(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024059391
(43)【公開日】2024-05-01
(54)【発明の名称】分波器
(51)【国際特許分類】
H03H 7/46 20060101AFI20240423BHJP
H01P 1/213 20060101ALI20240423BHJP
【FI】
H03H7/46 C
H01P1/213 Z
【審査請求】未請求
【請求項の数】9
【出願形態】OL
(21)【出願番号】P 2022167047
(22)【出願日】2022-10-18
(71)【出願人】
【識別番号】000003067
【氏名又は名称】TDK株式会社
(74)【代理人】
【識別番号】110002907
【氏名又は名称】弁理士法人イトーシン国際特許事務所
(72)【発明者】
【氏名】▲高▼見 俊志
【テーマコード(参考)】
5J006
【Fターム(参考)】
5J006KA11
5J006LA02
(57)【要約】
【課題】4つの信号を分離するように構成された分波器であって、通過帯域の挿入損失を小さくすることが可能な分波器を実現する。
【解決手段】分波器1は、第1のダイプレクサ20と、第2のダイプレクサ30と、第3のダイプレクサ40とを備えている。第1のダイプレクサ20の入力端20aは、入力ポート10に接続されている。第2のダイプレクサ30の入力端30aと第3のダイプレクサ40の入力端40aは、それぞれ、第1のダイプレクサ20の2つの出力端20b,20cに接続されている。第2のダイプレクサ30の2つの出力端30a,30bは、それぞれ、第1および第2の出力ポート11,12に接続されている。第3のダイプレクサ40の2つの出力端40a,40bは、それぞれ、第3および第4の出力ポート13,14に接続されている。
【選択図】
図1
【特許請求の範囲】
【請求項1】
入力ポートと、
第1の出力ポートと、
第2の出力ポートと、
第3の出力ポートと、
第4の出力ポートと、
前記入力ポートに接続された第1の入力端と、第1の出力端と、第2の出力端とを有する第1のダイプレクサと、
前記第1の出力端に接続された第2の入力端と、前記第1の出力ポートに直接接続された第3の出力端と、前記第2の出力ポートに直接接続された第4の出力端とを有する第2のダイプレクサと、
前記第2の出力端に接続された第3の入力端と、前記第3の出力ポートに直接接続された第5の出力端と、前記第4の出力ポートに直接接続された第6の出力端とを有する第3のダイプレクサと、
を備えたことを特徴とする分波器。
【請求項2】
前記第1の出力ポートは、第1の通過帯域内の周波数の信号が選択的に通過するポートであり、
前記第2の出力ポートは、前記第1の通過帯域よりも高い第2の通過帯域内の周波数の信号が選択的に通過するポートであり、
前記第3の出力ポートは、第3の通過帯域内の周波数の信号が選択的に通過するポートであり、
前記第4の出力ポートは、前記第3の通過帯域よりも高い第4の通過帯域内の周波数の信号が選択的に通過するポートであり、
前記第1のダイプレクサは、前記第2の通過帯域を含むが前記第3の通過帯域を含まない周波数帯域の信号が前記第1の出力端を選択的に通過し、且つ前記第3の通過帯域を含むが前記第2の通過帯域を含まない周波数帯域の信号が前記第2の出力端を選択的に通過するように構成されていることを特徴とする請求項1記載の分波器。
【請求項3】
前記第3の通過帯域は、前記第2の通過帯域よりも高い周波数帯域であることを特徴とする請求項2記載の分波器。
【請求項4】
前記第2のダイプレクサは、第1の通過帯域内の周波数の信号が前記第3の出力端を選択的に通過し、且つ前記第1の通過帯域よりも高い第2の通過帯域内の周波数の信号が前記第4の出力端を選択的に通過するように構成され、
前記第3のダイプレクサは、第3の通過帯域内の周波数の信号が前記第5の出力端を選択的に通過し、且つ前記第3の通過帯域よりも高い第4の通過帯域内の周波数の信号が前記第6の出力端を選択的に通過するように構成され、
前記第1のダイプレクサは、前記第2の通過帯域を含むが前記第3の通過帯域を含まない周波数帯域の信号が前記第1の出力端を選択的に通過し、且つ前記第3の通過帯域を含むが前記第2の通過帯域を含まない周波数帯域の信号が前記第2の出力端を選択的に通過するように構成されていることを特徴とする請求項1記載の分波器。
【請求項5】
前記第3の通過帯域は、前記第2の通過帯域よりも高い周波数帯域であることを特徴とする請求項4記載の分波器。
【請求項6】
前記第1の出力ポートは、第1の通過帯域内の周波数の信号が選択的に通過するポートであり、
前記第2の出力ポートは、前記第1の通過帯域よりも高い第2の通過帯域内の周波数の信号が選択的に通過するポートであり、
前記第3の出力ポートは、前記第2の通過帯域よりも高い第3の通過帯域内の周波数の信号が選択的に通過するポートであり、
前記第4の出力ポートは、前記第3の通過帯域よりも高い第4の通過帯域内の周波数の信号が選択的に通過するポートであり、
前記入力ポートと前記第1の出力ポートとの間の通過減衰特性には、前記第1の通過帯域を含むと共に前記第1の通過帯域の高域側に形成され且つ前記第1の通過帯域に最も近い第1の減衰極を上限とする周波数帯域である第1の帯域が存在し、
前記入力ポートと前記第2の出力ポートとの間の通過減衰特性には、前記第2の通過帯域を含むと共に前記第2の通過帯域の低域側に形成され且つ前記第2の通過帯域に最も近い第2の減衰極を下限とし前記第2の通過帯域の高域側に形成され且つ前記第2の通過帯域に最も近い第3の減衰極を上限とする周波数帯域である第2の帯域が存在し、
前記入力ポートと前記第3の出力ポートとの間の通過減衰特性には、前記第3の通過帯域を含むと共に前記第3の通過帯域の低域側に形成され且つ前記第3の通過帯域に最も近い第4の減衰極を下限とし前記第3の通過帯域の高域側に形成され且つ前記第3の通過帯域に最も近い第5の減衰極を上限とする周波数帯域である第3の帯域が存在し、
前記入力ポートと前記第4の出力ポートとの間の通過減衰特性には、前記第4の通過帯域を含むと共に前記第4の通過帯域の低域側に形成され前記第4の通過帯域に最も近い第6の減衰極を下限とする周波数帯域である第4の帯域が存在することを特徴とする請求項1記載の分波器。
【請求項7】
前記第2の帯域は、前記第1の帯域にも存在する周波数帯域と前記第3の帯域にも存在する周波数帯域とを含み、
前記第3の帯域は、前記第2の帯域にも存在する周波数帯域と前記第4の帯域にも存在する周波数帯域とを含むことを特徴とする請求項6記載の分波器。
【請求項8】
前記入力ポートと前記第1の出力ポートとの間には、第1のフィルタが構成され、
前記入力ポートと前記第2の出力ポートとの間には、第2のフィルタが構成され、
前記入力ポートと前記第3の出力ポートとの間には、第3のフィルタが構成され、
前記入力ポートと前記第4の出力ポートとの間には、第4のフィルタが構成され、
前記第1のフィルタ、前記第2のフィルタ、前記第3のフィルタおよび前記第4のフィルタのうち、最も段数が多いフィルタを第1の特定のフィルタとし、最も段数が少ないフィルタを第2の特定のフィルタとしたときに、前記第1の特定のフィルタの段数と前記第2の特定のフィルタの段数の差は、5であることを特徴とする請求項1記載の分波器。
【請求項9】
前記第1のダイプレクサ、前記第2のダイプレクサおよび前記第3のダイプレクサの各々は、複数のインダクタと複数のキャパシタとを含むLC回路であることを特徴とする請求項1ないし8のいずれかに記載の分波器。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、少なくとも4つの信号を分離するように構成された分波器に関する。
【背景技術】
【0002】
小型移動体通信機器では、システムおよび使用周波数帯域が異なる複数のアプリケーションで共通に使用されるアンテナを設け、このアンテナが送受信する複数の信号を、分波器を用いて分離する構成が広く用いられている。
【0003】
一般的に、第1の周波数帯域内の周波数の第1の信号と、第1の周波数帯域よりも高い第2の周波数帯域内の周波数の第2の信号を分離する分波器は、共通ポートと、第1の信号ポートと、第2の信号ポートと、共通ポートから第1の信号ポートに至る第1の信号経路に設けられた第1のフィルタと、共通ポートから第2の信号ポートに至る第2の信号経路に設けられた第2のフィルタとを備えている。第1および第2のフィルタとしては、例えば、インダクタとキャパシタを用いて構成されたLC共振器が用いられる。
【0004】
近年、小型移動体通信機器では、新しい通信規格の採用に伴って使用周波数帯域が増加する傾向にあり、分波器が分離する信号の数を増やすことが求められている。例えば、特許文献1には、3つの信号を分離するトリプレクサ、4つの信号を分離するクアッドプレクサ、および5つの信号を分離するペンタプレクサ等が開示されている。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
特に分離する信号が4つ以上になると、分波器に必要な素子の数が増加する。共通ポートから特定の信号ポートに至る信号経路上に設けられた素子の数が増加すると、共通ポートと特定の信号ポートとの間に設けられたフィルタの通過帯域における挿入損失が悪化するという問題があった。
【0007】
本発明はかかる問題点に鑑みてなされたもので、その目的は、4つの信号を分離するように構成された分波器であって、通過帯域の挿入損失を小さくすることが可能な分波器を提供することにある。
【課題を解決するための手段】
【0008】
本発明の分波器は、
入力ポートと、
第1の出力ポートと、
第2の出力ポートと、
第3の出力ポートと、
第4の出力ポートと、
入力ポートに接続された第1の入力端と、第1の出力端と、第2の出力端とを有する第1のダイプレクサと、
第1の出力端に接続された第2の入力端と、第1の出力ポートに直接接続された第3の出力端と、第2の出力ポートに直接接続された第4の出力端とを有する第2のダイプレクサと、
第2の出力端に接続された第3の入力端と、第3の出力ポートに直接接続された第5の出力端と、第4の出力ポートに直接接続された第6の出力端とを有する第3のダイプレクサと、
を備えている。
【発明の効果】
【0009】
本発明の分波器では、前述のように接続された第1ないし第3のダイプレクサを備えている。これにより、本発明によれば、通過帯域の挿入損失を小さくすることができるという効果を奏する。
【図面の簡単な説明】
【0010】
【
図1】本発明の一実施の形態に係る分波器の構成を示すブロック図である。
【
図2】本発明の一実施の形態に係る分波器の回路構成の一例を示す回路図である。
【
図3】本発明の一実施の形態に係る分波器の外観を示す斜視図である。
【
図4】本発明の一実施の形態に係る分波器の積層体における1層目ないし3層目の誘電体層のパターン形成面を示す説明図である。
【
図5】本発明の一実施の形態に係る分波器の積層体における4層目ないし6層目の誘電体層のパターン形成面を示す説明図である。
【
図6】本発明の一実施の形態に係る分波器の積層体における7層目ないし9層目の誘電体層のパターン形成面を示す説明図である。
【
図7】本発明の一実施の形態に係る分波器の積層体における10層目ないし12層目の誘電体層のパターン形成面を示す説明図である。
【
図8】本発明の一実施の形態に係る分波器の積層体における13層目ないし15層目の誘電体層のパターン形成面を示す説明図である。
【
図9】本発明の一実施の形態に係る分波器の積層体における16層目ないし18層目の誘電体層のパターン形成面を示す説明図である。
【
図10】本発明の一実施の形態に係る分波器の積層体における19層目ないし21層目の誘電体層のパターン形成面を示す説明図である。
【
図11】本発明の一実施の形態に係る分波器の積層体における22層目ないし24層目の誘電体層のパターン形成面を示す説明図である。
【
図12】本発明の一実施の形態に係る分波器の積層体における25層目ないし27層目の誘電体層のパターン形成面を示す説明図である。
【
図13】本発明の一実施の形態に係る分波器の積層体における28層目の誘電体層のパターン形成面を示す説明図である。
【
図14】本発明の一実施の形態に係る分波器の積層体の内部を示す斜視図である。
【
図15】第1の比較例の分波器の回路構成を示す回路図である。
【
図16】第2の比較例の分波器の回路構成を示す回路図である。
【
図17】実施例のモデルの通過減衰特性を示す特性図である。
【
図18】第1の比較例のモデルの通過減衰特性を示す特性図である。
【
図19】第2の比較例のモデルの通過減衰特性を示す特性図である。
【発明を実施するための形態】
【0011】
以下、本発明の実施の形態について図面を参照して詳細に説明する。始めに、
図1を参照して、本発明の一実施の形態に係る分波器1の構成の概略について説明する。
図1は、分波器1の構成を示すブロック図である。
【0012】
分波器1は、入力ポート10と、第1の出力ポート11と、第2の出力ポート12と、第3の出力ポート13と、第4の出力ポート14とを備えている。第1の出力ポート11は、第1の通過帯域内の周波数の信号が選択的に通過するポートである。第2の出力ポート12は、第2の通過帯域内の周波数の信号が選択的に通過するポートである。第3の出力ポート13は、第3の通過帯域内の周波数の信号が選択的に通過するポートである。第4の出力ポート14は、第4の通過帯域内の周波数の信号が選択的に通過するポートである。
【0013】
第2の通過帯域は、第1の通過帯域よりも高い周波数帯域である。第4の通過帯域は、第3通過帯域よりも高い周波数帯域である。第3の通過帯域は、第2の通過帯域よりも高い周波数帯域であってもよい。あるいは、第4の通過帯域は、第1の通過帯域よりも低い周波数帯域であってもよい。この場合、第3の通過帯域も、第1の通過帯域よりも低い周波数帯域になる。以下の説明では、第3の通過帯域は、第2の通過帯域よりも高い周波数帯域であるものとする。
【0014】
分波器1は、更に、第1のダイプレクサ20と、第2のダイプレクサ30と、第3のダイプレクサ40とを備えている。第1のダイプレクサ20は、入力端20aと、2つの出力端20b,20cとを有している。第1のダイプレクサ20の入力端20aは、入力ポート10に接続されている。
【0015】
第2のダイプレクサ30は、入力端30aと、2つの出力端30b,30cとを有している。第2のダイプレクサ30は、回路構成上、第1のダイプレクサ20の出力端20bと第1および第2の出力ポート11,12との間に設けられている。第2のダイプレクサ30の入力端30aは、第1のダイプレクサ20の出力端20bに接続されている。第2のダイプレクサ30の出力端30bは、第1の出力ポート11に直接接続されている。第2のダイプレクサ30の出力端30cは、第2の出力ポート12に直接接続されている。
【0016】
第3のダイプレクサ40は、入力端40aと、2つの出力端40b,40cとを有している。第3のダイプレクサ40は、回路構成上、第1のダイプレクサ20の出力端20cと第3および第4の出力ポート13,14との間に設けられている。第3のダイプレクサ40の入力端40aは、第1のダイプレクサ20の出力端20cに接続されている。第3のダイプレクサ40の出力端40bは、第3の出力ポート13に直接接続されている。第3のダイプレクサ40の出力端40cは、第4の出力ポート14に直接接続されている。
【0017】
なお、本出願において、「回路構成上」という表現は、物理的な構成における配置ではなく、回路図上での配置を指すために用いている。また、「直接接続」という表現は、互いに接続されたダイプレクサの出力端と出力ポートとの間に、他のフィルタが設けられていないことを意味する。
【0018】
第1のダイプレクサ20は、第2の通過帯域を含むが第3の通過帯域を含まない周波数帯域の信号が出力端20bを選択的に通過し、且つ第3の通過帯域を含むが第2の通過帯域を含まない周波数帯域の信号が出力端20cを選択的に通過するように構成されている。本実施の形態では特に、第1のダイプレクサ20は、回路構成上入力端20aと出力端20bとの間に設けられた第1のフィルタ21と、回路構成上入力端20aと出力端20cとの間に設けられた第2のフィルタ22とを含んでいる。第1のフィルタ21は、第1の通過帯域と第2の通過帯域を含むが第3の通過帯域を含まない周波数帯域の信号を選択的に通過させるフィルタである。第2のフィルタ22は、第3の通過帯域と第4の通過帯域を含むが第2の通過帯域を含まない周波数帯域の信号を選択的に通過させるフィルタである。
【0019】
第2のダイプレクサ30は、第1の通過帯域内の周波数の信号が出力端30bを選択的に通過し、且つ第2の通過帯域内の周波数の信号が出力端30cを選択的に通過するように構成されている。本実施の形態では特に、第2のダイプレクサ30は、回路構成上入力端30aと出力端30bとの間に設けられた第3のフィルタ31と、回路構成上入力端30aと出力端30cとの間に設けられた第4のフィルタ32とを含んでいる。第3のフィルタ31は、第1の通過帯域内の周波数の信号を選択的に通過させるフィルタである。第4のフィルタ32は、第2の通過帯域内の周波数の信号を選択的に通過させるフィルタである。
【0020】
第3のダイプレクサ40は、第3の通過帯域内の周波数の信号が出力端40bを選択的に通過し、且つ第4の通過帯域内の周波数の信号が出力端40cを選択的に通過するように構成されている。本実施の形態では特に、第3のダイプレクサ40は、回路構成上入力端40aと出力端40bとの間に設けられた第5のフィルタ41と、回路構成上入力端40aと出力端40cとの間に設けられた第6のフィルタ42とを備えている。第5のフィルタ41は、第3の通過帯域内の周波数の信号を選択的に通過させるフィルタである。第6のフィルタ42は、第4の通過帯域内の周波数の信号を選択的に通過させるフィルタである。
【0021】
分波器1は、更に、入力ポート10と第1の出力ポート11とを接続する第1の経路P1と、入力ポート10と第2の出力ポート12とを接続する第2の経路P2と、入力ポート10と第3の出力ポート13とを接続する第3の経路P3と、入力ポート10と第4の出力ポート14とを接続する第4の経路P4とを備えている。第1および第2の経路P1,P2は、第1のダイプレクサ20の入力端20aから第2のダイプレクサ30の入力端30aまでは、同一の経路である。第3および第4の経路P3,P4は、第1のダイプレクサ20の入力端20aから第3のダイプレクサ40の入力端40aまでは、同一の経路である。
【0022】
第1のフィルタ21は、第1のダイプレクサ20の入力端20aと出力端20bとを接続する経路であって、第1および第2の経路P1,P2の各々の一部を構成する経路に設けられている。第2のフィルタ22は、第1のダイプレクサ20の入力端20aと出力端20cとを接続する経路であって、第3および第4の経路P3,P4の各々の一部を構成する経路に設けられている。
【0023】
第3および第4のフィルタ31,32は、第1のフィルタ21の後段に設けられている。また、第1および第2の経路P1,P2は、第1のフィルタ21の後段において分岐する。第3のフィルタ31は、第1の経路P1に設けられている。第4のフィルタ32は、第2の経路P2に設けられている。
【0024】
第5および第6のフィルタ41,42は、第2のフィルタ22の後段に設けられている。また、第3および第4の経路P3,P4は、第2のフィルタ22の後段において分岐する。第5のフィルタ41は、第3の経路P3に設けられている。第6のフィルタ42は、第4の経路P4に設けられている。
【0025】
入力ポート10に入力された第1の通過帯域内の周波数の第1の信号は、第1の経路P1すなわち第1および第3のフィルタ21,31を選択的に通過して、第1の出力ポート11から出力される。入力ポート10に入力された第2の通過帯域内の周波数の第2の信号は、第2の経路P2すなわち第1および第4のフィルタ21,32を選択的に通過して、第2の出力ポート12から出力される。入力ポート10に入力された第3の通過帯域内の周波数の第3の信号は、第3の経路P3すなわち第2および第5のフィルタ22,41を選択的に通過して、第3の出力ポート13から出力される。入力ポート10に入力された第4の通過帯域内の周波数の第4の信号は、第4の経路P4すなわち第2および第6のフィルタ22,42を選択的に通過して、第4の出力ポート14から出力される。このようにして、分波器1は、第1ないし第4の信号を分離する。
【0026】
次に、
図2を参照して、分波器1の回路構成の一例について説明する。
図2は、分波器1の回路構成の一例を示す回路図である。
【0027】
始めに、第1のダイプレクサ20の構成について説明する。第1のダイプレクサ20の第1のフィルタ21は、インダクタL21,L22と、キャパシタC21,C22とを含んでいる。インダクタL21の一端は、第1のダイプレクサ20の入力端20aに接続されている。インダクタL22の一端は、インダクタL21の他端に接続されている。インダクタL22の他端は、第1のダイプレクサ20の出力端20bに接続されている。
【0028】
キャパシタC21の一端は、インダクタL21,L22の接続点に接続されている。キャパシタC21の他端は、グランドに接続されている。キャパシタC22は、インダクタL22に対して並列に接続されている。
【0029】
第1のダイプレクサ20の第2のフィルタ22は、インダクタL23,L24,L25と、キャパシタC23,C24,C25,C26とを含んでいる。インダクタL23の一端は、第1のダイプレクサ20の入力端20aに接続されている。
【0030】
キャパシタC23の一端は、インダクタL23の他端に接続されている。キャパシタC24の一端は、キャパシタC23の他端に接続されている。キャパシタC25の一端は、キャパシタC23の一端に接続されている。キャパシタC25の他端とキャパシタC26の一端は、キャパシタC24の他端に接続されている。キャパシタC26の他端は、第1のダイプレクサ20の出力端20cに接続されている。
【0031】
インダクタL24の一端は、キャパシタC23とキャパシタC24の接続点に接続されている。インダクタL25の一端は、キャパシタC24とキャパシタC25の接続点に接続されている。インダクタL24,L25の各他端は、グランドに接続されている。
【0032】
次に、第2のダイプレクサ30の構成について説明する。第2のダイプレクサ30の第3のフィルタ31は、インダクタL31,L32と、キャパシタC31,C32とを含んでいる。インダクタL31の一端は、第2のダイプレクサ30の入力端30aに接続されている。インダクタL32の一端は、インダクタL31の他端に接続されている。インダクタL32の他端は、第2のダイプレクサ30の出力端30bに接続されている。
【0033】
キャパシタC31の一端は、インダクタL31,L32の接続点に接続されている。キャパシタC31の他端は、グランドに接続されている。キャパシタC32は、インダクタL32に対して並列に接続されている。
【0034】
第2のダイプレクサ30の第4のフィルタ32は、インダクタL33,L34と、キャパシタC33,C34,C35とを含んでいる。インダクタL33の一端は、第2のダイプレクサ30の入力端30aに接続されている。
【0035】
キャパシタC33の一端は、インダクタL33の他端に接続されている。キャパシタC34の一端は、キャパシタC33の他端に接続されている。キャパシタC34の他端は、第2のダイプレクサ30の出力端30cに接続されている。キャパシタC35の一端は、キャパシタC33の一端に接続されている。キャパシタC35の他端は、キャパシタC34の他端に接続されている。
【0036】
インダクタL34の一端は、キャパシタC33とキャパシタC34の接続点に接続されている。インダクタL34の他端は、グランドに接続されている。
【0037】
次に、第3のダイプレクサ40の構成について説明する。第3のダイプレクサ40の第5のフィルタ41は、インダクタL41,L42と、キャパシタC41,C42とを含んでいる。インダクタL41の一端は、第3のダイプレクサ40の入力端40aに接続されている。インダクタL42の一端は、インダクタL41の他端に接続されている。インダクタL42の他端は、第3のダイプレクサ40の出力端40bに接続されている。
【0038】
キャパシタC41の一端は、インダクタL41,L42の接続点に接続されている。キャパシタC41の他端は、グランドに接続されている。キャパシタC42は、インダクタL42に対して並列に接続されている。
【0039】
第3のダイプレクサ40の第6のフィルタ42は、インダクタL43,L44,L45と、キャパシタC43,C44,C45,C46,C47,C48とを含んでいる。キャパシタC43の一端は、第3のダイプレクサ40の入力端40aに接続されている。キャパシタC44の一端は、キャパシタC43の他端に接続されている。キャパシタC45の一端は、キャパシタC43の一端に接続されている。キャパシタC45の他端は、キャパシタC44の他端に接続されている。
【0040】
インダクタL43の一端は、キャパシタC43とキャパシタC44の接続点に接続されている。インダクタL43の他端は、グランドに接続されている。
【0041】
インダクタL44の一端は、キャパシタC44の他端に接続されている。インダクタL44の他端は、第3のダイプレクサ40の出力端40cに接続されている。
【0042】
キャパシタC46の一端とキャパシタC48の一端は、インダクタL44の一端に接続されている。キャパシタC47の一端とキャパシタC48の他端は、インダクタL44の他端に接続されている。
【0043】
インダクタL45の一端は、キャパシタC46,C47の各他端に接続されている。インダクタL45の他端は、グランドに接続されている。
【0044】
次に、
図3を参照して、分波器1のその他の構成について説明する。
図3は、分波器1の外観を示す斜視図である。
【0045】
分波器1は、更に、積層された複数の誘電体層と複数の導体とを含む積層体50を備えている。積層体50は、入力ポート10、第1ないし第4の出力ポート11~14ならびに第1ないし第3のダイプレクサ20,30,40を一体化するためのものである。第1ないし第3のダイプレクサ20,30,40は、それぞれ複数の導体を用いて構成されている。
【0046】
積層体50は、複数の誘電体層の積層方向Tの両端に位置する底面50Aおよび上面50Bと、底面50Aと上面50Bを接続する4つの側面50C~50Fとを有している。側面50C,50Dは互いに反対側を向き、側面50E,50Fも互いに反対側を向いている。側面50C~50Fは、上面50Bおよび底面50Aに対して垂直になっている。
【0047】
ここで、
図3に示したように、X方向、Y方向、Z方向を定義する。X方向、Y方向、Z方向は、互いに直交する。本実施の形態では、積層方向Tに平行な一方向を、Z方向とする。また、X方向とは反対の方向を-X方向とし、Y方向とは反対の方向を-Y方向とし、Z方向とは反対の方向を-Z方向とする。また、「積層方向Tから見たとき」という表現は、Z方向または-Z方向に離れた位置から対象物を見ることを意味する。
【0048】
図3に示したように、底面50Aは、積層体50における-Z方向の端に位置する。上面50Bは、積層体50におけるZ方向の端に位置する。側面50Cは、積層体50における-X方向の端に位置する。側面50Dは、積層体50におけるX方向の端に位置する。側面50Eは、積層体50における-Y方向の端に位置する。側面50Fは、積層体50におけるY方向の端に位置する。
【0049】
分波器1は、更に、入力端子111と、出力端子113,115,116,117と、グランドに接続されるグランド端子112,114,118,119とを備えている。入力端子111、出力端子113,115,116,117およびグランド端子112,114,118,119は、積層体50の底面50Aに設けられている。
【0050】
入力端子111は、底面50Aと側面50Cと側面50Eが交差する位置に存在する角部の近傍に配置されている。出力端子113は、底面50Aと側面50Dと側面50Eが交差する位置に存在する角部の近傍に配置されている。出力端子115は、底面50Aと側面50Dと側面50Fが交差する位置に存在する角部の近傍に配置されている。出力端子117は、底面50Aと側面50Cと側面50Fが交差する位置に存在する角部の近傍に配置されている。
【0051】
グランド端子112は、入力端子111と出力端子113との間に配置されている。グランド端子114は、出力端子113と出力端子115との間に配置されている。出力端子116は、出力端子115と出力端子117との間に配置されている。グランド端子118は、入力端子111と出力端子117との間に配置されている。グランド端子119は、底面50Aの中央に配置されている。
【0052】
入力端子111は入力ポート10に対応し、出力端子113は第4の出力ポート14に対応し、出力端子115は第3の出力ポート13に対応し、出力端子116は第2の出力ポート12に対応し、出力端子117は第1の出力ポート11に対応している。従って、入力ポート10ならびに第1ないし第4の出力ポート11~14は、積層体50の底面50Aに設けられている。
【0053】
次に、
図4(a)ないし
図13を参照して、積層体50を構成する複数の誘電体層および複数の導体の一例について説明する。この例では、積層体50は、積層された28層の誘電体層を有している。以下、この28層の誘電体層を、下から順に1層目ないし28層目の誘電体層と呼ぶ。また、1層目ないし28層目の誘電体層を符号51~78で表す。
【0054】
図4(a)ないし
図12(b)において、複数の円は複数のスルーホールを表している。誘電体層51~76の各々には、複数のスルーホールが形成されている。複数のスルーホールは、それぞれ、スルーホール用の孔に導体ペーストを充填することによって形成される。複数のスルーホールの各々は、導体層または他のスルーホールに接続されている。
【0055】
図4(a)は、1層目の誘電体層51のパターン形成面を示している。誘電体層51のパターン形成面には、入力端子111、出力端子113,115,116,117およびグランド端子112,114,118,119が形成されている。
図4(b)は、2層目の誘電体層52のパターン形成面を示している。誘電体層52のパターン形成面には、導体層521,522,523,524,525,526が形成されている。
【0056】
図4(c)は、3層目の誘電体層53のパターン形成面を示している。誘電体層53のパターン形成面には、導体層531,532,533,534,535,536,537,538,539が形成されている。導体層532は、導体層531に接続されている。導体層538は、導体層537に接続されている。
【0057】
図5(a)は、4層目の誘電体層54のパターン形成面を示している。誘電体層54のパターン形成面には、導体層541,542,543,544,545,546が形成されている。
図5(b)は、5層目の誘電体層55のパターン形成面を示している。誘電体層55のパターン形成面には、導体層551,552,553,554,555が形成されている。
図5(c)は、6層目の誘電体層56のパターン形成面を示している。誘電体層56のパターン形成面には、導体層561,562が形成されている。
【0058】
図6(a)は、7層目の誘電体層57のパターン形成面を示している。誘電体層57のパターン形成面には、導体層571が形成されている。
図6(b)は、8層目の誘電体層58のパターン形成面を示している。誘電体層58のパターン形成面には、導体層581,582,583,584,585,586が形成されている。
図6(c)は、9層目の誘電体層59のパターン形成面を示している。誘電体層59のパターン形成面には、導体層592,594,595,596が形成されている。
【0059】
図7(a)は、10層目の誘電体層60のパターン形成面を示している。誘電体層60のパターン形成面には、導体層602,604,605が形成されている。
図7(b)は、11層目の誘電体層61のパターン形成面を示している。誘電体層61のパターン形成面には、導体層611,612,613,614,615が形成されている。
図7(c)は、12層目の誘電体層62のパターン形成面を示している。誘電体層62のパターン形成面には、導体層621,622,623,624,625が形成されている。
【0060】
図8(a)は、13層目の誘電体層63のパターン形成面を示している。誘電体層63のパターン形成面には、導体層631,632,633,634が形成されている。
図8(b)は、14層目の誘電体層64のパターン形成面を示している。誘電体層64のパターン形成面には、導体層641,642,643,644が形成されている。
図8(c)は、15層目の誘電体層65のパターン形成面を示している。誘電体層65のパターン形成面には、導体層652,653が形成されている。
【0061】
図9(a)は、16層目の誘電体層66のパターン形成面を示している。誘電体層66のパターン形成面には、導体層662,663が形成されている。
図9(b)は、17層目の誘電体層67のパターン形成面を示している。誘電体層67のパターン形成面には、導体層674,675が形成されている。
図9(c)は、18層目の誘電体層68のパターン形成面を示している。誘電体層68のパターン形成面には、導体層684,685が形成されている。
【0062】
図10(a)は、19層目の誘電体層69のパターン形成面を示している。誘電体層69のパターン形成面には、導体層692,693,694,695が形成されている。
図10(b)は、20層目の誘電体層70のパターン形成面を示している。誘電体層70のパターン形成面には、導体層702,703,704,705が形成されている。
図10(c)は、21層目の誘電体層71のパターン形成面を示している。誘電体層71のパターン形成面には、導体層711,712,713,714,715が形成されている。
【0063】
図11(a)は、22層目の誘電体層72のパターン形成面を示している。誘電体層72のパターン形成面には、導体層721,722,723,724,725が形成されている。
図11(b)は、23層目の誘電体層73のパターン形成面を示している。誘電体層73のパターン形成面には、導体層731,732,733,734,735,736が形成されている。
図11(c)は、24層目の誘電体層74のパターン形成面を示している。誘電体層74のパターン形成面には、導体層741,742,743,744,745,746が形成されている。
【0064】
図12(a)は、25層目の誘電体層75のパターン形成面を示している。誘電体層75のパターン形成面には、導体層751,752,753,754が形成されている。導体層754は、導体層752に接続されている。
図12(b)は、26層目の誘電体層76のパターン形成面を示している。誘電体層76のパターン形成面には、導体層761,762,763,764,765,766が形成されている。導体層764は、導体層763に接続されている。導体層766は、導体層764に接続されている。
図12(b)では、2つの導体層の境界を点線で示している。
図12(c)は、27層目の誘電体層77のパターン形成面を示している。誘電体層77のパターン形成面には、導体層771,772,773が形成されている。導体層773は、導体層772に接続されている。
【0065】
図13は、28層目の誘電体層78のパターン形成面を示している。誘電体層78のパターン形成面には、マーク781が形成されている。
【0066】
図3に示した積層体50は、1層目の誘電体層51のパターン形成面が積層体50の底面50Aになり、28層目の誘電体層78のパターン形成面とは反対側の面が積層体50の上面50Bになるように、1層目ないし28層目の誘電体層51~78が積層されて構成される。
【0067】
図4(a)ないし
図12(b)に示した複数のスルーホールの各々は、1層目ないし27層目の誘電体層51~77を積層したときに、積層方向Tにおいて重なる導体層または積層方向Tにおいて重なる他のスルーホールに接続されている。また、
図4(a)ないし
図12(b)に示した複数のスルーホールのうち、端子内または導体層内に位置するスルーホールは、その端子またはその導体層に接続されている。
【0068】
図14は、1層目ないし28層目の誘電体層51~78が積層されて構成された積層体50の内部を示している。
図14に示したように、積層体50の内部では、
図4(a)ないし
図12(c)に示した複数の導体層と複数のスルーホールが積層されている。なお、
図14では、マーク781を省略している。
【0069】
積層体50は、例えば、誘電体層51~78の材料をセラミックとして、低温同時焼成法によって作製される。この場合には、まず、それぞれ後に誘電体層51~78になる複数のセラミックグリーンシートを作製する。各セラミックグリーンシートには、後に複数の導体層になる複数の焼成前導体層と、後に複数のスルーホールになる複数の焼成前スルーホールが形成されている。次に、複数のセラミックグリーンシートを積層して、グリーンシート積層体を作製する。次に、このグリーンシート積層体を切断して、焼成前積層体を作製する。次に、この焼成前積層体におけるセラミックと導体を低温同時焼成工程によって焼成して、積層体50を完成させる。
【0070】
以下、
図2に示した分波器1の回路の構成要素と、
図4(b)ないし
図12(c)に示した積層体50の内部の構成要素との対応関係について説明する。始めに、第1のフィルタ21の構成要素について説明する。インダクタL21は、導体層711,721,731,741によって構成されている。インダクタL22は、導体層611,621,631,641によって構成されている。
【0071】
キャパシタC21は、導体層531,541と、これらの導体層の間の誘電体層53とによって構成されている。キャパシタC22は、導体層541,551と、これらの導体層の間の誘電体層54とによって構成されている。
【0072】
次に、第2のフィルタ22の構成要素について説明する。インダクタL23は、導体層692,702,712,722,732,742によって構成されている。インダクタL24は、導体層592,602,612,622,632,642,652,662によって構成されている。インダクタL25は、導体層613,623,633,643,653,663によって構成されている。
【0073】
キャパシタC23は、導体層761,771と、これらの導体層の間の誘電体層76とによって構成されている。キャパシタC24は、導体層761,772と、これらの導体層の間の誘電体層76とによって構成されている。キャパシタC25は、導体層762,772と、これらの導体層の間の誘電体層76とによって構成されている。キャパシタC26は、導体層763,773と、これらの導体層の間の誘電体層76とによって構成されている。
【0074】
次に、第3のフィルタ31の構成要素について説明する。インダクタL31は、導体層693,703,713,723,733,743によって構成されている。インダクタL32は、導体層594,604,614,624によって構成されている。
【0075】
キャパシタC31は、導体層532,542,552,561と、これらの導体層の間の誘電体層53,54,55とによって構成されている。キャパシタC32は、導体層533,542,561,571と、これらの導体層の間の誘電体層53,56とによって構成されている。
【0076】
次に、第4のフィルタ32の構成要素について説明する。インダクタL33は、導体層595,605,615,625によって構成されている。インダクタL34は、導体層674,684,694,704,714,724,734,744によって構成されている。
【0077】
キャパシタC33は、導体層553,562と、これらの導体層の間の誘電体層55とによって構成されている。キャパシタC34は、導体層534,543,553と、これらの導体層の間の誘電体層53,54とによって構成されている。キャパシタC35は、導体層535,543と、これらの導体層の間の誘電体層53とによって構成されている。
【0078】
次に、第5のフィルタ41の構成要素について説明する。インダクタL41は、導体層715,725,735,745によって構成されている。インダクタL42は、導体層736,746と、導体層554と導体層736とを接続する直列に接続された複数のスルーホールと、導体層544と導体層736とを接続する直列に接続された複数のスルーホールとによって構成されている。
【0079】
キャパシタC41は、導体層536,544と、これらの導体層の間の誘電体層53とによって構成されている。キャパシタC42は、導体層544,554と、これらの導体層の間の誘電体層54とによって構成されている。
【0080】
次に、第6のフィルタ42の構成要素について説明する。インダクタL43は、導体層675,685,695,705によって構成されている。
【0081】
キャパシタC43は、導体層752,764と、これらの導体層の間の誘電体層75とによって構成されている。キャパシタC44は、導体層753,764と、これらの導体層の間の誘電体層75とによって構成されている。キャパシタC45は、導体層754,765と、これらの導体層の間の誘電体層75とによって構成されている。
【0082】
インダクタL44は、導体層634,644と、導体層586と導体層634とを接続する直列に接続された複数のスルーホールと、導体層546と導体層634とを接続する直列に接続された複数のスルーホールとによって構成されている。インダクタL45は、導体層525によって構成されている。
【0083】
キャパシタC46は、導体層537,545と、これらの導体層の間の誘電体層53とによって構成されている。キャパシタC47は、導体層538,546と、これらの導体層の間の誘電体層53とによって構成されている。キャパシタC48は、導体層546,555と、これらの導体層の間の誘電体層54とによって構成されている。
【0084】
次に、本実施の形態に係る分波器1の作用および効果について説明する。本実施の形態に係る分波器1は、前述のように接続された第1ないし第3のダイプレクサ20,30,40を備えている。これにより、本実施の形態によれば、第1ないし第4の通過帯域の各々における挿入損失を小さくすることができる。以下、この効果について、第1および第2の比較例の分波器と比較しながら説明する。
【0085】
始めに、
図15を参照して、第1の比較例の分波器201の構成について説明する。
図15は、第1の比較例の分波器201の回路構成を示す回路図である。第1の比較例の分波器201は、本実施の形態に係る分波器1と同様に、第1の通過帯域内の周波数の第1の信号と、第2の通過帯域内の周波数の第2の信号と、第3の通過帯域内の周波数の第3の信号と、第4の通過帯域内の周波数の第4の信号とを分離するように構成されている。すなわち、第1の比較例の分波器201は、入力ポート210と、第1の出力ポート211と、第2の出力ポート212と、第3の出力ポート213と、第4の出力ポート214とを備えている。入力ポート210ならびに第1ないし第4の出力ポート211~214の機能は、本実施の形態における入力ポート10ならびに第1ないし第4の出力ポート11~14の機能と同じである。
【0086】
分波器201は、更に、第1のダイプレクサ220と、第2のダイプレクサ230と、第3のダイプレクサ240とを備えている。第1のダイプレクサ220は、入力端220aと、2つの出力端220b,220cとを有している。第1のダイプレクサ220の入力端220aは、入力ポート210に接続されている。第1のダイプレクサ220の出力端220bは、第1の出力ポート211に接続されている。
【0087】
第2のダイプレクサ230は、入力端230aと、2つの出力端230b,230cとを有している。第2のダイプレクサ230の入力端230aは、第1のダイプレクサ220の出力端220cに接続されている。第2のダイプレクサ230の出力端230bは、第2の出力ポート212に接続されている。
【0088】
第3のダイプレクサ240は、入力端240aと、2つの出力端240b,240cとを有している。第3のダイプレクサ240の入力端240aは、第2のダイプレクサ230の出力端230cに接続されている。第3のダイプレクサ240の出力端240bは、第3の出力ポート213に接続されている。第3のダイプレクサ240の出力端240cは、第4の出力ポート214に接続されている。
【0089】
第1のダイプレクサ220は、回路構成上入力端220aと出力端220bとの間に設けられた第1のフィルタ221と、回路構成上入力端220aと出力端220cとの間に設けられた第2のフィルタ222とを含んでいる。第1のフィルタ221は、第1の通過帯域内の周波数の信号を選択的に通過させるフィルタである。第2のフィルタ22は、第2ないし第4の通過帯域を含むが第1の通過帯域を含まない周波数帯域の信号を選択的に通過させるフィルタである。
【0090】
第2のダイプレクサ230は、回路構成上入力端230aと出力端230bとの間に設けられた第3のフィルタ231と、回路構成上入力端230aと出力端230cとの間に設けられた第4のフィルタ232とを含んでいる。第3のフィルタ231は、第2の通過帯域内の周波数の信号を選択的に通過させるフィルタである。第4のフィルタ232は、第3および第4の通過帯域を含むが第2の通過帯域を含まない周波数帯域の信号を選択的に通過させるフィルタである。
【0091】
第3のダイプレクサ240は、回路構成上入力端240aと出力端240bとの間に設けられた第5のフィルタ241と、回路構成上入力端240aと出力端240cとの間に設けられた第6のフィルタ242とを備えている。第5のフィルタ241は、第3の通過帯域内の周波数の信号を選択的に通過させるフィルタである。第6のフィルタ242は、第4の通過帯域内の周波数の信号を選択的に通過させるフィルタである。
【0092】
第1のダイプレクサ220の第1および第2のフィルタ221,222の具体的な回路構成は、本実施の形態における第2のダイプレクサ30の第3および第4のフィルタ31,32の回路構成と同様である。第3および第4のフィルタ31,32の回路構成の説明中の入力端30a、出力端30b,30c、インダクタL31,L32,L33,L34およびキャパシタC31,C32,C33,C34,C35を、それぞれ、入力端220a、出力端220b,220c、インダクタL221,L222,L223,L224およびキャパシタC221,C222,C223,C224,C225に置き換えれば、第1および第2のフィルタ221,222の回路構成の説明になる。
【0093】
第2のダイプレクサ230の第3および第4のフィルタ231,232の具体的な回路構成は、本実施の形態における第1のダイプレクサ20の第1および第2のフィルタ21,22の回路構成と同様である。第1および第2のフィルタ21,22の回路構成の説明中の入力端20a、出力端20b,20c、インダクタL21,L22,L23,L24,L25およびキャパシタC21,C22,C23,C24,C25,C26を、それぞれ、入力端230a、出力端230b,230c、インダクタL231,L232,L233,L234,L235およびキャパシタC231,C232,C233,C234,C235,C236に置き換えれば、第3および第4のフィルタ231,232の回路構成の説明になる。
【0094】
第3のダイプレクサ240の第5および第6のフィルタ241,242の具体的な回路構成は、本実施の形態における第3のダイプレクサ40の第5および第6のフィルタ41,42の回路構成と同様である。第5および第6のフィルタ41,42の回路構成の説明中の入力端40a、出力端40b,40c、インダクタL41,L42,L43,L44,L45およびキャパシタC41,C42,C43,C44,C45,C46,C47,C48を、それぞれ、入力端240a、出力端240b,240c、インダクタL241,L242,L243,L244,L245およびキャパシタC241,C242,C243,C244,C245,C246,C247,C248に置き換えれば、第5および第6のフィルタ241,242の回路構成の説明になる。
【0095】
次に、
図16を参照して、第2の比較例の分波器301の構成について説明する。
図16は、第2の比較例の分波器301の回路構成を示す回路図である。第2の比較例の分波器301は、本実施の形態に係る分波器1と同様に、第1の通過帯域内の周波数の第1の信号と、第2の通過帯域内の周波数の第2の信号と、第3の通過帯域内の周波数の第3の信号と、第4の通過帯域内の周波数の第4の信号とを分離するように構成されている。すなわち、第2の比較例の分波器301は、入力ポート310と、第1の出力ポート311と、第2の出力ポート312と、第3の出力ポート313と、第4の出力ポート314とを備えている。入力ポート310ならびに第1ないし第4の出力ポート311~314の機能は、本実施の形態における入力ポート10ならびに第1ないし第4の出力ポート11~14の機能と同じである。
【0096】
分波器301は、更に、第1のダイプレクサ320と、第2のダイプレクサ330と、第3のダイプレクサ340とを備えている。第1のダイプレクサ320は、入力端320aと、2つの出力端320b,320cとを有している。第1のダイプレクサ320の入力端320aは、入力ポート310に接続されている。第1のダイプレクサ320の出力端320cは、第4の出力ポート314に接続されている。
【0097】
第2のダイプレクサ330は、入力端330aと、2つの出力端330b,330cとを有している。第2のダイプレクサ330の入力端330aは、第1のダイプレクサ320の出力端320bに接続されている。第2のダイプレクサ330の出力端330cは、第3の出力ポート313に接続されている。
【0098】
第3のダイプレクサ340は、入力端340aと、2つの出力端340b,340cとを有している。第3のダイプレクサ340の入力端340aは、第2のダイプレクサ330の出力端330bに接続されている。第3のダイプレクサ340の出力端340bは、第1の出力ポート311に接続されている。第3のダイプレクサ340の出力端340cは、第2の出力ポート312に接続されている。
【0099】
第1のダイプレクサ320は、回路構成上入力端320aと出力端320bとの間に設けられた第1のフィルタ321と、回路構成上入力端320aと出力端320cとの間に設けられた第2のフィルタ322とを含んでいる。第1のフィルタ321は、第1ないし第3の通過帯域を含むが第4の通過帯域を含まない周波数帯域の信号を選択的に通過させるフィルタである。第2のフィルタ322は、第4の通過帯域内の周波数の信号を選択的に通過させるフィルタである。
【0100】
第2のダイプレクサ330は、回路構成上入力端330aと出力端330bとの間に設けられた第3のフィルタ331と、回路構成上入力端330aと出力端330cとの間に設けられた第4のフィルタ332とを含んでいる。第3のフィルタ331は、第1および第2の通過帯域を含むが第3の通過帯域を含まない周波数帯域の信号を選択的に通過させるフィルタである。第4のフィルタ332は、第3の通過帯域内の周波数の信号を選択的に通過させるフィルタである。
【0101】
第3のダイプレクサ340は、回路構成上入力端340aと出力端340bとの間に設けられた第5のフィルタ341と、回路構成上入力端340aと出力端340cとの間に設けられた第6のフィルタ342とを備えている。第5のフィルタ341は、第1の通過帯域内の周波数の信号を選択的に通過させるフィルタである。第6のフィルタ342は、第2の通過帯域内の周波数の信号を選択的に通過させるフィルタである。
【0102】
第1のダイプレクサ320の第1および第2のフィルタ321,322の具体的な回路構成は、本実施の形態における第3のダイプレクサ40の第5および第6のフィルタ41,42の回路構成と同様である。第5および第6のフィルタ41,42の回路構成の説明中の入力端40a、出力端40b,40c、インダクタL41,L42,L43,L44,L45およびキャパシタC41,C42,C43,C44,C45,C46,C47,C48を、それぞれ、入力端320a、出力端320b,320c、インダクタL321,L322,L323,L324,L325およびキャパシタC321,C322,C323,C324,C325,C326,C327,C328に置き換えれば、第1および第2のフィルタ321,322の回路構成の説明になる。
【0103】
第2のダイプレクサ330の第3および第4のフィルタ331,332の具体的な回路構成は、本実施の形態における第1のダイプレクサ20の第1および第2のフィルタ21,22の回路構成と同様である。第1および第2のフィルタ21,22の回路構成の説明中の入力端20a、出力端20b,20c、インダクタL21,L22,L23,L24,L25およびキャパシタC21,C22,C23,C24,C25,C26を、それぞれ、入力端330a、出力端330b,330c、インダクタL331,L332,L333,L334,L335およびキャパシタC331,C332,C333,C334,C335,C336に置き換えれば、第3および第4のフィルタ331,332の回路構成の説明になる。
【0104】
第3のダイプレクサ340の第5および第6のフィルタ341,342の具体的な回路構成は、本実施の形態における第2のダイプレクサ30の第3および第4のフィルタ31,32の回路構成と同様である。第3および第4のフィルタ31,32の回路構成の説明中の入力端30a、出力端30b,30c、インダクタL31,L32,L33,L34およびキャパシタC31,C32,C33,C34,C35を、それぞれ、入力端340a、出力端340b,340c、インダクタL341,L342,L343,L344およびキャパシタC341,C342,C343,C344,C345に置き換えれば、第5および第6のフィルタ341,342の回路構成の説明になる。
【0105】
次に、本実施の形態に係る分波器1の通過減衰特性と、第1および第2の比較例の分波器201,301の通過減衰特性を比較したシミュレーションの結果について説明する。シミュレーションでは、実施例のモデルと第1の比較例のモデルと第2の比較例のモデルを用いた。実施例のモデルは、
図2に示した回路構成を有する本実施の形態に係る分波器1のモデルである。第1の比較例のモデルは、第1の比較例の分波器201のモデルである。第2の比較例のモデルは、第2の比較例の分波器301のモデルである。シミュレーヨンでは、実施例のモデルと第1の比較例のモデルと第2の比較例のモデルのそれぞれについて、入力ポートと第1ないし第4の出力ポートの各々との間の通過減衰特性を求めた。
【0106】
図17は、実施例のモデルの通過減衰特性を示す特性図である。
図18は、第1の比較例のモデルの通過減衰特性を示す特性図である。
図19は、第2の比較例のモデルの通過減衰特性を示す特性図である。
図17ないし
図19において、横軸は周波数を示し、縦軸は減衰量を示している。
【0107】
図17において、符号101は、入力ポート10と第1の出力ポート11との間の通過減衰特性を示している。符号102は、入力ポート10と第2の出力ポート12との間の通過減衰特性を示している。符号103は、入力ポート10と第3の出力ポート13との間の通過減衰特性を示している。符号104は、入力ポート10と第4の出力ポート14との間の通過減衰特性を示している。
【0108】
図18において、符号111は、入力ポート210と第1の出力ポート211との間の通過減衰特性を示している。符号112は、入力ポート210と第2の出力ポート212との間の通過減衰特性を示している。符号113は、入力ポート210と第3の出力ポート213との間の通過減衰特性を示している。符号114は、入力ポート210と第4の出力ポート214との間の通過減衰特性を示している。
【0109】
図19において、符号121は、入力ポート310と第1の出力ポート311との間の通過減衰特性を示している。符号122は、入力ポート310と第2の出力ポート312との間の通過減衰特性を示している。符号123は、入力ポート310と第3の出力ポート313との間の通過減衰特性を示している。符号124は、入力ポート310と第4の出力ポート314との間の通過減衰特性を示している。
【0110】
また、
図17において、符号81を付した矢印は、分波器1の第1の通過帯域を模式的に示している。符号82を付した矢印は、分波器1の第2の通過帯域を模式的に示している。符号83を付した矢印は、分波器1の第3の通過帯域を模式的に示している。符号84を付した矢印は、分波器1の第4の通過帯域を模式的に示している。なお、図示しないが、第1の比較例の分波器201の第1ないし第4の通過帯域と、第2の比較例の分波器301の第1ないし第4の通過帯域は、分波器1の第1ないし第4の通過帯域と同じである。
【0111】
実施例のモデルでは、第1の通過帯域の上限の周波数における減衰量は-0.62dBであった。また、第2の通過帯域の下限の周波数における減衰量は-0.87dBであり、第2の通過帯域の上限の周波数における減衰量は-1.02dBであった。また、第3の通過帯域の下限の周波数における減衰量は-1.27dBであり、第3の通過帯域の上限の周波数における減衰量は-1.05dBであった。また、第4の通過帯域の下限の周波数における減衰量は-1.25dBであり、第4の通過帯域の上限の周波数における減衰量は-1.24dBであった。実施例のモデルでは、第1ないし第4の通過帯域の各々における挿入損失の大きさ(減衰量の絶対値)は、十分に小さな値となっていた。
【0112】
第1の比較例のモデルでは、第1の通過帯域の上限の周波数における減衰量は-0.52dBであった。また、第2の通過帯域の下限の周波数における減衰量は-0.87dBであり、第2の通過帯域の上限の周波数における減衰量は-1.29dBであった。また、第3の通過帯域の下限の周波数における減衰量は-1.49dBであり、第3の通過帯域の上限の周波数における減衰量は-1.44dBであった。また、第4の通過帯域の下限の周波数における減衰量は-1.51dBであり、第4の通過帯域の上限の周波数における減衰量は-2.00dBであった。第1の比較例のモデルでは、第1ないし第3の通過帯域の各々における挿入損失の大きさは、十分に小さな値となっていた。しかし、第1の比較例のモデルでは、第4の通過帯域における挿入損失の大きさは、実施例のモデルに比べて大きくなっていた。
【0113】
第2の比較例のモデルでは、第1の通過帯域の上限の周波数における減衰量は-0.58dBであった。また、第2の通過帯域の下限の周波数における減衰量は-0.89dBであり、第2の通過帯域の上限の周波数における減衰量は-1.30dBであった。また、第3の通過帯域の下限の周波数における減衰量は-1.45dBであり、第3の通過帯域の上限の周波数における減衰量は-1.35dBであった。また、第4の通過帯域の下限の周波数における減衰量は-0.92dBであり、第4の通過帯域の上限の周波数における減衰量は-1.04dBであった。第2の比較例のモデルでは、第1、第3および第4の通過帯域の各々における挿入損失の大きさは、十分に小さな値となっていた。しかし、第2の比較例のモデルでは、第2の通過帯域における挿入損失の大きさは、実施例のモデルに比べて大きくなっていた。
【0114】
シミュレーションの結果から理解されるように、本実施の形態によれば、第1ないし第4の通過帯域の全てにおいて、挿入損失を小さくすることができる。
【0115】
第1の比較例の分波器201では、入力ポート210と第4の出力ポート214との間に、第2、第4および第6のフィルタ222,232,242が設けられている。また、第2の比較例の分波器301では、入力ポート310と第2の出力ポート312との間に、第1、第3および第6のフィルタ321,331,342が設けられている。一般的に、フィルタの数が多くなるに従って素子の数も多くなり、その結果、挿入損失が大きくなる。
【0116】
これに対し、本実施の形態では、第1ないし第4の経路P1~P4の各々に設けられているフィルタの数は、いずれも2つである。すなわち、本実施の形態では、特定の経路に設けられるフィルタの数が多くならないようにすることによって、特定の経路に設けられる素子の数が多くならないようにしている。
【0117】
次に、本実施の形態に係る分波器1のその他の特徴について説明する。始めに、第1の特徴について説明する。
図1および
図2に示したように、分波器1では、入力ポート10と第1の出力ポート11との間には、第1および第3のフィルタ21,31よりなる第1のフィルタ群が構成されている。また、入力ポート10と第2の出力ポート12との間には、第1および第4のフィルタ21,32よりなる第2のフィルタ群が構成されている。また、入力ポート10と第3の出力ポート13との間には、第2および第5のフィルタ22,41よりなる第3のフィルタ群が構成されている。また、入力ポート10と第4の出力ポート14との間には、第2および第6のフィルタ22,42よりなる第4のフィルタ群が構成されている。
【0118】
第1のフィルタ群の段数は8であり、第2のフィルタ群の段数は8であり、第3のフィルタ群の段数は11であり、第4のフィルタ群の段数は13である。本実施の形態では、最も段数が多い第4のフィルタ群の段数と最も段数が少ない第1のフィルタ群または第2のフィルタ群の段数との差は、5である。
【0119】
次に、第2の特徴について説明する。本実施の形態では、第1ないし第3のダイプレクサ20,30,40の各々は、複数のインダクタと複数のキャパシタとを含むLC回路である。
【0120】
次に、第3の特徴について説明する。
図17において、符号101Hは、第1の通過帯域81の高域側に形成され且つ第1の通過帯域81に最も近い減衰極を示している。符号102Lは、第2の通過帯域82の低域側に形成され且つ第2の通過帯域82に最も近い減衰極を示している。符号102Hは、第2の通過帯域82の高域側に形成され且つ第2の通過帯域82に最も近い減衰極を示している。符号103Lは、第3の通過帯域83の低域側に形成され且つ第3の通過帯域83に最も近い減衰極を示している。符号103Hは、第3の通過帯域83の高域側に形成され且つ第3の通過帯域83に最も近い減衰極を示している。符号104Lは、第4の通過帯域84の低域側に形成され且つ第4の通過帯域84に最も近い減衰極を示している。符号104Hは、第4の通過帯域84の高域側に形成され且つ第4の通過帯域84に最も近い減衰極を示している。
【0121】
また、
図17において、符号91を付した矢印は、第1の通過帯域81を含むと共に減衰極101Hを上限とする周波数帯域である第1の帯域を模式的に示している。第1の帯域91は、入力ポート10と第1の出力ポート11との間の通過減衰特性に存在する。
【0122】
符号92を付した矢印は、第2の通過帯域82を含むと共に減衰極102Lを下限とし減衰極102Hを上限とする周波数帯域である第2の帯域を模式的に示している。第2の帯域92は、入力ポート10と第2の出力ポート12との間の通過減衰特性に存在する。
【0123】
符号93を付した矢印は、第3の通過帯域83を含むと共に減衰極103Lを下限とし減衰極103Hを上限とする周波数帯域である第3の帯域を模式的に示している。第3の帯域93は、入力ポート10と第3の出力ポート13との間の通過減衰特性に存在する。
【0124】
符号94を付した矢印は、第4の通過帯域84を含むと共に減衰極104Lを下限とし減衰極104Hを上限としする周波数帯域である第4の帯域を模式的に示している。第4の帯域94は、入力ポート10と第4の出力ポート14との間の通過減衰特性に存在する。
【0125】
第2の帯域92は、第1および第3の帯域91,93と重なっている。すなわち、第2の帯域92は、第1の帯域91にも存在する周波数帯域と第3の帯域93にも存在する周波数帯域とを含んでいる。この特徴は、第2の通過帯域82が、第1の通過帯域81と第3の通過帯域83のそれぞれに近い周波数帯域であることを表している。
【0126】
第3の帯域93は、第2および第4の帯域92,94と重なっている。すなわち、第3の帯域93は、第2の帯域92にも存在する周波数帯域と第4の帯域94にも存在する周波数帯域とを含んでいる。この特徴は、第3の通過帯域83が、第2の通過帯域82と第3の通過帯域83のそれぞれに近い周波数帯域であることを表している。
【0127】
第3の特徴は、分波器1が、比較的近い周波数帯域の信号を分離するように構成されていることを表している。
【0128】
なお、本発明は、上記実施の形態に限定されず、種々の変更が可能である。例えば、請求の範囲の要件を満たす限り、第1ないし第3のダイプレクサ20,30,40の各々の回路構成は任意である。
【0129】
以上説明したように、本発明の分波器は、
入力ポートと、
第1の出力ポートと、
第2の出力ポートと、
第3の出力ポートと、
第4の出力ポートと、
入力ポートに接続された第1の入力端と、第1の出力端と、第2の出力端とを有する第1のダイプレクサと、
第1の出力端に接続された第2の入力端と、第1の出力ポートに直接接続された第3の出力端と、第2の出力ポートに直接接続された第4の出力端とを有する第2のダイプレクサと、
第2の出力端に接続された第3の入力端と、第3の出力ポートに直接接続された第5の出力端と、第4の出力ポートに直接接続された第6の出力端とを有する第3のダイプレクサと、
を備えている。
【0130】
本発明の分波器において、第1の出力ポートは、第1の通過帯域内の周波数の信号が選択的に通過するポートであってもよい。第2の出力ポートは、第1の通過帯域よりも高い第2の通過帯域内の周波数の信号が選択的に通過するポートであってもよい。第3の出力ポートは、第3の通過帯域内の周波数の信号が選択的に通過するポートであってもよい。第4の出力ポートは、第3の通過帯域よりも高い第4の通過帯域内の周波数の信号が選択的に通過するポートであってもよい。第1のダイプレクサは、第2の通過帯域を含むが第3の通過帯域を含まない周波数帯域の信号が第1の出力端を選択的に通過し、且つ第3の通過帯域を含むが第2の通過帯域を含まない周波数帯域の信号が第2の出力端を選択的に通過するように構成されていてもよい。第3の通過帯域は、第2の通過帯域よりも高い周波数帯域であってもよい。
【0131】
また、本発明の分波器において、第2のダイプレクサは、第1の通過帯域内の周波数の信号が第3の出力端を選択的に通過し、且つ第1の通過帯域よりも高い第2の通過帯域内の周波数の信号が第4の出力端を選択的に通過するように構成されていてもよい。第3のダイプレクサは、第3の通過帯域内の周波数の信号が第5の出力端を選択的に通過し、且つ第3の通過帯域よりも高い第4の通過帯域内の周波数の信号が第6の出力端を選択的に通過するように構成されていてもよい。第1のダイプレクサは、第2の通過帯域を含むが第3の通過帯域を含まない周波数帯域の信号が第1の出力端を選択的に通過し、且つ第3の通過帯域を含むが第2の通過帯域を含まない周波数帯域の信号が第2の出力端を選択的に通過するように構成されていてもよい。第3の通過帯域は、第2の通過帯域よりも高い周波数帯域であってもよい。
【0132】
また、本発明の分波器において、第1の出力ポートは、第1の通過帯域内の周波数の信号が選択的に通過するポートであり、第2の出力ポートは、第1の通過帯域よりも高い第2の通過帯域内の周波数の信号が選択的に通過するポートであり、第3の出力ポートは、第2の通過帯域よりも高い第3の通過帯域内の周波数の信号が選択的に通過するポートであり、第4の出力ポートは、第3の通過帯域よりも高い第4の通過帯域内の周波数の信号が選択的に通過するポートであってもよい。この場合、入力ポートと第1の出力ポートとの間の通過減衰特性には、第1の通過帯域を含むと共に第1の通過帯域の高域側に形成され且つ第1の通過帯域に最も近い第1の減衰極を上限とする周波数帯域である第1の帯域が存在してもよい。入力ポートと第2の出力ポートとの間の通過減衰特性には、第2の通過帯域を含むと共に第2の通過帯域の低域側に形成され且つ第2の通過帯域に最も近い第2の減衰極を下限とし第2の通過帯域の高域側に形成され且つ第2の通過帯域に最も近い第3の減衰極を上限とする周波数帯域である第2の帯域が存在してもよい。入力ポートと第3の出力ポートとの間の通過減衰特性には、第3の通過帯域を含むと共に第3の通過帯域の低域側に形成され且つ第3の通過帯域に最も近い第4の減衰極を下限とし第3の通過帯域の高域側に形成され且つ第3の通過帯域に最も近い第5の減衰極を上限とする周波数帯域である第3の帯域が存在してもよい。入力ポートと第4の出力ポートとの間の通過減衰特性には、第4の通過帯域を含むと共に第4の通過帯域の低域側に形成され第4の通過帯域に最も近い第6の減衰極を下限とする周波数帯域である第4の帯域が存在してもよい。第2の帯域は、第1の帯域にも存在する周波数帯域と第3の帯域にも存在する周波数帯域とを含んでいてもよい。第3の帯域は、第2の帯域にも存在する周波数帯域と第4の帯域にも存在する周波数帯域とを含んでいてもよい。
【0133】
また、本発明の分波器において、入力ポートと第1の出力ポートとの間には、第1のフィルタが構成され、入力ポートと第2の出力ポートとの間には、第2のフィルタが構成され、入力ポートと第3の出力ポートとの間には、第3のフィルタが構成され、入力ポートと第4の出力ポートとの間には、第4のフィルタが構成されてもよい。この場合、第1のフィルタ、第2のフィルタ、第3のフィルタおよび第4のフィルタのうち、最も段数が多いフィルタを第1の特定のフィルタとし、最も段数が少ないフィルタを第2の特定のフィルタとしたときに、第1の特定のフィルタの段数と第2の特定のフィルタの段数の差は、5であってもよい。
【0134】
また、本発明の分波器において、第1のダイプレクサ、第2のダイプレクサおよび第3のダイプレクサの各々は、複数のインダクタと複数のキャパシタとを含むLC回路であってもよい。
【符号の説明】
【0135】
1…分波器、10…入力ポート、11…第1の出力ポート、12…第2の出力ポート、13…第3の出力ポート、14…第4の出力ポート、20…第1のダイプレクサ、21…第1のフィルタ、22…第2のフィルタ、30…第3のダイプレクサ、31…第3のフィルタ、32…第4のフィルタ、40…第3のダイプレクサ、41…第5のフィルタ、42…第6のフィルタ、50…積層体、111…入力端子、112,114,118,119…グランド端子、113,115,116,117…出力端子。