IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ クレオ・メディカル・リミテッドの特許一覧

<>
  • 特開-電気手術器具 図1
  • 特開-電気手術器具 図2
  • 特開-電気手術器具 図3
  • 特開-電気手術器具 図4
  • 特開-電気手術器具 図5
  • 特開-電気手術器具 図6
  • 特開-電気手術器具 図7
  • 特開-電気手術器具 図8
  • 特開-電気手術器具 図9
  • 特開-電気手術器具 図10
  • 特開-電気手術器具 図11
  • 特開-電気手術器具 図12
  • 特開-電気手術器具 図13
  • 特開-電気手術器具 図14
  • 特開-電気手術器具 図15
  • 特開-電気手術器具 図16
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024059799
(43)【公開日】2024-05-01
(54)【発明の名称】電気手術器具
(51)【国際特許分類】
   A61B 18/18 20060101AFI20240423BHJP
   A61B 17/08 20060101ALI20240423BHJP
【FI】
A61B18/18 100
A61B17/08
【審査請求】有
【請求項の数】1
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2024025486
(22)【出願日】2024-02-22
(62)【分割の表示】P 2020572479の分割
【原出願日】2019-06-27
(31)【優先権主張番号】1811433.0
(32)【優先日】2018-07-12
(33)【優先権主張国・地域又は機関】GB
(71)【出願人】
【識別番号】512008495
【氏名又は名称】クレオ・メディカル・リミテッド
【氏名又は名称原語表記】CREO MEDICAL LIMITED
(74)【代理人】
【識別番号】110001195
【氏名又は名称】弁理士法人深見特許事務所
(72)【発明者】
【氏名】ハンコック,クリストファー・ポール
(72)【発明者】
【氏名】バーン,パトリック
(72)【発明者】
【氏名】シャー,パラブ
(57)【要約】      (修正有)
【課題】マイクロ波エネルギーを生体組織に送達するための電気手術器具を提供する。
【解決手段】器具のマイクロ波放射プロファイルを成形するように、一対の導電性同調素子を放射器具の先端に搭載し、これにより、放射プロファイルが器具の先端の周りに拘束される。係る同調素子は、器具の先端の周りで実質的に球形である放射プロファイルを生じさせ、明確に定義された切除体積を提供し得る。同調素子は、マイクロ波エネルギーを標的組織に送達できる効率を改善するように作用する。
【選択図】図2
【特許請求の範囲】
【請求項1】
電気手術器具であって、
マイクロ波エネルギーを伝えるための同軸給電ケーブルであって、前記同軸給電ケーブルは、内側導体、外側導体、ならびに前記内側導体及び前記外側導体を分離する誘電材料を有する、前記同軸給電ケーブルと、
前記マイクロ波エネルギーを受けるために前記同軸給電ケーブルの遠位端に配置される放射先端であって、前記放射先端は、
前記内側導体に電気的に接続され、縦方向に延在してマイクロ波放射器を形成する、細長導体と、
前記放射先端の近位領域内で前記細長導体に電気的に接続される近位同調素子と、
前記放射先端の遠位領域内で前記細長導体に電気的に接続される遠位同調素子と、
前記細長導体、前記近位同調素子、及び前記遠位同調素子の周りに配置される誘電体と、を備える、前記放射先端と、を備え、
前記近位同調素子及び前記遠位同調素子は前記縦方向に離間し、それによって、前記マイクロ波放射器によって放出されるマイクロ波場は前記誘電体の周りにつくられる、前記電気手術器具。
【請求項2】
前記近位同調素子及び前記遠位同調素子は前記縦方向に対して対称である、請求項1に記載の電気手術器具。
【請求項3】
前記近位同調素子及び前記遠位同調素子は円筒形であり、前記細長導体の縦軸と同一直線上にある中心軸を有する、請求項1に記載の電気手術器具。
【請求項4】
前記近位同調素子は、前記縦方向に前記同軸給電ケーブルの前記遠位端から離間している、いずれかの先行請求項に記載の電気手術器具。
【請求項5】
前記近位同調素子及び前記遠位同調素子は、それぞれ、前記細長導体が延在するチャネルを含む、いずれかの先行請求項に記載の電気手術器具。
【請求項6】
前記遠位同調素子は前記細長導体の遠位端に位置する、いずれかの先行請求項に記載の電気手術器具。
【請求項7】
前記縦方向の前記遠位同調素子の長さは、前記縦方向の近位電極の長さよりも大きい、いずれかの先行請求項に記載の電気手術器具。
【請求項8】
前記細長導体は、前記外側導体の遠位端を越えて延在する前記内側導体の遠位部である、いずれかの先行請求項に記載の電気手術器具。
【請求項9】
前記誘電体は、前記近位同調素子と前記遠位同調素子との間に誘電スペーサを備える、いずれかの先行請求項に記載の電気手術器具。
【請求項10】
前記誘電体は、前記近位同調素子及び前記遠位同調素子の外面を囲む誘電体シースを備える、いずれかの先行請求項に記載の電気手術器具。
【請求項11】
前記誘電体シースの外面は、前記同軸給電ケーブルと前記放射先端との間の境界面で前記同軸給電ケーブルの外面と同一平面である、請求項10に記載の電気手術器具。
【請求項12】
前記近位同調素子と前記同軸給電ケーブルの前記遠位端との間に搭載される誘電体素子を含む、請求項4に記載の電気手術器具。
【請求項13】
前記誘電体素子は、前記外側導体の遠位端を越えて突出する前記同軸給電ケーブルの前記誘電材料の遠位部であり得る、請求項12に記載の電気手術器具。
【請求項14】
前記放射先端は、さらに、前記細長導体の遠位端に搭載される遠位先端を含み、前記遠位先端は誘電材料から作られている、いずれかの先行請求項に記載の電気手術器具。
【請求項15】
前記遠位先端は尖っている、請求項14に記載の電気手術器具。
【請求項16】
前記同軸給電ケーブルの遠位端に配置される導電性フィールド形成素子をさらに含み、前記フィールド形成素子は前記外側導体に電気的に接続される、いずれかの先行請求項に記載の電気手術器具。
【請求項17】
前記フィールド形成素子は、前記外側導体の近位部と比較して大きい厚さを有する前記外側導体の遠位部によって形成される、請求項16に記載の電気手術器具。
【請求項18】
前記フィールド形成素子は、前記マイクロ波エネルギーの4分の1波長に対応する前記縦方向の長さを有する、請求項16または17に記載の電気手術器具。
【請求項19】
生体組織を治療するための電気手術装置であって、
マイクロ波エネルギーを供給するように構成される電気手術用発電機と、
前記電気手術用発電機から前記マイクロ波エネルギーを受けるために接続される、いずれかの先行請求項に記載の電気手術器具と、
を備える、前記電気手術装置。
【請求項20】
器具チャネルを有する可撓性挿入コードを含む外科用スコーピングデバイスをさらに備え、前記電気手術器具は前記器具チャネル内に適合するように寸法決定される、請求項19に記載の電気手術装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、組織を切除するためにマイクロ波エネルギーを生体組織に送達するための電気手術器具に関する。器具は、内視鏡もしくはカテーテルのチャネルを通して挿入可能であるプローブを含み得る、または腹腔鏡手術もしくは開腹手術で使用され得る。この器具は、肺または胃腸の用途で使用され得るが、それに限定されない。
【背景技術】
【0002】
電磁(EM)エネルギー、特にマイクロ波エネルギーは、生体組織を切除する能力があるため、電気手術に有用であることが分かっている。通常、EMエネルギーを体組織に送達するための装置は、エネルギーを組織に送達するために、EMエネルギー源を含む発電機、及び発電機に接続された電気手術器具を含む。
【0003】
従来の電気手術器具は、多くの場合、患者の体内に経皮的に挿入されるように設計される。しかしながら、例えば、標的部位が動く肺または胃腸(GI)管の薄肉断面にある場合、器具を体内で経皮的に位置決めすることは困難である可能性がある。他の電気手術器具は、気道または食道もしくは結腸の内腔等の体内の経路を通って伸びることできる外科用スコーピングデバイス(例えば、内視鏡)によって標的部位に送達できる。これにより、低侵襲治療が可能になり、患者の死亡率を減らし、手術中及び手術後の合併症率を減らすことができる。
【0004】
マイクロ波EMエネルギーを使用する組織切除は、生体組織が主に水で構成されるという事実に基づいている。人間の軟臓器組織は、通常、70%~80%の水分含量である。水分子は永久電気双極子モーメントを有し、分子全体にわたって電荷不均衡が存在することを意味する。この電荷不均衡により、分子が回転して、その電気双極子モーメントを印加電界の極性に合わせるときに、時間的に変化する電界を印加することによって生成する力に応答して分子が移動する。マイクロ波周波数において、急速な分子振動が摩擦加熱を生じさせ、結果的に、熱の形態で電界エネルギーを散逸させる。これは誘電加熱として知られている。
【0005】
この原理は、マイクロ波アブレーション療法で利用され、マイクロ波周波数で局所的な電磁場を適用することにより、標的組織の水分子が急速に加熱され、組織凝固及び細胞死が生じる。肺及びその他の臓器における様々な疾患を治療するために、マイクロ波放出プローブを使用することが知られている。例えば、肺では、喘息を治療し、腫瘍または病変を切除するためにマイクロ波放射を使用できる。
【発明の概要】
【課題を解決するための手段】
【0006】
最も一般的には、本発明は、マイクロ波エネルギーを生体組織に送達するための電気手術器具を提供し、一対の導電性同調素子を使用して、器具のマイクロ波放射プロファイルを成形し、これにより、放射プロファイル(「アブレーションプロファイル」とも称される)は器具の先端の周りに拘束される。複数の本発明者は、係る同調素子を使用すると、器具の先端の周りで実質的に球形である放射プロファイルを生じさせ得、明確に定義された切除量を提供することを発見している。また、複数の本発明者は、同調素子が、マイクロ波エネルギーを標的組織に送達できる効率を改善するように作用し得ることを発見している。
【0007】
本発明の第1の態様に従って、電気手術器具が提供され、電気手術器具は、マイクロ波
エネルギーを伝えるための同軸給電ケーブルであって、同軸給電ケーブルは、内側導体、外側導体、ならびに内側導体及び外側導体を分離する誘電材料を有する、同軸給電ケーブルと、マイクロ波エネルギーを受けるために同軸給電ケーブルの遠位端に配置される放射先端であって、放射先端は、内側導体に電気的に接続され、縦方向に延在してマイクロ波放射器を形成する、細長導体と、放射先端の近位領域内で細長導体に電気的に接続される近位同調素子と、放射先端の遠位領域内で細長導体に電気的に接続される遠位同調素子と、細長導体、近位同調素子、及び遠位同調素子の周りに配置される誘電体と、を備える、放射先端と、を備え、近位同調素子及び遠位同調素子は縦方向に離間し、それによって、マイクロ波放射器によって放出されるマイクロ波場は誘電体の周りにつくられる。
【0008】
器具は、体内の標的組織を切除するように動作し得る。本デバイスは、特に、肺の組織の切除に適しているが、他の臓器(例えば、子宮または消化管)の組織を切除するために使用してもよい。標的組織を効率的に切除するために、放射先端は標的組織に可能な限り近くに(多くの場合、標的組織の内側)に位置すべきである。標的組織(例えば、肺内)に到達するために、本デバイスは通路(例えば、気道)を通って及び障害物の周りに誘導される必要があり得る。これは、器具が、可能な限り柔軟であり、小さい断面積を有するのが理想的であることを意味する。特に、本デバイスはその先端の近くでかなり柔軟である必要があり、狭く曲がりくねった可能性がある細気管支等の狭い通路に沿って本デバイスを操縦する必要があり得る。
【0009】
同軸給電ケーブルは、一端において電気手術用発電機に接続可能である従来の低損失同軸ケーブルであり得る。特に、内側導体は、同軸給電ケーブルの縦軸に沿って延在する細長導体であり得る。誘電材料は、内側導体の周りに配置され得、例えば、第1の誘電材料は、内側導体が延在するチャネルを有し得る。外部導体は、誘電材料の表面に配置される導体材料から作られたスリーブであり得る。同軸給電ケーブルは、さらに、ケーブルを絶縁及び保護するための外部保護シースを含み得る。いくつかの実施例では、保護シースは、組織がケーブルに付着するのを防ぐために、非粘着性材料から作られ得る、またはそれでコーティングされ得る。放射先端は同軸給電ケーブルの遠位端に位置し、同軸給電ケーブルに沿って伝えられるEMエネルギーを標的組織に送達するのに役立つ。放射先端は同軸給電ケーブルに永久的に取り付けられ得る、または放射先端は同軸給電ケーブルに取り外し可能に取り付けられ得る。例えば、コネクタは、放射先端を受け、必要な電気的接続を形成するように構成される同軸給電ケーブルの遠位端に提供され得る。
【0010】
放射先端は概して円筒形であり得る。誘電体は、同軸給電ケーブルの遠位端に取り付けられ得る。いくつかの実施例では、誘電体は、同軸給電ケーブルの遠位端を越えて延在する同軸給電ケーブルの誘電体の突出部を含み得る。これは、放射先端の構造を簡素化し、放射先端と同軸給電ケーブルとの間の境界においてEMエネルギーの反射を回避し得る。他の実施例では、同軸給電ケーブルの誘電材料と異なる第2の誘電材料を使用して、誘電体を形成し得る。マイクロ波エネルギーを標的組織に送達する効率を改善するために、第2の誘電材料を選択して、標的組織とのインピーダンス整合を改善し得る。放射先端は、また、所望の様式で放射プロファイルを成形するように選択及び構成される複数の異なる誘電材料の部分を含み得る。
【0011】
細長導体は、同軸給電ケーブルの内側導体に電気的に接続され、細長導体がマイクロ波放射器として機能するように誘電体内に延在する。言い換えれば、同軸給電ケーブルから放射先端に伝えられるマイクロ波エネルギーは、細長導体から放射され得る。外側導体は、細長導体が外側導体の遠位端を越えて延在するように同軸給電ケーブルの遠位端で終端し得る。このように、放射先端はマイクロ波モノポールアンテナとして機能し得る。したがって、放射先端に伝えられるマイクロ波エネルギーは、細長導体から周囲標的組織に放射され得る。細長導体は、例えば、誘電体のチャネル内に延在し得る。細長導体は、細長
い形状を有する任意の適切な導体であり得る。例えば、細長導体は、誘電体内に延在する導体材料のワイヤ、ロッド、またはストリップであり得る。
【0012】
近位同調素子は、放射先端の近位端の近くに位置する導体材料(例えば、金属)の一部であり得る。遠位同調素子は、放射先端の遠位端の近くに位置する導体材料(例えば、金属)の一部であり得る。したがって、遠位同調素子は、近位同調素子よりも同軸給電ケーブルの遠位端からさらに離れ得る。近位同調素子及び遠位同調素子の両方は、細長導体に電気的に接続される。例えば、近位同調素子及び遠位同調素子は、それぞれ、細長導体の上にまたは周りに配置され得る。近位同調素子及び遠位同調素子は、任意の適切な手段によって細長導体に電気的に接続され得る。例えば、近位同調素子及び遠位同調素子は、細長導体に溶接またははんだ付けされ得る。別の実施例では、近位同調素子及び遠位同調素子は、導電接着剤(例えば、導電性エポキシ)を使用して細長導体に接続され得る。代替として、近位同調素子及び遠位同調素子の一方または両方は、細長導体と一体的に形成され得る(例えば、それらは、単一の部品として一緒に製造され得る)。近位同調素子及び遠位同調素子は、細長導体の長さだけ縦方向に離間する。言い換えれば、細長導体の区分は、近位電極と遠位電極との間に配置される。近位同調素子及び遠位同調素子は、誘電体の一部によって覆われ得、これにより、それらは環境から隔離/保護される。
【0013】
複数の本発明者は、上記に説明したような構成を有する放射先端が、放射先端と周囲標的組織との間のインピーダンス不整合を減らし得ることを発見している。これは、放射先端で同軸給電ケーブルの後方に反射されるマイクロ波エネルギーの量を減らし得る(これは、放射先端と標的組織との間のインピーダンス不整合により発生する)。結果として、マイクロ波エネルギーを標的組織に送達できる効率を改善し得る。これは、標的組織を切除するために同軸給電ケーブルの下に伝えられる必要のあるエネルギー量を減らすことが可能であり得る。次に、これは、同軸給電ケーブルに沿ったマイクロ波エネルギーの伝達による加熱効果を減らし得、それにより、電気手術器具はより長期間使用され得る。
【0014】
また、複数の本発明者は、近位同調素子及び遠位同調素子が、放射先端のより望ましい放射プロファイルを生じさせ得ることを発見している。特に、同調素子は、それが放射先端の周りに集中するように放射プロファイルを成形し、同軸給電ケーブルに沿って後方に延在する放射プロファイルのテールを減らし得る。このように、放射先端に伝えられるマイクロ波エネルギーは、放射先端から放出され、放射先端の周りの明確な体積の周囲標的組織を切除し得る。切除体積(すなわち、放射されたマイクロ波エネルギーによって切除される組織の体積)は、ほぼ球形であり得る。同調素子の形状、サイズ、及び場所は、所望のマイクロ波放射プロファイルを得るために選択され得る。
【0015】
近位同調素子及び遠位同調素子は、縦方向に対して対称に配置され得る。例えば、近位同調素子及び遠位同調素子は円筒形であり得、例えば、細長導体の縦軸と同一直線上にある中心軸を有する。細長導体の縦軸は、細長導体の長さに沿った軸である。例えば、近位同調素子は、細長導体の周りに配置され、細長導体と同軸にある、導体材料の円筒部であり得る。これは、放射先端の放射プロファイルの軸対称性を改善し得る。
【0016】
いくつかの実施形態では、近位同調素子は、縦方向に同軸給電ケーブルの遠位端から離間され得る。例えば、誘電体は、同軸給電ケーブルの遠位端と近位同調素子との間に位置付けられるスペーサを含み得る。複数の本発明者は、同軸給電ケーブルの遠位端から近位同調素子を離間させると、器具に位相シフトを導入し得ることを発見している。位相シフトは、放射先端と標的組織との間のインピーダンス整合を改善し得、これにより、標的組織へのマイクロ波エネルギーの効率を改善し得る。位相シフトは、同軸給電ケーブルの遠位端と近位同調素子の近位端との間の距離によって決まり得る。
【0017】
いくつかの実施形態では、近位同調素子は、細長導体を受けるためのチャネルを含み得る。チャネルは、細長導体に対して近位同調素子を位置付け、近位同調素子と細長導体との間の接続を改善するのに役立ち得る。チャネルは、また、近位同調素子を細長導体に固定する前に、近位同調素子を細長導体上の所望の位置に位置付けられ得るので、放射先端の組み立てを容易にし得る。チャネルは、近位同調素子を通過する閉鎖チャネル(例えば、トンネル)であり得る。このように、近位同調素子は、細長導体の周りに配置され得る。これは、放射先端の放射プロファイルの軸対称性を改善し得る。例えば、近位同調素子が円筒形を有する場合、チャネルは円筒の中心軸に沿って延在し得る。代替として、チャネルは開放チャネルであり得、例えば、チャネルは近位同調素子の表面に沿って延在する溝であり得る。近位同調素子は、近位同調素子のチャネル内の細長導体に電気的に接続され得る。例えば、チャネルの壁は、細長導体の外面と直接接触し得る。加えてまたは代替として、近位同調素子は、(例えば、導電接着剤、はんだ接合または溶接接合を使用して)チャネル内の細長導体に固定され得る。
【0018】
同様に、遠位同調素子は、細長導体を受けるためのチャネルを含み得る。遠位同調素子のチャネルは、近位同調素子のチャネルに関連して上記に説明した特性のいずれかを有し得る。特に、チャネルは開放または閉鎖され得、遠位同調素子は、遠位同調素子のチャネル内の細長導体に電気的に接続及び/または固定され得る。
【0019】
いくつかの実施形態では、遠位同調素子は、細長導体の遠位端に位置し得る。したがって、遠位同調素子は、同軸給電ケーブルから最も遠い細長導体の端に位置し得る。これは、放射先端の遠位端の周りに放射プロファイルを集中させるのに役立ち得る。これは、より球形の放射パターンを生じさせ得る。例えば、細長導体は、遠位同調素子において/遠位同調素子の近くで終端し得る。いくつかの実施例では、細長導体は、遠位同調素子の遠位端を越えて突出し得ない。遠位同調素子がチャネルを含む場合、細長導体はチャネルの内側または遠位端で終端し得、それにより、細長導体はチャネルの遠位端から突出しない。いくつかの場合、チャネルが遠位同調素子の全長に沿って延在し得なく、それにより、細長導体は遠位同調素子内で終端する。このように、遠位同調素子は、細長導体の遠位端にキャップを形成し得る。
【0020】
いくつかの実施形態では、縦方向の遠位同調素子の長さは、縦方向の近位電極の長さよりも大きくなり得る。縦方向は、細長導体が延在する方向に一致する。これは、放射先端の遠位端の周りに放射線を集中させるのに役立ち得、それにより、より球形の放射パターンを生じさせ得る。例えば、遠位同調素子は、縦方向の近位同調素子の2倍の長さであり得る。
【0021】
いくつかの実施形態では、細長導体は、同軸給電ケーブルの遠位端を越えて延在する内側導体の遠位部であり得る。言い換えれば、内側導体は、同軸給電ケーブルの遠位端を越えて誘電体に延在し、細長導体を形成し得る。これは、別の導体を内側導体の遠位端に接続する必要性をなくすので、同軸給電ケーブルの遠位端において放射先端を形成することを容易にし得る。
【0022】
いくつかの実施形態では、誘電体は、近位同調素子と遠位同調素子との間に誘電スペーサを含み得る。誘電体スペーサは、近位同調素子と遠位同調素子の間に位置する細長導体の一部が延在するチャネルを含み得る。誘電体スペーサは、近位同調素子と接触する近位面と、遠位同調素子と接触する遠位面とを含み得る。
【0023】
いくつかの実施形態では、誘電体は、さらに、近位同調素子及び遠位同調素子の外面を囲む誘電体シースを備える。誘電体シースは、放射先端を環境から保護するための外側保護層を提供し得る。例えば、誘電体シースは非粘着性材料(例えば、PTFE)から作ら
れ得、またはそれでコーティングされ得、これにより、組織は誘電体に付着しない。誘電体シースの外面は、同軸給電ケーブルと放射先端との間の境界面で同軸給電ケーブルの外面と同一平面であり得る。
【0024】
上述のように、近位同調素子は、同軸給電ケーブルの遠位端から離間され得る。誘電体素子は、近位同調素子と同軸給電ケーブルの遠位端との間に配置され得る。誘電体素子は、外部導体の遠位端を越えて突出する同軸給電ケーブルの誘電材料の遠位部であり得る。これは、同軸給電ケーブルと放射先端と間の円滑で安全な物理的及び電気的な接続を確保するのを補助できる。しかしながら、必須である必要はない。誘電体素子は、例えば、同軸給電ケーブルの誘電材料と異なる材料から作られた別の要素であり得る。
【0025】
いくつかの実施形態では、放射先端は、さらに、細長導体の遠位端に搭載される遠位先端を含み得、遠位先端は誘電材料から作られる。遠位先端は誘電体と同じ誘電材料から作られ得る。代替として、遠位先端は、誘電体の残りの部分と異なる誘電材料から作られ得る。遠位先端の誘電材料は、放射先端と標的組織との間のインピーダンス整合を改善するように選択され得る。遠位先端は、生体組織への放射先端の挿入を容易にするように尖り得る。他の場合、遠位先端は丸くなり得る。遠位先端は、組織がそれに付着するのを防ぐために、遠位先端の外面に非粘着性材料(例えば、PTFE)を含み得る。
【0026】
いくつかの実施形態では、電気手術器具は、さらに、同軸給電ケーブルの遠位端に配置される導電性フィールド形成素子を含み得、フィールド形成素子は外部導体に電気的に接続される。フィールド形成素子は、同軸給電ケーブルを下るマイクロ波エネルギーの逆伝播を減らすのに役立ち得る。これは、同軸給電ケーブルの一部に沿って延在する放射プロファイルのテールを減らし得る。結果として、放射プロファイルは放射先端の周りに集中し得る。複数の本発明者は、放射プロファイルのテールが、より大きな直径を有する電気手術器具でより顕著になり得ることを発見している。したがって、フィールド形成素子は、特に、より大きな外径(例えば、2.0mmよりも大きい外径)を有する電気手術器具に有用であり得る。
【0027】
フィールド形成素子は、任意の適切な導体材料で作られ得る。フィールド形成素子は、外部導体の表面(例えば、外部導体の外面または内面)に配置され得る。フィールド形成素子は、任意の適切な手段によって(例えば、導電性エポキシによって、またははんだ付けもしくは溶接接続によって)外部導体に電気的に接続され得る。いくつかの場合、フィールド形成素子は、同軸給電ケーブルの遠位部と一体的に形成され得る。
【0028】
フィールド形成素子は、外部導体の遠位部の外部導体の有効厚さを増加させるのに役立ち得る。いくつかの場合、フィールド形成素子は、縦方向に対して対称的に構成され得る。これは、軸対称の放射プロファイルを提供するのに役立ち得る。例えば、フィールド形成素子は、外部導体の外面の周りに配置される導体材料の環状スリーブであり得る。
【0029】
いくつかの実施形態では、フィールド形成素子は、外部導体の近位部と比較して大きい厚さを有する外部導体の遠位部によって形成され得る。言い換えれば、外部導体の厚さは、近位部よりも遠位部が大きくなり得る。
【0030】
いくつかの実施形態では、フィールド形成素子は、マイクロ波エネルギーの4分の1波長に一致する縦方向の長さを有し得る。言い換えれば、フィールド形成素子は、同軸給電ケーブルによって伝えられるマイクロ波エネルギーの4分の1波長に相当する長さを有する外部導体の遠位部に沿って延在し得る。これは、同軸給電ケーブルを下るマイクロ波エネルギーの逆伝播を最小にし、放射先端によるエネルギー送達の効率を改善させるのに役立ち得る。
【0031】
上記に説明した電気手術器具は、生体組織を治療するための完全な電気手術装置の部分を形成し得る。例えば、本装置は、マイクロ波エネルギーを供給するように構成される電気手術用発電機を含み得る。そして、本発明の電気手術器具は、電気手術用発電機からマイクロ波エネルギーを受けるために接続され得る。電気手術装置は、さらに、患者の体内に挿入するための可撓性挿入コードを有する外科用スコーピングデバイス(例えば、内視鏡)を含み得、可撓性挿入コードは、その長さに沿って伸びる器具チャネルを有し、電気手術器具は器具チャネル内で適合するように寸法決定される。
【0032】
本明細書では、「マイクロ波」は、400MHz~100GHzの周波数範囲を示すために広範囲に使用され得るが、1GHz~60GHzの範囲が好ましい。マイクロ波EMエネルギーの好ましいスポット周波数は、915MHz、2.45GHz、3.3GHz、5.8GHz、10GHz、14.5GHz、及び24GHzを含む。5.8GHzが好まれ得る。
【0033】
本明細書では、用語「近位」及び「遠位」は、各々、治療部位からより遠くにある電気手術器具の端、治療部位のより近くにある電気手術器具の端を指す。したがって、使用中、電気手術器具の近位端は、RF及び/またはマイクロ波エネルギーを提供するために発電機のより近くにある一方、遠位端は患者の治療部位(すなわち、標的組織)のより近くにある。
【0034】
本明細書では、用語「導電性」は、文脈上で別段の指示がない限り、導電性を意味するために使用される。
【0035】
下記に使用される用語「縦」は、同軸伝達線の軸に平行な電気手術器具の長さに沿った方向を指す。用語「内側」は、器具の中心(例えば軸)に対して半径方向により近いことを意味する。用語「外側」は、器具の中心(軸)から半径方向にさらに遠いことを意味する。
【0036】
用語「電気手術」は、手術中に使用され、マイクロ波及び/または高周波電磁(EM)エネルギーを利用する器具、装置、またはツールに関連して使用される。
【0037】
添付の図面を参照して、本開示の実施例を下記に説明する。
【図面の簡単な説明】
【0038】
図1】本発明の実施形態である組織切除のための電気手術システムの概略図である。
図2】本発明の実施形態である電気手術器具の概略的な断面側面図である。
図3】本発明の実施形態である電気手術器具の放射プロファイルのシミュレーションを示す図である。
図4】本発明の実施形態である電気手術器具の反射減衰量のシミュレーションのグラフである。
図5】本発明の実施形態である電気手術器具に関して計算された様々なパラメータがチャート上にプロットされているスミスチャートを示す。
図6】比較例である電気手術器具の概略断面側面図である。
図7】別の比較例である電気手術器具の概略断面側面図である。
図8図6の電気手術器具に関する放射プロファイルのシミュレーションを示す図である。
図9図6の電気手術器具に関する反射減衰量のシミュレーションのグラフである。
図10図6の電気手術器具に関して計算された様々なパラメータがチャート上にプロットされているスミスチャートを示す。
図11図7の電気手術器具に関する放射プロファイルのシミュレーションを示す図である。
図12図7の電気手術器具に関する反射減衰量のシミュレーションのグラフである。
図13図7の電気手術器具に関して計算されたスミスチャートを示す。
図14】本発明の実施形態である電気手術器具に関する放射プロファイルのシミュレーションを示す図である。
図15】本発明の実施形態である電気手術器具の概略断面側面図である。
図16図15の電気手術器具に関する放射プロファイルのシミュレーションを示す図である。
【発明を実施するための形態】
【0039】
図1は、侵襲性電気手術器具の遠位端にマイクロ波エネルギーを供給することが可能である完全な電気手術システム100の概略図である。システム100は、マイクロ波エネルギーを制御可能に供給するための発電機102を備える。この目的のために適切な発電機は、参照により本明細書に組み込まれるWO2012/076844に記載されている。発電機は、送達のために適切な電力レベルを決定するために、器具から戻されるように受信された反射信号を監視するように構成され得る。例えば、発電機は、最適な送達電力レベルを決定するために、器具の遠位端で見られるインピーダンスを計算するように構成され得る。発電機は、患者の呼吸周期に一致するように変調される一連のパルスで電力を送達するように構成され得る。これは、肺が収縮するときに電力送達を可能にする。
【0040】
発電機102は、境界面ケーブル104によって境界面ジョイント106に接続される。必要に応じて、境界面ジョイント106は、例えば、1つ以上の制御線またはプッシュロッド(図示せず)の縦方向(前後)の移動を制御するために、トリガ110を摺動させることによって動作可能な器具制御機構を収容できる。複数の制御線がある場合、完全な制御を提供するために、境界面ジョイントに複数の摺動トリガがあり得る。境界面ジョイント106の機能は、発電機102及び器具制御機構からの入力を、境界面ジョイント106の遠位端から延在する単一の可撓シャフト112に結合することである。他の実施形態では、他の種類の入力も境界面ジョイント106に接続され得る。例えば、いくつかの実施形態では、流体供給は境界面ジョイント106に接続され得、これにより、流体が器具に送達され得る。
【0041】
可撓シャフト112は、内視鏡114の器具(ワーキング)チャネルの全長を通して挿入可能である。
【0042】
可撓シャフト112は、内視鏡114の器具チャネルを通過し、内視鏡の管の遠位端において(例えば、患者の体内に)突出するように成形される遠位アセンブリ118(図1では縮尺通りに描かれていない)を有する。遠位端アセンブリは、マイクロ波エネルギーを生体組織に送達するためのアクティブな先端を含む。先端の構成は下記により詳細に説明される。
【0043】
遠位アセンブリ118の構造は、ワーキングチャネルを通過するのに適する最大外径を有するように構成され得る。通常、内視鏡等の外科用スコーピングデバイス内のワーキングチャネルの直径は4.0mm未満であり、例えば、2.0mm、2.8mm、3.2mm、3.7mm、3.8mmのいずれか1つである。可撓シャフト112の長さは、0.3m以上(例えば、2m以上)であり得る。他の実施例では、遠位アセンブリ118は、シャフトがワーキングチャネルを通して挿入された後(及び器具コードが患者の体内に導
入される前に)、可撓シャフト112の遠位端に搭載され得る。代替として、可撓シャフト112は、その近位接続を行う前に、遠位端からワーキングチャネルに挿入できる。これらの構成では、遠位端アセンブリ118は、外科用スコーピングデバイス114のワーキングチャネルよりも大きい寸法を有することが可能であり得る。
【0044】
上記に説明したシステムは、器具を患者の体内に導入する1つの方法である。他の技術が可能である。例えば、器具は、また、カテーテルを使用して挿入され得る。
【0045】
図2は、本発明の実施形態である電気手術器具200の断面側面図を示す。電気手術器具の遠位端は、例えば、上記に説明した遠位アセンブリ118に対応し得る。電気手術器具200は、マイクロ波エネルギーを伝えるために、その近位端で発電機(発電機102等)に接続可能である同軸給電ケーブル202を含む。同軸給電ケーブル202は、可撓シャフト112を通過する上記に説明した境界面ケーブル104であり得る。同軸給電ケーブル202は、誘電材料208によって分離される内側導体204及び外側導体206を含む。同軸給電ケーブル202は、マイクロ波エネルギーに対して低損失であるのが好ましい。チョーク(図示せず)を同軸給電ケーブル204に提供され、遠位端から反射されたマイクロ波エネルギーの逆伝播を抑制し、ひいては、本デバイスに沿った逆行する加熱を制限し得る。同軸給電ケーブル202は、さらに、同軸給電ケーブル204を保護するために、外部導体206の周りに配置される可撓性外部シース210を含む。外側シース210は、外側導体206をその周囲から電気的に絶縁するための絶縁材料で作られ得る。外側シース210は、組織が器具に付着するのを防ぐために、PTFE等の非粘着性材料から作られ得る、またはそれでコーティングされ得る。
【0046】
放射先端212は、同軸給電ケーブル202の遠位端214に形成される。図2の破線215は、同軸給電ケーブル202と放射先端212との間の境界面を示す。放射先端212は、同軸給電ケーブル202によって伝えられるマイクロ波エネルギーを受け、そのエネルギーを生体組織に送達するように構成される。同軸給電ケーブル202の外部導体206は同軸給電ケーブル202の遠位端214で終端し、すなわち、外部導体206は放射先端212内に延在しない。放射先端212は、同軸給電ケーブル202の遠位端を越えて延在する内側導体204の遠位部216を含む。特に、内側導体204の遠位部216は、外側導体206の遠位端を越えて延在する。
【0047】
導体材料(例えば、金属)から作られた近位同調素子218は、放射先端212の近位端の近くで、内側導体204の遠位部216に電気的に接続される。近位同調素子218は円筒形を有し、内側導体204の遠位部216が通過するチャネル220を含む。チャネル220の直径は、内側導体204がチャネル220の内側の近位同調素子218と接触するように、内側導体204の外径と実質的に同じである。さらに、近位同調素子218は、例えば、導電接着剤(例えば、導電性エポキシ)を使用して、またははんだ付けもしくは溶接によって、内側導体204に固定され得る。近位同調素子218は、内側導体204の中心にある。言い換えれば、円筒形近位同調素子218の中心軸は、内側導体204の縦軸と同一直線上にある。このように、近位同調素子218は、内側導体204の縦軸に関して対称である様式で、内側導体204の遠位部216の周りに配置される。
【0048】
導体材料(例えば、金属)から作られた遠位同調素子222は、放射先端212の遠位端近くの内側導体204の遠位部216に電気的に接続される。したがって、遠位同調素子222は、近位同調素子218よりもさらに内側導体204に沿って位置する。遠位同調素子222は、内側導体204の遠位部216の長さだけ、近位同調素子から離間する。近位同調素子218と同様に、遠位同調素子は円筒形を有し、チャネル224を含む。図2で分かり得るように、内側導体204の遠位部216はチャネル224内に延在する。内側導体204の遠位部216はチャネル224の遠位端で終端し、すなわち、それは
遠位同調素子222を越えて突出しない。このように、内側導体204の遠位端は、遠位同調素子222の遠位面と同一平面である。チャネル224の直径は、内側導体204の外径と実質的に同じであり、それにより、内側導体204は、チャネル224の内側の遠位同調素子222と接触する。さらに、遠位同調素子222は、例えば、導電接着剤(例えば、導電性エポキシ)を使用して、またははんだ付けもしくは溶接によって、内側導体204に固定され得る。近位同調素子218と同様に、遠位同調素子222は、それが内側導体204の中心になるように搭載される。
【0049】
近位同調素子218及び遠位同調素子222の両方は、同じ外径を有する。近位同調素子218及び遠位同調素子222の外径は、電気手術器具200の外径よりもわずかに小さくなり得る。示される実施例では、遠位同調素子222は、器具の縦方向において近位同調素子218よりも長い。言い換えれば、遠位同調素子222のチャネル224の内側導体204の長さは、近位同調素子218のチャネル220の内側導体204の長さよりも大きい。例えば、遠位同調素子222は、近位同調素子218の約2倍の長さであり得る。遠位同調素子222を近位同調素子218よりも長くすることによって、放射先端212の遠位端の周りにマイクロ波の放出を集中させることが可能である。
【0050】
誘電材料208の遠位部226は、同軸給電ケーブル202の遠位端214を越えて、放射先端212内に延在する。誘電材料208の遠位部226は、近位同調素子218と同軸給電ケーブル202の遠位端214との間のスペーサとして機能する。いくつかの実施形態(図示せず)では、誘電材料208は、同軸給電ケーブル202の遠位端214で終端し得、別のスペーサが、同軸給電ケーブル202の遠位端214と近位同調素子218との間に提供され得る。誘電体スペーサ228は、近位同調素子218と遠位同調素子222との間で、放射先端212内に提供される。誘電体スペーサ228は誘電材料の円筒部であり、それを通って延在する中央チャネルを有する。したがって、誘電体スペーサ228は誘電材料の管であり得る。内側導体204の遠位部214は、誘電体スペーサ228内のチャネルを通って延在する。誘電体スペーサ228の近位面は近位同調素子218と接触し、誘電体スペーサ228の遠位面は遠位同調素子222と接触する。誘電体スペーサ228は、近位同調素子218及び遠位同調素子222とほぼ同じ外径を有する。
【0051】
保護シース230は放射先端212の外側に提供される。保護シース230は、誘電体スペーサ228と、近位同調素子218及び遠位同調素子222とを覆い、放射先端212の外面を形成する。保護シース230は絶縁材料から作られた管であり得る。保護シース230は、放射先端212を絶縁し、それを環境から保護するのに役立ち得る。保護シース230は、組織がそれに付着するのを防ぐために、非粘着性材料(例えば、PTFE)から作られ得る、またはそれでコーティングされ得る。保護シース230の外径は、同軸給電ケーブル202の外径と実質的に同じであり、これにより、器具は滑らかな外面を有し、すなわち、放射先端212は、境界面215の同軸給電ケーブル202の外面と同一平面である外面を有する。いくつかの実施形態(図示せず)では、保護シース230は、同軸給電ケーブル202の外側シース210の延長であり得る。それと同時に、誘電材料208の遠位部226、誘電体スペーサ228、及び保護シース230は、放射先端212の誘電体を形成する。
【0052】
放射先端212は、さらに、その遠位端に位置する遠位先端232を含む。遠位先端232は、標的組織への放射先端212の挿入を容易にするように尖り得る。しかしながら、他の実施形態(図示せず)では、遠位先端は丸いまたは平坦であり得る。遠位先端232は、例えば誘電材料208と同じ誘電材料で作られ得る。いくつかの実施形態では、遠位先端232の材料は、EMエネルギーを標的組織に送達する効率を改善するために、標的組織とのインピーダンス整合を改善するように選択され得る。遠位先端232は、組織がそれに付着するのを防ぐために、非粘着性材料(例えば、PTFE)から作られ得る、
またはそれで覆われ得る。
【0053】
以下は、電気手術器具200の寸法の実施例である。
-境界面215から内側導体204の遠位部216の遠位端までの距離:5.75mm、-近位同調素子218及び遠位同調素子222の外径:1.5mm、
-近位同調素子218の長さ:0.5mm、
-遠位同調素子222の長さ:1.0mm、
-近位同調素子218と遠位同調素子222との間の間隔:3.75mm、
-近位同調素子218と境界面215との間の間隔:0.5mm、及び
-電気手術器具200の外径:1.85mm。
【0054】
マイクロ波エネルギーが放射先端212に伝えられるとき、放射先端212はマイクロ波モノポールアンテナとして機能し得る。特に、マイクロ波エネルギーは、内側導体202の遠位部216から放射され得、これにより、マイクロ波エネルギーは、周囲の生体組織に送達できる。近位同調素子218及び遠位同調素子222は、放射先端212の放射プロファイルを成形するように作用し、下記に説明されるように、器具と周囲標的組織との間のインピーダンス整合を改善する。
【0055】
図3は、図2に示される電気手術器具200の標的組織のマイクロ波放射プロファイルのシミュレーションを示す。放射プロファイルは、有限要素分析ソフトウェアを使用して、5.8GHzのマイクロ波周波数についてシミュレートされたものである。放射プロファイルは、マイクロ波エネルギーによって切除された組織の結果として生じる形状を示す。図3で分かり得るように、放射プロファイルは放射先端の周りに集中し、ほぼ球形領域を画定する。このように、組織は、放射先端の周りのほぼ球形領域内で切除され得る。放射先端と同軸給電ケーブルとの間の境界面215は、器具の先端に対するフィールドの場所及び形状の視覚化を支援するために示される。
【0056】
図4は、電気手術器具200のマイクロ波エネルギーの周波数に対するSパラメータ(入力反射係数S11または「反射減衰量」としても知られている)のシミュレーションのグラフを示す。技術分野でよく知られているように、Sパラメータはインピーダンス不整合によるマイクロ波エネルギーの反射減衰量の評価基準であり、したがって、Sパラメータは標的組織と放射先端との間のインピーダンス不整合の程度を示す。Sパラメータは方程式P=SPによって定義でき、Pが組織に向かう器具の送信電力であり、Pは組織から反射される電力であり、SはSパラメータである。図4に示すように、Sパラメータは5.8GHzにおいて-25.58dBの値を有し、非常に小さいマイクロ波エネルギーがこの周波数で組織から反射されることを意味する。これは、5.8GHzの動作周波数におけるインピーダンス整合が良好であり、マイクロ波エネルギーがこの周波数で放射先端から組織に効率的に送達されることを示す。
【0057】
図5は、電気手術器具200のインピーダンススミスチャートのシミュレーションを示す。スミスチャートは、同軸給電ケーブルの遠位端と放射先端との間の境界面215に位置する基準面についてシミュレートされたものである。技術分野でよく知られているように、スミスチャートは、複素平面のSパラメータ(反射係数)のグラフ表示である。Sパラメータは次の方程式によって定義され得る。
【0058】
【数1】
【0059】
ここで、Z=Z/Z、Zは標的組織と接触する放射先端のインピーダンスであり、Zは正規化係数である。この場合、50オームの正規化係数を使用した。これは、同軸給電ケーブル、境界面ケーブル(例えば、境界面ケーブル104)、及び電気手術用発電機(例えば、発電機102)の通常の特性インピーダンスであるためである。図5では、マーカー(ラベル「1」)は、5.8GHzにおけるSパラメータの値を示す。これから分かり得るように、Sパラメータの値はユニティマーク(すなわち、Z=1の点)の近くにある。これは、発電機と、インターフェイスケーブルと、同軸給電ケーブルと、標的組織と接触するアンテナとの間のインピーダンス整合が良好であることを示す。言い換えれば、マイクロ波エネルギーは、放射先端から標的組織に効率的に送達され得る。5.8GHzにおけるインピーダンスZの値は、図5の凡例に示され、(54.9+i2.9)オームである。図5のマーカーの隣にある完全な円(黒い円)及び空の円(中が白い円)は、各々、6GHz及び5.6GHzの点を示す。これらの点のインピーダンスZの値は、図5の凡例に示される。
【0060】
ここで、図6図13に示される比較例を参照して、近位同調素子及び遠位同調素子の効果をより詳細に示す。図6は第1の比較例である電気手術器具600を示し、図7は第2の比較例である電気手術器具700を示す。電気手術器具600は、電気手術器具600が近位同調素子を含まないことを除いて、電気手術器具200と同様である。電気手術器具600(遠位同調素子を含む)の他の全ての機構は、電気手術器具200の場合と同じである。電気手術器具700は、電気手術器具700が近位同調素子または遠位同調素子を含まない(すなわち、両方の同調素子がない)ことを除いて、電気手術器具200と同様である。電気手術器具700の他の全ての機構は、電気手術器具200に関するものと同じである。図2で使用した参照番号は図6及び図7で使用され、図2に関連して上記に説明した機構に対応する機構を示す。
【0061】
図8は、図6に示される電気手術器具600の標的組織のマイクロ波放射プロファイルのシミュレーションを示す。放射プロファイルは、有限要素分析ソフトウェアを使用して、5.8GHzのマイクロ波周波数についてシミュレートされたものである。近位同調素子がないことを除いて、計算に使用した電気手術器具600の寸法は、図3に示される電気手術器具200の放射プロファイルを計算するために使用したものと同じであった。図3及び図8を比較することによって分かり得るように、電気手術器具600の放射プロファイルは、電気手術器具200の放射プロファイルよりも球形ではない。特に、電気手術器具600の放射プロファイルは、電気手術器具200の放射プロファイルのテールよりも同軸給電ケーブルのより長い部分の後方に延在するテールを含む。したがって、近位同調素子は、放射プロファイルをより球形にするように作用し、同軸給電ケーブルの後方に延在するテールを減らす。係るテールは、それが同軸給電ケーブルの加熱を生じさせ得、及び/または標的ゾーンの外側にある組織の切除を生じさせ得るので、望ましくない場合がある。
【0062】
図9は、電気手術器具600のマイクロ波エネルギーの周波数に対するSパラメータのシミュレーションのグラフを示す。図9のグラフは、電気手術器具200について図4のグラフと同じ方法で計算されたものである。図9に示すように、Sパラメータは5.8GHzにおいて-10.18dBの値を有する。これは、Sパラメータが-25.58dBの値を有することが分かった電気手術器具200と比較してかなり大きい反射減衰量を示す。したがって、近位同調素子は、インピーダンス整合を改善するのに役立つ。したがって、マイクロ波エネルギーは、電気手術器具600を用いるよりも電気手術器具200を用いた方がより効率的に標的組織に送達され得る。
【0063】
図10は、電気手術器具600のインピーダンススミスチャートのシミュレーションを示す。これは、図5に示される電気手術器具200のスミスチャートと同じ方法で計算さ
れたものである。図10のマーカー(ラベル「1」)は、5.8GHzにおけるSパラメータの値を示す。これから分かり得るように、マーカーは図5と比較してユニティマークからさらに離れている。これは、電気手術器具200と比較して、発電機と、インターフェイスケーブルと、同軸給電ケーブルと、標的組織と接触するアンテナとの間のインピーダンス整合が良好ではないことを示す。図5及び図10を比較することによって、近位同調素子を追加する効果は、ユニティマークに近づくようにマーカーが下方に移動することが分かり得る。これは、近位同調素子がシステムに追加の静電容量を導入することを示す。図5のユニティマークにより近いマーカーのシフトは、また、同軸給電ケーブルの遠位端と近位同調素子の近位端との間の距離に関連付けられる位相シフトに関連し得る。5.8GHzにおける電気手術器具600のインピーダンスZの値は、図10の凡例に示され、(40.2+i27.5)オームである。図10のマーカーの隣にある完全な円(黒い円)及び空の円(中が白い円)は、各々、6GHz及び5.6GHzの点を示す。これらの点のインピーダンスZの値は、図10の凡例に示される。
【0064】
図11は、図7に示される電気手術器具700の標的組織のマイクロ波放射プロファイルのシミュレーションを示す。放射プロファイルは、有限要素分析ソフトウェアを使用して、5.8GHzのマイクロ波周波数についてシミュレートされたものである。近位同調素子及び遠位同調素子がないことを除いて、計算に使用した電気手術器具700の寸法は、図3に示される電気手術器具200の放射プロファイルを計算するために使用したものと同じであった。図3図8、及び図11を比較することによって分かり得るように、電気手術器具700の放射プロファイルは、電気手術器具600の放射プロファイルよりもさらに球形でなく、より細長い。特に、電気手術器具700の放射プロファイルは、器具の遠位先端の周りにあまり集中せず、同軸給電ケーブルの後方に延在するより長いテールを有する。したがって、遠位同調素子は、放射プロファイルをより球形にするように作用し、同軸給電ケーブルの後方に延在するテールを減らす。
【0065】
図12は、電気手術器具700のマイクロ波エネルギーの周波数に対するSパラメータのシミュレーションのグラフを示す。図12のグラフは、電気手術器具200について図4のグラフと同じ方法で計算されたものである。図12に示すように、Sパラメータは5.8GHzにおいて-5.66dBの値を有する。これは、Sパラメータが各々-25.58dB及び-10.18dBの値であることが分かった電気手術器具200及び600と比較してかなり大きい反射減衰量を示す。したがって、遠位同調素子は、インピーダンス整合を改善するのに役立つ。
【0066】
図13は、電気手術器具700のインピーダンススミスチャートのシミュレーションを示す。これは、図5に示される電気手術器具200のスミスチャートと同じ方法で計算されたものである。図13のマーカー(ラベル「1」)は、5.8GHzにおけるSパラメータの値を示す。これから分かり得るように、マーカーは図5と比較してユニティマークからさらに離れている。これは、電気手術器具200と比較して、発電機と、インターフェイスケーブルと、同軸給電ケーブルと、標的組織と接触するアンテナとの間のインピーダンス整合が良好ではないことを示す。図13のマーカーは、また、図10と比較してユニティマークからさらに離れており、インピーダンス整合が良好ではないことを示す。5.8GHzにおける電気手術器具700のインピーダンスZの値は、図13の凡例に示され、(20.5-i25.7)オームである。図13のマーカーの隣にある完全な円(黒い円)及び空の円(中が白い円)は、各々、6GHz及び5.6GHzの点を示す。これらの点のインピーダンスZの値は、図13の凡例に示される。
【0067】
要約すると、比較例は、放射先端内の近位同調素子及び遠位同調素子の両方の存在が、放射プロファイルをより球形にし、同軸給電ケーブルの後方に延在するテールを減らすことによって、放射先端の放射プロファイルを強化するのに役立つことを示す。また、比較
例は、近位同調素子及び遠位同調素子がインピーダンス整合を改善するのに役立つことを示しており、これは、マイクロ波エネルギーを標的組織に送達できる効率を改善し得る。
【0068】
複数の本発明者は、電気手術器具の外径が増加するにつれて、同軸給電ケーブルの後方に延在する放射プロファイルのテールが増加することを発見している。これは、本発明の実施形態による電気手術器具の標的組織のマイクロ波放射プロファイルのシミュレーションを示す図14に示されている。図14の電気手術器具は、それが2.6mmの外径を有することを除いて、上記に説明した電気手術器具200と同様である(一方、電気手術器具200は1.85mmの外径を有する)。放射プロファイルは、有限要素解析ソフトウェアを使用して、5.8GHzのマイクロ波周波数についてシミュレートされたものである。図14の数字215によって示される破線は、同軸給電ケーブルと放射先端との間の境界面の位置を示す。図14を電気手術器具200の放射プロファイルと比較することによって分かり得るように、同軸給電ケーブルの後方に延在するテールは、図14の電気手術器具(すなわち、より大きな外径を有する電気手術器具)の方が大きい。
【0069】
複数の本発明者は、同軸給電ケーブルの遠位端にフィールド形成素子を含めることによって、放射プロファイルのテールを抑制し得ることを発見している。図15は、本発明の実施形態である電気手術器具900の断面側面図を示す。電気手術器具900は、それがフィールド形成素子902を含み、その外径が2.6mmであることを除いて、上記に説明した電気手術器具200と同様である。図2で使用した参照番号は図15で使用され、図2に関連して上記に説明した機構に対応する機構を示す。
【0070】
フィールド形成素子902は、外部導体206の外面の周りに配置される導体材料の環状スリーブである。フィールド形成素子902は、同軸給電ケーブル202の遠位端に位置し、同軸給電ケーブル202の長さに沿って境界面215から延在する。フィールド形成素子902の長さは、同軸給電ケーブル202によって伝えられるマイクロ波エネルギーの4分の1波長に一致する。マイクロ波エネルギーが5.8GHzである場合、フィールド形成素子902の長さは約9mmであり得る。フィールド形成素子902の内面は、外部導体206の外面と接触し、これにより、フィールド形成素子902は、その長さに沿って外部導体206に電気的に接続される。フィールド形成素子902と外部導体206との間の電気的接続は、例えば導電性エポキシを使用して、またはそれらをはんだ付けもしくは溶接することによって、フィールド形成素子902を外部導体206に固定することによって確保され得る。いくつかの実施形態(図示せず)では、フィールド形成素子902は、外部導体206と一体的に形成され得る。フィールド形成素子902は、同軸給電ケーブル202の遠位領域内で外部導体206の有効厚さを増加させるように作用する。
【0071】
図16は、図15に示される電気手術器具900の標的組織のマイクロ波放射プロファイルのシミュレーションを示す。放射プロファイルは、有限要素解析ソフトウェアを使用して、5.8GHzのマイクロ波周波数についてシミュレートされたものである。図16及び図14を比較することによって分かり得るように、図16の放射プロファイルは、同軸給電ケーブルの後方に延在するより小さなテールを有する。図16の放射プロファイルは、また、より球形に見え、放射先端の周りにより集中している。図14の電気手術器具と電気手術器具900との間の唯一の違いは、電気手術器具900内のフィールド形成素子902の存在である。したがって、フィールド形成素子902は、放射プロファイルのテールを減らし、マイクロ波エネルギーの放出を放射先端の周りに集中させるのに役立つ。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
【手続補正書】
【提出日】2024-03-13
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
電気手術器具であって、
マイクロ波エネルギーを伝えるための同軸給電ケーブルであって、前記同軸給電ケーブルは、内側導体、外側導体、ならびに前記内側導体及び前記外側導体を分離する誘電材料を有する、前記同軸給電ケーブルと、
前記マイクロ波エネルギーを受けるために前記同軸給電ケーブルの遠位端に配置される放射先端であって、前記放射先端は、
前記内側導体に電気的に接続され、縦方向に延在してマイクロ波放射器を形成する、細長導体と、
前記放射先端の近位領域内で前記細長導体に電気的に接続される近位同調素子と、
前記放射先端の遠位領域内で前記細長導体に電気的に接続される遠位同調素子と、
前記細長導体、前記近位同調素子、及び前記遠位同調素子の周りに配置される誘電体と、を備える、前記放射先端と、を備え、
前記近位同調素子及び前記遠位同調素子は前記縦方向に離間し、それによって、前記マイクロ波放射器によって放出されるマイクロ波場は前記誘電体の周りにつくられる、前記電気手術器具。
【外国語明細書】