IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 浙大城市学院の特許一覧 ▶ 浙江大学の特許一覧

特開2024-62963構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法
<>
  • 特開-構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法 図1
  • 特開-構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法 図2
  • 特開-構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法 図3a
  • 特開-構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法 図3b
  • 特開-構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法 図4
  • 特開-構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024062963
(43)【公開日】2024-05-10
(54)【発明の名称】構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法
(51)【国際特許分類】
   G06F 30/23 20200101AFI20240501BHJP
   G06F 30/10 20200101ALI20240501BHJP
   G06F 30/20 20200101ALI20240501BHJP
   G06F 111/04 20200101ALN20240501BHJP
   G06F 113/10 20200101ALN20240501BHJP
【FI】
G06F30/23
G06F30/10 100
G06F30/20
G06F111:04
G06F113:10
【審査請求】有
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2023183078
(22)【出願日】2023-10-25
(31)【優先権主張番号】202211311119.1
(32)【優先日】2022-10-25
(33)【優先権主張国・地域又は機関】CN
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.PYTHON
(71)【出願人】
【識別番号】520448452
【氏名又は名称】浙大城市学院
(71)【出願人】
【識別番号】505072650
【氏名又は名称】浙江大学
【氏名又は名称原語表記】ZHEJIANG UNIVERSITY
(74)【代理人】
【識別番号】110001519
【氏名又は名称】弁理士法人太陽国際特許事務所
(72)【発明者】
【氏名】王震
(72)【発明者】
【氏名】葉俊
(72)【発明者】
【氏名】趙陽
(72)【発明者】
【氏名】陸泓家
(72)【発明者】
【氏名】林暁陽
(72)【発明者】
【氏名】高博青
(72)【発明者】
【氏名】湯慧萍
(72)【発明者】
【氏名】全冠
【テーマコード(参考)】
5B146
【Fターム(参考)】
5B146DC04
5B146DC05
5B146DE12
5B146DJ02
5B146DJ07
5B146EA15
5B146EC09
(57)【要約】
【課題】プリント製造における構成部材のオーバーハング角度制約を考慮し、プリントプロセス中に支持構造を追加する必要がなく、幾何学的一体型最適化プロセスにおける構成部材の融合、節点の移動処理の反復により、冗長な構成部材を効果的にマージし、節点の数を減少させ、レイアウト最適化の結果を簡略化し、構造の規則化を実現する。
【解決手段】最小接続基本構造を確立し、オーバーハング角度制約に違反する構成部材をスクリーニングした後にレイアウト最適化モデルを確立し、数回に分けてすべての構成部材をレイアウト最適化モデルに追加するステップと、製造制約構成部材のオーバーハング角度を考慮し、反復最適化を通じてレイアウトに対して構成部材のマージと節点の融合を行い、交差構成部材を処理するステップと、構造情報を抽出して3Dソリッドモデルを確立し、次にスライスしてプリントパスを生成し、3Dプリントを行うステップとを含む。
【選択図】図1
【特許請求の範囲】
【請求項1】
構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法であって、
S1、レイアウト一体型最適化:まず、制約条件及びパラメータを入力し、最小接続基本構造を確立し、オーバーハング角度制約に違反する構成部材をスクリーニングした後にレイアウト最適化モデルを確立し、反復を通じて数回に分けてすべての構成部材をレイアウト最適化モデルに追加するステップと、
S2、幾何学的一体型最適化:レイアウト最適化の結果に基づいて、製造制約構成部材のオーバーハング角度を考慮し、反復最適化戦略を用いてレイアウトに対して構成部材のマージ及び節点の融合を行い、交差構成部材を処理し、最適化結果を得るステップと、
S3、3Dプリント一体製造:最適化結果によって構造情報を抽出し、構造数値情報には、節点の位置、構成部材の接続及び断面の寸法が含まれ、構成部材の組み立て及び節点の生成処理の後、3Dソリッドモデルを確立し、次にソリッドモデルをスライスしてプリントパスを生成し、3Dプリントを行うステップとを含むことを特徴とする構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法。
【請求項2】
ステップS1は、具体的には、
S1.1、設計条件及びパラメータの入力:設計領域の寸法、材料の引張強度と圧縮強度、荷重作業条件及び境界制約を入力し、最適化プロセスにおけるグリッド密度、初期基本構造の構成部材の長さ閾値、自己支持臨界角及び成形方向を指定するステップと、
S1.2、最小接続基本構造の確立:均一な格子離散化を用いて設計領域を処理し、任意の2つの節点を接続して最小接続基本構造を形成し、長さが初期基本構造の構成部材の長さ閾値を超えない構成部材集合を初期基本構造とし、長さが初期基本構造の構成部材の長さ閾値を超える構成部材集合を潜在的な構成部材集合とするステップと、
S1.3、構成部材のスクリーニング:構成部材の方向と成形方向との角度の余弦値を計算し、角度の余弦値が自己支持臨界角の正弦値より大きい場合、該構成部材はオーバーハング角度制約を満たし、追加の支持構造を追加する必要がなく、初期基本構造及び潜在的な構成部材集合におけるオーバーハング角度制約を満たさない構成部材をスクリーニングするステップと、
S1.4、レイアウト最適化モデルの確立:構成部材の内力と荷重との間のバランス行列B及びレイアウト最適化数学モデルを確立し、トラス構造の総体積を最小にすることを目的関数として定義し、レイアウト最適化モデルを導出し、レイアウト最適化モデルにおける構成部材のi本目の構成部材に発生する相対変位をuとし、構成部材ユニットの長さをlとし、仮想ひずみu/lは、

(1)を満たすステップと、
S1.5、構成部材の追加及び反復解法:潜在的な構成部材集合における各構成部材の仮想ひずみを計算し、各構成部材の仮想ひずみ及び式(1)の違反の度合いに基づいて潜在的な構成部材集合をソートし、潜在的な構成部材集合から違反の度合いが大きいKadd本の構成部材を選択してレイアウト最適化モデルの基本構造に移動し、新しいレイアウト最適化モデルを再び解き、潜在的な構成部材集合におけるすべての構成部材がレイアウト最適化モデルに追加され、式(1)の要件を満たすまで、上記のステップを複数回反復するステップとを含むことを特徴する請求項1に記載の構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法。
【請求項3】
ステップS1において、レイアウト最適化数学モデルは構成部材の断面積a、構成部材の内力qを設計変数とし、構造の内力と外力のバランス、材料強度限界及びゼロ以上の面積を制約条件とし、上記制約条件の式は、

(2)であり、
トラス構造の総体積を最小にすることを設計目標とし、目的関数は、

(3)であり、
ここで、a=[a,a,…,aは、構成部材ユニットの断面積であり、mは、構成部材の数であり、q=[q,q,…,qは、構成部材ユニットの内力であり、引張は正の値、圧縮は負の値として定義され、Vは、レイアウト最適化モデルの構造総体積であり、l=[l,l,…,lは、レイアウト最適化モデルにおける構成部材ユニットの長さであり、Bは、構成部材の方向を含むバランス行列であり、fαは、節点荷重ベクトルであり、αは、作業条件番号であり、σ及びσは、それぞれ材料の圧縮限界強度及び引張限界強度であることを特徴とする請求項2に記載の構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法。
【請求項4】
ステップS1において、初期基本構造のバランス行列Bが解けない場合、初期基本構造の構成部材の長さ閾値及びグリッド密度を増大させ、新しい初期基本構造を形成し、改めて解くことを特徴とする請求項2に記載の構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法。
【請求項5】
ステップS2は、具体的には、
S2.1、レイアウト一体型最適化の結果の抽出:レイアウト最適化の結果に基づいて、異なる構成部材のフィルタリング閾値を設定し、断面積が小さすぎる構成部材をスクリーニングし、かつ重複構成部材をマージし、これを幾何学的最適化モデルの初期解とするステップと、
S2.2、節点の融合及び構造の簡略化:節点のマージ閾値を設定し、隣接する節点をグループ化し、各グループの節点の中心点に簡略化するステップと、
S2.3、幾何学的最適化モデルの確立:レイアウト最適化モデルに基づいて節点座標変数を追加し、節点の移動範囲及びオーバーハング角度を制約し、トラス構造の総体積を最小にすることを目的関数として定義し、幾何学的最適化モデルを確立するステップと、
S2.4、交差構成部材の処理:最適化結果がオーバーハング角度を考慮した幾何学的最適化モデルの制約条件を満たすまで、ステップS2.2~ステップS2.3を繰り返し、構造における構成部材の交差状況を検出し、構成部材の交差箇所に新しい節点を形成し、新しい節点に基づいて元の構成部材を複数本の構成部材に分割し、交差構成部材が処理されたモデルの幾何学的最適化モデルを再び解き、最適化結果を得、最適化解法の前後のモデルの構造総体積の変化が設定された限界値より小さい場合、交差構成部材の処理が成功したと判断され、新しい結果を直接出力し、そうでない場合、元の結果を出力するステップとを含むことを特徴とする請求項1に記載の構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法。
【請求項6】
ステップS2において、幾何学的最適化数学モデルは構成部材の断面積a、構成部材の内力q、節点座標x、y、zを設計変数とし、構造の内力と外力のバランス、材料強度限界、節点の移動範囲、ゼロ以上の面積及び節点座標のオーバーハング角度を制約条件とし、上記制約条件の式は、
(4)であり
トラス構造の総体積を最小にすることを設計目標とし、目的関数は、

(5)であり、
ここで、a=[a,a,…aは、構成部材ユニットの断面積であり、mは、構成部材の数であり、q=[q,q,…qは、構成部材ユニットの内力であり、引張は正の値、圧縮は負の値として定義され、Vは、構造総体積であり、l=[l,l,…lは、構成部材ユニットの長さであり、Bは、構成部材の方向を含むバランス行列であり、fαは、節点荷重ベクトルであり、αは、作業条件番号であり、σ-及びσ+は、それぞれ材料の圧縮限界強度及び引張限界強度であり、
i本目の構成部材の両端の節点N、Nの座標をN(x,y,z)、N(x,y,z)とし、X、Y、Zは、それぞれi本目の構成部材の長さlの直交座標系におけるx、y、z軸方向の投影長さであり、すなわち、X=x-x、Y=y-y、Z=z-zであり、θminは、最初に設定された自己支持臨界角であり、d、d、dは、それぞれ標準化された成形方向ベクトルの3つの成分であり、成形方向は(0,0,1)に設定され、xub、xlbは、それぞれ節点のx座標の移動範囲の上限値と下限値であり、yub、ylb、zub、zlbは同様に、節点座標の初期値及びグリッド密度に基づいて得られ、節点の移動範囲は設計領域を超えないことを特徴とする請求項5に記載の構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法。
【請求項7】
ステップS3において、Rhinoソフトウェアによって3Dモデリングを行い、3Dモデリングで得られたソリッドモデルをCuraソフトウェアによってスライスし、プリントパスを生成することを特徴とする請求項1に記載の構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、構造工学の技術分野に属し、特に構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法に関する。
【背景技術】
【0002】
ますます複雑な工事のニーズにより、複雑な構造の最適化設計及び3Dプリント一体化に対する需要が高まっている。構造最適化は、寸法最適化、トポロジー最適化及び形状最適化の3つのレベルに分けられ、そのうち、構造のトポロジー最適化の対象には離散構造及び連続体構造が含まれる。実際の工事において広く使用されているトラス型構造システムの最適化は、離散構造のトポロジー最適化のカテゴリーに属する。
【0003】
離散構造のトポロジー最適化について、レイアウト最適化処理は一般的に、設計領域を細かいグリッドに離散化して基本構造を生成し、線形計画法で解いて構造レイアウトのグローバル最適解を取得する。しかしながら、グリッド点が2つずつ接続して構成された構成部材集合からなる基本構造は、最適化行列の規模を非常に大きくするため、最適化効率が低く、大規模な構造最適化問題を実現しにくくなる。そして、レイアウト最適化後の結果が複雑すぎ、構成部材、節点が煩雑であるため、実際の工事に適用しにくい。
【0004】
レイアウト最適化に基づいて、最小基本構造は構成部材追加法によって構築され、これにより、初期最適化行列の規模が効果的に縮小され、大規模なレイアウト最適化問題の解決効率が顕著に向上できる。レイアウト最適化の結果が複雑であるという問題について、レイアウト最適化と幾何学的最適化の組み合わせは、合理的で効果的な解決手段である。幾何学的最適化方法における構成部材の融合、節点の移動などの処理によってレイアウト最適化の複雑な結果の簡略化を効果的に実現することができる。したがって、合理的で効果的な構造レイアウトと幾何学的最適化の組み合わせは、複雑な離散構造の一体型最適化の重要な態様である。
【0005】
3Dプリント(付加製造)技術は、材料の層ごとの蓄積による構造の自由な「成長」を可能にし、構造製造の柔軟性を大幅に広げる。構造レイアウトと幾何学的最適化の組み合わせにより、良好な理論的結果を得ることができるが、付加製造プロセス中にオーバーハング角度制約も考慮する必要がある。重力の影響により、構成部材の方向と水平面との間の角度が小さくなるにつれて、製造成形の品質が低下する。角度が小さすぎると、構造が崩れて構造のプリントに失敗する。したがって、構造における構成部材のオーバーハング角度、すなわち構成部材と水平方向とのなす角度は、プリント材料の自己支持臨界角より大きい必要があり、自己支持臨界角の値は、材料自体の成形性質及びプリントパラメータに関連する。
【0006】
構造レイアウト、幾何学的及び3Dプリント技術の合理的かつ効率的な組み合わせは、複雑な離散構造の一体型最適化設計及び製造にとって重要な要因である。3Dプリントプロセスにおける自己支持製造制約の問題を解決するために、従来の処理方法は、オーバーハング角度が小さすぎる構成部材の下に支持構造を追加することである。しかしながら、3Dプリントプロセス中に支持構造を追加することは、材料コスト及びプリント時間を増加させ、後で支持構造をスクリーニングすることが困難になり、さらには構造成形の失敗を招く。
【0007】
要約すると、構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法を研究し、複雑なトラスシステムなどの離散最適化構造の三軸3Dプリントの一体設計及び製造を実現することは、非常に必要である。
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明は、従来技術における欠点を克服し、構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法を提供することを目的とする。
【課題を解決するための手段】
【0009】
このような構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法は、
S1、レイアウト一体型最適化:まず、制約条件及びパラメータを入力し、最小接続基本構造を確立し、オーバーハング角度制約に違反する構成部材をスクリーニングした後にレイアウト最適化モデルを確立し、反復を通じて数回に分けてすべての構成部材をレイアウト最適化モデルに追加するステップと、
S2、幾何学的一体型最適化:レイアウト最適化の結果に基づいて、製造制約構成部材のオーバーハング角度を考慮し、反復最適化戦略を用いてレイアウトに対して構成部材のマージ及び節点の融合を行い、交差構成部材を処理し、最適化結果を得るステップと、
S3、3Dプリント一体製造:最適化結果によって構造情報を抽出し、構造数値情報には節点の位置、構成部材の接続及び断面の寸法が含まれ、構成部材の組み立て及び節点の生成処理の後、3Dソリッドモデルを確立し、次にソリッドモデルをスライスしてプリントパスを生成し、3Dプリントを行うステップとを含む。
【0010】
好ましくは、ステップS1は、具体的には、
S1.1、設計条件及びパラメータの入力:設計領域の寸法、材料の引張強度と圧縮強度、荷重作業条件及び境界制約を入力し、最適化プロセスにおけるグリッド密度、初期基本構造の構成部材の長さ閾値、自己支持臨界角及び成形方向を指定するステップと、
S1.2、最小接続基本構造の確立:均一な格子離散化を用いて設計領域を処理し、任意の2つの節点を接続して最小接続基本構造を形成し、長さが初期基本構造の構成部材の長さ閾値を超えない構成部材集合を初期基本構造とし、長さが初期基本構造の構成部材の長さ閾値を超える構成部材集合を潜在的な構成部材集合とするステップと、
S1.3、構成部材のスクリーニング:構成部材の方向と成形方向との間の角度の余弦値を計算し、角度の余弦値が自己支持臨界角の正弦値より大きい場合、該構成部材はオーバーハング角度制約を満たし、追加の支持構造を追加する必要がなく、初期基本構造及び潜在的な構成部材集合におけるオーバーハング角度制約を満たさない構成部材をスクリーニングするステップと、
S1.4、レイアウト最適化モデルの確立:構成部材の内力と荷重との間のバランス行列B及びレイアウト最適化数学モデルを確立し、トラス構造の総体積を最小にすることを目的関数として定義し、レイアウト最適化モデルを導出し、レイアウト最適化モデルにおけるi本目の構成部材に発生する相対変位をuとし、構成部材ユニットの長さをlとし、仮想ひずみu/lは、

(1)を満たすステップと、
S1.5、構成部材の追加及び反復解法:潜在的な構成部材集合における各構成部材の仮想ひずみを計算し、各構成部材の仮想ひずみ及び式(1)の違反の度合いに基づいて潜在的な構成部材集合をソートし、潜在的な構成部材集合から違反の度合いが大きいKadd本の構成部材を選択してレイアウト最適化モデルの基本構造に移動し、新しいレイアウト最適化モデルを再び解き、潜在的な構成部材集合におけるすべての構成部材がレイアウト最適化モデルに追加され、式(1)の要件を満たすまで、上記のステップを複数回反復するステップとを含む。
【0011】
好ましくは、ステップS1において、レイアウト最適化数学モデルは、構成部材の断面積a、構成部材の内力qを設計変数とし、構造の内力と外力のバランス、材料強度限界及びゼロ以上の面積を制約条件とし、上記制約条件の式は、

(2)であり、
トラス構造の総体積を最小にすることを設計目標とし、目的関数は、

(3)であり、
ここで、a=[a,a,…aは、構成部材ユニットの断面積であり、mは、構成部材の数であり、q=[q,q,…qは、構成部材ユニットの内力であり、引張は正の値、圧縮は負の値として定義され、Vは、レイアウト最適化モデルの構造総体積であり、l=[l,l,…lは、レイアウト最適化モデルにおける構成部材ユニットの長さであり、Bは、構成部材の方向を含むバランス行列であり、fαは、節点荷重ベクトルであり、αは、作業条件番号であり、σ及びσは、それぞれ材料の圧縮限界強度及び引張限界強度である。
【0012】
好ましくは、ステップS1において、初期基本構造のバランス行列Bが解けない場合、初期基本構造の構成部材の長さ閾値及びグリッド密度を増大させ、新しい初期基本構造を形成し、改めて解く。
【0013】
好ましくは、ステップS2は、具体的には、
S2.1、レイアウト一体型最適化の結果の抽出:レイアウト最適化の結果に基づいて、異なる構成部材のフィルタリング閾値を設定し、断面積が小さすぎる構成部材をスクリーニングし、かつ重複構成部材をマージし、これを幾何学的最適化モデルの初期解とするステップと、
S2.2、節点の融合及び構造の簡略化:節点のマージ閾値を設定し、隣接する節点をグループ化し、各グループの節点の中心点に簡略化するステップと、
S2.3、幾何学的最適化モデルの確立:レイアウト最適化モデルに基づいて節点座標変数を追加し、節点の移動範囲及びオーバーハング角度を制約し、トラス構造の総体積を最小にすることを目的関数として定義し、幾何学的最適化モデルを確立するステップと、
S2.4、交差構成部材の処理:最適化結果がオーバーハング角度を考慮した幾何学的最適化モデルの制約条件を満たすまで、ステップS2.2~ステップS2.3を繰り返し、構造における構成部材の交差状況を検出し、構成部材の交差箇所に新しい節点を形成し、新しい節点に基づいて元の構成部材を複数本の構成部材に分割し、交差構成部材が処理されたモデルの幾何学的最適化モデルを再び解き、最適化結果を得、最適化解法の前後のモデルの構造総体積の変化が設定された限界値より小さい場合、交差構成部材の処理が成功したと判断され、新しい結果を直接出力し、そうでない場合、元の結果を出力するステップとを含む。
【0014】
好ましくは、ステップS2において、幾何学的最適化数学モデルは、構成部材の断面積a、構成部材の内力q、節点座標x、y、zを設計変数とし、構造の内力と外力のバランス、材料強度限界、節点の移動範囲、ゼロ以上の面積及び節点座標のオーバーハング角度を制約条件とし、上記制約条件の式は、

(4)であり、
トラス構造の総体積を最小にすることを設計目標とし、目的関数は、

(5)であり、
ここで、a=[a,a,…aは、構成部材ユニットの断面積であり、mは、構成部材の数であり、q=[q,q,…qは、構成部材ユニットの内力であり、引張は正の値、圧縮は負の値として定義され、Vは、構造総体積であり、l=[l,l,…lは、構成部材ユニットの長さであり、Bは、構成部材の方向を含むバランス行列であり、fαは、節点荷重ベクトルであり、αは、作業条件番号であり、σ-及びσ+は、それぞれ材料の圧縮限界強度及び引張限界強度である。
i本目の構成部材の両端の節点N、Nの座標をN(x,y,z)、N(x,y,z)とし、X、Y、Zは、それぞれi本目の構成部材の長さlの直交座標系におけるx、y、z軸方向の投影長さであり、すなわち、X=x-x、Y=y-y、Z=z-zであり、θminは、最初に設定された自己支持臨界角であり、d、d、dは、それぞれ標準化された成形方向ベクトルの3つの成分であり、成形方向は(0,0,1)に設定され、xub、xlbは、それぞれ節点のx座標の移動範囲の上限値と下限値であり、yub、ylb、zub、zlbは同様に、節点座標の初期値及びグリッド密度に基づいて得られ、節点の移動範囲は設計領域を超えない。
【0015】
好ましくは、ステップS3において、Rhinoソフトウェアによって3Dモデリングを行い、3Dモデリングで得られたソリッドモデルをCuraソフトウェアによってスライスし、プリントパスを生成する。
【発明の効果】
【0016】
本発明の有益な効果は、以下のとおりである。
1)本発明が提供する構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法は、各最適化プロセス中に、プリント製造における構成部材のオーバーハング角度制約を考慮し、自己支持構造の生成を最適化し、プリントプロセス中に追加の支持構造を追加する必要がないため、材料コスト及びプリント時間を節約し、同時に後で支持構造をスクリーニングするのが難しいという問題を回避し、支持構造なしの一体成形設計及び製造を実現する。
2)本発明が提供する構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法は、3Dプリント製造制約構成部材のオーバーハング角度を考慮し、レイアウト一体型最適化プロセスと幾何学的一体型最適化プロセスの組み合わせに基づいて、「構成部材追加法」のレイアウト一体型最適化プロセスによって大規模なレイアウト最適化問題の効率的な反復解法を実現する。幾何学的一体型最適化プロセスにおける構成部材の融合、節点の移動処理の複数回の反復により、冗長な構成部材を効果的にマージし、節点の数を減少させ、レイアウト最適化の結果を簡略化し、構造の規則化を実現する。3Dモデリング、ソリッドモデルスライス、プリントパスの作成によって複雑なトラスシステムなどの離散最適化構造の支持構造なしの三軸3Dプリントの一体設計及び製造を実現する。
【図面の簡単な説明】
【0017】
図1】本発明の構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法の具体的なフローチャートである。
図2】ホーン状構造の自己支持臨界角のテストモデル図である。
図3a】一方向に中心に力が受けられる垂直トラスの設計領域の概略図である。
図3b】双方向に中心に力が受けられる垂直トラスの設計領域の概略図である。
図4】異なる支持臨界角時の、一方向に中心に力が受けられる垂直トラスの構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造テスト結果である。
図5】異なる支持臨界角時の、双方向に中心に力が受けられる垂直トラスの構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造テスト結果である。
【発明を実施するための形態】
【0018】
以下、実施例を参照しながら本発明をさらに説明する。下記実施例の説明は、本発明の理解を支援するためのものに過ぎない。なお、当業者であれば、本発明の原理から逸脱することなく、本発明に対していくつかの改良及び修飾を行うことができ、これらの改良及び修飾も本発明の特許請求の範囲に含まれる。
【0019】
実施例1
実施例として、図1に示すように、構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法は、具体的には、ステップS1~S3を含む。
S1、レイアウト一体型最適化:オブジェクト指向のPythonモジュール化アルゴリズムフレームワークによって実現され、まず、制約条件及びパラメータを入力し、最小接続基本構造を確立し、オーバーハング角度制約に違反する構成部材をスクリーニングした後にレイアウト最適化モデルを確立し、反復を通じて数回に分けてすべての構成部材をレイアウト最適化モデルに追加する。ステップS1は、具体的には、ステップS1.1~S1.5を含む。
S1.1、設計条件及びパラメータの入力:設計領域の寸法、材料の引張強度と圧縮強度、荷重作業条件及び境界制約を入力し、最適化プロセスにおけるグリッド密度、初期基本構造の構成部材の長さ閾値、自己支持臨界角及び成形方向を指定する。
S1.2、最小接続基本構造の確立:均一な格子離散化を用いて設計領域を処理し、任意の2つの節点を接続して最小接続基本構造を形成し、長さが初期基本構造の構成部材の長さ閾値を超えない構成部材集合を初期基本構造とし、長さが初期基本構造の構成部材の長さ閾値を超える構成部材集合を潜在的な構成部材集合とする。
S1.3、構成部材のスクリーニング:構成部材の方向と成形方向との角度の余弦値を計算し、角度の余弦値が自己支持臨界角の正弦値より大きい場合、該構成部材はオーバーハング角度制約を満たし、すなわち、プリントプロセス中に追加の支持構造を追加する必要がなく、初期基本構造及び潜在的な構成部材集合におけるオーバーハング角度制約を満たさない構成部材をスクリーニングし、これらの構成部材が初回の最適化及びその後の反復最適化プロセス中に構造に現れないことを確保する。
S1.4、レイアウト最適化モデルの確立:構成部材の内力と荷重との間のバランス行列B及びレイアウト最適化数学モデルを確立し、トラス構造の総体積を最小にすることを目的関数として定義し、レイアウト最適化モデルを導出し、レイアウト最適化数学モデルは構成部材の断面積a、構成部材の内力qを設計変数とし、構造の内力と外力のバランス、材料強度限界及びゼロ以上の面積を制約条件とし、上記制約条件の式は、

であり、
トラス構造の総体積を最小にすることを設計目標とし、目的関数は、

であり、
ここで、a=[a,a,…,aは、構成部材ユニットの断面積であり、mは、構成部材の数であり、q=[q,q,…,qは、構成部材ユニットの内力であり、引張は正の値、圧縮は負の値として定義され、Vは、レイアウト最適化モデルの構造総体積であり、l=[l,l,…,lは、レイアウト最適化モデルにおける構成部材ユニットの長さであり、Bは、構成部材の方向を含むバランス行列であり、fαは、節点荷重ベクトルであり、αは、作業条件番号であり、σ及びσは、それぞれ材料の圧縮限界強度及び引張限界強度である。
レイアウト最適化モデルにおいて、i本目の構成部材に発生する相対変位をuとし、構成部材ユニットの長さをlとし、仮想ひずみu/lは、

を満たす。
初期基本構造のバランス行列Bが解けない場合、初期基本構造の構成部材の長さ閾値及びグリッド密度を増大させ、新しい初期基本構造を形成し、改めて解く。
S1.5、構成部材の追加及び反復解法:潜在的な構成部材集合の各構成部材の仮想ひずみを計算し、各構成部材の仮想ひずみ及びステップS1.4における仮想ひずみ要件の違反の度合いに基づいて潜在的な構成部材集合をソートし、潜在的な構成部材集合から違反の度合いが大きいKadd本の構成部材を選択してレイアウト最適化モデルの基本構造に移動し、新しいレイアウト最適化モデルを再び解き、潜在的な構成部材集合のすべての構成部材がレイアウト最適化モデルに追加され、ステップS1.4における仮想ひずみ要件を満たすまで、上記のステップを複数回反復する。その本質は、解法プロセス中にバランス行列の規模を動的に調整し、最適化問題を効果的に簡略化し、線形計画解法の効率を向上させることである。
S2、幾何学的一体型最適化:オブジェクト指向のPythonモジュール化アルゴリズムフレームワークによって実現され、レイアウト最適化の結果に基づいて、製造制約構成部材のオーバーハング角度を考慮し、反復最適化戦略を用いてレイアウトに対して構成部材のマージ及び節点の融合を行い、交差構成部材を処理し、最適化結果を得る。ステップS2は、具体的には、ステップS2.1~S2.4を含む。
S2.1、レイアウト一体型最適化の結果の抽出:レイアウト最適化の結果に基づいて、異なる構成部材のフィルタリング閾値を設定し、断面積が小さすぎる構成部材をスクリーニングし、かつ重複構成部材をマージし、すなわち、構成部材をマージし、これを幾何学的最適化モデルの初期解とする。
S2.2、節点のマージ及び構造の簡略化:節点のマージ閾値を設定し、隣接する節点をグループ化し、各グループの節点の中心点に簡略化し、すなわち節点を融合する。
S2.3、幾何学的最適化モデルの確立:レイアウト最適化モデルに基づいて節点座標変数を追加し、幾何学的最適化モデルを確立する。
幾何学的最適化数学モデルは、構成部材の断面積a、構成部材の内力q、節点座標x、y、zを設計変数とし、構造の内力と外力のバランス、材料強度限界、節点の移動範囲、ゼロ以上の面積及び節点座標のオーバーハング角度を制約条件とし、ここで、各節点は、すべての接続構成部材のオーバーハング角度制約を同時に考慮する必要があり、上記制約条件の式は、

であり、
トラス構造の総体積を最小にすることを設計目標とし、目的関数は、

であり、
ここで、a=[a,a,…aは、構成部材ユニットの断面積であり、mは、構成部材の数であり、q=[q,q,…qは、構成部材ユニットの内力であり、引張は正の値、圧縮は負の値として定義され、Vは、構造総体積であり、l=[l,l,…lは、構成部材ユニットの長さであり、Bは、構成部材の方向を含むバランス行列であり、fαは、節点荷重ベクトルであり、αは、作業条件番号であり、σ-及びσ+は、それぞれ材料の圧縮限界強度及び引張限界強度である。
i本目の構成部材の両端の節点N、Nの座標をN(x,y,z)、N(x,y,z)とし、X、Y、Zは、それぞれi本目の構成部材の長さlの直交座標系におけるx、y、z軸方向の投影長さであり、すなわち、X=x-x、Y=y-y、Z=z-zであり、θminは、最初に設定された自己支持臨界角であり、d、d、dは、それぞれ標準化された成形方向ベクトルの3つの成分であり、成形方向は(0,0,1)に設定され、xub、xlbは、それぞれ節点のx座標の移動範囲の上限値と下限値であり、yub、ylb、zub、zlbは同様に、節点座標の初期値及びグリッド密度に基づいて得られる。
節点の移動範囲を初期位置の付近に制限することで、幾何学的最適化の結果が理論的最適値からできるだけ逸脱しないことを確保することができ、節点の移動範囲の閾値はグリッド密度によって決まり、同時に幾何学的最適化プロセス中に節点が設計領域の外に移動しないことを確保するために、節点に設計領域の制約を加える必要がある。設計領域の制約には、設計領域の境界の節点の制約及び設計領域の内部の節点の制約という2種類が含まれる。最適化プロセス中に、境界上の節点は2種類の制約によって境界上のみを移動することができ、設計領域の内部の節点は、設計領域の境界を越えることができない。
二次元設計領域に対して、節点から境界線までの距離の制御によって2種類の制約を実現する。同様に、節点から境界面までの距離の制御は、三次元設計領域において制約を実現できる。しかし、すべての節点が設計領域の制約を必要とするわけではない。したがって、最適化プロセス中に設計領域から外れる可能性のある節点をスクリーニングしてから制約を加えることで、制約の数が減少し、最適化効率が向上する。
幾何学的最適化プロセス中に節点が移動可能性を有するため、接続された構成部材が最適化プロセス中にオーバーハング角度制約を満たして最適化結果がプリントできるように、Pythonアルゴリズムにおいて構成部材の両端の節点座標にオーバーハング角度制約を加える必要があり、各節点は、すべての接続された構成部材のオーバーハング角度制約を同時に考慮する必要がある。
S2.4、交差構成部材の処理:最適化結果がステップS2.3における制約条件の制限式を満たすまで、ステップS2.2~ステップS2.3を繰り返し、構造における構成部材の交差状況を検出し、構成部材の交差箇所に新しい節点を形成し、新しい節点に基づいて元の構成部材を複数本の構成部材に分割し、交差構成部材が処理されたモデルの幾何学的最適化モデルを再び解き、最適化結果を得、最適化解法の前後のモデルの構造総体積の変化が設定された限界値より小さい場合、交差構成部材の処理が成功したと判断され、新しい結果を直接出力し、そうでない場合、元の結果を出力する。
S3、3Dプリント一体製造:最適化結果によって構造情報を抽出し、構造数値情報には節点の位置、構成部材の接続及び断面の寸法が含まれ、構成部材の組み立て及び節点の生成処理の後、Rhinoソフトウェアにおいて3Dソリッドモデルを確立し、次にCuraソフトウェアを利用してソリッドモデルをスライスしてプリントパスを生成し、3Dプリントを行う。
【0020】
実施例2
材料の自己支持臨界角の測定方法を提供し、実施例1で提供された構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法における構造の自己支持臨界角に対して参照データを提供することができる。
図2に示すように、この材料を使用してラッパ状構造をプリントし、前記ラッパ状構造は、高さが高くなるにつれて、オーバーハング角度が90°から0°まで徐々に変化し、ラッパ状構造はある位置に深刻な欠陥が発生した場合、構造に深刻な欠陥が発生し始める箇所の接線と水平面との間の角度を測定し、この深刻な欠陥箇所に対応するオーバーハング角度は、該材料の自己支持臨界角である。
本実施例において、PLA材料の自己支持臨界角を測定し、プリント温度を210℃に設定した場合、プリントテストの結果から、使用したPLA材料の自己支持臨界角は約39°~41°であることが示された。
【0021】
実施例3
別の実施例として、実施例1で提供された構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法により、異なる支持臨界角の製造制約下で、一方向に中心に力が受けられる垂直トラス構造に対して最適化設計及び3Dプリントを行った。
図3aに示すように、設計領域の設定は、4×4×10の立方体で、設計領域の最上部の中心には一方向の単位水平荷重Pが作用し、設計領域の底部の周囲のコーナーポイントには3方向ヒンジが制約され、グリッド密度は1に設定され、材料の引張強度と圧縮強度の限界はすべて1に設定された。三軸3Dプリントを用い、線材は実施例2と同じPLAプラスチックであり、プリント成形方向は垂直上向き、すなわち(0,0,1)であった。実施例2に従って、PLAプラスチック材料の自己支持臨界角は39°~41°であり、本実施例では、プログラムにおいて目標構造の自己支持臨界角のパラメータをそれぞれ40°、50°、60°に設定した。最適化結果の変化量を比較することにより、異なる自己支持臨界角での該最適化設計及び製造方法の有効性が検証された。
異なる自己支持臨界角での構造のレイアウト一体型最適化の結果、幾何学的一体型最適化の結果、3Dプリント一体製造の結果を図4に示す。図4において、薄い色は構成部材が引っ張られることを表し、濃い色は構成部材が圧縮されることを表し、線の太さは構成部材の相対的な太さを表す。
異なる自己支持臨界角の製造制約下で一方向に中心に力が受けられる垂直トラスの各プロセスの最適化結果は、以下のとおりである。

図4に示すように、3Dプリント一体製造の結果は、プリントプロセス中に、材料が崩れる現象が発生しないことを示し、最適化結果は、支持構造を追加することなく、首尾よく製造成形できることを説明する。
実施例2で測定されたPLA材料の自己支持臨界角に基づいて、自己支持臨界角が40°に設定された場合、幾何学的一体型最適化の材料の増加量は最大でわずか2.98%であった。自己支持臨界角が50°に設定された場合、材料の増加量は最大で5%を超えず、依然として追加の支持構造を追加することなく材料固有の自己支持臨界角を超える3Dプリントを行うことができ、本発明の方法の有効性が検証された。
【0022】
実施例4
別の実施例として、実施例1で提供された構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法により、異なる支持臨界角の製造制約下で、双方向に中心に力が受けられる垂直トラス構造に対して最適化設計及び3Dプリントを行った。
図3bに示すように、設計領域の設定は、4×4×10の立方体で、設計領域の最上部の中心には双方向の単位水平荷重Pが作用し、ここで、X方向の単位水平力は作業条件1で、濃い色であり、Y方向の単位水平力は作業条件2で、薄い色であった。設計領域の底部の周囲のコーナーポイントには3方向ヒンジが制約され、グリッド密度は1.5に設定され、他のパラメータは実施例3と同じであった。
異なる自己支持臨界角での構造のレイアウト一体型最適化の結果、幾何学的一体型最適化の結果、3Dプリント一体製造の結果を図5に示す。図5において、最も薄い色の構成部材は引っ張られ、最も濃い色の構成部材は圧縮され、線の太さは構成部材の相対的な太さを表し、色が最も薄い色と最も濃い色との間にある灰色の構成部材は作業条件1、作業条件2でそれぞれ引っ張られ、圧縮された。
異なる自己支持臨界角の製造制約下で双方向に中心に力が受けられる垂直トラスの各プロセスの最適化結果は、以下のとおりである。

図5に示すように、3Dプリント一体製造結果は、プリントプロセス中に、材料が崩れる現象が発生しないことを示し、双方向に中心に力が受けられる垂直トラスに対して、最適化結果も支持構造を追加することなく製造成形に成功できることを説明する。
実施例3と同様に、実施例2で測定されたPLA材料の自己支持臨界角に基づいて、自己支持臨界角が40°に設定された場合、幾何学的一体型最適化の材料の増加量は最大でわずか0.49%であった。自己支持臨界角が50°に設定された場合、材料の増加量は2.25%であり、依然として追加の支持構造を追加することなく材料固有の自己支持臨界角を超える3Dプリントを行うことができる。
実施例3、4から分かるように、本発明が提供する構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法は、複雑な構造の設計及び3Dプリント時に、重力によるオーバーハング効果により、プリントプロセス中に支持構造を追加しなければならず、そして追加の材料消費をもたらし、支持構造を取り除く必要があるなどの問題を解決し、それにより複雑なトラスシステムなどの離散最適化構造の三軸3Dプリントの一体設計及び製造を実現する。製造制約構成部材のオーバーハング角度の幾何学的一体型最適化プロセスを考慮し、冗長な構成部材を効果的にマージし、節点の数を減少させ、レイアウト最適化の結果を簡略化し、構造の規則化を実現する。そして、実際の検証により、本発明の方法は有効である。
図1
図2
図3a
図3b
図4
図5
【手続補正書】
【提出日】2023-11-01
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法であって、
S1、レイアウト一体型最適化:まず、制約条件及びパラメータを入力し、最小接続基本構造を確立し、オーバーハング角度制約に違反する構成部材をスクリーニングした後にレイアウト最適化モデルを確立し、反復を通じて数回に分けてすべての構成部材をレイアウト最適化モデルに追加するステップと、
S2、幾何学的一体型最適化:レイアウト最適化の結果に基づいて、製造制約構成部材のオーバーハング角度を考慮し、反復最適化戦略を用いてレイアウトに対して構成部材のマージ及び節点の融合を行い、交差構成部材を処理し、最適化結果を得るステップと、
S3、3Dプリント一体製造:最適化結果によって構造情報を抽出し、構造数値情報には、節点の位置、構成部材の接続及び断面の寸法が含まれ、構成部材の組み立て及び節点の生成処理の後、3Dソリッドモデルを確立し、次にソリッドモデルをスライスしてプリントパスを生成し、3Dプリントを行うステップとを含むことを特徴とする構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法。
【請求項2】
ステップS1は、具体的には、
S1.1、設計条件及びパラメータの入力:設計領域の寸法、材料の引張強度と圧縮強度、荷重作業条件及び境界制約を入力し、最適化プロセスにおけるグリッド密度、初期基本構造の構成部材の長さ閾値、自己支持臨界角及び成形方向を指定するステップと、
S1.2、最小接続基本構造の確立:均一な格子離散化を用いて設計領域を処理し、任意の2つの節点を接続して最小接続基本構造を形成し、長さが初期基本構造の構成部材の長さ閾値を超えない構成部材集合を初期基本構造とし、長さが初期基本構造の構成部材の長さ閾値を超える構成部材集合を潜在的な構成部材集合とするステップと、
S1.3、構成部材のスクリーニング:構成部材の方向と成形方向との角度の余弦値を計算し、角度の余弦値が自己支持臨界角の正弦値より大きい場合、該構成部材はオーバーハング角度制約を満たし、追加の支持構造を追加する必要がなく、初期基本構造及び潜在的な構成部材集合におけるオーバーハング角度制約を満たさない構成部材をスクリーニングするステップと、
S1.4、レイアウト最適化モデルの確立:構成部材の内力と荷重との間のバランス行列B及びレイアウト最適化数学モデルを確立し、トラス構造の総体積を最小にすることを目的関数として定義し、レイアウト最適化モデルを導出し、レイアウト最適化モデルにおける構成部材のi本目の構成部材に発生する相対変位をuとし、構成部材ユニットの長さをlとし、仮想ひずみu/lは、
(1)を満たすステップと、
S1.5、構成部材の追加及び反復解法:潜在的な構成部材集合における各構成部材の仮想ひずみを計算し、各構成部材の仮想ひずみ及び式(1)の違反の度合いに基づいて潜在的な構成部材集合をソートし、潜在的な構成部材集合から違反の度合いが大きいKadd本の構成部材を選択してレイアウト最適化モデルの基本構造に移動し、新しいレイアウト最適化モデルを再び解き、潜在的な構成部材集合におけるすべての構成部材がレイアウト最適化モデルに追加され、式(1)の要件を満たすまで、上記のステップを複数回反復するステップとを含むことを特徴する請求項1に記載の構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法。
【請求項3】
ステップS1において、レイアウト最適化数学モデルは構成部材の断面積a、構成部材の内力qを設計変数とし、構造の内力と外力のバランス、材料強度限界及びゼロ以上の面積を制約条件とし、上記制約条件の式は、
(2)であり、
トラス構造の総体積を最小にすることを設計目標とし、目的関数は、
(3)であり、
ここで、a=[a,a,…,aは、構成部材ユニットの断面積であり、mは、構成部材の数であり、q=[q,q,…,qは、構成部材ユニットの内力であり、引張は正の値、圧縮は負の値として定義され、Vは、レイアウト最適化モデルの構造総体積であり、l=[l,l,…,lは、レイアウト最適化モデルにおける構成部材ユニットの長さであり、Bは、構成部材の方向を含むバランス行列であり、fαは、節点荷重ベクトルであり、αは、作業条件番号であり、σ及びσは、それぞれ材料の圧縮限界強度及び引張限界強度であることを特徴とする請求項2に記載の構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法。
【請求項4】
ステップS1において、初期基本構造のバランス行列Bが解けない場合、初期基本構造の構成部材の長さ閾値及びグリッド密度を増大させ、新しい初期基本構造を形成し、改めて解くことを特徴とする請求項2に記載の構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法。
【請求項5】
ステップS2は、具体的には、
S2.1、レイアウト一体型最適化の結果の抽出:レイアウト最適化の結果に基づいて、異なる構成部材のフィルタリング閾値を設定し、断面積が小さすぎる構成部材をスクリーニングし、かつ重複構成部材をマージし、これを幾何学的最適化モデルの初期解とするステップと、
S2.2、節点の融合及び構造の簡略化:節点のマージ閾値を設定し、隣接する節点をグループ化し、各グループの節点の中心点に簡略化するステップと、
S2.3、幾何学的最適化モデルの確立:レイアウト最適化モデルに基づいて節点座標変数を追加し、節点の移動範囲及びオーバーハング角度を制約し、トラス構造の総体積を最小にすることを目的関数として定義し、幾何学的最適化モデルを確立するステップと、
S2.4、交差構成部材の処理:最適化結果がオーバーハング角度を考慮した幾何学的最適化モデルの制約条件を満たすまで、ステップS2.2~ステップS2.3を繰り返し、構造における構成部材の交差状況を検出し、構成部材の交差箇所に新しい節点を形成し、新しい節点に基づいて元の構成部材を複数本の構成部材に分割し、交差構成部材が処理されたモデルの幾何学的最適化モデルを再び解き、最適化結果を得、最適化解法の前後のモデルの構造総体積の変化が設定された限界値より小さい場合、交差構成部材の処理が成功したと判断され、新しい結果を直接出力し、そうでない場合、元の結果を出力するステップとを含むことを特徴とする請求項1に記載の構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法。
【請求項6】
ステップS2において、幾何学的最適化数学モデルは構成部材の断面積a、構成部材の内力q、節点座標x、y、zを設計変数とし、構造の内力と外力のバランス、材料強度限界、節点の移動範囲、ゼロ以上の面積及び節点座標のオーバーハング角度を制約条件とし、上記制約条件の式は、
(4)であり
トラス構造の総体積を最小にすることを設計目標とし、目的関数は、
(5)であり、
ここで、a=[a,a,…aは、構成部材ユニットの断面積であり、mは、構成部材の数であり、q=[q,q,…qは、構成部材ユニットの内力であり、引張は正の値、圧縮は負の値として定義され、Vは、構造総体積であり、l=[l,l,…lは、構成部材ユニットの長さであり、Bは、構成部材の方向を含むバランス行列であり、fαは、節点荷重ベクトルであり、αは、作業条件番号であり、σ-及びσ+は、それぞれ材料の圧縮限界強度及び引張限界強度であり、
i本目の構成部材の両端の節点N、Nの座標をN(x,y,z)、N(x,y,z)とし、X、Y、Zは、それぞれi本目の構成部材の長さlの直交座標系におけるx、y、z軸方向の投影長さであり、すなわち、X=x-x、Y=y-y、Z=z-zであり、θminは、最初に設定された自己支持臨界角であり、d、d、dは、それぞれ標準化された成形方向ベクトルの3つの成分であり、成形方向は(0,0,1)に設定され、xub、xlbは、それぞれ節点のx座標の移動範囲の上限値と下限値であり、yub、ylb、zub、zlbは同様に、節点座標の初期値及びグリッド密度に基づいて得られ、節点の移動範囲は設計領域を超えないことを特徴とする請求項5に記載の構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法。
【請求項7】
ステップS3において、Rhinoソフトウェアによって3Dモデリングを行い、3Dモデリングで得られたソリッドモデルをCuraソフトウェアによってスライスし、プリントパスを生成することを特徴とする請求項1に記載の構造レイアウト、幾何学的及び3Dプリントの一体型最適化設計及び製造方法。