(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024056365
(43)【公開日】2024-04-23
(54)【発明の名称】光センサ
(51)【国際特許分類】
H10N 10/17 20230101AFI20240416BHJP
H10N 10/851 20230101ALI20240416BHJP
H10N 10/13 20230101ALI20240416BHJP
H10N 10/01 20230101ALI20240416BHJP
G01J 1/02 20060101ALI20240416BHJP
【FI】
H01L35/32 A
H01L35/14
H01L35/30
H01L35/34
G01J1/02 R
G01J1/02 C
【審査請求】未請求
【請求項の数】11
【出願形態】OL
(21)【出願番号】P 2022163187
(22)【出願日】2022-10-11
(71)【出願人】
【識別番号】000002130
【氏名又は名称】住友電気工業株式会社
(74)【代理人】
【識別番号】100136098
【弁理士】
【氏名又は名称】北野 修平
(74)【代理人】
【識別番号】100137246
【弁理士】
【氏名又は名称】田中 勝也
(74)【代理人】
【識別番号】100158861
【弁理士】
【氏名又は名称】南部 史
(74)【代理人】
【識別番号】100194674
【弁理士】
【氏名又は名称】青木 覚史
(72)【発明者】
【氏名】岳山 恭平
(72)【発明者】
【氏名】廣瀬 光太郎
(72)【発明者】
【氏名】足立 真寛
【テーマコード(参考)】
2G065
【Fターム(参考)】
2G065AB02
2G065BA02
2G065BA11
2G065CA13
(57)【要約】
【課題】感度の向上を図ることができる光センサを提供する。
【解決手段】光センサは、支持層と、熱エネルギーを電気エネルギーに変換する帯状の複数のp型材料層と、熱エネルギーを電気エネルギーに変換する帯状の複数のn型材料層と、を含み、第1主面上に配置される熱電変換材料部と、ヒートシンクと、第1主面と垂直な方向に見て、凹部と重なって配置される光吸収膜と、熱電変換材料部と光吸収膜との間に配置される絶縁膜と、を備える。複数のp型材料層はそれぞれ、ヒートシンクと重なる第1領域と、光吸収膜と重なる第2領域と、を含む。複数のn型材料層はそれぞれ、ヒートシンクと重なる第3領域と、光吸収膜と重なる第4領域と、を含む。複数のp型材料層および複数のn型材料層はそれぞれ、交互に直列で配置される。光吸収膜は、60質量%以上95質量%以下のカーボンと、5質量%以上40質量%以下の樹脂と、から構成されている。
【選択図】
図2
【特許請求の範囲】
【請求項1】
第1主面および前記第1主面と厚さ方向の反対に位置する第2主面を有する支持層と、
p型の導電型を有するSiGeから構成され、熱エネルギーを電気エネルギーに変換する帯状の複数のp型材料層と、n型の導電型を有するSiGeから構成され、熱エネルギーを電気エネルギーに変換する帯状の複数のn型材料層と、を含み、前記第1主面上に配置される熱電変換材料部と、
前記第2主面上に配置され、前記第1主面と垂直な方向に見て、内側に凹部を有するヒートシンクと、
前記第1主面と垂直な方向に見て、前記凹部と重なって配置される光吸収膜と、
前記熱電変換材料部と前記光吸収膜との間に配置される絶縁膜と、を備え、
前記複数のp型材料層はそれぞれ、前記第1主面と垂直な方向に見て前記ヒートシンクと重なる第1領域と、前記光吸収膜と重なる第2領域と、を含み、
前記複数のn型材料層はそれぞれ、前記第1主面と垂直な方向に見て前記ヒートシンクと重なる第3領域と、前記光吸収膜と重なる第4領域と、を含み、
前記複数のp型材料層および前記複数のn型材料層はそれぞれ、前記第1領域と前記第3領域とが電気的に接続され、前記第2領域と前記第4領域とが電気的に接続されるよう交互に直列で配置され、
前記光吸収膜は、
60質量%以上95質量%以下のカーボンと、
5質量%以上40質量%以下の樹脂と、から構成されている、光センサ。
【請求項2】
前記光吸収膜の熱伝導率は、1W/mK以下である、請求項1に記載の光センサ。
【請求項3】
前記樹脂は、エポキシ樹脂を含む、請求項1または請求項2に記載の光センサ。
【請求項4】
前記光吸収膜の厚さは、2μm以上7μm以下である、請求項1または請求項2に記載の光センサ。
【請求項5】
前記光吸収膜の外形形状は、前記第1主面と垂直な方向に見て、円形状であり、
各前記p型材料層および各前記第n材料層は、放射状に配置されている、請求項1または請求項2に記載の光センサ。
【請求項6】
前記第2領域および前記第4領域はそれぞれ、径方向において前記光吸収膜の中心から前記光吸収膜の半径の30%以上80%以下の領域に位置する、請求項5に記載の光センサ。
【請求項7】
前記光吸収膜の外形形状は、前記第1主面と垂直な方向に見て、矩形状であり、
各前記p型材料層および各前記第n材料層は、前記光吸収膜の一辺の延びる方向または前記一辺の延びる方向に垂直な方向に長手方向が沿うように配置されている、請求項1または請求項2に記載の光センサ。
【請求項8】
前記第1領域と前記第3領域とが導電性を有する第1導電部を介して電気的に接続され、前記第2領域と前記第4領域とが導電性を有する第2導電部を介して電気的に接続される、請求項1または請求項2に記載の光センサ。
【請求項9】
前記複数のp型材料層および前記複数のn型材料層はそれぞれ、前記第1領域と前記第3領域とが前記第1主面に垂直な方向に見て重なり、オーミック接触して接続され、前記第2領域と前記第4領域とが前記第1主面に垂直な方向に見て重なり、オーミック接触して接続される、請求項1または請求項2に記載の光センサ。
【請求項10】
前記p型材料層およびn前記型材料層のうちの少なくともいずれか一方は、粒径が3nm以上200nm以下であるナノ結晶構造およびアモルファス構造のうちの少なくともいずれか一方を有するSiGeから構成されている、請求項1または請求項2に記載の光センサ。
【請求項11】
前記SiGeは、多結晶体である、請求項1または請求項2に記載の光センサ。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、光センサに関するものである。
【背景技術】
【0002】
温度差(熱エネルギー)を電気エネルギーに変換する熱電変換材料を用いたサーモパイル型の赤外線センサに関する技術が知られている(たとえば特許文献1参照)。赤外線センサは、光エネルギーを熱エネルギーに変換する受光部(光吸収膜)と、温度差(熱エネルギー)を電気エネルギーに変換する熱電変換部(サーモパイル)とを備える。熱電変換部においては、p型熱電変換材料とn型熱電変換材料とを接続して形成される熱電対が用いられる。複数のp型熱電変換材料と複数のn型熱電変換材料とを交互に直列で接続することにより、出力を増加させている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
光センサについては、光吸収膜により受けた光に応じて温度差が形成され、この温度差(熱エネルギー)が電気エネルギーに変換される。光センサにおいては、感度の向上を図ることが求められる。
【0005】
そこで、感度の向上を図ることができる光センサを提供することを目的の1つとする。
【課題を解決するための手段】
【0006】
本開示に従った光センサは、第1主面および第1主面と厚さ方向の反対に位置する第2主面を有する支持層と、p型の導電型を有するSiGeから構成され、熱エネルギーを電気エネルギーに変換する帯状の複数のp型材料層と、n型の導電型を有するSiGeから構成され、熱エネルギーを電気エネルギーに変換する帯状の複数のn型材料層と、を含み、第1主面上に配置される熱電変換材料部と、第2主面上に配置され、第1主面と垂直な方向に見て、内側に凹部を有するヒートシンクと、第1主面と垂直な方向に見て、凹部と重なって配置される光吸収膜と、熱電変換材料部と光吸収膜との間に配置される絶縁膜と、を備える。複数のp型材料層はそれぞれ、第1主面と垂直な方向に見てヒートシンクと重なる第1領域と、光吸収膜と重なる第2領域と、を含む。複数のn型材料層はそれぞれ、第1主面と垂直な方向に見てヒートシンクと重なる第3領域と、光吸収膜と重なる第4領域と、を含む。複数のp型材料層および複数のn型材料層はそれぞれ、第1領域と第3領域とが電気的に接続され、第2領域と第4領域とが電気的に接続されるよう交互に直列で配置される。光吸収膜は、60質量%以上95質量%以下のカーボンと、5質量%以上40質量%以下の樹脂と、から構成されている。
【発明の効果】
【0007】
上記光センサによると、感度を良好にすることができる。
【図面の簡単な説明】
【0008】
【
図1】
図1は、実施の形態1における光センサの外観の概略平面図である。
【
図2】
図2は、
図1における線分II-IIに沿う断面を示す実施の形態1の光センサの概略断面図である。
【
図3】
図3は、
図1に示す光センサにおいて、
図1における線分III-IIIに沿う断面を示す実施の形態1の光センサの一部の概略断面図である。
【
図4】
図4は、実施の形態1における光センサおよびカーボンのみを赤外線吸収膜として用いた場合の光センサにおける温度と中心からの距離との関係を示すグラフである。
【
図5】
図5は、実施の形態1における光センサの感度と、カーボンのみを赤外線吸収膜として用いた場合の光センサの感度とを比較したグラフである。
【
図6】
図8は、本開示の実施の形態2における光センサの外観の概略平面図である。
【
図7】
図7は、
図6における線分VII-VIIに沿う断面を示す実施の形態2の光センサの概略断面図である。
【
図8】
図8は、本開示の実施の形態3における光センサの外観の概略平面図である。
【発明を実施するための形態】
【0009】
[本開示の実施形態の説明]
最初に本開示の実施態様を列記して説明する。本開示に係る光センサは、
(1)第1主面および第1主面と厚さ方向の反対に位置する第2主面を有する支持層と、p型の導電型を有するSiGeから構成され、熱エネルギーを電気エネルギーに変換する帯状の複数のp型材料層と、n型の導電型を有するSiGeから構成され、熱エネルギーを電気エネルギーに変換する帯状の複数のn型材料層と、を含み、第1主面上に配置される熱電変換材料部と、第2主面上に配置され、第1主面と垂直な方向に見て、内側に凹部を有するヒートシンクと、第1主面と垂直な方向に見て、凹部と重なって配置される光吸収膜と、熱電変換材料部と光吸収膜との間に配置される絶縁膜と、を備える。複数のp型材料層はそれぞれ、第1主面と垂直な方向に見てヒートシンクと重重なる第1領域と、光吸収膜と重なる第2領域と、を含む。複数のn型材料層はそれぞれ、第1主面と垂直な方向に見てヒートシンクと重なる第3領域と、光吸収膜と重なる第4領域と、を含む。複数のp型材料層および複数のn型材料層はそれぞれ、第1領域と第3領域とが電気的に接続され、第2領域と第4領域とが電気的に接続されるよう交互に直列で配置される。光吸収膜は、60質量%以上95質量%以下のカーボンと、5質量%以上40質量%以下の樹脂と、から構成されている。なお、第2領域と第4領域とが電気的に接続される、とは、第2領域と第4領域とが電位差の無い程度に電気的に接続されていることをいう。
【0010】
赤外線センサのような、温度差(熱エネルギー)を電気エネルギーに変換する熱電変換材料を用いたサーモパイル型の光センサについては、光エネルギーを熱エネルギーに変換する光吸収膜と、熱エネルギーを電気エネルギーに変換する熱電変換材料部(サーモパイル)と、を備える場合がある。熱電変換材料部においては、例えば、p型の熱電変換材料とn型の熱電変換材料部とを接続して形成される熱電対が用いられる場合がある。複数の帯状のp型の熱電変換材料部と複数の帯状のn型の熱電変換材料部とを交互に直列で接続することにより、出力を増加させている。光センサにおける感度については、以下の数1に示す式によって表される。
【0011】
【0012】
D*は感度、ηは放射率、nは熱電対の対数、αはゼーベック係数、Gthは熱コンダクタンスを示す。この式からも把握できるように、熱コンダクタンスを低減することができれば、光センサにおける感度の向上を図ることができる。
【0013】
ここで、本発明者らは、熱コンダクタンスの低減を図る際に、熱コンダクタンスの逆数とほぼ等しい温度差を大きくしようと考えた。そして、光センサに含まれる構成のうち、熱電変換材料部に温度差を形成する光吸収膜について、光吸収膜の熱伝導率が高いと、熱電変換材料部に形成される温度差が小さくなってしまうことを見出した。すなわち、熱電変換材料部のうち、光吸収膜と重なって高温となる領域において、光吸収膜の熱伝導率が高いとこの領域が同じ温度となってしまい、温度差を形成しにくいと考えた。そこで、本発明者らはこの点について着目して鋭意検討し、本開示の構成を想到するに至った。
【0014】
本開示の光センサによると、光吸収膜は、60質量%以上95質量%以下のカーボン(C)と、5質量%以上40質量%以下の樹脂と、から構成されている。このような構成の光吸収膜は、上記樹脂を5質量%以上40質量%以下の含有割合で含むため、熱伝導率を低くすることができる。そうすると、複数のp型材料層および複数のn型材料層において、光吸収膜と重なる領域に大きい温度差を形成することができる。したがって、全体として帯状の複数のp型材料層のそれぞれおよび帯状の複数のn型材料層のそれぞれにおいて、大きい温度差を形成することができる。この場合、熱電変換材料部と光吸収膜との間には絶縁膜が配置されているため、熱電変換材料部と光吸収膜との間の絶縁性を確保することができる。また、光吸収膜に求められる性能として、高い光吸収率が挙げられるが、上記構成の光吸収膜によると、60質量%以上95質量%以下のカーボンを含むため、高い光吸収率を実現することができる。すなわち、上記構成の光吸収膜は、熱伝導率を低くしながら高い光吸収率を実現することができる。以上より、上記構成の光センサによると、熱電変換材料部において大きい温度差を形成することができるため、光センサの感度の向上を図ることができる。
【0015】
(2)上記(1)において、光吸収膜の熱伝導率は、1W/mK以下であってもよい。このような光センサは、大きい温度差をより確実に形成して、より感度の向上を図ることができる。
【0016】
(3)上記(1)または(2)において、樹脂は、エポキシ樹脂を含んでもよい。このような光センサは、光吸収膜において低い熱伝導率および高い光吸収率をより確実に実現することができるため、感度の向上をより確実に図ることができる。
【0017】
(4)上記(1)から(3)のいずれかにおいて、光吸収膜の厚さは、2μm以上7μm以下であってもよい。このようにすることにより、光吸収膜における光吸収の性能を確実に維持しながら、必要以上に光吸収膜が厚くなりすぎることを抑制して、より確実に大きい温度差を実現することができる。
【0018】
(5)上記(1)から(4)のいずれかにおいて、光吸収膜の外形形状は、第1主面と垂直な方向に見て、円形状であってもよい。各p型材料層および各第n材料層は、放射状に配置されていてもよい。このようにすることにより、光吸収膜の外形形状に合わせてスペースを有効活用しながら、大きい温度差を形成するよう各p型材料層および各n型材料層を配置することができる。したがって、より効率的に光センサの感度を向上させることができる。
【0019】
(6)上記(5)において、第2領域および第4領域はそれぞれ、径方向において光吸収膜の中心から光吸収膜の半径の30%以上80%以下の領域に位置してもよい。このようにすることにより、光吸収膜と重なる領域を含む帯状のp型材料層の長手方向および帯状のn型材料層の長手方向において、大きな温度差を形成することができる。したがって、より感度の向上を図ることができる。
【0020】
(7)上記(1)から(4)のいずれかにおいて、光吸収膜の外形形状は、第1主面と垂直な方向に見て、矩形状であってもよい。各p型材料層および各第n材料層は、光吸収膜の一辺の延びる方向または一辺の延びる方向に垂直な方向に長手方向が沿うように配置されていてもよい。このようにすることにより、第1主面と垂直な方向に見て支持層が矩形状であった場合に、第1主面上の領域を有効活用して、帯状のp型材料層の長手方向および帯状のn型材料層の長手方向にそれぞれ大きな温度差を形成することができる。したがって、より感度の向上を図ることができる。
【0021】
(8)上記(1)から(7)のいずれかにおいて、第1領域と第3領域とが導電性を有する第1導電部を介して電気的に接続され、第2領域と第4領域とが導電性を有する第2導電部を介して電気的に接続されてもよい。このようにすることにより、第1接続部および第2接続部によりp型材料層とn型材料層とを確実に電気的に接続することができる。また、p型材料層およびn型材料層が重ならない構成であるため、p型材料層とn型材料層とを同じ工程で成膜等により形成しやすい。したがって、生産性の向上を図ることができる。
【0022】
(9)上記(1)から(7)のいずれかにおいて、複数のp型材料層および複数のn型材料層はそれぞれ、第1領域と第3領域とが第1主面に垂直な方向に見て重なり、オーミック接触して接続され、第2領域と第4領域とが第1主面に垂直な方向に見て重なり、オーミック接触して接続されてもよい。このようにすることにより、p型材料層とn型材料層との間に部材を介在させないようにして、p型材料層およびn型材料層を第1主面上に集約して配置しやすい。したがって、p型材料層とn型材料層とを多く配置して、出力の増加を図りやすくすることができる。
【0023】
(10)上記(1)から(9)のいずれかにおいて、p型材料層およびn型材料層のうちの少なくともいずれか一方は、粒径が3nm以上200nm以下であるナノ結晶構造およびアモルファス構造のうちの少なくともいずれか一方を有するSiGeから構成されていてもよい。このようにすることにより、熱電変換効率の向上を図ることができる。したがって、感度の向上を図ることができる。
【0024】
(11)上記(1)から(9)のいずれかにおいて、SiGeは、多結晶体であってもよい。このような多結晶体であるSiGeについても、本開示の光センサにおいて、好適に利用される。なお、本開示の多結晶体の結晶化率については、99%以上である。
【0025】
[本開示の実施形態の詳細]
次に、本開示の光センサの実施形態を、図面を参照しつつ説明する。以下の図面において同一または相当する部分には同一の参照符号を付しその説明は繰り返さない。
【0026】
(実施の形態1)
本開示の実施の形態1に係る光センサの構成について説明する。
図1は、実施の形態1における光センサの外観の概略平面図である。
図2は、
図1における線分II-IIに沿う断面を示す実施の形態1の光センサの概略断面図である。
図3は、
図1に示す光センサにおいて、
図1における線分III-IIIに沿う断面を示す実施の形態1の光センサの一部の概略断面図である。
【0027】
図1、
図2および
図3を参照して、光センサ11aは、例えば赤外線センサである。光センサ11aは、支持層12と、熱電変換材料部13と、ヒートシンク14と、光吸収膜としての赤外線吸収膜15と、絶縁膜16と、第1電極17と、第2電極18と、を含む。支持層12は、薄い層状である。本実施形態においては、支持層12は、厚さ方向に見て矩形状である。具体的には、支持層12のY方向の長さは、支持層12のX方向の長さよりも長い。なお、X方向およびY方向は、支持層12の厚さ方向であるZ方向にそれぞれ直交する方向である。X方向とY方向とは、直交している。
【0028】
支持層12は、第1主面21と、第2主面22と、を有する。第1主面21は、支持層12の厚さ方向の一方側に位置し、第2主面22は、第1主面21の厚さ方向の他方側である反対側に位置する。すなわち、第1主面21および第2主面22は、支持層12の厚さ方向であるZ方向に間隔をあけて配置されている。支持層12の材質としては、例えばSiO2(二酸化ケイ素)やSiN(窒化ケイ素)が選択される。
【0029】
熱電変換材料部13は、熱エネルギー(温度差)を電気エネルギーに変換する。熱電変換材料部13は、支持層12上、具体的には第1主面21上に配置されている。熱電変換材料部13は、それぞれ帯状の複数のp型材料層23と、それぞれ帯状の複数のn型材料層24と、を含む。p型材料層23は、p型の導電型を有するSiGe(シリコンゲルマニウム)から構成されている。n型材料層24は、n型の導電型を有するSiGe(シリコンゲルマニウム)から構成されている。一つのp型材料層23および一つのn型材料層24を組み合わせて、一対の熱電対が構成される。本実施形態においては、p型材料層23およびn型材料層24はそれぞれ9本ずつ備えられているが、もちろんこれらの本数に限定されず、求められる機能や用途等に応じて、それらの数は任意に定められる。複数のp型材料層23および複数のn型材料層24の構成については、後に詳述する。
【0030】
ヒートシンク14は、支持層12上、具体的には第2主面22上に配置されている。ヒートシンク14は、支持層12等と比較して十分に厚く構成されている。ヒートシンク14は、第1主面21と垂直な方向であるZ方向に見て、内側に凹部25を有する。
図1中の破線で示すように、凹部25の縁26は、Z方向に見て円形状である。凹部25は、後述する赤外線吸収膜15と共に、支持層12の第1主面21上に配置される帯状のp型材料層23の長手方向および帯状のn型材料層24の長手方向にそれぞれ温度差を形成するように設けられている。ヒートシンク14の材質としては、例えばSi(シリコン)が選択される。すなわち、ヒートシンク14は、シリコン基板から構成されている。
【0031】
赤外線吸収膜15は、第1主面21と垂直な方向に見て、凹部25と重なって配置される。すなわち、赤外線吸収膜15は、第1主面21と垂直な方向であるZ方向に見て、凹部25と重なるように配置されている。赤外線吸収膜15は、Z方向に見て、凹部25内に配置されている。赤外線吸収膜15の外縁27は、Z方向に見て円形状である。赤外線吸収膜15の外縁27の直径は、凹部25の縁26の直径よりも小さい。赤外線吸収膜15の構成については、後に詳述する。
【0032】
絶縁膜16は、熱電変換材料部13と赤外線吸収膜15との間に配置される。絶縁膜16は、熱電変換材料部13と赤外線吸収膜15との間の絶縁を確保する。絶縁膜16の外縁28についても、赤外線吸収膜15の外縁27と同様に、Z方向に見て円形状である。絶縁膜16の外縁28の直径は、赤外線吸収膜15の外縁27の直径よりもやや大きい。
図1等において、赤外線吸収膜15の外縁27と絶縁膜16の外縁28との差を誇張して大きく図示している。具体的には、絶縁膜16の半径は、赤外線吸収膜15の半径R15よりも5nm程度大きい。絶縁膜16の材質としては、例えばSiO
2が選択される。また、絶縁膜16の厚さとしては、10nm以上300nm以下が選択される。
【0033】
第1電極17および第2電極18はそれぞれ、支持層12の第1主面21上に配置される。第1電極17と第2電極18とは、X方向に間隔をあけて配置される。第1電極17および第2電極18はそれぞれ、いわゆるパッド電極である。第1電極17は、複数のp型材料層23のうちの一つのp型材料層23と接続される。具体的には、後述するように交互に直列で接続されるp型材料層23およびn型材料層24において、一番端に位置するp型材料層23と電気的に接続される。第2電極18は、複数のn型材料層24のうちの一つのn型材料層24と接続される。具体的には、交互に直列で接続されるp型材料層23およびn型材料層24において、一番端に位置するn型材料層24と電気的に接続される。第1電極17および第2電極18の材質としては、例えば、Au(金)、Ti(チタン)、Pt(白金)が選択される。
【0034】
次に、熱電変換材料部13の具体的な構成について説明する。複数のp型材料層23はそれぞれ、第1主面21と垂直な方向に見てヒートシンク14と重なる第1領域31と、赤外線吸収膜15と重なる第2領域32と、を含む。第1領域31は、p型材料層の長手方向において一方に位置する第1端部41を含む。第2領域32は、p型材料層の長手方向において他方に位置する第2端部42を含む。複数のn型材料層はそれぞれ、第1主面21と垂直な方向に見てヒートシンク14と重なる第3領域33と、赤外線吸収膜15と重なる第4領域34と、を含む。以下で説明するように、第1領域31と第3領域33は、第1主面21と垂直な方向に見てヒートシンク14と重なるとともに、互いに電気的に接続される領域である。第2領域32と第4領域34は、第1主面21と垂直な方向に見て赤外線吸収膜15と重なるとともに、互いに電気的に接続される領域である。第3領域33は、n型材料層24の長手方向において一方に位置する第3端部43を含む。第4領域34は、n型材料層24の長手方向において他方に位置する第4端部44を含む。
【0035】
本実施形態においては、各p型材料層23および各n型材料層24は、放射状に配置されている。すなわち、各p型材料層23および各n型材料層24の長手方向が、赤外線吸収膜15の中心19から放射状となるように配置されている。具体的には、Z方向に見て、p型材料層23の第1領域31およびn型材料層24の第3領域33が外径側に配置され、p型材料層23の第2領域32およびn型材料層24の第4領域34が内径側に配置されている。また、p型材料層23とn型材料層24は、周方向に間隔をあけて交互に並んで配置されている。
【0036】
また、熱電変換材料部13は、導電性を有する複数の第1接続部35と、導電性を有する複数の第2接続部36と、を含む。第1接続部35および第2接続部36はそれぞれ、Z方向に見て円弧状である。第1接続部35は、外径側において第1領域31と第3領域33とを接続する。すなわち、第1領域31と第3領域33は、第1接続部35を介して電気的に接続されている。第2接続部36は、内径側において第2領域32と第4領域34とを接続する。すなわち、第2領域32と第4領域34は、第2接続部36を介して電気的に接続されている。第1接続部35および第2接続部36の材質としては、例えば、第1電極17および第2電極18と同じ材質のものが選択される。第1領域31と第3領域33とはそれぞれ、第1接続部35とオーミック接触する領域である。このように、第1領域31と第3領域33とは電気的に接続される。第2領域32と第4領域34とはそれぞれ、第2接続部36とオーミック接触する領域である。このように、第2領域32と第4領域34とは電気的に接続される。
【0037】
複数のp型材料層23および複数のn型材料層24はそれぞれ、第1領域31と第3領域33とが第1接続部35を介して電気的に接続される。また、複数のp型材料層23および複数のn型材料層24はそれぞれ、第2領域32と第4領域34とが第2接続部36を介して電気的に接続される。このようにして、複数のp型材料層23および複数のn型材料層24は、交互に直列で配置される。なお、複数のp型材料層23および複数のn型材料層24のうちの最も端に位置するp型材料層23は、第1電極17と電気的に接続される。また、複数のp型材料層23および複数のn型材料層24のうち、最も端に位置するn型材料層24は、第2電極18と電気的に接続される。第1電極17および第2電極18は、それぞれ外部と電気的に接続される。
【0038】
ここで、赤外線吸収膜15の具体的な構成について説明する。赤外線吸収膜15は、60質量%以上95質量%以下のカーボンと、5質量%以上40質量%以下の樹脂と、から構成されている。本実施形態においては、赤外線吸収膜15は、85質量%のカーボンと、15質量%の樹脂と、から構成されている。具体的な樹脂としては、例えばエポキシ樹脂が選択される。赤外線吸収膜15の熱伝導率は、1W/mK以下である。本実施形態においては、赤外線吸収膜15の熱伝導率は、0.6W/mKである。また、赤外線吸収膜15の厚さT1は、2μm以上7μm以下である。本実施形態においては、赤外線吸収膜15の厚さT1は、5μmである。
【0039】
図2に示すように、p型材料層23の第2領域32およびn型材料層24の第4領域34はそれぞれ、径方向において赤外線吸収膜15の中心19から赤外線吸収膜15の半径R15の30%以上80%以下の領域REに位置する。本実施形態においては、第2領域32および第4領域34はそれぞれ、径方向において赤外線吸収膜15の中心19から赤外線吸収膜15の半径R15の50%の位置にある。
図2において、半径R15の30%を矢印R1で示し、半径R15の80%を矢印R2で示す。
【0040】
なお、このような光センサ11aは、例えば、以下のようにして製造することができる。以下、上記構成の光センサ11aの製造方法について、簡単に説明する。まず、シリコン基板を準備し、このシリコン基板上に支持層12となるSiO2またはSiNの膜を形成する。その後、熱電変換材料部13に含まれるp型材料層23およびn型材料層24を構成するSiGeを成膜し、各材料層を電気的に接続するために第1接続部35および第2接続部36を成膜する。第1接続部35および第2接続部36の材質としては、例えば、Ni(ニッケル)やTi(チタン)、Au(金)が選択される。その後、SiO2により絶縁膜16を成膜し、赤外線吸収膜15を成膜する。赤外線吸収膜15の成膜については、まず、ブラックレジストを準備し、これをスピンコーターにて塗布し、成膜する。ブラックレジストについては、最終的に60質量%以上95質量%以下のカーボンと、5質量%以上40質量%以下の樹脂と、から構成される赤外線吸収膜15が残るように各種の成分、例えば溶剤が配合され、調製される。この場合、例えば、エポキシ樹脂として、ビスフェノールA型エポキシ樹脂を用いてもよい。成膜後、フォトリソグラフィ装置により露光し、現像液に浸すことにより、ブラックレジストのパターンを形成する。この場合、外形形状が円形状となるように形成する。最後にポストベークを行い、成膜を完了させる。その後、第1電極17、第2電極18等を形成し、シリコン基板を貫通して支持層12に至るようシリコン基板をエッチングして凹部25等を形成してヒートシンク14を形成し、上記構成の光センサ11aを製造する。
【0041】
このような光センサ11aによると、赤外線吸収膜15は、60質量%以上95質量%以下のカーボン(C)と、5質量%以上40質量%以下の樹脂と、から構成されている。このような構成の赤外線吸収膜15は、上記樹脂を5質量%以上40質量%以下の含有割合で含むため、熱伝導率を低くすることができる。そうすると、複数のp型材料層23および複数のn型材料層24において、赤外線吸収膜15と重なる領域、具体的には第2領域32および第4領域34に大きい温度差を形成することができる。したがって、全体として帯状の複数のp型材料層23のそれぞれおよび帯状の複数のn型材料層24のそれぞれにおいて、大きい温度差を形成することができる。この場合、熱電変換材料部13と赤外線吸収膜15との間には絶縁膜16が配置されているため、熱電変換材料部13と赤外線吸収膜15との間の絶縁性を確保することができる。また、赤外線吸収膜15に求められる性能として、高い光吸収率が挙げられるが、上記構成の赤外線吸収膜15によると、60質量%以上95質量%以下のカーボンを含むため、高い光吸収率を実現することができる。すなわち、上記構成の赤外線吸収膜15は、熱伝導率を低くしながら高い光吸収率を実現することができる。以上より、上記構成の光センサ11aによると、熱電変換材料部13において大きい温度差を形成することができるため、光センサ11aの感度の向上を図ることができる。
【0042】
上記構成の光センサ11aにおける赤外線吸収膜15は、厚さを3μm以上とした状態において、熱伝導率は、0.6W/mkであり、低い熱伝導率を実現していることが把握できた。また、波長が8~12μmであった場合の光吸収率(放射率)については、80%であり、高い光吸収率を維持していることが把握できた。これに対し、カーボンのみを用いた赤外線吸収膜の場合、光吸収率は80%と高く維持できるものの、熱伝導率は150W/mkとなり、熱伝導率が非常に高い。このような赤外線吸収膜によると、赤外線吸収膜と重なる領域においてp型材料層およびn型材料層に温度差を形成することができず、その結果、大きい温度差を形成することが困難となる。一方、赤外線吸収膜としてSiO2を用いた場合、熱伝導率は1.4W/mkとなり、低い熱伝導率を維持できるものの、光吸収率は30%であり、非常に低い値となってしまう。以上より、本開示の実施の形態1における光センサ11aによると、赤外線吸収膜15における低い熱伝導率および高い光吸収率を確保して、光センサ11aの感度の向上を図ることができる。
【0043】
本実施形態においては、赤外線吸収膜15の熱伝導率は、1W/mK以下である。このような光センサ11aは、大きい温度差をより確実に形成して、より感度の向上を図ることができる。
【0044】
本実施形態においては、樹脂は、エポキシ樹脂を含む。このような光センサ11aは、赤外線吸収膜15において低い熱伝導率および高い光吸収率をより確実に実現することができるため、感度の向上をより確実に図ることができる。
【0045】
本実施形態においては、赤外線吸収膜15の厚さは、2μm以上7μm以下である。よって、赤外線吸収膜15における光吸収の性能を確実に維持しながら、必要以上に赤外線吸収膜15が厚くなりすぎることを抑制して、より確実に大きい温度差を実現することができる。
【0046】
本実施形態においては、赤外線吸収膜15の外形形状は、第1主面21と垂直な方向に見て、円形状である。各p型材料層23および各第n型材料層24は、放射状に配置されている。よって、赤外線吸収膜15の外形形状に合わせてスペースを有効活用しながら、大きい温度差を形成するよう各p型材料層23および各n型材料層24を配置することができる。したがって、より効率的に光センサ11aの感度を向上させることができる。
【0047】
本実施形態においては、複数のp型材料層23および複数のn型材料層24はそれぞれ、第1領域31と第3領域33とが導電性を有する第1接続部35を介して電気的に接続される。また、複数のp型材料層23および複数のn型材料層24はそれぞれ、第2領域32と第4領域34とが導電性を有する第2接続部36を介して電気的に接続される。よって、第1接続部35および第2接続部36によりp型材料層23とn型材料層24とを確実に接続することができる。また、p型材料層23およびn型材料層24が重ならない構成であるため、p型材料層23とn型材料層24とを同じ工程で成膜等により形成しやすい。したがって、生産性の向上を図ることができる。
【0048】
本実施形態においては、第2領域32および第4領域34はそれぞれ、径方向において赤外線吸収膜15の中心19から赤外線吸収膜15の半径R15の30%以上80%以下の領域REに位置する。第2端部42および第4端部44はそれぞれ、径方向において赤外線吸収膜15の中心19から赤外線吸収膜15の半径R15の30%以上80%以下の位置にある。よって、帯状のp型材料層23の長手方向および帯状のn型材料層24の長手方向において、大きな温度差を形成することができる。したがって、より感度の向上を図ることができる。
【0049】
ここで、実施の形態1における光センサおよびカーボンのみを赤外線吸収膜として用いた場合の光センサにおいて、温度と中心からの距離との関係について説明する。
図4は、実施の形態1における光センサおよびカーボンのみを赤外線吸収膜として用いた場合の光センサにおける温度と中心からの距離との関係を示すグラフである。
図4において、横軸は赤外線吸収膜の中心からの距離(mm)を示し、縦軸は温度(℃)を示す。
図4において、白丸印は、赤外線吸収膜がカーボンのみから構成されている場合を示し、白四角印は、実施の形態1における光センサを示す。赤外線吸収膜は、中心19から破線で示す0.38mmの位置まで配置されている。すなわち、赤外線吸収膜の直径は、0.76mmである。
【0050】
図4を参照して、赤外線吸収膜がカーボンのみから構成されている場合、中心から点P
1で示す0.38mmまでの位置において、温度は27.3℃で一定である。すなわち、熱伝導率が高いため、中心から0.38mmまでの領域においては、温度差を形成することができず、この領域に赤外線吸収膜と重なるようにしてp型材料層およびn型材料層を配置しても、各材料層の長手方向において温度差を形成できない。一方、本開示の実施の形態1における光センサによると、赤外線吸収膜の熱伝導率が低いため、温度差を形成することができる。具体的には、赤外線吸収膜の中心が約27.8℃であり、中心から外径側に向かうにつれて温度が低下し、0.38mmの位置、すなわち、赤外線吸収膜の外縁の位置において、27.3℃となっている。よって、赤外線吸収膜と重なる領域においても温度差が警世されている。この領域を有効活用して、p型材料層およびn型材料層と赤外線吸収膜とが重なる領域を広く確保して、長手方向における大きな温度差を実現することができる。
【0051】
図5は、実施の形態1における光センサの感度と、カーボンのみを赤外線吸収膜として用いた場合の光センサの感度とを比較したグラフである。
図5において、縦軸は感度(V/W)を示す。なお、光センサの感度については、熱型光源(フィラメント)により照射される赤外光(W/m2)に対してどれだけ電圧が検出されるかにより測定される。熱型光源としては、SA10510-8M3(Cal Snsors Inc.社製)を用い、電圧を2.2V、電流を1.1Aとして、7cmにて測定した。
【0052】
図5を参照して、カーボンのみを赤外線吸収膜として用いた場合の光センサの感度と比較して、実施の形態1における光センサの感度は、22%向上している。
【0053】
(実施の形態2)
他の実施の形態である実施の形態2について説明する。
図6は、本開示の実施の形態2における光センサの外観の概略平面図である。
図7は、
図6における線分VII-VIIに沿う断面を示す実施の形態2の光センサの概略断面図である。実施の形態2における光センサは、基本的には実施の形態1の場合と同様の構成を有し、同様の効果を奏する。しかし、実施の形態2の光センサは、p型材料層およびn型材料層の接続、つまり、第1領域31、第2領域32、第3領域33、第4領域34の構成において実施の形態1の場合とは異なっている。
【0054】
図6および
図7を参照して、実施の形態2における光センサ11bを説明する。複数のp型材料層23はそれぞれ、第1主面21と垂直な方向に見てヒートシンク14と重なる第1領域31と、赤外線吸収膜15と重なる第2領域32と、を含む。複数のn型材料層24はそれぞれ、第1主面21と垂直な方向に見てヒートシンク14と重なる第3領域33と、赤外線吸収膜15と重なる第4領域34とを含む。第1領域31と第3領域33とは、第1主面21と垂直な方向に見てヒートシンク14と重なるとともに、互いにオーミック接触する領域である。第2領域32と第4領域34とは、第1主面21と垂直な方向に見て赤外線吸収膜15と重なるとともに、互いにオーミック接触する領域である。なお、p型材料層23とn型材料層24とがオーミック接触していない領域において、p型材料層23とn型材料層24との間には、絶縁膜(層間絶縁膜)29が配置されている。
【0055】
p型材料層23の第2領域32およびn型材料層24の第4領域34はそれぞれ、径方向において赤外線吸収膜15の中心19から赤外線吸収膜15の半径R15の30%以上80%以下の領域REに位置する。このように構成することによっても、光センサ11bの感度の向上を図ることができる。この場合、p型材料層23とn型材料層24との間に部材を介在させないようにして、p型材料層23およびn型材料層24を第1主面21上に集約して配置しやすい。したがって、p型材料層23とn型材料層24とを多く配置して、出力の増加を図りやすくすることができる。
【0056】
(実施の形態3)
他の実施の形態である実施の形態3について説明する。
図8は、本開示の実施の形態3における光センサの外観の概略平面図である。実施の形態3における光センサは、基本的には実施の形態1の場合と同様の構成を有し、同様の効果を奏する。しかし、実施の形態3の光センサは、赤外線吸収膜15の外形形状等において実施の形態1の場合とは異なっている。
【0057】
図8を参照して、実施の形態3における光センサ11cにおいて、赤外線吸収膜15の外形形状は、第1主面21と垂直な方向に見て、矩形状である。具体的には、矩形状のうち、四隅の角が丸められた形状である。各p型材料層23および各第n型材料層24は、赤外線吸収膜15の一辺の延びる方向または一辺の延びる方向に垂直な方向に長手方向が沿うように配置されている。具体的には、各p型材料層23および各n型材料層24は、X方向またはY方向が長手方向となるように配置されている。
【0058】
p型材料層23の第2領域32およびn型材料層24の第4領域34はそれぞれ、径方向において赤外線吸収膜15の中心19から赤外線吸収膜15の半径R15の30%以上80%以下の領域REに位置する。ここで、矩形状の赤外線吸収膜15の径方向とは、中心19から外向きの方向のことである。また、矩形状の赤外線吸収膜15の半径R15とは、x軸方向の赤外線吸収膜15の幅をWx15とし、y軸方向の赤外線吸収膜15の幅をWy15として、以下のように求められる。
R15=(Wx15+Wy15)/4
【0059】
このように構成することによっても、光センサ11cの感度の向上を図ることができる。また、第1主面21と垂直な方向に見て支持層12が矩形状であった場合に、第1主面21上の領域を有効活用して、帯状のp型材料層23の長手方向および帯状のn型材料層24の長手方向にそれぞれ大きな温度差を形成することができる。したがって、より感度の向上を図ることができる。
【0060】
(他の実施の形態)
なお、上記の実施の形態において、樹脂は、エポキシ樹脂を含むこととしたが、これに限らず、他の樹脂、例えばフェノール樹脂やメラミン樹脂、ポリウレタン樹脂等を含むことにしてもよい。
【0061】
また、上記の実施の形態においては、絶縁膜の大きさは、赤外線吸収膜の大きさよりも大きいこととしたが、これに限らず、絶縁膜の大きさは、赤外線吸収膜の大きさと同じであってもよい。すなわち、第1主面と垂直な方向に見て、赤外線吸収膜が絶縁膜を完全に覆う構成であってもよい。さらに、赤外線吸収膜の方が絶縁膜よりも大きくてもよい。
【0062】
なお、上記の実施の形態において、p型材料層およびn型材料層のうちの少なくともいずれか一方は、粒径が3nm以上200nm以下であるナノ結晶構造およびアモルファス構造のうちの少なくともいずれか一方を有するSiGeから構成されていてもよい。このようにすることにより、熱電変換効率の向上を図ることができる。したがって、感度の向上を図ることができる。
【0063】
結晶の粒径の測定については、TEM(Transmission ElectronMicroscope)像の観察により行った。装置としては、JEM-2100F(日本電子株式会社製)を用い、加速電圧を200kVとした。そして、電子プローブ径を0.2nmとし、EDXマッピング条件として、画素数を256pixel×256pixelとし、Dwell timeを0.5ms/pixelとし、積算回数を15回とした。
【0064】
また、p型材料層およびn型材料層の構成材料であるSiGeについては、例えばアモルファス構造のSiGeを、たとえば500℃程度の温度で熱処理し、その一部でナノ結晶構造を作製してもよい。また、SiGeは、多結晶体であってもよい。このような多結晶体であるSiGeについても、本開示の光センサにおいて、好適に利用される。なお、本開示の光センサにおける多結晶体の結晶化率については、99%以上である。なお、結晶化率の測定については、以下のように行った。装置として、HORIBA LabRam HR-PLを用いた。測定条件としては、レーザー波長を532nmとし、レーザーパワーを2.5mWとした。解析条件としては、400cm-1付近のピークを分析した。解析に際しては、ガウス関数と疑似フォークト関数をフィッティングした。ガウス関数G(x)については、以下の数2に示す式によって表される。
【0065】
【0066】
また、疑似フォークト関数F(x)については、以下の数3に示す式によって表される。
【0067】
【0068】
ガウス関数G(x):変数Ag、Wg、xgにおいて、x0の初期値を400cm-1とした。疑似フォークト関数F(x):変数Af、Wf、xf、mにおいて、x0の初期値を380cm-1とし、gを0.5とした。各パラメータを最小二乗法で最適化し、疑似フォークト関数とガウス関数を積分し、面積を求めた。結晶化率については、ガウス関数を用いて導出された面積がアモルファスに対応し、疑似フォークト関数を用いて導出された面積が結晶に対応するとして、結晶化率=疑似フォークト関数を用いて導出された面積/(疑似フォークト関数を用いて導出された面積+ガウス関数を用いて導出された面積)、によって算出した。
【0069】
今回開示された実施の形態はすべての点で例示であって、どのような面からも制限的なものではないと理解されるべきである。本発明の範囲は上記した説明ではなく、特許請求の範囲によって規定され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【符号の説明】
【0070】
11a,11b,11c 光センサ
12 支持層
13 熱電変換材料部
14 ヒートシンク
15 赤外線吸収膜
16 絶縁膜
17 第1電極
18 第2電極
19 中心
21 第1主面
22 第2主面
23 p型材料層
24 n型材料層
25 凹部
26 縁
27,28 外縁
29 絶縁膜(層間絶縁膜)
31 第1領域
32 第2領域
33 第3領域
34 第4領域
35 第1接続部
36 第2接続部
41 第1端部
42 第2端部
43 第3端部
44 第4端部
Af,Ag 変数
F 疑似フォークト関数
G ガウス関数
R1,R2 矢印
R15 半径
RE 領域