IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 大同特殊鋼株式会社の特許一覧

特開2024-61083電磁波吸収体評価装置および電磁波吸収体評価方法
<>
  • 特開-電磁波吸収体評価装置および電磁波吸収体評価方法 図1
  • 特開-電磁波吸収体評価装置および電磁波吸収体評価方法 図2
  • 特開-電磁波吸収体評価装置および電磁波吸収体評価方法 図3
  • 特開-電磁波吸収体評価装置および電磁波吸収体評価方法 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024061083
(43)【公開日】2024-05-07
(54)【発明の名称】電磁波吸収体評価装置および電磁波吸収体評価方法
(51)【国際特許分類】
   G01N 22/00 20060101AFI20240425BHJP
   H01Q 17/00 20060101ALI20240425BHJP
【FI】
G01N22/00 Z
H01Q17/00
【審査請求】未請求
【請求項の数】10
【出願形態】OL
(21)【出願番号】P 2022168793
(22)【出願日】2022-10-21
(71)【出願人】
【識別番号】000003713
【氏名又は名称】大同特殊鋼株式会社
(74)【代理人】
【識別番号】110002158
【氏名又は名称】弁理士法人上野特許事務所
(72)【発明者】
【氏名】齋藤 章彦
【テーマコード(参考)】
5J020
【Fターム(参考)】
5J020EA02
(57)【要約】      (修正有)
【課題】ミリ波帯または準ミリ波帯の電磁波に対する電磁波吸収体の挙動を高精度に評価できる電磁波吸収体評価装置、および電磁波吸収体評価方法の提供。
【解決手段】信号入出力用のマイクロストリップ線路4,5を有する基板3を収容する筐体2の幅a、高さb、長さLと、下記式(1)によって求められる評価周波数fが、20GHz以上の周波数領域において、下記式(2)を満たす、電磁波吸収体評価装置1とする。

ここで、αは下記式(5)。

【選択図】図1
【特許請求の範囲】
【請求項1】
電磁波吸収体の特性を評価するための装置であって、
b<a<Lとして、幅a、高さb、長さLの内寸を有し、内部に前記電磁波吸収体を配置可能な、導電性材料よりなる筐体と、
前記筐体の内部に配置された基板と、
前記基板上に、それぞれ前記筐体の前記長さ方向に沿って形成され、相互に前記長さ方向に離間した入力用マイクロストリップ線路および出力用マイクロストリップ線路と、
20GHz以上の周波数を有する入力信号を前記入力用マイクロストリップ線路より入力し、前記出力用マイクロストリップ線路より出力される出力信号を検出できる信号検査部と、を有し、
下記式(1)によって求められる評価周波数fが、20GHz以上の周波数領域において、下記式(2)を満たす、電磁波吸収体評価装置。
【数1】
ここで、mおよびpはそれぞれ独立に1以上の整数である。また、筐体に囲まれた領域にn個の物質が存在し、前記物質のうちi番目の物質の複素比透磁率をμri、複素比誘電率をεri、前記筐体の前記長さ方向に直交する断面に占める面積をSとして、αは下記式(3)および式(4)より得られるμおよびεを用いて、式(5)によって表される。μは真空の透磁率、εは真空の誘電率である。
【数2】
【請求項2】
前記入力用マイクロストリップ線路および前記出力用マイクロストリップ線路において、相互に対向する端部に、それぞれ終端抵抗が接続されている、請求項1に記載の電磁波吸収体評価装置。
【請求項3】
前記基板は、前記筐体の底面に沿って配置され、
前記電磁波吸収体は、少なくとも、前記筐体の天井面に沿って、前記基板に対向する位置に配置可能であり、
前記筐体の天井面に沿って配置された前記電磁波吸収体と、前記基板との間の距離が、0.01mm以上である、請求項1に記載の電磁波吸収体評価装置。
【請求項4】
前記入力用マイクロストリップ線路および前記出力用マイクロストリップ線路は、それぞれ線路幅wを有し、前記筐体の前記幅方向に沿った相互間のずれ量が、w/2以下である、請求項1に記載の電磁波吸収体評価装置。
【請求項5】
前記筐体の構成材料は、電気抵抗率が150μΩ・cm以下であり、少なくとも前記基板の上面および側面を覆う部位の板厚が0.01mm以上である、請求項1に記載の電磁波吸収体評価装置。
【請求項6】
前記入力用マイクロストリップ線路および前記出力用マイクロストリップ線路は、前記筐体の前記幅方向に、両側の前記筐体の壁面から、b/10以上離れている、請求項1に記載の電磁波吸収体評価装置。
【請求項7】
前記入力用マイクロストリップ線路および前記出力用マイクロストリップ線路は、相互に対向していない方の端部がそれぞれ、前記筐体の前記長さ方向に沿って、前記筐体の壁面から、前記評価周波数fに対応する波長の1/6以上離れている、請求項1に記載の電磁波吸収体評価装置。
【請求項8】
請求項1から請求項7のいずれか1項に記載の電磁波吸収体評価装置を用い、
前記筐体の内部に、評価対象の電磁波吸収体を配置して、
前記評価周波数fを含む周波数範囲の入力信号を前記入力用マイクロストリップ線路より入力し、前記出力用マイクロストリップ線路より出力される出力信号を検出することで、前記電磁波吸収体の特性を評価する、電磁波吸収体評価方法。
【請求項9】
前記筐体に、前記電磁波吸収体を配置した場合と配置しない場合の比較、および
異なる前記電磁波吸収体を配置した場合の比較の少なくとも一方に基づき、前記電磁波吸収体の特性を評価する、請求項8に記載の電磁波吸収体評価方法。
【請求項10】
前記電磁波吸収体は、20GHz以上の通信周波数を有する高周波通信装置に使用されるものであり、
前記通信周波数を前記評価周波数fとみなした場合に、前記式(1)および式(2)を満たすように、前記筐体の寸法を設計したうえで、
前記通信周波数を含む周波数範囲で、前記電磁波吸収体の特性を評価する、請求項8に記載の電磁波吸収体評価方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電磁波吸収体評価装置および電磁波吸収体評価方法に関し、さらに詳しくは、ミリ波帯または準ミリ波帯で電磁波吸収体の特性を評価するための電磁波吸収体評価装置および電磁波吸収体評価方法に関する。
【背景技術】
【0002】
入力された信号を処理して出力する処理回路を備えた高周波通信装置において、入力信号と出力信号の間で、電磁波を介したカップリング(電磁界結合)が起こるのが問題となる。特に、金属製の筐体に処理回路が収容される場合には、筐体内での電磁波の伝搬・共振により、このようなカップリングが促進されてしまう。通信周波数の高周波化に伴い、カップリングの問題は顕著になっている。近年、ミリ波領域の周波数を利用する通信装置が多く上市されているが、ミリ波領域や準ミリ波領域のように、高周波領域で通信を行うそれらの通信装置においては、筐体内でのカップリングの問題が深刻となる。
【0003】
高周波通信装置において、入力信号と出力信号の間等、回路中における信号間のカップリングを低減する手段の1つとして、金属筐体の内側等、処理回路を覆う部位に、電磁波吸収体を設置する方法が用いられている。電磁波吸収体は、シート状にして筐体の内壁面に貼り付けたり、ケース状に成形して、筐体の内側に配置したりされる。その種の電磁波吸収体の構成材料のとしては、樹脂材料等よりなるマトリクス中に軟磁性材料よりなる粒子を分散させたものが代表的である。
【0004】
電磁波吸収体の電磁波吸収効率は、具体的な構成材料や厚み、また吸収対象とする電磁波の周波数に大きく依存する。そのため、高周波通信装置に電磁波吸収体を設置するにあたり、使用する予定の電磁波吸収体で、吸収すべき周波数の電磁波を十分に吸収し、筐体内でのカップリングを十分に抑制することができるかを事前に確認すること、また、吸収すべき周波数の電磁波を十分に吸収できるように、電磁波吸収体の材料組成や厚さ等を設計することが重要である。そのためには、実際に筐体の内部に電磁波吸収体を配置し、電磁波吸収効率を評価する必要がある。そのような評価として、例えば特許文献1では、実施例において、鉄粉、セラミックス粉、合成樹脂を含む樹脂複合体よりなる電磁波吸収体を、パッケージベースと、パッケージベース上に取り付けられた蓋体とを備えた高周波回路用パッケージの蓋体に貼り付けて、高周波回路用パッケージの電力透過係数S21を、0.1GHz~13.1GHzの範囲において、評価している。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2004-143347号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
上記のとおり、実際に、筐体の内部に電磁波吸収体を配置して、電磁波吸収効率を評価することは、電磁波吸収体の性能の確認や、高性能の電磁波吸収体の開発において重要である。特に、ミリ波帯や準ミリ波帯のような高周波の領域では、カップリングの影響が深刻になるため、十分に高い電磁波吸収効率を有する電磁波吸収体を用いて、カップリングを低減することの要請が強い。しかし、ミリ波帯や準ミリ波帯の電磁波は、波長の短さにより、多数の周波数での乱発的な共振の発生や、筐体内の構造物からの影響により、筐体内で複雑な挙動を示しやすい。特許文献1の実施例で用いられている高周波回路用パッケージのような実際のデバイスを用いるとすれば、得られる電力透過係数は、複雑な周波数依存性を示すと考えられる。また、次に説明するとおり、発明者が明らかにしたところによると、実際のデバイスよりも簡略化した試験装置を用いる場合にも、試験装置の設計によっては、電磁波が複雑な挙動を示す。
【0007】
例えば、図1のように、入力用および出力用のマイクロストリップ線路4,5を形成した基板3を、内部にケース状の電磁波吸収体(図略)を配置した筐体2に収容し、入力用マイクロストリップ線路4からミリ波領域の信号を入力し、出力用マイクロストリップ線路5にて電磁波透過率S21を計測した結果を、図4(a)に示している。筐体の寸法は、内寸で、幅aを22.6mm、高さbを10.8mm、長さLを63.5mmとしている。電磁波吸収体としては、軟磁性粉末(SUS 410L)を樹脂(アクリルゴム)に分散させたものを用いており、図には、電磁波吸収体を筐体内に設けない場合、および軟磁性粉末の含有量が15体積%および40体積%である電磁波吸収体を設けた場合の計測結果を、それぞれ示している。図4(a)において、電磁波透過率S21は、激しく上下に変動する複雑なグラフ形状を示している。また、電磁波吸収体の有無および軟磁性粉末の含有量が異なる3つのグラフの間で、その激しい上下変動を上回る挙動の差を明瞭に認識するのは難しく、電磁波吸収体による電磁波吸収の効果を評価することができない。さらに、図4(b)に、有限要素法による電磁界解析を用いたシミュレーションの結果を示しているが、ここでもグラフに激しい上下変動が見られており、図4(a)の実測で得られた複雑なグラフ形状は、実験上のノイズ等の偶発事象によるものではなく、多数の周波数での電磁波の共振の発生や、筐体内の構造物からの影響等、本質的な原因によるものであると言える。
【0008】
このように、ミリ波領域や準ミリ波領域においては、電磁波吸収体の性能を実測によって評価しようとしても、意味のある情報を得られない可能性がある。例えば、特定の周波数の電磁波を、ある電磁波吸収体がどの程度吸収するのかに関する情報を、明確に得られない可能性がある。しかし、高周波通信装置において、電磁波吸収体には、所定の周波数の電磁波を十分に吸収することが求められ、適切な電磁波吸収体を選択・設計するためには、目的とする周波数の電磁波に対する電磁波吸収体の挙動を、明確に知る必要がある。
【0009】
本発明が解決しようとする課題は、ミリ波帯または準ミリ波帯の電磁波に対する電磁波吸収体の挙動を高精度に評価することができる電磁波吸収体評価装置、および電磁波吸収体評価方法を提供することにある。
【課題を解決するための手段】
【0010】
上記課題を解決するために、本発明にかかる電磁波吸収体評価装置および電磁波吸収体評価方法は、以下の構成を有する。
【0011】
[1]本発明にかかる電磁波吸収体評価装置は、電磁波吸収体の特性を評価するための装置であって、b<a<Lとして、幅a、高さb、長さLの内寸を有し、内部に前記電磁波吸収体を配置可能な、導電性材料よりなる筐体と、前記筐体の内部に配置された基板と、前記基板上に、それぞれ前記筐体の前記長さ方向に沿って形成され、相互に前記長さ方向に離間した入力用マイクロストリップ線路および出力用マイクロストリップ線路と、20GHz以上の周波数を有する入力信号を前記入力用マイクロストリップ線路より入力し、前記出力用マイクロストリップ線路より出力される出力信号を検出できる信号検査部と、を有し、下記式(1)によって求められる評価周波数fが、20GHz以上の周波数領域において、下記式(2)を満たす。
【数1】
ここで、mおよびpはそれぞれ独立に1以上の整数である。また、筐体に囲まれた領域にn個の物質が存在し、前記物質のうちi番目の物質の複素比透磁率をμri、複素比誘電率をεri、前記筐体の前記長さ方向に直交する断面に占める面積をSとして、αは下記式(3)および式(4)より得られるμおよびεを用いて、式(5)によって表される。μは真空の透磁率、εは真空の誘電率である。
【数2】
【0012】
[2]上記[1]の態様において、前記入力用マイクロストリップ線路および前記出力用マイクロストリップ線路において、相互に対向する端部に、それぞれ終端抵抗が接続されているとよい。
【0013】
[3]上記[1]または[2]の態様において、前記基板は、前記筐体の底面に沿って配置され、前記電磁波吸収体は、少なくとも、前記筐体の天井面に沿って、前記基板に対向する位置に配置可能であり、前記筐体の天井面に沿って配置された前記電磁波吸収体と、前記基板との間の距離が、0.01mm以上であるとよい。
【0014】
[4]上記[1]から[3]のいずれか1つの態様において、前記入力用マイクロストリップ線路および前記出力用マイクロストリップ線路は、それぞれ線路幅wを有し、前記筐体の前記幅方向に沿った相互間のずれ量が、w/2以下であるとよい。
【0015】
[5]上記[1]から[4]のいずれか1つの態様において、前記筐体の構成材料は、電気抵抗率が150μΩ・cm以下であり、少なくとも前記基板の上面および側面を覆う部位の板厚が0.01mm以上であるとよい。
【0016】
[6]上記[1]から[5]のいずれか1つの態様において、前記入力用マイクロストリップ線路および前記出力用マイクロストリップ線路は、前記筐体の前記幅方向に、両側の前記筐体の壁面から、b/10以上離れているとよい。
【0017】
[7]上記[1]から[6]のいずれか1つの態様において、前記入力用マイクロストリップ線路および前記出力用マイクロストリップ線路は、相互に対向していない方の端部がそれぞれ、前記筐体の前記長さ方向に沿って、前記筐体の壁面から、前記評価周波数fに対応する波長の1/6以上離れているとよい。
【0018】
[8]本発明にかかる電磁波吸収体評価方法においては、上記[1]から[7]のいずれか1つの態様の電磁波吸収体評価装置を用い、前記筐体の内部に、評価対象の電磁波吸収体を配置して、前記評価周波数fを含む周波数範囲の入力信号を前記入力用マイクロストリップ線路より入力し、前記出力用マイクロストリップ線路より出力される出力信号を検出することで、電磁波吸収体の特性を評価する。
【0019】
[9]上記[8]の態様において、前記筐体に、前記電磁波吸収体を配置した場合と配置しない場合の比較、および異なる前記電磁波吸収体を配置した場合の比較の少なくとも一方に基づき、前記電磁波吸収体の特性を評価するとよい。
【0020】
[10]上記[8]または[9]の態様において、前記電磁波吸収体は、20GHz以上の通信周波数を有する高周波通信装置に使用されるものであり、前記通信周波数を前記評価周波数fとみなした場合に、前記式(1)および式(2)を満たすように、前記筐体の寸法を設計したうえで、前記通信周波数を含む周波数範囲で、前記電磁波吸収体の特性を評価するするとよい。
【発明の効果】
【0021】
上記[1]の構成を有する本発明にかかる電磁波吸収体評価装置においては、入力用マイクロストリップ線路から入力信号を入力した際に、筐体内での電磁波の伝搬・共振によるカップリングが起これば、出力用マイクロストリップ線路において、出力信号が検出されることになる。筐体内に電磁波吸収体を設置しておけば、その検出された出力信号に基づいて、電磁波吸収効率等、電磁波吸収体の特性を評価することができる。ここで、上記式(1)によって求められる評価周波数fが、上記式(2)を満たすことで、その評価周波数fの電磁波が、筐体内で共振を起こす。よって、その評価周波数fで電磁波吸収体の特性の評価を行えば、共振により、出力信号が高強度で検出されることになる。これにより、電磁波の吸収等、評価周波数fにおける電磁波吸収体の特性を、高精度に評価することができる。また、20GHz以上の周波数領域において、式(2)が満たされることで、20GHz以上の周波数領域に相当するミリ波帯や準ミリ波帯において、そのように共振を利用した高精度の電磁波吸収体の特性評価を行うことが、可能となる。
【0022】
つまり、電磁波吸収体の評価を行う周波数がミリ波領域や準ミリ波領域にあっても、評価周波数fにおいて共振が起こるように、式(1),(2)に従って適切に筐体の寸法を設計することで、筐体内の構造物からの影響や、多数の周波数で乱発的に起こる共振の影響を避けて、その評価周波数fでの電磁波吸収体の特性評価を、高精度に実行することができる。また、上記式(1),(2)においては、筐体内に存在する物質の寄与を、各物質の複素比透磁率μriおよび複素比誘電率εri、断面積Sより式(3)~(5)によって求められるαによって、一括して取り込んでいる。そのため、筐体内に複数の物質が存在していても、評価周波数fと、その評価周波数fで共振が起こる筐体の寸法との関係を、簡便に、また明快に、規定することができる。
【0023】
上記[2]の態様においては、入力用マイクロストリップ線路および出力用マイクロストリップ線路の相互に対向する端部に、それぞれ終端抵抗が接続されていることにより、入力用マイクロストリップ線路と出力用マイクロストリップ線路の間を、何らかの回路や素子で接続しなくても、評価周波数fの入力信号を入力した際に、筐体内での電磁波の共振による出力信号が、高強度で得られる。そのため、電磁波吸収体の評価を、単純な装置構成により、高い精度で実施することができる。
【0024】
上記[3]の態様においては、筐体の天井面に沿って配置される電磁波吸収体と基板との間の距離が、0.01mm以上となっている。ミリ波領域や準ミリ波領域においては、電磁波の波長の短さに対応して、筐体の高さbも小さくなりやすいが、電磁波吸収体と基板に形成されたマイクロストリップ線路の間に距離を確保し、接触しないようにしておくことで、電磁波吸収体との接触によるマイクロストリップ線路のインピーダンスの上昇と、それに伴う出力信号の低減を防ぐことができる。
【0025】
上記[4]の態様においては、入力用マイクロストリップ線路と出力用マイクロストリップ線路が、線路幅をwとしてw/2のずれの範囲内で、直線状に並んでいる。そのことにより、評価周波数fの入力信号を入力した際に、筐体内での電磁波の共振による出力信号が、高い強度を有するものとなり、電磁波吸収体による電磁波吸収の効果を明快に評価することができる。実際の高周波通信装置においては、マイクロストリップ線路が多様な配置をとり、複雑な条件で電磁波の共振が起こりうるが、本発明の評価装置においては、現象を単純化することで、電磁波吸収体の特性そのものを、他の要因を排して純粋に評価することができる。
【0026】
上記[5]の態様においては、筐体の構成材料の電気抵抗率が150μΩ・cm以下であり、少なくとも基板の上面および側面を覆う部位の板厚が0.01mm以上となっている。つまり、筐体が、高い導電性を有し、かつ十分な厚さを有する導電性材料よりなっている。これにより、外来電磁波を筐体で十分に遮蔽し、筐体内での電磁波吸収体の特性の評価を、外来電磁波の影響が低減された条件で行うことができる。アルミニウム、銅、真鍮等の金属材料は、上記電気抵抗率を有しており、筐体を構成するのに好適に用いることができる。
【0027】
上記[6]の態様においては、入力用および出力用のマイクロストリップ線路が、筐体の幅方向に、筐体の壁面からb/10以上離れている。
上記[7]の態様においては、入力用マイクロストリップ線路および出力用マイクロストリップ線路の相互に対向していない方の端部がそれぞれ、筐体の長さ方向に沿って、筐体の壁面から、評価周波数fに対応する波長の1/6以上離れている。
これら[6]および[7]の態様においては、マイクロストリップ線路が筐体の壁面から十分に離れていることにより、筐体の壁面からの影響により、入力用マイクロストリップ線路から入力信号を入力した際に出力用マイクロストリップ線路で検出される出力信号の強度が低下する事態を、高度に抑制することができる。
【0028】
上記[8]の構成を有する本発明にかかる電磁波吸収体評価方法においては、評価周波数fにおいて共振が起こるように寸法が設計された筐体を備えた上記の電磁波吸収体評価装置を用いて、評価周波数fを含む周波数範囲の入力信号を入力用マイクロストリップ線路に入力し、出力用マイクロストリップ線路からの出力信号を検出するものであることにより、評価周波数fがミリ波領域や準ミリ波領域にあっても、高強度の出力信号が得られ、筐体内の構造物の影響や、多数の周波数で乱発的に起こる共振の影響を避けながら、筐体内に配置した電磁波吸収体の特性評価を、高精度に実行することができる。さらに、筐体内に存在する物質の寄与を、式(3)~(5)から求められるαによって一括して取り込むことで、評価周波数fにおいて共振が起こる筐体の寸法を、簡便に、また明快に設定することができる。
【0029】
上記[9]の態様においては、筐体に電磁波吸収体を配置した場合と配置しない場合の比較、および異なる電磁波吸収体を配置した場合の比較の少なくとも一方に基づき、電磁波吸収体の特性を評価する。それらの各状況について、出力信号に基づいて電磁波の挙動を比較することで、評価周波数fを含むミリ波領域や準ミリ波領域の電磁波に対する各電磁波吸収体の特性を、明確に評価することができる。筐体の寸法が適切に設定されていることで、評価周波数fの電磁波が共振を起こし、高強度の出力信号を与えるため、電磁波吸収体の有無や種類の違いによる電磁波の挙動の差異が、出力信号の変化として、大きく現れる。
【0030】
上記[10]の態様においては、20GHz以上の通信周波数を有する高周波通信装置に使用される電磁波吸収体を評価するに際し、その通信周波数を評価周波数fとみなした場合に、式(1)および式(2)を満たすように、筐体の寸法を設計する。そのうえで、その通信周波数を含む周波数範囲で、電磁波吸収体の特性を評価する。そのため、電磁波吸収体の適用を意図している高周波通信装置について設定された、ミリ波帯や準ミリ波帯の通信周波数において、電磁波吸収体の特性を高精度に評価することができる。高周波通信装置においては、通信周波数でのカップリングを効果的に低減する必要があることから、その通信周波数で電磁波吸収体の評価を行うことで、その通信周波数で高い特性を示す電磁波吸収体を選択・設計することができ、高周波通信装置の通信特性の向上に高い効果が得られる。
【図面の簡単な説明】
【0031】
図1】本発明の一実施形態にかかる電磁波吸収体評価装置を示す透視斜視図である。
図2】上記電磁波吸収体評価装置を示す図であり、(a)は幅方向中央部を幅方向に垂直に切断した断面図、(b)はマイクロストリップ線路の位置で長さ方向に垂直に切断した断面図、(c)は平面図である。
図3】20GHz以上で式(1),(2)を満たす筐体を用いた場合について、電磁波吸収体の有無によって、電磁波透過率を比較する図である。(a)は実測結果、(b)はシミュレーション結果を示している。
図4】20GHz以上で式(1),(2)を満たさない筐体を用いた場合について、電磁波吸収体の有無および軟磁性粉末の含有量の違いによって、電磁波透過率を比較する図である。(a)は実測結果、(b)はシミュレーション結果を示している。
【発明を実施するための形態】
【0032】
以下、本発明の一実施形態にかかる電磁波吸収体評価装置および電磁波吸収体評価方法について、図面を参照しながら説明する。本実施形態においては、ミリ波領域および準ミリ波領域の電磁波に対する電磁波吸収体の特性を評価する。特に、電磁波吸収体による電磁波の吸収効率を評価する。ミリ波は30~300GHzの周波数を有するが、高速通信の分野においては一般に、28GHz帯からミリ波に含められる。また、概ね20~30GHzの周波数を有する電磁波が、準ミリ波と称される。本明細書においても、概ね、20GHz以上の周波数を有する電磁波を考慮の対象とする。
【0033】
[電磁波吸収体評価装置の概略]
図1,2に、本発明の一実施形態にかかる電磁波吸収体評価装置1の構成の概略を示す。図1は透視斜視図を示し、図2(a)は幅方向中央部を幅方向に垂直に切断した断面図、(b)はマイクロストリップ線路の位置で長さ方向に垂直に切断した断面図、(c)は平面図を示す。図2(c)においては、筐体の天井面は除いて表示している。
【0034】
本実施形態にかかる電磁波吸収体評価装置(以下、単に評価装置と称する場合がある)1は、導電性材料よりなる筐体2と、マイクロストリップ線路4,5を備えた基板3と、信号検査部(図略)とを有している。筐体2は、幅a、高さb、長さLの内寸を有する、直方体形の中空のケース部材として構成されている。ここで、寸法a,b,Lの関係は、b<a<Lとなっている。筐体2は、内部に、基板3と、電磁波吸収体(図略)とを、配置可能となっている。
【0035】
図示した形態では、筐体2は直方体の底面を構成する底板21と、底面以外の5面を構成する上蓋22とに分離して構成されており、底板21の上に、基板3等を適宜設置したうえで、上蓋22を被せることで、直方体状に基板3を囲む筐体2となる。底板21には、上蓋22を配置すべき位置に、上蓋22の底部の内寸と略同一の形状の領域を上方に突出させて、台座部21aが設けられており、この台座部21aの上方に上蓋22を被せることで、底板21に対して上蓋22を位置合わせすることができる。底板21には、基板3に設けたマイクロストリップ線路4,5に電気信号の入出力部や、終端抵抗等の素子を接続可能なポートが、例えば貫通孔の形で設けられてもよい。
【0036】
基板3としては、マイクロストリップ線路を形成するための基板として公知のものを利用することができ、誘電体基板31と、誘電体基板31の裏面に接合された導電体層32とを有している。図示した形態においては、基板3の面が、筐体2の台座部21aの上面および上蓋22の底部の内周と略同一の寸法を有している。誘電体基板31の表面には、入力用マイクロストリップ線路4と、出力用マイクロストリップ線路5が形成されている。入力用マイクロストリップ線路4および出力用マイクロストリップ線路5は、それぞれ、筐体2の長さ方向に沿った線状の金属層として形成されている。入力用マイクロストリップ線路4と出力用マイクロストリップ線路5は、筐体2の長さ方向に沿って相互に離間しており、両者の間には、増幅回路等の回路や素子は配置されていない。
【0037】
入力用マイクロストリップ線路4は、一端が入力端41となり、他端が終端部42となっている。また、出力用マイクロストリップ線路5は、一端が出力端52となり、他端が終端部51となっている。入力用マイクロストリップ線路4の終端部42と出力用マイクロストリップ線路5の終端部51は、基板3上で相互に対向している。評価装置1における評価精度の向上の観点から、2か所の終端部42,51のそれぞれには、終端抵抗(図略)が接続されていることが好ましい。入力用マイクロストリップ線路4の入力端41には、信号検査部から、入力信号を入力可能となっている。そして、出力用マイクロストリップ線路5の出力端52から出力される出力信号が、信号検査部によって検出可能となっている。
【0038】
信号検査部は、20GHz以上の周波数を有する電気信号を、入力信号として、入力用マイクロストリップ線路4に入力するとともに、出力用マイクロストリップ線路5から出力される出力信号を検出できる装置である。信号検査部としては、公知のネットワークアナライザを好適に用いることができる。
【0039】
上記のとおり、マイクロストリップ線路4,5を備えた基板3を配置した筐体2の内部には、電磁波吸収体を配置することができる。電磁波吸収体は、例えば、軟磁性材料の粉末(軟磁性粉末)を有機高分子よりなるマトリクスに分散させた材料より構成され、電磁波を吸収し、減衰させることができる。本実施形態においては、電磁波吸収体の形状や筐体2の中での配置は、具体的に限定されるものではないが、例えば、シート状の電磁波吸収体を、筐体2の天井面(上面)の内側に貼り付け、基板3の上方を電磁波吸収体で覆うようにすることができる。同様に、筐体の幅方向両側および長さ方向両側の壁面の内側にもさらに、シート状の電磁波吸収体を貼り付けてもよい。あるいは、電磁波吸収体を、筐体2の上蓋22よりひとまわり小さいケース状に成形して、基板3の上方と側方の計5方向を囲むようにして被せ、そのケース状の電磁波吸収体の外側にさらに筐体2を被せるように配置してもよい。
【0040】
[筐体の寸法]
本実施形態にかかる評価装置1においては、筐体2の寸法、つまり幅a、高さb、長さL(ただしb<a<L)が、評価周波数fとの関係において、規定されている。
【0041】
具体的には、下の式(1)によって求められる評価周波数fが、20GHz以上の周波数において、下の式(2)を満たしている。換言すると、評価周波数fと筐体2の寸法a,b,Lが、以下の式(1),(2)の関係を満たす解が、f≧20GHzの領域に存在する。
【数3】
ここで、mおよびpはそれぞれ独立に1以上の整数である(m=1,2,3…;p=1,2,3…)。また、筐体2に囲まれた領域にn個の物質が存在し、それらn個の物質のうちi番目の物質の複素比透磁率をμri、複素比誘電率をεri、筐体2の長さ方向に直交する断面に占める面積をSとして、αは下記式(3)および式(4)より得られるμおよびεを用いて、式(5)によって表される。μは真空の透磁率、εは真空の誘電率である。
【数4】
【0042】
上記式(1)および式(2)を満たす評価周波数fで、評価装置1による電磁波吸収体の特性の評価を行えば、筐体2の内側で、評価周波数fを有する電磁波の共振が起こり、その電磁波を介して、入力用マイクロストリップ線路4の入力信号と出力用マイクロストリップ線路5の出力信号の間で、カップリングが起こる。そのため、共振が起こらない場合と比較して、高強度の出力信号を得ることができる。さらに、評価周波数fが20GHz以上の領域に存在することで、そのような共振を利用した電磁波吸収体の特性評価を、ミリ波帯および準ミリ波帯において実施することができる。
【0043】
以下、共振が起こる条件に基づいた式(1),(2)の導出について説明する。
もし筐体2の内部が比透磁率μr0、比誘電率εr0一様な媒質で満たされているとすれば、筐体2の中でTE波の共振が起こりうる周波数fは、下の式(6)によって表される。
【数5】
ここで、m,n,pはそれぞれ独立に0以上の整数であり(m=0,1,2…;n=0,1,2…;p=0,1,2…)、少なくとも1つは0でない。
上記共振周波数fは、TEmnpモードの共振に対応する。つまり、電界分布における山の数が筐体2の幅方向にm、高さ方向にn、長さ方向にpとなった状態で、筐体2の中で共振が生じていることを示す。
【0044】
しかし、実際には、筐体2の内部は一様な媒質で満たされているのではなく、基板3や評価対象の電磁波吸収体等、透磁率および/または誘電率の異なる複数の物質が配置されている。そこで、それらの物質の寄与を統合して扱う方法を導入する。そのために、図2(b)に示すような、筐体2の長さ方向に直交する断面を考える。
【0045】
ここで、筐体2に囲まれた領域に、n個の物質が存在し、それらn個の物質のうちi番目の物質の複素比透磁率をμri、複素比誘電率をεriとする。また、そのi番目の物質が筐体2の長さ方向に直交する断面に占める面積をSとする。これらのパラメータを用いて、下に再掲する式(3),(4)より、代表複素比透磁率μおよび代表複素比誘電率εを算出する。なお、式(3),(4)の分母のabなる項は、長さ方向に直交する筐体2の断面積を表している。
【数6】
【0046】
図2(b)に示した断面の場合、i=1の物質として、空気を考慮し、i=2の物質として、基板3を構成する誘電体基板31を考慮すればよい。つまり、式(3),(4)において、μr1およびεr1として、空気の複素比透磁率および複素比誘電率を代入するとともに、Sとして、図2(b)の断面において空気が占める領域の面積を代入すればよい。また、μr2およびεr2として、誘電体基板31の複素比透磁率および複素比誘電率を代入するとともに、Sとして、同断面において誘電体基板31が占める領域の面積を代入すればよい。さらに、筐体2の中に電磁波吸収体が設けられている場合には、i=3の物質として、同様に電磁波吸収体の寄与を式(3),(4)に加えればよい。筐体2の壁面および基板3の導電体層32については、非磁性の導電性材料(金属)よりなるため、考慮しなくてもよい。
【0047】
図示した形態においては、長さ方向の両端近傍の一部の領域を除いて、長さ方向全域において、長さ方向に直交する断面の状態が一様となっている。よって、図2(b)のように、1か所の断面のみを考慮して、代表複素比透磁率μおよび代表複素比誘電率εを算出すれば十分である。評価装置1の構成の簡素性の観点から、このように筐体2の長さ方向に沿って一様に物質が配置された構成とすることが好ましいが、筐体2の中における物質の配置は、必ずしも長さ方向に沿って一様になっていなくてもよい。そのような場合には、筐体2の長さ方向に沿って、物質の配置が異なるそれぞれの箇所で、断面を切り出し、それぞれの断面について式(3),(4)によって、μおよびεを算出すればよい。そして、得られるμおよびεの値を、切り出した全断面で足し合わせて平均をとり、最終的な代表複素比透磁率μおよび代表複素比誘電率εとすればよい。
【0048】
電磁波の伝搬・共振現象への筐体2内に存在する複数の物質の寄与については、筐体2の中に均一な媒質が存在し、その物質が、複素比透磁率および複素比誘電率として、式(3),(4)に基づいて得られた代表複素比透磁率μおよび代表複素比誘電率εを有すると扱う近似を適用することができる。この近似の妥当性は、後の実施例に示すように、実験により確認される。このように近似した場合に、筐体2の中でTE波の共振が起こりうる周波数fは、上記式(6)において、μr0をμに、εr0をεに置換した、下の式(7)によって表される。
【数7】
ここで、αは、下に再掲する式(5)によって定義される。
【数8】
【0049】
式(7)において、n=0とし、さらにm≠0、p≠0としたものが、下に再掲する式(1)である。
【数9】
式(1)で計算される周波数は、高さ方向(bの方向)に電界分布が山を有さない、Tm0pモードの共振が起こる共振周波数を示している。式(1)によって、電磁波吸収体の評価を行いたい評価周波数fを共振周波数に合わせることで、共振が起こり、高強度の出力信号が得られる条件で、電磁波吸収体の特性を評価することができる。ここで、n=0としているのは、筐体2の高さ方向に山を有するTE波は、波長が非常に短くなり、過度に高周波になりやすいうえ、近傍の周波数に共振ピークが多数出現し、解析が複雑になるため、考慮対象から除外するものである。
【0050】
さらに、本実施形態においては、式(1)によって求められる評価周波数fが、下の式(8)のように、最低周波数fminと最高周波数fmaxの間に収まるようにする。
【数10】
minおよびfmaxは、それぞれ下の式(9a)および式(9b)のように定義される。
【数11】
【0051】
式(9a)のfminは、式(7)の共振周波数の一般式において、m=1,n=p=0としたものである。つまり、TE100モードに対応する。また、式(9b)のfmaxは、式(7)の共振周波数の一般式において、n=1,m=p=0としたものである。つまり、TE010モードに対応する。これら最低周波数fminおよび最高周波数fmaxに対応する2つのモードは、TE波の共振のうち、最低次のモードであり、高いポインティングエネルギーを有する。式(8)のように、評価周波数fを、それら最低周波数fminと最高周波数fmaxの間としておくことで、その評価周波数fの共振モードにおいても、高いポインティングエネルギーが得られやすくなる。
【0052】
上記式(8)と式(9b),(9b)を用いて、下に再掲する式(2)が得られる。
【数12】
なお、評価周波数fを定める式(1)においては、m≧1,p≧1であるから、式(2)の左側の不等号は常に成り立つ。
【0053】
以上のように、式(1)を満たすことで、電磁波吸収体の特性を評価すべき所望の評価周波数fにおいて共振が起こり、さらに、式(2)を満たすことで、その評価周波数fにおいて、共振が高強度で起こる。つまり、評価周波数fとの関係において、評価装置1の筐体2を、幅a、高さb、長さLが、式(1)および式(2)を満たすように設計すれば、評価周波数fの入力信号を入力用マイクロストリップ線路4に入力した際に、出力用マイクロストリップ線路5から高強度の出力信号が得られる。すると、筐体2の中に存在する構造物(誘電体基板31および電磁波吸収体を除く)の影響や、短い周波数間隔で乱立する高次の共振、外来ノイズの影響等の現象を抑制して、評価周波数fにおける電磁波吸収体の特性評価を高精度に行うことが可能となる。ミリ波や準ミリ波は、波長が短いため、もし筐体2の寸法が式(1),(2)を満たさないとすれば、それらの現象の影響が大きくなり、所望の評価周波数fにおける電磁波吸収体の特性評価を、十分な精度で行えない可能性が生じる。
【0054】
また、本実施形態においては、式(1),(2)を満たす評価周波数fが、20GHz以上の周波数領域に存在するように、評価周波数fと、筐体2の寸法a,b,Lが設定される。これにより、20GHz以上の周波数を有するミリ波領域および準ミリ波領域の電磁波に対する電磁波吸収体の特性の評価を、評価装置1において、電磁波の共振を利用して、高精度に実施することができる。式(1),(2)を満たす評価周波数fが、1つ以上、20GHz以上の領域に存在していれば、そのような評価周波数fの具体的な大きさや数は、特に限定されるものではない。しかし、ミリ波領域、また準ミリ波領域の中でも比較的高周波の領域において、電磁波吸収体の評価を高精度に実施する観点から、好ましくは、式(1),(2)を満たす評価周波数fが、1つ以上、23GHz以上、さらには26GHz以上の領域に存在していることが好ましい。また、現在、ミリ波帯での通信に中心的に用いられている28GHz近傍の周波数について、電磁波吸収体の評価を高精度に行えるようにする観点からは、式(1),(2)を満たす評価周波数fが、26GHz以上、30GHz以下の範囲に、少なくとも1つは存在することが好ましい。また、通信周波数のさらなる高周波化を見据えた場合に、30GHz超、さらには50GHz以上、80GHz以上の領域にも、式(1),(2)を満たす評価周波数fの解が存在することが好ましい。そして、幅広い周波数における評価試験で、共振を利用できるようにする観点から、式(1),(2)を満たす評価周波数fが、2個以上、さらには5個以上、また10個以上存在することが好ましい。ただし、近接した周波数に多数の共振が生じると、電磁波吸収体評価における解析が複雑になるので、周波数範囲にして10GHzあたりの評価周波数fの数が、5個以下であるとよい。
【0055】
さらに、評価装置1の筐体2の中には、複数の物質が存在しているが、式(1),(2)においては、式(3)~(5)によって規定される単一のαを代表値として用いて、それら複数の物質の透磁率および誘電率の寄与を取り込んでいる。このように、近似的に得られる代表値αを用いて、式(1),(2)を単純な形で定式化していることにより、筐体2の寸法を、評価周波数fとの関係において、簡便に、また明快に設定することができる。
【0056】
[電磁波吸収体評価装置の構成における各種パラメータ]
以上のように、本願発明の実施形態にかかる評価装置1においては、筐体2の幅a、高さb、長さLを、評価周波数fとの関係において、20GHz以上で、上記式(1)および式(2)を満たすように定めれば、詳細な寸法や形状を特に限定されるものではない。しかし、以下のようなパラメータを有することが、筐体2の中の構造物からの不要な影響や、外来のノイズの影響を低減し、電磁波吸収体の評価の精度を高める観点から好ましい。
【0057】
まず、筐体2の幅a、高さb、長さLは、ミリ波領域または準ミリ波領域で任意に設定される評価周波数fに応じて、20GHz以上の範囲で上記式(1),(2)を満たしていれば特に限定されないが、ミリ波領域の通信でしばしば用いられる28GHz帯に評価周波数fを設定する場合を想定すると、a,b,Lは、それぞれ以下の範囲に好適に設定することができる。特に最低測定周波数が26GHz以上であり、最高測定周波数が30GHz以下である場合に、以下の範囲を好適に適用することができる。
・5mm≦a≦13mm
・4mm≦b≦30mm
・40mm≦L≦56mm
ここで、bおよびLについては、評価装置1の準備や測定の作業性の観点から、上記の範囲が好ましい。aについては、bおよびLがそれらの範囲にある場合に、20GHz以上の周波数領域で上記式(1),(2)を満たしやすいように、上記の範囲が設定されている。
また、Lは、aに対して、3倍以上、11倍以下の範囲に好適に設定することができる。
【0058】
筐体2の中において、電磁波吸収体が、少なくとも筐体2の天井面に沿った箇所に配置される場合には、その天井面に沿って配置された電磁波吸収体と、筐体2の底面(底板21)に沿って配置された基板3とが接触せずに、両者の間に距離が確保されることが好ましい。さらにその距離が0.01mm以上であるとよい。ミリ波領域や準ミリ波領域においては、電磁波の波長の短さに対応して、筐体2の高さbが小さくなりやすいが、電磁波吸収体と基板3の間に距離を確保し、マクロマイクロストリップ線路4,5に電磁波吸収体が接触しないようにしておくことで、電磁波吸収体の接触によるマイクロストリップ線路4,5のインピーダンスの上昇と、それに伴う出力信号の低減を防いで、2つのマイクロストリップ線路4,5の間のカップリングを利用した電磁波吸収体の特性評価を、正確に行うことが可能となる。
【0059】
また、入力用マイクロストリップ線路4と出力用マイクロストリップ線路5は、できる限り、小さい誤差で、筐体2の長さ方向に沿って直線上に並んでいることが好ましい。例えば、線路幅(マクロマイクロストリップ線路4,5の幅)をwとした場合に、筐体2の幅方向にw/2のずれの範囲内で、入力用マイクロストリップ線路4と出力用マイクロストリップ線路5が直線上に並んでいるとよい。入力用マイクロストリップ線路4と出力用マイクロストリップ線路5が直線上に並んでいれば、評価周波数fにおける共振が強くなり、出力信号が高強度で得られやすくなる。また、筐体2の中の構造が、式(1),(2)の導出に利用した理想的なモデルに近づくため、共振が起こる条件が、式(1),(2)によって表される理論値に近づく。そのため、評価周波数fにおける電磁波吸収体の特性自体を、他の要因による影響を排して、純粋に評価しやすくなる。実際の高周波通信装置においては、マイクロストリップ線路が多様な配置をとり、電磁波の共振も複雑な条件で起こりうるが、本評価装置1においては、単純化した条件で、電磁波吸収体そのものの特性に関して知見を得ることができる。その知見を基礎として、電磁波吸収体を多様な高周波通信装置に適用すればよい。なお、線路幅wは、以下の式(10)で算出される特性インピーダンスZが、信号検査部の出入力部の特性インピーダンス(典型的には50Ω)に等しくなるように定めるとよい。
【数13】
ここで、Hは誘電体基板31の厚さ、Tはマイクロストリップ線路4,5の厚さである。
【0060】
そして、入力用マイクロストリップ線路4および出力用マイクロストリップ線路5は、筐体2の幅方向両側の壁面からb/10以上離れていることが好ましい(d1≧b/10)。さらには、それらマイクロストリップ線路4,5は、筐体2の幅方向に沿って、中央の位置(b/2の位置)に配置されていることが好ましく、例えば、幅方向中央の位置からの誤差が、±b/10の範囲内であるとよい。筐体2の長さ方向に関しては、入力用マイクロストリップ線路4の入力端41、および出力用マイクロストリップ線路5の出力端52がそれぞれ、筐体2の長さ方向の壁面から、評価周波数fに対応する波長λ(筐体2内の空間における波長、つまり1/(fα))の1/6以上離れていることが好ましい(d2≧λ/6)。これらの場合には、マイクロストリップ線路4,5が、幅方向両側および長さ方向両側の壁面から十分離れた位置に配置されることになり、マイクロストリップ線路4,5間のカップリングに寄与する電磁波が、筐体2の壁面からの影響を受けにくくなる。すると、壁面の影響による出力信号の変化が起こりにくくなり、電磁波吸収体そのものに対する評価の精度を高めることができる。
【0061】
筐体2の構成材料は、導電性材料、特に非磁性金属であれば、特に限定されるものではない。しかし、筐体2の構成材料の電気抵抗率が150μΩ・cm以下、さらには100μΩ・cm以下であることが好ましい。また、少なくとも基板3の上面および側面を覆う部位の板厚、つまり少なくとも上蓋22の各面の板厚tが、0.01mm以上となっていることが好ましい。さらに好ましくは、底板21の台座部21aの板厚も0.01mm以上であるとよい。このように、筐体2が、高い導電性を有し、かつ十分な厚さを有する導電性材料よりなっていれば、外来電磁波を筐体2で十分に遮蔽することができる。すると、筐体22の中での電磁波吸収体の特性の評価を、外来電磁波の影響が十分に低減された条件で行うことができる。アルミニウム、銅、真鍮(洋箔)等の金属材料は、上記範囲の電気抵抗率を有している。これらの材料には、適宜、他の金属によるめっきを施してもよい。
【0062】
[電磁波吸収体評価方法]
次に、本発明の一実施形態にかかる電磁波吸収体の評価方法について説明する。本実施形態にかかる評価方法においては、上で説明した本発明の実施形態にかかる電磁波吸収体評価装置1を用いて、電磁波吸収体の特性を評価する。
【0063】
評価に際しては、評価装置1の筐体2の内部に、適宜検査対象の電磁波吸収体を配置した状態で、評価周波数fを含む周波数範囲の電気信号を、入力用マイクロストリップ線路4の入力端41に入力する。そして、出力用マイクロストリップ線路5の出力端52より出力される出力信号を検出する。この出力信号の挙動に基づいて、電磁波吸収体の特性を評価することができる。例えば、特定の周波数について、電磁波透過率S21を評価することで、その周波数における電磁波吸収体の電磁波吸収効率を評価することができる。電磁波透過率S21が低いほど、電磁波吸収効率が高く、デカップリングの効率も高いことが示される。ここで、電磁波透過率S21は、入力信号の電圧をV、出力信号の電圧をVとして、S21[dB]=20log(V/V)として求められる。本評価装置1においては、筐体2の寸法が、上記式(1),(2)に基づき、20GHz以上の評価周波数fで電磁波の共振が起こるように設定されていることから、入力信号と出力信号の間のカップリングにより、高強度の出力信号が得られ、評価周波数fにおける電磁波吸収体の評価を、高精度に行うことができる。
【0064】
電磁波吸収体の評価を行う際に、電磁波吸収体の有無や組成、厚さ等による電磁波に対する挙動の差異を明確にする観点から、上記評価を、筐体2の中に電磁波吸収体を配置した場合と配置しない場合の両方について、および/または組成や厚さ等において相互に異なる電磁波吸収体を配置した複数の場合について行い、それらの各場合において得られる結果を相互に比較することが好ましい。このようにすれば、所定の評価周波数fで、高い電磁波吸収効率等、所望される特性を有する電磁波吸収体を選定することができる。また、そのような好適な電磁波吸収体を設計・開発するための基礎情報として、評価結果を利用しやすくなる。
【0065】
このように電磁波吸収体の有無や種類を変更した際に、式(3),(4)で求められる代表複素比透磁率μおよび代表複素比誘電率εの値が変化することになり、設計した筐体2の寸法a,b,Lに対応して共振が起こる周波数、つまり式(7)で表される共振周波数が、変化する可能性がある。このような場合にも、共振が起こる条件で電磁波吸収体の特性評価を行えるように、評価を行う周波数は、筐体2の寸法の決定に用いた評価周波数fを含んで、幅をもたせた範囲に設定しておくとよい。具体的な筐体2の寸法の決定方法としては、例えば、筐体2の中に電磁波吸収体を配置しない状態に対して、式(3),(4)でμおよびεを計算し、それらの値を用いて、20GHz以上に設定された所望の評価周波数fとの間で式(1),(2)を満たすように、筐体2の寸法a,b,Lを決定するとよい。あるいは、後の実施例において行っているように、筐体2の製造上の便宜や使用する構成材料の制約等に基づいて、筐体2の寸法が予め設定されている場合に、それら設定された寸法a,b,Lを式(1),(2)に代入して算出される評価周波数fが、20GHz以上で、かつ評価対象として許容される周波数範囲に存在する場合に、その筐体2を評価に使用可能であると判断すればよい。いずれの場合についても、式(1),(2)を満たす評価周波数fを含んで十分な広さに設定した測定周波数範囲において、電磁波吸収体の有無および/または種類を変更しながら、入力信号の入力と出力信号の検出による評価を行えばよい。好ましくは、評価の対象とする各電磁波吸収体を配置した状態について、測定周波数領範囲の中に、式(1),(2)が成り立つ共振周波数が含まれることを確認しておくとよい。なお、式(9a),(9b)で設定している最低周波数fminおよび最高周波数fmaxは、筐体2における2つの最低次の共振モードの周波数を表しているにすぎず、実際の測定周波数範囲の下限および上限は、fminおよびfmaxと一致しなくてもよい。ただし、測定周波数範囲の上限は、fmax以上に設定しておくことが好ましい。
【0066】
本実施形態にかかる評価方法によって特性を評価し、あるはさらに、評価結果に基づいて組成や厚さ等を設計した電磁波吸収体を、実際の高周波通信装置に適用することを考えた場合に、その電磁波吸収体によって、高周波通信装置の装置筐体内のカップリングを十分に軽減するためには、高周波通信装置に対して固有に設定された通信周波数を有する電磁波を、電磁波吸収体によって高効率で吸収する必要がある。この場合には、本実施形態にかかる評価方法を実行するに際して、20GHz以上に設定されたその高周波通信装置の通信周波数を、評価周波数fとみなした場合に、上記式(1)および式(2)を満たすように、筐体2の寸法a,b,Lを設定すればよい。そして、その筐体2を用いた電磁波吸収体の評価を、その通信周波数を含む周波数範囲で行えばよい。すると、実際の通信周波数において共振が起こる条件で、電磁波吸収体の特性を評価することになり、その通信周波数における電磁波吸収体の特性を、高精度に評価することできる。得られた評価結果を利用することで、実際の高周波通信装置において優れた特性を発揮する電磁波吸収体を選択・設計することが可能となる。
【0067】
以上のように、所望の評価周波数fにおいて共振が起こる条件に基づいて評価装置の筐体2の寸法を設計したうえで、電磁波吸収体の特性評価を行う方法は、実測のみならず、シミュレーションにも適用することができる。例えば、式(1),(2)に従って設計された筐体2をモデルに組み込んで、有限要素法による電磁界解析を用いたシミュレーションを行えばよい。実測とシミュレーションを併用して、電磁波吸収体の構成に関する検討を行えば、実測のみを用いる場合よりも、系統的に、電磁波吸収体の設計・開発を行うことができるなど、電磁波吸収体の特性に関する知見をさらに深められる可能性がある。
【実施例0068】
以下、実施例を用いて本発明をより具体的に説明する。なお、本発明は、以下の実施例によって限定されるものではない。
【0069】
[1]まず、上記式(1)~(5)によって与えられる筐体の寸法と共振周波数との関係の妥当性について検証した。
【0070】
[評価方法]
<評価装置の準備>
図1,2に示した構造の評価装置を作製した。ここで、評価装置の構造にかかるパラメータは以下のようにした。
・筐体
幅a:11mm
高さb:4.5mm
長さL:55mm
上蓋の材質:厚さ3mmの金めっき真鍮板
・マイクロストリップ線路
線路幅w:0.76mm
長さ:入出力側各17mm
入出力側の線路間の離間距離:13mm
幅方向の位置:入力側、出力側とも、筐体の幅方向中央に対し、誤差範囲が±0.05mm以内
長さ方向両側の壁面からの入出力端の距離(d2):4mm
【0071】
<電磁波透過率の実測>
上記評価装置を用いて、電磁波透過率S21の測定を行った。測定は、ネットワークアナライザを用いて、入力用マイクロストリップ線路に26~40GHzの範囲の電気信号を入力しながら、出力用マイクロストリップ線路からの出力を検出することによって行った。測定は、筐体内に電磁波吸収体を設けない場合と、ケース状に成形した電磁波吸収体を筐体の内側に配置した場合の2とおりについて行った。電磁波吸収体の構成材料としては、マトリクス樹脂としてのアクリルゴムに、SUS 410Lよりなる軟磁性粉末を40体積%の含有量で分散させ、厚さ0.8mmに成形したものを用いた。
【0072】
<シミュレーションの実施>
上記で実測を行ったのと同じ評価試験を、シミュレーションによって再現し、電磁波透過率S21を見積もった。ここでは、筐体内に電磁波吸収体を設けない場合と、上記の実測試験と同じケース状の電磁波吸収体を筐体内に設けた場合、さらに、その電磁波吸収体と同形状のケース状の樹脂成形体を、軟磁性粉末を混合しないマトリクス樹脂のみで形成して筐体内に配置した場合について、シミュレーションを行った。シミュレーションは、有限要素法による電磁界解析によって行った。なお、ここでは、周波数範囲は、26~30GHzとした。
【0073】
<共振周波数の計算>
上記評価装置に対して、式(3)~(5)を用いた計算により、αの値を見積もった。この際、筐体内の物質としては、以下のものを考慮した。
・空気(i=1)
μr1=1
εr1=1
=37.906mm
・誘電体基板(i=2)
μr2=1
εr2=2.2
=2.794mm
・電磁波吸収体(i=3)
μr3=18.7-0.6j
εr3=0.5-0.4j
(jは虚数単位である)
=8.800mm
・また、物理定数として、以下の値を用いた。
真空の透磁率 μ=4π/10[N・A-2
真空の誘電率 ε=10/(4πc)[F・m-1
光速 c=299792458[m/s]
以上のパラメータを用いて得られたαの値は、3.34×10-9[s/m]であった。
【0074】
上記で得られたαを用いて、式(9a),(9b)より最低周波数fminおよび最高周波数fmaxを算出したところ、以下のようになった。これらfminおよびfmaxで規定される範囲は、上記実測に適用した26~40GHzとの範囲と一部において重複している。
・fmin=13.63GHz
・fmax=33.31GHz
【0075】
次に、式(1)に上記a,b,Lおよびαの数値を代入し、評価周波数fの値を算出した。この際、mとpの組み合わせにより多数の評価周波数fが得られるが、それらのうち、上記の最低周波数fminと最高周波数fmaxの間の周波数範囲に存在するものを記録した。
【0076】
[評価結果]
図3(a)に、実測によって得られた電磁波透過率の測定結果を示す。電磁波吸収体を配置していない場合のスペクトルを見ると、27GHzから36GHz程度の範囲内に、4本の鋭いピーク構造が見られる。これらのピークは、電磁波の共振によるものであると考えられる。
【0077】
下の表1に、実測で得られた上記ピークのそれぞれのピークトップの周波数を示す。合わせて、式(1)にa,b,L,αを代入した計算によって算出された共振周波数(評価周波数f)の計算値のうち、20GHz以上の領域にある主なものを、モード種(Tm0p)とともに示す。表では、実測と計算で、近い周波数を示すものを、行を揃えて表示している。
【0078】
【表1】
【0079】
表1によると、実測で見られたピーク#1~#4のそれぞれについて、近接した周波数に、計算による共振周波数が出現している。ピーク#1およびピーク#2についてはそれぞれ、計算で得られた複数のモードの共振ピークが重なって、実測上では1つの共振ピークとして出現していると考えられる。この表1の結果は、実測の共振周波数が、計算とよく整合していることを示している。つまり、共振周波数の計算では、複数の材料の寄与を式(3)~(5)によって1つにまとめた代表値であるαを用いるという近似的な取り扱いを導入しているが、実測値の共振周波数とよく整合していることから、この取り扱いが妥当であることが確認される。また、式(1)~(5)を用いて、所望の周波数範囲で共振が起こるように、評価周波数fと筐体の寸法a,b,Lの関係を規定する手法は、実測結果に照らして、有効であると言える。
【0080】
さらに、図1(a)の電磁波吸収体を配置していない場合のスペクトルにおいては、上記のように、おおむね36GHz以下の周波数領域には、電磁波の共振に由来すると解釈できる明瞭なピークが4本見られているのに対し、それよりも高周波数側では、電磁波透過率の値が激しく上下しており、明確なピーク構造が確認しにくくなっている。この高周波数側の領域は、fmax(33.31GHz)以上の周波数にあたる。TE010モードに対応するfmax以上の周波数領域では、高次の共振が、低強度で、また小さい周波数間隔で乱立的に起こることにより、電磁波透過率の値に激しい上下変動が見られているものと解釈される。このことから、式(2)のように、評価周波数fの上限を、fmax未満に定めることの妥当性が支持される。
【0081】
次に、図3(a)において、電磁波吸収体を筐体内に配置した場合の測定結果を見ると、36GHz以下の全周波数領域において、電磁波吸体を配置していない場合よりも電磁波透過率が低下しており、電磁波吸体を配置していない場合に出現していた共振に起因する鋭いピークは全て消失している。これは、筐体内を伝搬する電磁波が電磁波吸収体によって吸収されて減衰し、入力用マクロマイクロストリップ線路の入力信号と出力用マイクロストリップ線路の出力信号の間のカップリングが低減されたためであると解釈される。このように、筐体内で電磁波の共振が起こり、高い電磁波透過率を与える周波数を含む範囲において、筐体内に電磁波吸収体を設ける場合と設けない場合とで、電磁波透過率を測定して比較することで、その電磁波吸収体を配置することによる電磁波吸収の効果を、明確に確認することができる。
【0082】
さらに、図3(b)のシミュレーションの結果を見ると、電磁波吸収体を設けない場合に、27.5GHz付近と29.8GHz付近にピークが出現している。これらの周波数は、表1のピーク#1およびピーク#2によく対応している。つまり、共振周波数に関して、実測、シミュレーション、式(1)に基づく計算の三者の間に、高い整合性を有することが確認される。そして、電磁波吸収体を設けた場合に、電磁波吸収率が大きく低下するとともに、2つのピークが消失している。この結果も、実測に合致している。一方で、樹脂のみよりなるケースを設けた場合については、矢印で示すように、共振ピークの位置が移動しているのみであり、共振の減衰は起こっていない。
【0083】
以上の試験により、筐体内での電磁波の共振現象に対して、式(3)~(5)によって得られるαを、筐体内の物質の寄与を代表するパラメータとして用いることの妥当性が確認された。さらに、そのαを組み込んだ式(1),(2)を、評価周波数fとの関係において満たす寸法を有する筐体を適用することで、実測およびシミュレーションの両方において、共振を利用して、出力信号を高強度で得ることができ、それによって、電磁波吸収体の特性を高精度に評価できることが示された。
【0084】
[2]筐体の寸法が、評価周波数fとの関係において、式(1),(2)を満たさない場合についても、実測およびシミュレーションにより、電磁波透過率を評価した。
【0085】
[評価方法]
上記[1]の試験と同様の試験を行った。ただし、ここでは、筐体の寸法を以下のように変更した。
幅a:22.6mm
高さb:10.8mm
長さL:63.5mm
実測およびシミュレーションは、筐体内に電磁波吸収体を設けない場合、および上記試験[1]と同様の軟磁性粉末を40体積%含む電磁波吸収体を設けた場合、さらに軟磁性粉末を15体積%だけ含む電磁波吸収体を設けた場合の3とおりについて行った。
【0086】
[評価結果]
図4(a),(b)にそれぞれ実測およびシミュレーションの結果を示す。いずれについても、電磁波透過率が微細に上下に変動する複雑なスペクトル挙動が得られている。シミュレーションでも実験と同程度またはそれ以上に複雑なスペクトル形状となっていることから、これらの複雑なスペクトル形状が、偶発的ノイズや測定条件の揺らぎ等、実測時の非本質的な現象によるものではなく、筐体内で起こっている本質的な現象によるものであると言える。
【0087】
そして、実測、シミュレーションとも、電磁波吸収体の有無、また電磁波吸収体中の軟磁性粉末の含有量が変化しても、スペクトルにおいて、上記の微細な上下動の水準を超える明確な挙動の変化は確認できない。つまり、電磁波吸収体の特性評価を意味のある形で行うことは難しい。
【0088】
ここで用いた筐体の寸法a,b,Lを式(1),(2)に代入した場合に、式(1),(2)を満たす共振周波数(評価周波数f)は、13.5GHz以下の低周波数の領域にのみ存在し、20GHz以上の領域には存在しない。つまり、実測およびシミュレーションを行った周波数範囲において、[1]の試験の場合のように明瞭な共振ピークを与える条件は存在しておらず、そのことが、図4のように複雑なスペクトル形状を実測およびシミュレーションにおいて与える原因となっていると考えられる。これらの複雑なスペクトル形状は、図3(a)の36GHz以上の領域と同様に、高次の共振が低強度かつ小さい周波数間隔で乱立的に起こっていることによるものと考えられる。
【0089】
以上、本発明の実施形態について詳細に説明したが、本発明は上記実施形態および実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。
【符号の説明】
【0090】
1 (電磁波吸収体)評価装置
2 筐体
21 底板
22 上蓋
3 基板
31 誘電体基板
32 導電体層
4 入力用マイクロストリップ線路
41 入力端
42 終端部
5 出力用マイクロストリップ線路
51 終端部
52 出力端
a 筐体の幅
b 筐体の高さ
L 筐体の長さ
t 筐体の板厚
w 線路幅
図1
図2
図3
図4