示されるように、輪郭線51の中から、点B’よりも僅かに下方の位置と、点C’よりも僅かに上方の位置と、の間の区間の輪郭線53が抽出される(
図9のS212)。そして、この輪郭線53が最小自乗法により直線に近似される(この直線を近似直線54とする)。そして、
図10(d)に示されるように、近似直線54と直線AB’との交点が点Bとして定義され、近似直線54と直線DC’との交点が点Cとして定義される(
図9のS214)。
【0049】
以上のような演算処理により、演算部29の断面推定部29aによって、点A、点B、点C及び点Dが定義され、これらの4点を頂点とする四角形ABCDが設定される。前述の通り、この四角形ABCDは、残存断面55を四角形に近似した推定残存断面56である。なお、
図6(b)に示されるように、点Aは、柱部品3Bの表面44と下端面42とが交差する角部48に対応し、点Dは、柱部品3Aの表面43と上端面41とが交差する角部47に対応する。また、点Bは、柱部品3Bの下端面42と既溶接部分91の表面92との交点に概ね近い位置に設定され、点Cは、柱部品3Aの上端面41と既溶接部分91の表面92との交点に概ね近い位置に設定される。
【0050】
以上説明したような本実施形態の溶接方法及び溶接装置1による作用効果について説明する。
【0051】
本実施形態の溶接方法及び溶接装置1によれば、断面推定工程S110で、未溶接状態の開先Wの断面についての実測情報を使用せずに、推定残存断面56が設定され、この推定残存断面56に基づいて溶接処理を実行することが可能である。すなわち、推定残存断面56(四角形ABCD)を設定する演算処理は上述の通りであり、例えば角部45,46(
図5(b))の実測情報は使用されていない。従って、未溶接状態における開先Wの情報を実測する必要がない。
【0052】
そうすると、未溶接状態の時点では、開先Wの情報を実測するための溶接ロボット13や当該溶接ロボット13を支持するレール11が設置される必要はない。ここで仮に、未溶接状態における開先Wの実測情報が必要であるとすれば、まず未溶接状態でレール11及び溶接ロボット13が柱部品3Aに設置され、溶接ロボット13及び開先センサ23によって開先Wの情報が取得される。その後、仮溶接工程S102が実行され仮接続部除去工程S104が実行される。ここで、仮接続部除去工程S104においては、エレクションピース4の熱切断時に発生する熱の影響でレール11や溶接ロボット13が傷む可能性があるので、仮接続部除去工程S104の前にレール11及び溶接ロボット13を柱部品3Aから一旦撤去しておくことが必要である。そして、仮接続部除去工程S104の後のロボット設置工程S106で再びレール11及び溶接ロボット13を柱部品3Aに取付けることになるので、二度手間になってしまう。
【0053】
一方、このような二度手間を回避すべく、仮接続部除去工程S104を省略することも考えられる。しかしながら、仮接続部除去工程S104を省略すれば、仮接続部7が存在する状態で溶接工程S114を実行する必要がある。この場合、仮接続部7の近傍の開先Wを溶接処理する際に、建方治具5を避けながら開先W内に溶接ツール21の先端を挿入するといったような複雑な溶接ロボット13の動作が必要になるので、動作制御の複雑化の要因になり得る。
【0054】
これに対して、本実施形態の溶接方法によれば、前述の通り、未溶接状態の時点ではレール11及び溶接ロボット13は設置される必要がない。従って、まずはレール11及び溶接ロボット13が設置されていない状態で仮溶接工程S102と仮接続部除去工程S104とが実行される。そして、仮接続部除去工程S104においては、エレクションピース4の熱切断時に発生する熱の影響でレール11や溶接ロボット13が傷むことが避けられる。その後、ロボット設置工程S106で初めてレール11及び溶接ロボット13が設置されるので、前述のような二度手間も発生しない。また、仮接続部除去工程S104で仮接続部7が除去された後に溶接工程S114が実行されるので、溶接工程S114では溶接処理時に仮接続部7を避ける等の溶接ロボット13の動作が不要になり、溶接ロボット13の動作制御のシンプル化が可能になる。
【0055】
本実施形態の溶接方法及び溶接装置1によれば、前述の通り、断面推定工程S110で、未溶接状態の開先Wの断面についての実測情報がなくても溶接装置1による溶接処理を実行することが可能である。よって、溶接工程S114の途中に何らかの事情で(例えば溶接装置1のエラー等で)中断され、履歴情報が失なわれた場合であっても、溶接装置1による溶接作業をセンシング工程S108から再開することができる。
【0056】
また、溶接される柱部品3,3同士の僅かな位置ずれに起因して、裏当金物6の表面40と柱部品3,3の内壁面との間に隙間が生じる場合がある。このような隙間が存在すると、未溶接状態の開先Wの断面形状を開先センサ23で正確に取得することができない場合がある。このような場合おいて、仮溶接工程S102によって既溶接部分91で上記隙間が塞がれた後、未溶接状態の開先Wの実測情報は得られなくても、溶接を実行することができる。
【0057】
本発明は、上述した実施形態を始めとして、当業者の知識に基づいて種々の変更、改良を施した様々な形態で実施することができる。また、上述した実施形態に記載されている技術的事項を利用して、変形例を構成することも可能である。各実施形態等の構成を適宜組み合わせて使用してもよい。
【符号の説明】
【0058】
1…溶接装置、3,3A,3B…柱部品(溶接対象物)、4…エレクションピース、5…建方治具、7…仮接続部、11…レール、13…溶接ロボット、15…制御部、21…溶接ツール(エンドエフェクタ)、23…開先センサ、29a…断面推定部、29b…狙い位置設定部、31…センシング処理制御部、33…溶接処理制御部、43,44…表面、49…内側面、51…輪郭線、55…残存断面、56…推定残存断面、91…既溶接部分、A,B,C,D…点、AL,DL…ベクトル、H…溶接ビード、K…狙い位置、W…開先。