IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 大日本印刷株式会社の特許一覧

特開2024-63170蓄電デバイス用外装材、蓄電デバイス用外装材の製造方法、及び蓄電デバイス
<>
  • 特開-蓄電デバイス用外装材、蓄電デバイス用外装材の製造方法、及び蓄電デバイス 図1
  • 特開-蓄電デバイス用外装材、蓄電デバイス用外装材の製造方法、及び蓄電デバイス 図2
  • 特開-蓄電デバイス用外装材、蓄電デバイス用外装材の製造方法、及び蓄電デバイス 図3
  • 特開-蓄電デバイス用外装材、蓄電デバイス用外装材の製造方法、及び蓄電デバイス 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024063170
(43)【公開日】2024-05-10
(54)【発明の名称】蓄電デバイス用外装材、蓄電デバイス用外装材の製造方法、及び蓄電デバイス
(51)【国際特許分類】
   H01M 50/131 20210101AFI20240501BHJP
   H01M 50/105 20210101ALI20240501BHJP
   H01M 50/145 20210101ALI20240501BHJP
   H01M 50/121 20210101ALI20240501BHJP
   H01M 50/129 20210101ALI20240501BHJP
   H01M 50/117 20210101ALI20240501BHJP
   H01M 50/128 20210101ALI20240501BHJP
【FI】
H01M50/131
H01M50/105
H01M50/145
H01M50/121
H01M50/129
H01M50/117
H01M50/128
【審査請求】有
【請求項の数】16
【出願形態】OL
(21)【出願番号】P 2024032676
(22)【出願日】2024-03-05
(62)【分割の表示】P 2020567707の分割
【原出願日】2020-01-23
(31)【優先権主張番号】P 2019009816
(32)【優先日】2019-01-23
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000002897
【氏名又は名称】大日本印刷株式会社
(74)【代理人】
【識別番号】100124431
【弁理士】
【氏名又は名称】田中 順也
(74)【代理人】
【識別番号】100174160
【弁理士】
【氏名又は名称】水谷 馨也
(72)【発明者】
【氏名】三塚 聖
(72)【発明者】
【氏名】藤原 亮
(57)【要約】      (修正有)
【課題】蓄電デバイスの内部に水分が侵入した場合にも、耐腐食性皮膜を備えたバリア層と接着層との高い密着性が維持される蓄電デバイス用外装材を提供する。
【解決手段】少なくとも、基材層と、バリア層と、接着層と、熱融着性樹脂層とをこの順に備える積層体から構成されており、前記接着層は、イソシアネート基を有する化合物を含む樹脂組成物の硬化物であり、前記バリア層の少なくとも前記接着層側の表面に、耐腐食性皮膜を備えており、前記耐腐食性皮膜について、飛行時間型2次イオン質量分析法を用いて分析した場合に、CrPO4 -に由来するピーク強度PCrPO4に対するPO3 -に由来するピーク強度PPO3の比PPO3/CrPO4が、6~120の範囲内にある、蓄電デバイス用外装材。
【選択図】なし
【特許請求の範囲】
【請求項1】
少なくとも、表面被覆層と、基材層と、黒色の接着剤層と、バリア層と、接着層と、熱融着性樹脂層とをこの順に備える積層体から構成されており、
前記接着層は、イソシアネート基を有する化合物を含む樹脂組成物の硬化物であり、
前記バリア層の少なくとも前記接着層側の表面に、耐腐食性皮膜を備えており、
前記耐腐食性皮膜について、飛行時間型2次イオン質量分析法を用いて分析した場合に、CrPO4 -に由来するピーク強度PCrPO4に対するPO3 -に由来するピーク強度PPO3の比PPO3/CrPO4が、6以上120以下の範囲内にあり、
前記耐腐食性皮膜のX線光電子分光法による分析によって、287eVから290eVの範囲にO-C=O結合のC1sに由来するピークPOCOと、285eVにC-C結合のC1sに由来するピークPC-Cが検出され、
前記ピークPOCOの高さを前記ピークPC-Cの高さで除して得られるピーク高さ比の値POCO/C-Cが、0.10以上0.50以下の範囲にある、蓄電デバイス用外装材。
【請求項2】
少なくとも、基材層と、バリア層と、接着層と、熱融着性樹脂層とをこの順に備える積層体から構成されており、
前記基材層は、ポリエステルフィルム及びポリアミドフィルムを含み、
前記接着層は、イソシアネート基を有する化合物を含む樹脂組成物の硬化物であり、
前記バリア層の少なくとも前記接着層側の表面に、耐腐食性皮膜を備えており、
前記耐腐食性皮膜について、飛行時間型2次イオン質量分析法を用いて分析した場合に、CrPO4 -に由来するピーク強度PCrPO4に対するPO3 -に由来するピーク強度PPO3の比PPO3/CrPO4が、6以上120以下の範囲内にあり、
前記耐腐食性皮膜のX線光電子分光法による分析によって、287eVから290eVの範囲にO-C=O結合のC1sに由来するピークPOCOと、285eVにC-C結合のC1sに由来するピークPC-Cが検出され、
前記ピークPOCOの高さを前記ピークPC-Cの高さで除して得られるピーク高さ比の値POCO/C-Cが、0.10以上0.50以下の範囲にある、蓄電デバイス用外装材。
【請求項3】
少なくとも、基材層と、バリア層と、イソシアネート基を有する化合物を含む樹脂組成物の硬化物により形成された層と、熱融着性樹脂層とをこの順に備える積層体から構成されており、
前記基材層は、ポリエステルフィルム及びポリアミドフィルムを含み、
前記バリア層の少なくとも前記接着層側の表面に、耐腐食性皮膜を備えており、
前記耐腐食性皮膜について、飛行時間型2次イオン質量分析法を用いて分析した場合に、CrPO4 -に由来するピーク強度PCrPO4に対するPO3 -に由来するピーク強度PPO3の比PPO3/CrPO4が、6以上120以下の範囲内にあり、
前記耐腐食性皮膜のX線光電子分光法による分析によって、287eVから290eVの範囲にO-C=O結合のC1sに由来するピークPOCOと、285eVにC-C結合のC1sに由来するピークPC-Cが検出され、
前記ピークPOCOの高さを前記ピークPC-Cの高さで除して得られるピーク高さ比の値POCO/C-Cが、0.10以上0.50以下の範囲にある、蓄電デバイス用外装材。
【請求項4】
前記耐腐食性皮膜のX線光電子分光法による分析によって、576eVから581eVの範囲に、クロム化合物のCr2p3/2に由来するピークが検出される、請求項1~3のいずれか1項に記載の蓄電デバイス用外装材。
【請求項5】
前記耐腐食性皮膜のX線光電子分光法による分析によって、132eVから135eVの範囲に、リン酸化合物のP2pに由来するピークが検出される、請求項1~4のいずれか1項に記載の蓄電デバイス用外装材。
【請求項6】
前記耐腐食性皮膜のX線光電子分光法による分析によって、685eVから689eVの範囲に、フッ素化合物のF1sに由来するピークが検出される、請求項1~5のいずれか1項に記載の蓄電デバイス用外装材。
【請求項7】
前記耐腐食性皮膜が、少なくとも、COOH基を有するアクリル系樹脂、クロム化合物、及びリン酸化合物を含む組成物から形成されている、請求項1~6のいずれか1項に記載の蓄電デバイス用外装材。
【請求項8】
前記アクリル系樹脂が、ポリアクリル酸、ポリアクリル酸のアンモニウム塩、ポリアクリル酸のナトリウム塩、及びポリアクリル酸のアミン塩からなる群より選択される少なくとも1種である、請求項7に記載の蓄電デバイス用外装材。
【請求項9】
前記アクリル系樹脂が、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体、前記共重合体のアンモニウム塩、前記共重合体のナトリウム塩、及び前記共重合体のアミン塩からなる群より選択される少なくとも1種である、請求項7に記載の蓄電デバイス用外装材。
【請求項10】
前記クロム化合物が、フッ化クロム(III)及び硝酸クロム(III)の少なくとも一方である、請求項7~9のいずれか1項に記載の蓄電デバイス用外装材。
【請求項11】
前記接着層を構成している樹脂組成物に含まれる樹脂は、ポリオレフィン骨格を有している、請求項1~10のいずれか1項に記載の蓄電デバイス用外装材。
【請求項12】
前記接着層が、酸変性ポリオレフィンを含む、請求項1~11のいずれか1項に記載の蓄電デバイス用外装材。
【請求項13】
前記接着層を赤外分光法で分析すると、無水マレイン酸に由来するピークが検出される、請求項1~12のいずれか1項に記載の蓄電デバイス用外装材。
【請求項14】
前記接着層の前記酸変性ポリオレフィンが、無水マレイン酸変性ポリプロピレンであり、
前記熱融着性樹脂層が、ポリプロピレンを含む、請求項12に記載の蓄電デバイス用外装材。
【請求項15】
少なくとも、表面被覆層と、基材層と、黒色の接着剤層と、バリア層と、接着層と、熱融着性樹脂層とがこの順となるように積層して積層体を得る工程を備えており、
前記接着層は、イソシアネート基を有する化合物を含む樹脂組成物の硬化物であり、
前記バリア層の少なくとも前記接着層側の表面に、耐腐食性皮膜を備えており、
前記耐腐食性皮膜について、飛行時間型2次イオン質量分析法を用いて分析した場合に、CrPO4 -に由来するピーク強度PCrPO4に対するPO3 -に由来するピーク強度PPO3の比PPO3/CrPO4が、6以上120以下の範囲内にあり、
前記耐腐食性皮膜のX線光電子分光法による分析によって、287eVから290eVの範囲にO-C=O結合のC1sに由来するピークPOCOと、285eVにC-C結合のC1sに由来するピークPC-Cが検出され、
前記ピークPOCOの高さを前記ピークPC-Cの高さで除して得られるピーク高さ比の値POCO/C-Cが、0.10以上0.50以下の範囲にある、蓄電デバイス用外装材の製造方法。
【請求項16】
少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子が、請求項1~14のいずれか1項に記載の蓄電デバイス用外装材により形成された包装体中に収容されている、蓄電デバイス。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、蓄電デバイス用外装材、蓄電デバイス用外装材の製造方法、及び蓄電デバイスに関する。
【背景技術】
【0002】
従来、様々なタイプの蓄電デバイスが開発されている。これらの蓄電デバイスにおいて、電極、電解質などにより構成される蓄電デバイス素子は、外装材などにより封止される必要がある。蓄電デバイス用外装材としては、金属製の外装材が多用されている。
【0003】
近年、電気自動車、ハイブリッド電気自動車、パーソナルコンピュータ、カメラ、携帯電話などの高性能化に伴い、多様な形状を有する蓄電デバイスが求められている。また、蓄電デバイスには、薄型化、軽量化なども求められている。しかしながら、従来多用されている金属製の外装材では、蓄電デバイス形状の多様化に追従することが困難である。また、金属製であるため、外装材の軽量化にも限界がある。
【0004】
そこで、多様な形状に加工が容易で、薄型化や軽量化を実現し得る蓄電デバイス用外装材として、基材層/バリア層/熱融着性樹脂層が順次積層されたフィルム状の積層体が提案されている(例えば、特許文献1を参照)。
【0005】
このようなフィルム状の蓄電デバイス用外装材においては、一般的に、成形により凹部が形成され、当該凹部によって形成された空間に電極や電解液などの蓄電デバイス素子を配し、熱融着性樹脂層同士を熱融着させることにより、蓄電デバイス用外装材の内部に蓄電デバイス素子が収容された蓄電デバイスが得られる。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2008-287971号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
蓄電デバイスの製造時や、蓄電デバイスの外装材の熱融着性樹脂層同士の熱融着部から、水分が侵入する場合がある。蓄電デバイスの内部に水分が侵入すると、水分と電解質などとが反応して、酸性物質を生成することがある。例えば、リチウムイオン蓄電デバイスなどに使用されている電解液には、電解質となるフッ素化合物(LiPF6、LiBF4など)が含まれており、フッ素化合物が水と反応すると、フッ化水素を発生することが知られている。
【0008】
フィルム状の積層体によって形成された蓄電デバイス用外装材のバリア層は、通常、金属箔などによって構成されており、バリア層に酸が接触すると腐食しやすいという問題がある。このような蓄電デバイス用外装材の耐腐食性を高める技術としては、化成処理によって表面に耐腐食性皮膜を形成したバリア層を用いる技術が知られている。
【0009】
従来、耐腐食性皮膜を形成する化成処理としては、酸化クロムなどのクロム化合物を用いたクロメート処理、リン酸化合物を用いたリン酸処理など種々の方法が知られている。
【0010】
しかしながら、本開示の発明者らが検討を重ねたところ、耐腐食性皮膜を備えた従来のバリア層は、接着層を介して熱融着性樹脂層と積層した場合に、蓄電デバイス用外装材に電解液が付着すると、バリア層の耐腐食性皮膜と接着層との高い密着性(すなわち、耐腐食性皮膜と接着層との界面における密着性)が維持できないことが明らかとなった。特に、蓄電デバイスの内部に水分が侵入し、電解液が水分を含む場合には、フッ化水素が発生しバリア層が腐食することで、耐腐食性皮膜を備えたバリア層と接着層との高い密着性の維持が困難である。
【0011】
このような状況下、本開示は、蓄電デバイスの内部に水分が侵入した場合にも、耐腐食性皮膜を備えたバリア層と接着層との高い密着性が維持される蓄電デバイス用外装材を提供することを主な目的とする。さらに、本開示は、当該蓄電デバイス用外装材の製造方法、及び当該蓄電デバイス用外装材を用いた蓄電デバイスを提供することも目的とする。
【課題を解決するための手段】
【0012】
本開示の発明者らは、上記のような課題を解決すべく鋭意検討を行った。その結果、少なくとも、基材層と、バリア層と、接着層と、熱融着性樹脂層とをこの順に備える積層体であって、バリア層の少なくとも接着層側の表面に、耐腐食性皮膜を備えている蓄電デバイス用外装材において、接着層の形成に特定の硬化剤を使用した上で、さらに、耐腐食性皮膜に特定のものを用いた場合に、蓄電デバイスの内部に水分が侵入しても、耐腐食性皮膜を備えたバリア層と接着層との高い密着性が維持されることを見出した。
本開示は、これらの知見に基づいて、さらに検討を重ねることにより完成された発明である。
【0013】
すなわち、本開示は、下記に掲げる態様の発明を提供する。
少なくとも、基材層と、バリア層と、接着層と、熱融着性樹脂層とをこの順に備える積層体から構成されており、
前記接着層は、イソシアネート基を有する化合物を含む樹脂組成物の硬化物であり、
前記バリア層の少なくとも前記接着層側の表面に、耐腐食性皮膜を備えており、
前記耐腐食性皮膜について、飛行時間型2次イオン質量分析法を用いて分析した場合に、CrPO4 -に由来するピーク強度PCrPO4に対するPO3 -に由来するピーク強度PPO3の比PPO3/CrPO4が、6以上120以下の範囲内にあり、
前記耐腐食性皮膜のX線光電子分光法による分析によって、287eVから290eVの範囲にO-C=O結合のC1sに由来するピークPOCOと、285eVにC-C結合のC1sに由来するピークPC-Cが検出され、
前記ピークPOCOの高さを前記ピークPC-Cの高さで除して得られるピーク高さ比の値POCO/C-Cが、0.10以上0.50以下の範囲にある、蓄電デバイス用外装材。
【発明の効果】
【0014】
本開示によれば、蓄電デバイスの内部に水分が侵入した場合にも、耐腐食性皮膜を備えたバリア層と接着層との高い密着性が維持される蓄電デバイス用外装材を提供することができる。また、本開示によれば、当該蓄電デバイス用外装材の製造方法、及び当該蓄電デバイス用外装材を用いた蓄電デバイスを提供することもできる。
【図面の簡単な説明】
【0015】
図1】本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。
図2】本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。
図3】本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。
図4】本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。
【発明を実施するための形態】
【0016】
本開示の蓄電デバイス用外装材は、少なくとも、基材層と、バリア層と、接着層と、熱融着性樹脂層とをこの順に備える積層体から構成されており、接着層は、イソシアネート基を有する化合物を含む樹脂組成物の硬化物であり、バリア層の少なくとも前記接着層側の表面に、耐腐食性皮膜を備えており、耐腐食性皮膜について、飛行時間型2次イオン質量分析法を用いて分析した場合に、CrPO4 -に由来するピーク強度PCrPO4に対するPO3 -に由来するピーク強度PPO3の比PPO3/CrPO4が、6以上120以下の範囲内にあり、耐腐食性皮膜のX線光電子分光法による分析によって、287eVから290eVの範囲にO-C=O結合のC1sに由来するピークPOCOと、285eVにC-C結合のC1sに由来するピークPC-Cが検出され、ピークPOCOの高さをピークPC-Cの高さで除して得られるピーク高さ比の値POCO/C-Cが、0.10以上0.50以下の範囲にあることを特徴とする。
【0017】
以下、図1から図4を参照しながら、本開示の蓄電デバイス用外装材、当該蓄電デバイス用外装材の製造方法、及び当該蓄電デバイス用外装材を用いた蓄電デバイスについて、詳述する。
【0018】
なお、本明細書において、数値範囲については、「~」で示される数値範囲は「以上」、「以下」を意味する。例えば、2~15mmとの表記は、2mm以上15mm以下を意味する。
【0019】
1.蓄電デバイス用外装材の積層構造
本開示の蓄電デバイス用外装材は、例えば図1から図4に示すように、少なくとも、基材層1、バリア層3、接着層5、及び熱融着性樹脂層4をこの順に有する積層体から構成されている。本開示の蓄電デバイス用外装材において、基材層1が最外層側になり、熱融着性樹脂層4は最内層になる。即ち、蓄電デバイスの組み立て時に、蓄電デバイス素子の周縁に位置する熱融着性樹脂層4同士が熱融着して蓄電デバイス素子を密封することにより、蓄電デバイス素子が封止される。
【0020】
バリア層3の少なくとも一方側の表面には、耐腐食性皮膜を備えている。当該耐腐食性皮膜は、クロムを含んでいる。図1には、本開示の蓄電デバイス用外装材が、バリア層3の熱融着性樹脂層4側の表面に、耐腐食性皮膜3aを備える場合の模式図を示している。また、図2から図4には、本開示の蓄電デバイス用外装材が、バリア層3の両面に、それぞれ、耐腐食性皮膜3a,3bを備える場合の模式図を示している。なお、後述の通り、本開示の蓄電デバイス用外装材においては、バリア層3の熱融着性樹脂層4側の表面のみに、耐腐食性皮膜3aを備えていてもよいし、バリア層3の両面に、それぞれ、耐腐食性皮膜3a,3bを備えていてもよい。
【0021】
本開示の蓄電デバイス用外装材は、図3及び図4に示すように、基材層1とバリア層3との間に、これらの接着性を高める目的で、必要に応じて、接着剤層2を備えていてもよい。また、図4に示すように、意匠性、耐電解液性、耐擦過性、成形性の向上などを目的として、必要に応じて、基材層1のバリア層3とは反対側に、必要に応じて、表面被覆層6を備えていてもよい。
【0022】
蓄電デバイス用外装材10を構成する積層体の厚みとしては、特に制限されないが、上限については、コスト削減、エネルギー密度向上等の観点からは、好ましくは約180μm以下、約155μm以下、約120μm以下が挙げられ、下限については、蓄電デバイス素子を保護するという蓄電デバイス用外装材の機能を維持する観点からは、好ましくは約35μm以上、約45μm以上、約60μm以上が挙げられ、好ましい範囲については、例えば、35~180μm程度、35~155μm程度、35~120μm程度、45~180μm程度、45~155μm程度、45~120μm程度、60~180μm程度、60~155μm程度、60~120μm程度が挙げられる。
【0023】
なお、蓄電デバイス用外装材において、後述のバリア層3については、通常、その製造過程におけるMDとTDを判別することができる。例えば、バリア層3がアルミニウム合金箔により構成されている場合、アルミニウム合金箔の圧延方向(RD:Rolling Direction)には、アルミニウム合金箔の表面に、いわゆる圧延痕と呼ばれる線状の筋が形成されている。圧延痕は、圧延方向に沿って伸びているため、アルミニウム合金箔の表面を観察することによって、アルミニウム合金箔の圧延方向を把握することができる。また、積層体の製造過程においては、通常、積層体のMDと、アルミニウム合金箔のRDとが一致するため、積層体のアルミニウム合金箔の表面を観察し、アルミニウム合金箔の圧延方向(RD)を特定することにより、積層体のMDを特定することができる。また、積層体のTDは、積層体のMDとは垂直方向であるため、積層体のTDについても特定することができる。
【0024】
2.蓄電デバイス用外装材を形成する各層
[基材層1]
本開示において、基材層1は、蓄電デバイス用外装材の基材としての機能を発揮させることなどを目的として設けられる層である。基材層1は、蓄電デバイス用外装材の外層側に位置する。
【0025】
基材層1を形成する素材については、基材としての機能、すなわち少なくとも絶縁性を備えるものであることを限度として特に制限されない。基材層1は、例えば樹脂を用いて形成することができ、樹脂には後述の添加剤が含まれていてもよい。
【0026】
基材層1が樹脂により形成されている場合、基材層1は、例えば、樹脂により形成された樹脂フィルムであってもよいし、樹脂を塗布して形成したものであってもよい。樹脂フィルムは、未延伸フィルムであってもよいし、延伸フィルムであってもよい。延伸フィルムとしては、一軸延伸フィルム、二軸延伸フィルムが挙げられ、二軸延伸フィルムが好ましい。二軸延伸フィルムを形成する延伸方法としては、例えば、逐次二軸延伸法、インフレーション法、同時二軸延伸法等が挙げられる。樹脂を塗布する方法としては、ロールコーティング法、グラビアコーティング法、押出コーティング法などがあげられる。
【0027】
基材層1を形成する樹脂としては、例えば、ポリエステル、ポリアミド、ポリオレフィン、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ポリウレタン、珪素樹脂、フェノール樹脂などの樹脂や、これらの樹脂の変性物が挙げられる。また、基材層1を形成する樹脂は、これらの樹脂の共重合物であってもよいし、共重合物の変性物であってもよい。さらに、これらの樹脂の混合物であってもよい。
【0028】
基材層1を形成する樹脂としては、これらの中でも、好ましくはポリエステル、ポリアミドが挙げられる。
【0029】
ポリエステルとしては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等が挙げられる。また、共重合ポリエステルとしては、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル等が挙げられる。具体的には、エチレンテレフタレートを繰り返し単位の主体としてエチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリエチレン(テレフタレート/イソフタレート)にならって略す)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/ナトリウムスルホイソフタレート)、ポリエチレン(テレフタレート/ナトリウムイソフタレート)、ポリエチレン(テレフタレート/フェニル-ジカルボキシレート)、ポリエチレン(テレフタレート/デカンジカルボキシレート)等が挙げられる。これらのポリエステルは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
【0030】
また、ポリアミドとしては、具体的には、ナイロン6、ナイロン66、ナイロン610、ナイロン12、ナイロン46、ナイロン6とナイロン66との共重合体等の脂肪族ポリアミド;テレフタル酸及び/又はイソフタル酸に由来する構成単位を含むナイロン6I、ナイロン6T、ナイロン6IT、ナイロン6I6T(Iはイソフタル酸、Tはテレフタル酸を表す)等のヘキサメチレンジアミン-イソフタル酸-テレフタル酸共重合ポリアミド、ポリアミドMXD6(ポリメタキシリレンアジパミド)等の芳香族を含むポリアミド;ポリアミドPACM6(ポリビス(4‐アミノシクロヘキシル)メタンアジパミド)等の脂環式ポリアミド;さらにラクタム成分や、4,4'-ジフェニルメタン-ジイソシアネート等のイソシアネート成分を共重合させたポリアミド、共重合ポリアミドとポリエステルやポリアルキレンエーテルグリコールとの共重合体であるポリエステルアミド共重合体やポリエーテルエステルアミド共重合体;これらの共重合体等のポリアミドが挙げられる。これらのポリアミドは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
【0031】
基材層1は、ポリエステルフィルム、ポリアミドフィルム、及びポリオレフィンフィルムのうち少なくとも1つを含むことが好ましく、延伸ポリエステルフィルム、及び延伸ポリアミドフィルム、及び延伸ポリオレフィンフィルムのうち少なくとも1つを含むことが好ましく、延伸ポリエチレンテレフタレートフィルム、延伸ポリブチレンテレフタレートフィルム、延伸ナイロンフィルム、延伸ポリプロピレンフィルムのうち少なくとも1つを含むことがさらに好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリブチレンテレフタレートフィルム、二軸延伸ナイロンフィルム、二軸延伸ポリプロピレンフィルムのうち少なくとも1つを含むことがさらに好ましい。
【0032】
基材層1は、単層であってもよいし、2層以上により構成されていてもよい。基材層1が2層以上により構成されている場合、基材層1は、樹脂フィルムを接着剤などで積層させた積層体であってもよいし、樹脂を共押出しして2層以上とした樹脂フィルムの積層体であってもよい。また、樹脂を共押出しして2層以上とした樹脂フィルムの積層体を、未延伸のまま基材層1としてもよいし、一軸延伸または二軸延伸して基材層1としてもよい。
【0033】
基材層1において、2層以上の樹脂フィルムの積層体の具体例としては、ポリエステルフィルムとナイロンフィルムとの積層体、2層以上のナイロンフィルムの積層体、2層以上のポリエステルフィルムの積層体などが挙げられ、好ましくは、延伸ナイロンフィルムと延伸ポリエステルフィルムとの積層体、2層以上の延伸ナイロンフィルムの積層体、2層以上の延伸ポリエステルフィルムの積層体が好ましい。例えば、基材層1が2層の樹脂フィルムの積層体である場合、ポリエステル樹脂フィルムとポリエステル樹脂フィルムの積層体、ポリアミド樹脂フィルムとポリアミド樹脂フィルムの積層体、またはポリエステル樹脂フィルムとポリアミド樹脂フィルムの積層体が好ましく、ポリエチレンテレフタレートフィルムとポリエチレンテレフタレートフィルムの積層体、ナイロンフィルムとナイロンフィルムの積層体、またはポリエチレンテレフタレートフィルムとナイロンフィルムの積層体がより好ましい。また、ポリエステル樹脂は、例えば電解液が表面に付着した際に変色し難いことなどから、基材層1が2層以上の樹脂フィルムの積層体である場合、ポリエステル樹脂フィルムが基材層1の最外層に位置することが好ましい。
【0034】
基材層1が、2層以上の樹脂フィルムの積層体である場合、2層以上の樹脂フィルムは、接着剤を介して積層させてもよい。好ましい接着剤については、後述の接着剤層2で例示する接着剤と同様のものが挙げられる。なお、2層以上の樹脂フィルムを積層させる方法としては、特に制限されず、公知方法が採用でき、例えばドライラミネート法、サンドイッチラミネート法、押出ラミネート法、サーマルラミネート法などが挙げられ、好ましくはドライラミネート法が挙げられる。ドライラミネート法により積層させる場合には、接着剤としてポリウレタン接着剤を用いることが好ましい。このとき、接着剤の厚みとしては、例えば2~5μm程度が挙げられる。また、樹脂フィルムにアンカーコート層を形成し積層させても良い。アンカーコート層は、後述の接着剤層2で例示する接着剤と同様のものがあげられる。このとき、アンカーコート層の厚みとしては、例えば0.01から1.0μm程度が挙げられる。
【0035】
また、基材層1の表面及び内部の少なくとも一方には、滑剤、難燃剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤、耐電防止剤等の添加剤が存在していてもよい。添加剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
【0036】
本開示において、蓄電デバイス用外装材の成形性を高める観点からは、基材層1の表面には、滑剤が存在していることが好ましい。滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。アミド系滑剤の具体例としては、例えば、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、脂肪酸エステルアミド、芳香族ビスアミドなどが挙げられる。飽和脂肪酸アミドの具体例としては、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミドなどが挙げられる。不飽和脂肪酸アミドの具体例としては、オレイン酸アミド、エルカ酸アミドなどが挙げられる。置換アミドの具体例としては、N-オレイルパルミチン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミドなどが挙げられる。また、メチロールアミドの具体例としては、メチロールステアリン酸アミドなどが挙げられる。飽和脂肪酸ビスアミドの具体例としては、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、N,N'-ジステアリルアジピン酸アミド、N,N'-ジステアリルセバシン酸アミドなどが挙げられる。不飽和脂肪酸ビスアミドの具体例としては、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N'-ジオレイルアジピン酸アミド、N,N'-ジオレイルセバシン酸アミドなどが挙げられる。脂肪酸エステルアミドの具体例としては、ステアロアミドエチルステアレートなどが挙げられる。また、芳香族ビスアミドの具体例としては、m-キシリレンビスステアリン酸アミド、m-キシリレンビスヒドロキシステアリン酸アミド、N,N'-ジステアリルイソフタル酸アミドなどが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
【0037】
基材層1の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、好ましくは約3mg/m2以上、より好ましくは4~15mg/m2程度、さらに好ましくは5~14mg/m2程度が挙げられる。
【0038】
基材層1の表面に存在する滑剤は、基材層1を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、基材層1の表面に滑剤を塗布したものであってもよい。
【0039】
基材層1の厚みについては、基材としての機能を発揮すれば特に制限されないが、例えば、3~50μm程度、好ましくは10~35μm程度が挙げられる。基材層1が、2層以上の樹脂フィルムの積層体である場合、各層を構成している樹脂フィルムの厚みとしては、それぞれ、好ましくは2~25μm程度が挙げられる。
【0040】
[接着剤層2]
本開示の蓄電デバイス用外装材において、接着剤層2は、基材層1とバリア層3との接着性を高めることを目的として、必要に応じて、これらの間に設けられる層である。
【0041】
接着剤層2は、基材層1とバリア層3とを接着可能である接着剤によって形成される。接着剤層2の形成に使用される接着剤は限定されないが、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれであってもよい。また、2液硬化型接着剤(2液性接着剤)であってもよく、1液硬化型接着剤(1液性接着剤)であってもよく、硬化反応を伴わない樹脂でもよい。また、接着剤層2は単層であってもよいし、多層であってもよい。
【0042】
接着剤に含まれる接着成分としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等のポリエステル;ポリエーテル;ポリウレタン;エポキシ樹脂;フェノール樹脂;ナイロン6、ナイロン66、ナイロン12、共重合ポリアミド等のポリアミド;ポリオレフィン、環状ポリオレフィン、酸変性ポリオレフィン、酸変性環状ポリオレフィンなどのポリオレフィン系樹脂;ポリ酢酸ビニル;セルロース;(メタ)アクリル樹脂;ポリイミド;ポリカーボネート;尿素樹脂、メラミン樹脂等のアミノ樹脂;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴム等のゴム;シリコーン樹脂等が挙げられる。これらの接着成分は1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの接着成分の中でも、好ましくはポリウレタン接着剤が挙げられる。また、これらの接着成分となる樹脂は適切な硬化剤を併用して接着強度を高めることができる。前記硬化剤は、接着成分の持つ官能基に応じて、ポリイソシアネート、多官能エポキシ樹脂、オキサゾリン基含有ポリマー、ポリアミン樹脂、酸無水物などから適切なものを選択する。
【0043】
ポリウレタン接着剤としては、例えば、ポリオール化合物を含有する主剤と、イソシアネート化合物を含有する硬化剤とを含むポリウレタン接着剤が挙げられる。好ましくはポリエステルポリオール、ポリエーテルポリオール、およびアクリルポリオール等のポリオールを主剤として、芳香族系又は脂肪族系のポリイソシアネートを硬化剤とした二液硬化型のポリウレタン接着剤が挙げられる。また、ポリオール化合物としては、繰り返し単位の末端の水酸基に加えて、側鎖にも水酸基を有するポリエステルポリオールを用いることが好ましい。接着剤層2がポリウレタン接着剤により形成されていることで蓄電デバイス用外装材に優れた電解液耐性が付与され、側面に電解液が付着しても基材層1が剥がれることが抑制される。
【0044】
また、接着剤層2は、接着性を阻害しない限り他成分の添加が許容され、着色剤や熱可塑性エラストマー、粘着付与剤、フィラーなどを含有してもよい。接着剤層2が着色剤を含んでいることにより、蓄電デバイス用外装材を着色することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
【0045】
顔料の種類は、接着剤層2の接着性を損なわない範囲であれば、特に限定されない。有機顔料としては、例えば、アゾ系、フタロシアニン系、キナクリドン系、アンスラキノン系、ジオキサジン系、インジゴチオインジゴ系、ペリノン-ペリレン系、イソインドレニン系、ベンズイミダゾロン系等の顔料が挙げられ、無機顔料としては、カーボンブラック系、酸化チタン系、カドミウム系、鉛系、酸化クロム系、鉄系等の顔料が挙げられ、その他に、マイカ(雲母)の微粉末、魚鱗箔等が挙げられる。
【0046】
着色剤の中でも、例えば蓄電デバイス用外装材の外観を黒色とするためには、カーボンブラックが好ましい。
【0047】
顔料の平均粒子径としては、特に制限されず、例えば、0.05~5μm程度、好ましくは0.08~2μm程度が挙げられる。なお、顔料の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。
【0048】
接着剤層2における顔料の含有量としては、蓄電デバイス用外装材が着色されれば特に制限されず、例えば5~60質量%程度、好ましくは10~40質量%が挙げられる。
【0049】
接着剤層2の厚みは、基材層1とバリア層3とを接着できれば、特に制限されないが、下限については、例えば、約1μm以上、約2μm以上が挙げられ、上限については、約10μm以下、約5μm以下が挙げられ、好ましい範囲については、1~10μm程度、1~5μm程度、2~10μm程度、2~5μm程度が挙げられる。
【0050】
[着色層]
着色層は、基材層1とバリア層3との間に必要に応じて設けられる層である(図示を省略する)。接着剤層2を有する場合には、基材層1と接着剤層2との間、接着剤層2とバリア層3との間に着色層を設けてもよい。また、基材層1の外側に着色層を設けてもよい。着色層を設けることにより、蓄電デバイス用外装材を着色することができる。
【0051】
着色層は、例えば、着色剤を含むインキを基材層1の表面、接着剤層2の表面、またはバリア層3の表面に塗布することにより形成することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
【0052】
着色層に含まれる着色剤の具体例としては、[接着剤層2]の欄で例示したものと同じものが例示される。
【0053】
[バリア層3]
蓄電デバイス用外装材において、バリア層3は、少なくとも水分の浸入を抑止する層である。
【0054】
バリア層3としては、例えば、バリア性を有する金属箔、蒸着膜、樹脂層などが挙げられる。蒸着膜としては金属蒸着膜、無機酸化物蒸着膜、炭素含有無機酸化物蒸着膜などが挙げられ、樹脂層としてはポリ塩化ビニリデン、クロロトリフルオロエチレン(CTFE)を主成分としたポリマー類やテトラフルオロエチレン(TFE)を主成分としたポリマー類やフルオロアルキル基を有するポリマー、およびフルオロアルキル単位を主成分としたポリマー類などのフッ素含有樹脂、エチレンビニルアルコール共重合体などが挙げられる。また、バリア層3としては、これらの蒸着膜及び樹脂層の少なくとも1層を設けた樹脂フィルムなども挙げられる。バリア層3は、複数層設けてもよい。バリア層3は、金属材料により構成された層を含むことが好ましい。バリア層3を構成する金属材料としては、具体的には、アルミニウム合金、ステンレス鋼、チタン鋼、鋼板などが挙げられ、金属箔として用いる場合は、アルミニウム合金箔及びステンレス鋼箔の少なくとも一方を含むことが好ましい。
【0055】
アルミニウム合金箔は、蓄電デバイス用外装材の成形性を向上させる観点から、例えば、焼きなまし処理済みのアルミニウム合金などにより構成された軟質アルミニウム合金箔であることがより好ましく、より成形性を向上させる観点から、鉄を含むアルミニウム合金箔であることが好ましい。鉄を含むアルミニウム合金箔(100質量%)において、鉄の含有量は、0.1~9.0質量%であることが好ましく、0.5~2.0質量%であることがより好ましい。鉄の含有量が0.1質量%以上であることにより、より優れた成形性を有する蓄電デバイス用外装材を得ることができる。鉄の含有量が9.0質量%以下であることにより、より柔軟性に優れた蓄電デバイス用外装材を得ることができる。軟質アルミニウム合金箔としては、例えば、JIS H4160:1994 A8021H-O、JIS H4160:1994 A8079H-O、JIS H4000:2014 A8021P-O、又はJIS H4000:2014 A8079P-Oで規定される組成を備えるアルミニウム合金箔が挙げられる。また必要に応じて、ケイ素、マグネシウム、銅、マンガンなどが添加されていてもよい。また軟質化は焼鈍処理などで行うことができる。
【0056】
また、ステンレス鋼箔としては、オーステナイト系、フェライト系、オーステナイト・フェライト系、マルテンサイト系、析出硬化系のステンレス鋼箔などが挙げられる。さらに成形性に優れた蓄電デバイス用外装材を提供する観点から、ステンレス鋼箔は、オーステナイト系のステンレス鋼により構成されていることが好ましい。
【0057】
ステンレス鋼箔を構成するオーステナイト系のステンレス鋼の具体例としては、SUS304、SUS301、SUS316Lなどが挙げられ、これら中でも、SUS304が特に好ましい。
【0058】
バリア層3の厚みは、金属箔の場合、少なくとも水分の浸入を抑止するバリア層としての機能を発揮すればよく、例えば9~200μm程度が挙げられる。バリア層3の厚みは、例えば、上限については、好ましくは約85μm以下、より好ましくは約50μm以下、さらに好ましくは約40μm以下、特に好ましくは約35μm以下が挙げられ、下限については、好ましくは約10μm以上、さらに好ましくは約20μm以上、より好ましくは約25μm以上が挙げられ、当該厚みの好ましい範囲としては、10~85μm程度、10~50μm程度、10~40μm程度、10~35μm程度、20~85μm程度、20~50μm程度、20~40μm程度、20~35μm程度、25~85μm程度、25~50μm程度、25~40μm程度、25~35μm程度が挙げられる。バリア層3がアルミニウム合金箔により構成されている場合、上述した範囲が特に好ましく、25~50μm程度、25~40μm程度が特に好ましい。また、特に、バリア層3がステンレス鋼箔により構成されている場合、ステンレス鋼箔の厚みとしては、上限については、好ましくは約60μm以下、より好ましくは約50μm以下、さらに好ましくは約40μm以下、さらに好ましくは約30μm以下、特に好ましくは約25μm以下が挙げられ、下限については、好ましくは約10μm以上、より好ましくは約15μm以上が挙げられ、好ましい厚みの範囲としては、10~60μm程度、10~50μm程度、10~40μm程度、10~30μm程度、10~25μm程度、15~60μm程度、15~50μm程度、15~40μm程度、15~30μm程度、15~25μm程度が挙げられる。
【0059】
[耐腐食性皮膜3a、3b]
本開示の蓄電デバイス用外装材においては、バリア層3の少なくとも一方側の表面に耐腐食性皮膜を備えている。本開示の蓄電デバイス用外装材においては、バリア層3の熱融着性樹脂層4側の表面のみに、耐腐食性皮膜3aを備えていてもよいし、バリア層3の両面に、それぞれ、耐腐食性皮膜3a,3bを備えていてもよい。
【0060】
本開示の蓄電デバイス用外装材においては、耐腐食性皮膜3aについて、飛行時間型2次イオン質量分析法を用いて分析した場合に、CrPO4 -に由来するピーク強度PCrPO4に対するPO3 -に由来するピーク強度PPO3の比PPO3/CrPO4が、6~120の範囲内にあることを特徴の1つとしている。当該ピーク強度比がこのような特定の範囲内にあり、かつ、後述のX線光電子分光法による分析によるピーク高さ比の値POCO/C-Cが、0.10以上0.50以下の範囲にあり、さらに耐腐食性皮膜に接している接着層5の形成にイソシアネート基を有する化合物(硬化剤)が使用されていることにより、蓄電デバイスの内部に水分が侵入した場合にも、耐腐食性皮膜を備えたバリア層と接着層との密着性に優れている。
【0061】
また、本開示においては、耐腐食性皮膜について、飛行時間型2次イオン質量分析法を用いて分析した場合に、CrPO4 -に由来するピーク強度PCrPO4に対するPO2 -に由来するピーク強度PPO2の比PPO2/CrPO4が、7~70の範囲内にあることが好ましい。
【0062】
なお、本開示において、バリア層3の両面に耐腐食性皮膜3a,3bを備えている場合、いずれか一方の面の耐腐食性皮膜における前記ピーク強度比PPO3/CrPO4、好ましくはPPO2/CrPO4についても、それぞれ、上記の範囲内にあればよいが、耐腐食性皮膜3a,3bのいずれについても、前記ピーク強度比PPO3/CrPO4、好ましくはPPO2/CrPO4についても、それぞれ、上記の範囲内にあることが好ましい。特に、バリア層の接着層側に位置している耐腐食性皮膜と、これに隣接する接着層5とは、水分を含む電解液の浸透によって密着性が低下しやすいため、本開示の蓄電デバイス用外装材においては、バリア層3の少なくとも熱融着性樹脂層4側の表面に、耐腐食性皮膜3aを備えている。
【0063】
本開示において、CrPO4 -に由来するピーク強度PCrPO4に対するPO3 -に由来するピーク強度PPO3の比PPO3/CrPO4は、6~120の範囲にあればよいが、密着性をより高める観点から、比PPO3/CrPO4としては、下限は、約10以上が挙げられ、上限は、好ましくは約115以下、より好ましくは約110以下、さらに好ましくは約50以下が挙げられる。また、当該比PPO3/CrPO4の好ましい範囲としては、6~115程度、6~110程度、6~50程度、10~120程度、10~115程度、10~110程度、10~50程度、20~32程度が挙げられ、これらの中でも10~50程度、さらには20~32程度が特に好ましい。
【0064】
また、CrPO4 -に由来するピーク強度PCrPO4に対するPO2 -に由来するピーク強度PPO2の比PPO2/CrPO4は、7~70の範囲にあることが好ましく、密着性をより高める観点から、比PPO2/CrPO4としては、下限は、好ましくは約10以上、上限は、好ましくは約65以下、より好ましくは約50以下が挙げられる。また、当該比PPO2/CrPO4の好ましい範囲としては7~70程度、7~65程度、7~50程度、10~70程度、10~65程度、10~50程度、18~37程度が挙げられ、これらの中でも10~50程度、さらには18~37程度が特に好ましい。
【0065】
耐腐食性皮膜3a,3bについて、飛行時間型2次イオン質量分析法を用いて分析する方法は、具体的には、飛行時間型2次イオン質量分析装置を用いて、次の測定条件で行うことができる。
【0066】
(測定条件)
1次イオン:ビスマスクラスターのダブルチャージイオン(Bi3 ++
1次イオン加速電圧:30 kV
質量範囲(m/z):0~1500
測定範囲:100μm×100μm
スキャン数:16 scan/cycle
ピクセル数(1辺):256 pixel
エッチングイオン:Arガスクラスターイオンビーム(Ar-GCIB)
エッチングイオン加速電圧:5.0 kV
【0067】
さらに、本開示の蓄電デバイス用外装材においては、耐腐食性皮膜3aのX線光電子分光法(XPS)による分析によって、287eVから290eVの範囲にO-C=O結合に由来するピークPOCOと、285eVにC-C結合に由来するピークPC-Cが検出され、ピークPOCOの高さをピークPC-Cの高さで除して得られるピーク高さ比の値POCO/C-Cが、0.10~0.50の範囲にあることを特徴としている。当該ピーク高さ比の値POCO/C-Cが、このような特定の範囲内にあり、当該ピーク強度比がこのような特定の範囲内にあり、かつ、前述の飛行時間型2次イオン質量分析法による分析によるピーク強度PPO3の比PPO3/CrPO4が、6~120の範囲にあり、さらに耐腐食性皮膜に接している接着層5の形成にイソシアネート基を有する化合物(硬化剤)が使用されていることにより、蓄電デバイスの内部に水分が侵入した場合にも、耐腐食性皮膜を備えたバリア層と接着層との密着性に優れている。本開示の蓄電デバイス用外装材は、耐腐食性皮膜3aと接着層5との密着性が高いため、例えば実施例で測定されているような、水分を含む電解液に試験片を浸漬させて高温下に置いた過酷な条件での剥離試験を行った場合にも、高い剥離強度を示し、優れた密着性を発揮し得る。
【0068】
耐腐食性皮膜3aと接着層5(さらには、後述の耐腐食性皮膜3bとこれに隣接する層)との密着性をより一層向上させる観点からは、当該ピーク高さ比の値POCO/C-Cとしては、下限は、好ましくは約0.10、より好ましくは0.15が挙げられ、上限は、好ましくは約0.50が挙げられる。また、ピーク高さ比の値POCO/C-Cの好ましい範囲としては、0.10~0.50、より好ましくは0.15~0.50程度、特に好ましくは0.20~0.30程度が挙げられる。
【0069】
本開示の蓄電デバイス用外装材においては、耐腐食性皮膜3aと接着層5(さらには、後述の耐腐食性皮膜3bとこれに隣接する層)との密着性をより一層高める観点から、耐腐食性皮膜3aのXPSによる分析によって、576eVから581eVの範囲に、クロム化合物のCr2p3/2に由来するピークPCrが検出されることが好ましい。当該ピークが検出されることにより、化成処理により耐腐食性皮膜3aを形成するための組成物中に、クロム化合物が含まれていることを確認することができる。Cr原子は、皮膜中で-COOH基、-NH2基、-CN基等により配位結合される中心的な役割を持ち、このためポリカルボン酸やそのアンモニウム塩の様な他の配位子となり得る構造を有する官能基と架橋構造を形成し、耐食性、耐薬品性等の耐久性が発現する。
【0070】
また、同様の観点から、本開示の蓄電デバイス用外装材においては、耐腐食性皮膜3aのX線光電子分光法による分析によって、132eVから135eVの範囲に、リン酸化合物のP2pに由来するピークPPが検出されることが好ましい。当該ピークPPが検出されることにより、化成処理により耐腐食性皮膜3aを形成するための組成物中に、リン酸またはその塩が含まれていることを確認することができる。リン酸は化成処理において、金属表面をエッチングして金属表面にリン酸化合物皮膜などの高耐久性の皮膜を形成することが知られている。また、Crの様な配位数の高い金属原子の存在下では、上記の様な配位的な架橋構造にも取り込まれる為、金属表面と上記高耐久性の皮膜との密着に寄与すると考えられる。
【0071】
また、同様の観点から、本開示の蓄電デバイス用外装材においては、耐腐食性皮膜3aのXPSによる分析によって、685eVから689eVの範囲に、フッ素化合物のF1sに由来するピークが検出されることが好ましい。当該ピークPFが検出されることにより、化成処理により耐腐食性皮膜3aを形成するための組成物中に、フッ素化合物が含まれていることを確認することができる。バリア層がアルミニウム合金の場合、フッ素原子は、アルミニウム合金と結合して酸化アルミニウム皮膜よりも高耐久性のフッ化アルミニウム皮膜を形成する。
【0072】
さらに、同様の観点から、第2の開示の蓄電デバイス用外装材においては、耐腐食性皮膜3bのX線光電子分光法による分析によって、ピークPCr、ピークPP、ピークPFのうち、少なくともピークPCrが検出されることが好ましく、ピークPCrに加えて、ピークPP及びピークPFの少なくともいずれかが検出されることがより好ましく、ピークPCr、ピークPP、及びピークPFのすべてが検出されることが特に好ましい。
【0073】
本開示の蓄電デバイス用外装材においては、バリア層3の接着層5側の表面のみに、XPSによる分析によって検出される上記各種ピーク(すなわち、上記ピーク高さ比の値POCO/C-C、さらには、クロム化合物に由来するピークPCr、リン酸化合物に由来するピークPP、及びフッ素化合物に由来するピークPFのうち少なくとも1つ)を有する耐腐食性皮膜3aを備えていてもよいし、さらに、バリア層3の基材層1側の表面にも、当該各種ピークを有する耐腐食性皮膜3bを備えていてもよい。耐腐食性皮膜3bを備えていることにより、バリア層3表面の耐腐食性皮膜3bと、これに接面している層(例えば、接着剤層2)との密着性についても高めることができ、例えば高温高湿条件下に曝された場合に、基材層1とバリア層3のデラミネーションを防止する効果がある。
【0074】
耐腐食性皮膜3a,3bについて、XPSを用いて分析する方法は、具体的には、X線光電子分光分析装置を用いて、次の測定条件で行うことができる。なお、X線光電子分光法の測定条件は、JIS K0162:2010を参考にすることができる。
【0075】
(測定条件)
入射X線:Mg Kα(非単色化X線、hν=1253.6eV)
X線出力:10kV・20mA(200W)
光電子取込角度:90度(試料法線上にインプットレンズを配置)
測定領域:6mmφ
ピークシフト補正:C1sピークにおいて、ピーク強度が最大となる結合エネルギーが285eVとなるように補正。
【0076】
蓄電デバイス用外装材に積層されている耐腐食性皮膜について、XPSを用いピーク位置(結合エネルギー)を分析する場合、まず、分析すべき側のバリア層に積層されている層(熱融着性樹脂層、接着層など)を物理的に剥離する。この際、水や有機溶剤、酸やアルカリの水溶液などを利用せずに、物理的に剥離させる。バリア層と接着層との間を剥離した後、バリア層の表面に接着層が残存している場合、残存している接着層をAr-GCIBによるエッチングで除去する。このようにして得られたバリア層の表面について、XPSを用いて、耐腐食性皮膜の分析を行う。また、分析すべき側のバリア層に積層されている層が接着剤層などである場合も同様にして各層を物理的に剥離、エッチング除去して分析を行う。
【0077】
なお、上記各種ピークの有無は、ピークが明らかな場合はX線光電子分光分析装置のモニタ画面上に表示された検出ピークとして容易に確認出来るが、ピークが小さくて曖昧な場合は、面積や半値幅、同原子の関連ピークの存在の有無に基づいて判断する。具体的には、下記の操作を行って判断する。まず、(1)シャーリー法によるバックグラウンドの差し引きとカーブフィッティング後に、ピーク面積から、その成分が0.1%以上含有されると判断できる場合、当該ピークが存在していると判断する。さらに、補足手段として、(2)フィッティングし出現したピークの半値幅が、装置のエネルギー分解能よりも大きな半値幅をもつこと、及び(3)メインのピーク以外に、メインピークより外殻軌道の光電子に由来するピークも確認されること、などを判断基準とする。なお、通常、X線光電子分光分析装置には解析ソフトが付随しており、実施例においては、装置メーカーであるKratos製の「Vision Processing」を使用した。
【0078】
耐腐食性皮膜3a,3bは、バリア層3の表面を、化成処理することにより形成することができる。上記ピーク高さ比の値POCO/C-C、さらには、クロム化合物に由来するピークPCr、リン酸化合物に由来するピークPP、及びフッ素化合物に由来するピークPFのうち少なくとも1つを有する耐腐食性皮膜を好適に形成する観点から、耐腐食性皮膜3a,3bは、少なくともCOOH基を有するアクリル系樹脂、クロム化合物、及びリン酸化合物を含む組成物から形成することが好ましい。より具体的には、これらの成分を含む処理液を用いて、バリア層3の表面を化成処理することにより、耐腐食性皮膜3a,3bを好適に形成することができる。化成処理は、処理液をバリア層3の表面に塗布し、焼き付け処理することにより行うことができる。なお、処理液の組成、処理方法、及び処理条件を適宜調整することによって、ピーク強度比PPO3/CrPO4(さらにはピーク強度比PPO2/CrPO4)、及びピーク高さ比の値POCO/C-Cを上記の範囲に調整することができる。
【0079】
ピーク強度比PPO3/CrPO4(さらにはピーク強度比PPO2/CrPO4)、及びピーク高さ比の値POCO/C-Cを上記の範囲として、耐腐食性皮膜3aと接着層5(さらには、耐腐食性皮膜3bとこれに隣接する層)との密着性をより一層高める観点から、アクリル系樹脂は、ポリアクリル酸、アクリル酸メタクリル酸エステル共重合体、アクリル酸マレイン酸共重合体、アクリル酸スチレン共重合体、またはこれらのナトリウム塩、アンモニウム塩、アミン塩等の誘導体であることが好ましい。特にポリアクリル酸のアンモニウム塩、ナトリウム塩、又はアミン塩等のポリアクリル酸の誘導体が好ましい。本開示において、ポリアクリル酸とは、アクリル酸の重合体を意味している。また、アクリル系樹脂は、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体であることも好ましく、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体のアンモニウム塩、ナトリウム塩、又はアミン塩であることも好ましい。アクリル系樹脂は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
【0080】
同様の観点から、アクリル系樹脂の重量平均分子量としては、好ましくは1000~100万程度、より好ましくは3000~80万程度、さらに好ましくは1万~80万程度が挙げられる。分子量が大きいほど耐久性は高くなるが、アクリル系樹脂の水溶性は低下し、コーティング液が不安定となり製造安定性に欠けるようになる。逆に分子量が小さいほど、耐久性は低下する。本開示においては、アクリル系樹脂の重量平均分子量が1000以上の場合は耐久性が高く、100万以下の場合は製造安定性が良好である。本開示において、アクリル系樹脂の重量平均分子量は、標準サンプルとしてポリスチレンを用いた条件で測定された、ゲル浸透クロマトグラフィ(GPC)により測定された値である。
【0081】
また、アクリル系樹脂の酸価としては、COOH基が多い方が接着性に寄与する効果が高いと考えられるので大きい方が好ましいが、上記の様に塩となっている場合は、酸価ではO-C=O結合の量を反映出来ない場合があるので、本開示の様にO-C=O結合をXPSのスペクトルから分析した方が接着性を反映できると考えられる。
【0082】
同様の観点から、クロム化合物は、フッ化クロム(III)及び硝酸クロム(III)の少なくとも一方であることが好ましく、硝酸クロム(III)であることがより好ましい。前述したように、Cr原子を中心とした配位架橋構造や、フッ化アルミニウムによる高耐久性の皮膜構造を形成すると考えられる。
【0083】
また、上記の様な耐腐食性皮膜3a,3bに架橋構造を付与して高耐久性の皮膜とする手法として、COOH基と反応する架橋剤を使用する方法もある。前記架橋剤としては、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、アミノ基を有する化合物、及びエポキシ基を有する化合物などが好適に使用できる。
【0084】
さらに、耐腐食性皮膜3a,3bを形成する組成物には、リン酸がさらに含まれることが好ましい。リン酸は、バリア層表面の洗浄効果(具体的には、バリア層表面の劣化した酸化皮膜や汚れを取り除く効果)や、焼き付け後の皮膜中でリン酸イオンとしてバリア層表面やクロムイオン等の金属イオンに配位して架橋構造を形成する効果を有する。耐腐食性皮膜のカルボン酸イオンが同様の効果を奏すると考えられるため、リン酸は必須ではないが、バリア層の洗浄効果を高めて、蓄電デバイス用外装材を安定的に量産する観点からは、リン酸を用いることが好ましい。
【0085】
耐腐食性皮膜3aと接着層5(さらには、耐腐食性皮膜3bとこれに隣接する層)との密着性をより一層高める観点から、耐腐食性皮膜3a,3bを形成する組成物(処理液)の特に好ましい組成としては、ポリアクリル酸と硝酸クロム(III)とリン酸を含む組成物、ポリアクリル酸と硝酸クロム(III)を含む組成物、アクリル酸メタクリル酸エステル共重合体と硝酸クロム(III)とリン酸を含む組成物、アクリル酸マレイン酸共重合体のナトリウム塩と硝酸クロム(III)とリン酸を含む組成物、アクリル酸スチレン共重合体と硝酸クロム(III)とリン酸を含む組成物、ポリアクリル酸の各種の塩(ナトリウム塩、アンモニウム塩、アミン塩など)と硝酸クロム(III)とリン酸を含む組成物が挙げられる。
【0086】
処理液におけるクロム化合物とリン酸及び/またはその塩との割合としては、特に制限されないが、上記ピーク強度比PPO3/CrPO4、さらにはPPO2/CrPO4をそれぞれ上記の範囲内に設定する観点からは、クロム化合物100質量部に対するリン酸及び/またはその塩の割合としては、好ましくは30~120質量部程度、より好ましくは40~110質量部程度が挙げられる。リン酸及びその塩としては、例えば、縮合リン酸及びその塩を使用することもできる。
【0087】
耐腐食性皮膜を形成する処理液の固形分濃度としては、バリア層への処理液の塗布、焼き付けによって、ピーク強度比PPO3/CrPO4(さらにはピーク強度比PPO2/CrPO4)、ピーク高さ比の値POCO/C-C、さらには、クロム化合物に由来するピークPCr、リン酸化合物に由来するピークPP、及びフッ素化合物に由来するピークPFのうち少なくとも1つを有する耐腐食性皮膜が形成されれば、特に制限されないが、例えば1~10質量%程度が挙げられる。
【0088】
耐腐食性皮膜3a,3bの厚さとしては、特に制限されないが、耐腐食性皮膜3aと接着層5(さらには、耐腐食性皮膜3bとこれに隣接する層)との密着性を効果的に高める観点からは、好ましくは1nm~10μm程度、より好ましくは1~100nm程度、さらに好ましくは1~50nm程度が挙げられる。なお、耐腐食性皮膜の厚さは、透過電子顕微鏡による観察、又は、透過電子顕微鏡による観察と、エネルギー分散型X線分光法もしくは電子線エネルギー損失分光法との組み合わせによって測定することができる。
【0089】
同様の観点から、バリア層3の表面1m2当たりの耐腐食性皮膜3a,3b中のCr量としては、質量比で、好ましくは0.5~30%程度、より好ましくは1~20%程度、さらに好ましくは3~10%程度が挙げられる。
【0090】
耐腐食性皮膜3a,3bを形成する組成物をバリア層3の表面に塗布する方法としては、例えば、バーコート法、ロールコート法、グラビアコート法、浸漬法などが挙げられる。
【0091】
ピーク強度比PPO3/CrPO4(さらにはピーク強度比PPO2/CrPO4)、及びピーク高さ比の値POCO/C-Cを上記所定の範囲に設定して、耐腐食性皮膜3aと接着層5(さらには、耐腐食性皮膜3bとこれに隣接する層)との密着性を向上させる観点から、処理液を焼き付けして耐腐食性皮膜にする際の加熱温度としては、好ましくは120~210℃程度、より好ましくは130~190℃程度が挙げられる。また、同様の観点から、焼き付けする時間としては、好ましくは1~30秒程度、より好ましくは5~10秒程度が挙げられる。
【0092】
バリア層3の表面の化成処理をより効率的に行う観点から、バリア層3の表面に耐腐食性皮膜を設ける前には、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法、酸活性化法などの公知の処理方法で脱脂処理を行うことが好ましい。
【0093】
[熱融着性樹脂層4]
本開示の蓄電デバイス用外装材において、熱融着性樹脂層4は、最内層に該当し、蓄電デバイスの組み立て時に熱融着性樹脂層同士が熱融着して蓄電デバイス素子を密封する機能を発揮する層(シーラント層)である。
【0094】
熱融着性樹脂層4を構成している樹脂については、熱融着可能であることを限度として特に制限されないが、ポリオレフィン、酸変性ポリオレフィンなどのポリオレフィン骨格を含む樹脂が好ましい。熱融着性樹脂層4を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能である。また、熱融着性樹脂層4を構成している樹脂を赤外分光法で分析すると、無水マレイン酸に由来するピークが検出されることが好ましい。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。熱融着性樹脂層4が無水マレイン酸変性ポリオレフィンより構成された層である場合、赤外分光法にて測定すると、無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。
【0095】
ポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;エチレン-αオレフィン共重合体;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等のポリプロピレン;プロピレン-αオレフィン共重合体;エチレン-ブテン-プロピレンのターポリマー等が挙げられる。これらの中でも、ポリプロピレンが好ましい。共重合体である場合のポリオレフィン樹脂は、ブロック共重合体であってもよく、ランダム共重合体であってもよい。これらポリオレフィン系樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。
【0096】
また、ポリオレフィンは、環状ポリオレフィンであってもよい。環状ポリオレフィンは、オレフィンと環状モノマーとの共重合体であり、前記環状ポリオレフィンの構成モノマーであるオレフィンとしては、例えば、エチレン、プロピレン、4-メチル-1-ペンテン、スチレン、ブタジエン、イソプレン等が挙げられる。また、環状ポリオレフィンの構成モノマーである環状モノマーとしては、例えば、ノルボルネン等の環状アルケン;シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン等が挙げられる。これらの中でも、好ましくは環状アルケン、さらに好ましくはノルボルネンが挙げられる。
【0097】
酸変性ポリオレフィンとは、ポリオレフィンを酸成分でブロック重合又はグラフト重合することにより変性したポリマーである。酸変性されるポリオレフィンとしては、前記のポリオレフィンや、前記のポリオレフィンにアクリル酸若しくはメタクリル酸等の極性分子を共重合させた共重合体、又は、架橋ポリオレフィン等の重合体等も使用できる。また、酸変性に使用される酸成分としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸等のカルボン酸またはその無水物が挙げられる。
【0098】
酸変性ポリオレフィンは、酸変性環状ポリオレフィンであってもよい。酸変性環状ポリオレフィンとは、環状ポリオレフィンを構成するモノマーの一部を、酸成分に代えて共重合することにより、または環状ポリオレフィンに対して酸成分をブロック重合又はグラフト重合することにより得られるポリマーである。酸変性される環状ポリオレフィンについては、前記と同様である。また、酸変性に使用される酸成分としては、前記のポリオレフィンの変性に使用される酸成分と同様である。
【0099】
好ましい酸変性ポリオレフィンとしては、カルボン酸またはその無水物で変性されたポリオレフィン、カルボン酸またはその無水物で変性されたポリプロピレン、無水マレイン酸変性ポリオレフィン、無水マレイン酸変性ポリプロピレンが挙げられる。
【0100】
熱融着性樹脂層4は、1種の樹脂単独で形成してもよく、また2種以上の樹脂を組み合わせたブレンドポリマーにより形成してもよい。さらに、熱融着性樹脂層4は、1層のみで形成されていてもよいが、同一又は異なる樹脂によって2層以上で形成されていてもよい。
【0101】
また、熱融着性樹脂層4は、必要に応じて滑剤などを含んでいてもよい。熱融着性樹脂層4が滑剤を含む場合、蓄電デバイス用外装材の成形性を高め得る。滑剤としては、特に制限されず、公知の滑剤を用いることができる。滑剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
【0102】
滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。滑剤の具体例としては、基材層1で例示したものが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
【0103】
熱融着性樹脂層4の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、蓄電デバイス用外装材の成形性を高める観点からは、好ましくは10~50mg/m2程度、さらに好ましくは15~40mg/m2程度が挙げられる。
【0104】
熱融着性樹脂層4の表面に存在する滑剤は、熱融着性樹脂層4を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、熱融着性樹脂層4の表面に滑剤を塗布したものであってもよい。
【0105】
また、熱融着性樹脂層4の厚みとしては、熱融着性樹脂層同士が熱融着して蓄電デバイス素子を密封する機能を発揮すれば特に制限されないが、例えば約100μm以下、好ましくは約85μm以下、より好ましくは15~85μm程度が挙げられる。なお、例えば、後述の接着層5の厚みが10μm以上である場合には、熱融着性樹脂層4の厚みとしては、好ましくは約85μm以下、より好ましくは15~45μm程度が挙げられ、例えば後述の接着層5の厚みが10μm未満である場合や接着層5が設けられていない場合には、熱融着性樹脂層4の厚みとしては、好ましくは約20μm以上、より好ましくは35~85μm程度が挙げられる。
【0106】
[接着層5]
本開示の蓄電デバイス用外装材において、接着層5は、バリア層3の耐腐食性皮膜3aと熱融着性樹脂層4を強固に接着させるために、これらの間に設けられる層である。接着層5は、バリア層3の表面に設けられた耐腐食性皮膜と接するように設けられている。
【0107】
接着層5は、バリア層3の耐腐食性皮膜3aと熱融着性樹脂層4とを接着可能である樹脂によって形成され、本開示の蓄電デバイス用外装材において、接着層5は、イソシアネート基を有する化合物を含む樹脂組成物の硬化物により構成されている。
【0108】
接着層5の形成に使用される樹脂組成物に含まれる樹脂としては、ポリオレフィン骨格を含んでいることが好ましく、前述の熱融着性樹脂層4で例示したポリオレフィン、酸変性ポリオレフィンが挙げられる。接着層5の樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能であり、分析方法は特に問わない。また、接着層5を構成している樹脂を赤外分光法で分析すると、無水マレイン酸に由来するピークが検出されることが好ましい。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。
【0109】
イソシアネート基を有する化合物としては、特に制限されないが、耐腐食性皮膜3aと接着層5との密着性を効果的に高める観点からは、好ましくは多官能イソシアネート化合物が挙げられる。多官能イソシアネート化合物は、2つ以上のイソシアネート基を有する化合物であれば、特に限定されない。多官能イソシアネート系硬化剤の具体例としては、ペンタンジイソシアネート(PDI)、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、これらをポリマー化やヌレート化したもの、これらの混合物や他ポリマーとの共重合物などが挙げられる。また、アダクト体、ビュレット体、イソシアヌレート体などが挙げられる。
【0110】
接着層5における、イソシアネート基を有する化合物の含有量としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。また、接着層5を構成する樹脂組成物中、イソシアネート基を有する化合物の含有量は、樹脂100質量部に対して、好ましくは0.5~6質量部程度、より好ましくは1~5質量部程度が挙げられる。
【0111】
耐腐食性皮膜3aと接着層5との密着性をより一層高める観点から、接着層5は、イソシアネート基を有する化合物に加えて、酸変性ポリオレフィンを含むことが好ましい。酸変性ポリオレフィンとしては、カルボン酸またはその無水物で変性されたポリオレフィン、カルボン酸またはその無水物で変性されたポリプロピレン、無水マレイン酸変性ポリオレフィン、無水マレイン酸変性ポリプロピレンが特に好ましい。
【0112】
また、接着層5は、硬化剤として、イソシアネート基を有する化合物に加えて、エポキシ基を有する化合物、オキサゾリン基を有する化合物などの他の硬化剤をさらに含んでいてもよい。なお、接着層5に、イソシアネート基を有する化合物、エポキシ基を有する化合物、オキサゾリン基を有する化合物などの硬化剤の未反応物が残存している場合、未反応物の存在は、例えば、赤外分光法、ラマン分光法、飛行時間型二次イオン質量分析法(TOF-SIMS)などから選択される方法で確認することが可能である。
【0113】
接着層5における、イソシアネート基を有する化合物の含有量としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。
【0114】
エポキシ基を有する化合物としては、例えば、エポキシ樹脂が挙げられる。エポキシ樹脂としては、分子内に存在するエポキシ基によって架橋構造を形成することが可能な樹脂であれば、特に制限されず、公知のエポキシ樹脂を用いることができる。エポキシ樹脂の重量平均分子量としては、好ましくは50~2000程度、より好ましくは100~1000程度、さらに好ましくは200~800程度が挙げられる。なお、本開示において、エポキシ樹脂の重量平均分子量は、標準サンプルとしてポリスチレンを用いた条件で測定された、ゲル浸透クロマトグラフィ(GPC)により測定された値である。
【0115】
エポキシ樹脂の具体例としては、トリメチロールプロパンのグリシジルエーテル誘導体、ビスフェノールAジグリシジルエーテル、変性ビスフェノールAジグリシジルエーテル、ノボラックグリシジルエーテル、グリセリンポリグリシジルエーテル、ポリグリセリンポリグリシジルエーテルなどが挙げられる。エポキシ樹脂は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
【0116】
接着層5の硬化剤として、イソシアネート基を有する化合物に加えて、エポキシ基を有する化合物を配合する場合、イソシアネート基を有する化合物100質量部に対して、エポキシ基を有する化合物は20~200質量部程度とする。
【0117】
オキサゾリン基を有する化合物は、オキサゾリン骨格を備える化合物であれば、特に限定されない。オキサゾリン基を有する化合物の具体例としては、ポリスチレン主鎖を有するもの、アクリル主鎖を有するものなどが挙げられる。また、市販品としては、例えば、日本触媒社製のエポクロスシリーズなどが挙げられる。
【0118】
接着層5の硬化剤として、イソシアネート基を有する化合物に加えて、オキサゾリン基を有する化合物を配合する場合、イソシアネート基を有する化合物100質量部に対して、オキサゾリン基を有する化合物は20~200質量部程度とする。
【0119】
接着層5の厚さは、好ましくは約10μm以下、より好ましくは約5μm以下、また、好ましくは約1μm以上、より好ましくは2μm以上が挙げられ、当該厚さの範囲としては、好ましくは、1~10μm程度、1~5μm程度、2~10μm程度、2~5μm程度が挙げられる。なお、接着層5は、接着層5を形成する樹脂組成物を塗布し、加熱等により硬化させることにより形成することができる。
【0120】
[表面被覆層6]
本開示の蓄電デバイス用外装材は、意匠性、耐電解液性、耐傷性、成形性などの向上の少なくとも一つを目的として、必要に応じて、基材層1の上(基材層1のバリア層3とは反対側)に、表面被覆層6を備えていてもよい。表面被覆層6は、蓄電デバイス用外装材を用いて蓄電デバイスを組み立てた時に、蓄電デバイス用外装材の最外層側に位置する層である。
【0121】
表面被覆層6は、例えば、ポリ塩化ビニリデン、ポリエステル、ポリウレタン、アクリル樹脂、エポキシ樹脂などの樹脂により形成することができる。
【0122】
表面被覆層6を形成する樹脂が硬化型の樹脂である場合、当該樹脂は、1液硬化型及び2液硬化型のいずれであってもよいが、好ましくは2液硬化型である。2液硬化型樹脂としては、例えば、2液硬化型ポリウレタン、2液硬化型ポリエステル、2液硬化型エポキシ樹脂などが挙げられる。これらの中でも2液硬化型ポリウレタンが好ましい。
【0123】
2液硬化型ポリウレタンとしては、例えば、ポリオール化合物を含有する主剤と、イソシアネート化合物を含有する硬化剤とを含むポリウレタンが挙げられる。好ましくはポリエステルポリオール、ポリエーテルポリオール、およびアクリルポリオール等のポリオールを主剤として、芳香族系又は脂肪族系のポリイソシアネートを硬化剤とした二液硬化型のポリウレタンが挙げられる。また、ポリオール化合物としては、繰り返し単位の末端の水酸基に加えて、側鎖にも水酸基を有するポリエステルポリオールを用いることが好ましい。表面被覆層6がポリウレタンにより形成されていることで蓄電デバイス用外装材に優れた電解液耐性が付与される。
【0124】
表面被覆層6は、表面被覆層6の表面及び内部の少なくとも一方には、該表面被覆層6やその表面に備えさせるべき機能性等に応じて、必要に応じて、前述した滑剤や、アンチブロッキング剤、艶消し剤、難燃剤、酸化防止剤、粘着付与剤、耐電防止剤等の添加剤を含んでいてもよい。添加剤としては、例えば、平均粒子径が0.5nm~5μm程度の微粒子が挙げられる。添加剤の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。
【0125】
添加剤は、無機物及び有機物のいずれであってもよい。また、添加剤の形状についても、特に制限されず、例えば、球状、繊維状、板状、不定形、鱗片状などが挙げられる。
【0126】
添加剤の具体例としては、タルク、シリカ、グラファイト、カオリン、モンモリロナイト、マイカ、ハイドロタルサイト、シリカゲル、ゼオライト、水酸化アルミニウム、水酸化マグネシウム、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、酸化ネオジウム、酸化アンチモン、酸化チタン、酸化セリウム、硫酸カルシウム、硫酸バリウム、炭酸カルシウム、ケイ酸カルシウム、炭酸リチウム、安息香酸カルシウム、シュウ酸カルシウム、ステアリン酸マグネシウム、アルミナ、カーボンブラック、カーボンナノチューブ、高融点ナイロン、アクリレート樹脂、架橋アクリル、架橋スチレン、架橋ポリエチレン、ベンゾグアナミン、金、アルミニウム、銅、ニッケルなどが挙げられる。添加剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの添加剤の中でも、分散安定性やコストなどの観点から、好ましくはシリカ、硫酸バリウム、酸化チタンが挙げられる。また、添加剤には、表面に絶縁処理、高分散性処理などの各種表面処理を施してもよい。
【0127】
表面被覆層6を形成する方法としては、特に制限されず、例えば、表面被覆層6を形成する樹脂を塗布する方法が挙げられる。表面被覆層6に添加剤を配合する場合には、添加剤を混合した樹脂を塗布すればよい。
【0128】
表面被覆層6の厚みとしては、表面被覆層6としての上記の機能を発揮すれば特に制限されず、例えば0.5~10μm程度、好ましくは1~5μm程度が挙げられる。
【0129】
3.蓄電デバイス用外装材の製造方法
蓄電デバイス用外装材の製造方法については、本開示の蓄電デバイス用外装材が備える各層を積層させた積層体が得られる限り、特に制限されず、少なくとも、基材層1、バリア層3、接着層5、及び熱融着性樹脂層4がこの順となるように積層する工程を備える方法が挙げられる。すなわち、本開示の蓄電デバイス用外装材の製造方法は、少なくとも、基材層と、バリア層と、接着層と、熱融着性樹脂層とがこの順となるように積層して積層体を得る工程を備えており、前記接着層は、イソシアネート基を有する化合物を含む樹脂組成物の硬化物であり、前記バリア層の少なくとも前記接着層側の表面に、耐腐食性皮膜を備えており、前記耐腐食性皮膜について、飛行時間型2次イオン質量分析法を用いて分析した場合に、CrPO4 -に由来するピーク強度PCrPO4に対するPO3 -に由来するピーク強度PPO3の比PPO3/CrPO4が、6以上120以下の範囲内にあり、前記耐腐食性皮膜のX線光電子分光法による分析によって、287eVから290eVの範囲にO-C=O結合のC1sに由来するピークPOCOと、285eVにC-C結合のC1sに由来するピークPC-Cが検出され、前記ピークPOCOの高さを前記ピークPC-Cの高さで除して得られるピーク高さ比の値POCO/C-Cが、0.10以上0.50以下の範囲にあることを特徴としている。
【0130】
本開示の蓄電デバイス用外装材の製造方法の一例としては、以下の通りである。まず、基材層1、接着剤層2、バリア層3が順に積層された積層体(以下、「積層体A」と表記することもある)を形成する。積層体Aの形成は、具体的には、基材層1上又は必要に応じて表面が化成処理されたバリア層3に接着剤層2の形成に使用される接着剤を、グラビアコート法、ロールコート法などの塗布方法で塗布、乾燥した後に、当該バリア層3又は基材層1を積層させて接着剤層2を硬化させるドライラミネート法によって行うことができる。
【0131】
次いで、積層体Aのバリア層3上に、熱融着性樹脂層4を積層させる。バリア層3上に熱融着性樹脂層4を直接積層させる場合には、積層体Aのバリア層3上に、熱融着性樹脂層4をサーマルラミネート法、押出ラミネート法などの方法により積層すればよい。また、バリア層3と熱融着性樹脂層4の間に接着層5を設ける場合には、例えば、(1)積層体Aのバリア層3上に、接着層5及び熱融着性樹脂層4を押出しすることにより積層する方法(共押出しラミネート法、タンデムラミネート法)、(2)別途、接着層5と熱融着性樹脂層4が積層した積層体を形成し、これを積層体Aのバリア層3上にサーマルラミネート法により積層する方法や、積層体Aのバリア層3上に接着層5が積層した積層体を形成し、これを熱融着性樹脂層4とサーマルラミネート法により積層する方法、(3)積層体Aのバリア層3と、予めシート状に製膜した熱融着性樹脂層4との間に、溶融させた接着層5を流し込みながら、接着層5を介して積層体Aと熱融着性樹脂層4を貼り合せる方法(サンドイッチラミネート法)、(4)積層体Aのバリア層3上に、接着層5を形成させるための接着剤を溶液コーティングし、乾燥させる方法や、さらには焼き付ける方法などにより積層させ、この接着層5上に予めシート状に製膜した熱融着性樹脂層4を積層する方法などが挙げられる。
【0132】
表面被覆層6を設ける場合には、基材層1のバリア層3とは反対側の表面に、表面被覆層6を積層する。表面被覆層6は、例えば表面被覆層6を形成する上記の樹脂を基材層1の表面に塗布することにより形成することができる。なお、基材層1の表面にバリア層3を積層する工程と、基材層1の表面に表面被覆層6を積層する工程の順番は、特に制限されない。例えば、基材層1の表面に表面被覆層6を形成した後、基材層1の表面被覆層6とは反対側の表面にバリア層3を形成してもよい。
【0133】
上記のようにして、必要に応じて設けられる表面被覆層6/基材層1/必要に応じて設けられる接着剤層2/バリア層3/接着層5/熱融着性樹脂層4をこの順に備える積層体が形成されるが、必要に応じて設けられる接着剤層2の接着性を強固にするために、さらに、加熱処理に供してもよい。
【0134】
蓄電デバイス用外装材において、積層体を構成する各層には、必要に応じて、コロナ処理、ブラスト処理、酸化処理、オゾン処理などの表面活性化処理を施すことにより加工適性を向上させてもよい。例えば、基材層1のバリア層3とは反対側の表面にコロナ処理を施すことにより、基材層1表面へのインクの印刷適性を向上させることができる。
【0135】
4.蓄電デバイス用外装材の用途
本開示の蓄電デバイス用外装材は、正極、負極、電解質などの蓄電デバイス素子を密封して収容するための包装体に使用される。すなわち、本開示の蓄電デバイス用外装材によって形成された包装体中に、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子を収容して、蓄電デバイスとすることができる。なお、本開示の蓄電デバイス用外装材において、前記のピーク強度などは、蓄電デバイスから蓄電デバイス用外装材を切り出して分析することができる。蓄電デバイスから蓄電デバイス用外装材を切り出す場合には、蓄電デバイスの天面、底面など、熱融着性樹脂層同士が熱融着されていない部分からサンプルを取得して分析に供する。
【0136】
具体的には、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子を、本開示の蓄電デバイス用外装材で、前記正極及び負極の各々に接続された金属端子が外側に突出させた状態で、蓄電デバイス素子の周縁にフランジ部(熱融着性樹脂層同士が接触する領域)が形成できるようにして被覆し、前記フランジ部の熱融着性樹脂層同士をヒートシールして密封させることによって、蓄電デバイス用外装材を使用した蓄電デバイスが提供される。なお、本開示の蓄電デバイス用外装材により形成された包装体中に蓄電デバイス素子を収容する場合、本開示の蓄電デバイス用外装材の熱融着性樹脂部分が内側(蓄電デバイス素子と接する面)になるようにして、包装体を形成する。
【0137】
本開示の蓄電デバイス用外装材は、一次蓄電デバイス、二次蓄電デバイスのいずれに使用してもよいが、好ましくは二次蓄電デバイスである。本開示の蓄電デバイス用外装材が適用される二次蓄電デバイスの種類については、特に制限されず、例えば、リチウムイオン蓄電デバイス、リチウムイオンポリマー蓄電デバイス、鉛蓄電池、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池、ニッケル・鉄蓄電池、ニッケル・亜鉛蓄電池、酸化銀・亜鉛蓄電池、金属空気蓄電デバイス、多価カチオン蓄電デバイス、コンデンサー、キャパシターなどが挙げられる。これらの二次蓄電デバイスの中でも、本開示の蓄電デバイス用外装材の好適な適用対象として、リチウムイオン蓄電デバイス及びリチウムイオンポリマー蓄電デバイスが挙げられる。
【0138】
本開示の蓄電デバイス用外装材において、当該耐腐食性皮膜を備えるバリア層は、長期間にわって密着性を保持することができる。このため、本開示の蓄電デバイス用外装材は、例えばハイブリッド自動車、電気自動車などの車両などに使用される大型の蓄電デバイスの外装材として、特に有用である。
【実施例0139】
以下に、実施例及び比較例を示して本開示を詳細に説明する。ただし、本開示は、実施例に限定されない。
【0140】
<蓄電デバイス用外装材の製造>
実施例1
基材層としての2軸延伸ナイロンフィルム(25μm)の表面に、後述の方法で両面に化成処理を施して、耐腐食性皮膜(厚さ30nm)を備えたアルミニウム合金箔(JIS H4160:1994 A8021H-O、厚さ40μm)から構成されるバリア層をドライラミネート法により積層させた。具体的には、耐腐食性皮膜を備えたアルミニウム合金箔の一方面に、2液型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート系化合物)を塗布し、接着剤層(厚さ3μm)を形成した。次いで、耐腐食性皮膜を備えたバリア層上の接着剤層と、基材層の2軸延伸ナイロンフィルム側を積層した後、エージング処理を実施することにより、2軸延伸ナイロンフィルム/接着剤層/両面に耐腐食性皮膜を備えたバリア層の積層体を作製した。
【0141】
次に、接着層を介して、前記積層体のバリア層側と、熱融着性樹脂層とをドライラミネート法により積層させた。具体的には、無水マレイン酸変性ポリプロピレン(分子量7万)とイソシアネート系硬化剤(HDI)とを質量比100:3で含む樹脂組成物を前記積層体のバリア層側の表面(耐腐食性皮膜の表面)に、硬化後の厚みが2μmとなるように塗布し、乾燥させた。次に、熱融着性樹脂層としてのランダムポリプロピレンフィルム(厚さ40μm)を積層し、さらに得られた積層体をエージング処理することにより、基材層(25μm)/接着剤層(3μm)/両面に耐腐食性皮膜(30nm)を備えたバリア層(40μm)/接着層(2μm)/熱融着性樹脂層(40μm)がこの順に積層された蓄電デバイス用外装材を得た。
【0142】
バリア層の表面における耐腐食性皮膜の形成は、次のようにして行った。水100質量に対して、アクリル系樹脂(ポリアクリル酸(分子量1万、酸価778))2質量部、硝酸クロム2質量部、リン酸2質量部を含む処理液を用意し、バリア層の両面に当該処理液を塗布し(乾燥後の膜厚が30nm)、バリア層の表面温度が190℃程度となる温度で、3秒間程度、加熱乾燥させた。
【0143】
実施例2
実施例1において、無水マレイン酸変性ポリプロピレン(分子量15万)とイソシアネート系硬化剤(HDI)とを質量比100:3で含む樹脂組成物を用いて接着層を形成したこと以外は、実施例1と同様にして、基材層(25μm)/接着剤層(3μm)/両面に耐腐食性皮膜(30nm)を備えたバリア層(40μm)/接着層(2μm)/熱融着性樹脂層(40μm)がこの順に積層された蓄電デバイス用外装材を得た。
【0144】
実施例3
実施例1において、接着層を構成する樹脂組成物に含まれる無水マレイン酸変性ポリプロピレンの分子量を11万としたこと以外は、実施例1と同様にして、基材層(25μm)/接着剤層(3μm)/両面に耐腐食性皮膜(30nm)を備えたバリア層(40μm)/接着層(2μm)/熱融着性樹脂層(40μm)がこの順に積層された蓄電デバイス用外装材を得た。
【0145】
実施例4
実施例1において、無水マレイン酸変性ポリプロピレン(分子量7万)100質量部に対して、イソシアネート系硬化剤(HDI)1.5質量部と、エポキシ系硬化剤1.5質量を含む樹脂組成物を用いて接着層を形成したこと以外は、実施例1と同様にして、基材層(25μm)/接着剤層(3μm)/両面に耐腐食性皮膜(30nm)を備えたバリア層(40μm)/接着層(2μm)/熱融着性樹脂層(40μm)がこの順に積層された蓄電デバイス用外装材を得た。
【0146】
実施例5
実施例1において、無水マレイン酸変性ポリプロピレン(分子量11万)100質量部に対して、イソシアネート系硬化剤(HDI)3質量部と、エポキシ系硬化剤3質量を含む樹脂組成物を用いて接着層を形成したこと以外は、実施例1と同様にして、基材層(25μm)/接着剤層(3μm)/両面に耐腐食性皮膜(30nm)を備えたバリア層(40μm)/接着層(2μm)/熱融着性樹脂層(40μm)がこの順に積層された蓄電デバイス用外装材を得た。
【0147】
実施例6
バリア層の表面温度が190℃程度となる温度で、120秒間程度、加熱乾燥させたこと以外は、実施例1と同様にして、基材層(25μm)/接着剤層(3μm)/両面に耐腐食性皮膜(30nm)を備えたバリア層(40μm)/接着層(2μm)/熱融着性樹脂層(40μm)がこの順に積層された蓄電デバイス用外装材を得た。
【0148】
比較例1
実施例1において、無水マレイン酸変性ポリプロピレン(分子量11万)100質量部に対して、エポキシ系硬化剤(ビスフェノールAジグリシジルエーテル)6質量を含む樹脂組成物を用いて接着層を形成したこと以外は、実施例1と同様にして、基材層(25μm)/接着剤層(3μm)/両面に耐腐食性皮膜(30nm)を備えたバリア層(40μm)/接着層(2μm)/熱融着性樹脂層(40μm)がこの順に積層された蓄電デバイス用外装材を得た。
【0149】
比較例2
実施例1において、バリア層の表面における耐腐食性皮膜の形成に用いる処理液として、アミノ化フェノール重合体43質量部、フッ化クロム16質量部、リン酸13質量部を含む処理液を用いたこと以外は、実施例1と同様にして、基材層(25μm)/接着剤層(3μm)/両面に耐腐食性皮膜(30nm)を備えたバリア層(40μm)/接着層(2μm)/熱融着性樹脂層(40μm)がこの順に積層された蓄電デバイス用外装材を得た。
【0150】
比較例3
比較例2において、無水マレイン酸変性ポリプロピレン(分子量7万)100質量部に対して、エポキシ系硬化剤2質量を含む樹脂組成物を用いて接着層を形成したこと以外は、比較例2と同様にして、基材層(25μm)/接着剤層(3μm)/両面に耐腐食性皮膜(30nm)を備えたバリア層(40μm)/接着層(2μm)/熱融着性樹脂層(40μm)がこの順に積層された蓄電デバイス用外装材を得た。
【0151】
比較例4
実施例1において、バリア層の表面における耐腐食性皮膜の形成に用いる処理液として、酸化セリウム100質量部に対して、無機リン化合物(リン酸ナトリウム塩)が20質量部配合された処理液(溶媒として水が含まれており、固形分濃度が10質量%程度)を用意し、バリア層の両面に当該処理液を塗布し(乾燥後の膜厚が20nm)、バリア層の表面温度が190~230℃程度となる温度で、3~6秒間程度、加熱乾燥させて、バリア層の表面に耐腐食性皮膜を形成したこと以外は、実施例1と同様にして、基材層(25μm)/接着剤層(3μm)/両面に耐腐食性皮膜(30nm)を備えたバリア層(40μm)/接着層(2μm)/熱融着性樹脂層(40μm)がこの順に積層された蓄電デバイス用外装材を得た。
【0152】
比較例5
実施例1において、バリア層の表面における耐腐食性皮膜の形成を、水100質量に対して、アクリル系樹脂(ポリアクリル酸(分子量1万、酸価10))2質量部、硝酸クロム2質量部、リン酸2質量部を含む処理液を用いて行ったこと以外は、実施例1と同様にして、基材層(25μm)/接着剤層(3μm)/両面に耐腐食性皮膜(30nm)を備えたバリア層(40μm)/接着層(2μm)/熱融着性樹脂層(40μm)がこの順に積層された蓄電デバイス用外装材を得た。
【0153】
比較例6
実施例1において、バリア層の表面における耐腐食性皮膜の形成を、水100質量に対して、アクリル系樹脂(ポリアクリル酸(分子量1万、酸価2200))2質量部、硝酸クロム2質量部、リン酸2質量部を含む処理液を用いて行ったこと以外は、実施例1と同様にして、基材層(25μm)/接着剤層(3μm)/両面に耐腐食性皮膜(30nm)を備えたバリア層(40μm)/接着層(2μm)/熱融着性樹脂層(40μm)がこの順に積層された蓄電デバイス用外装材を得た。
【0154】
比較例7
実施例1において、バリア層の表面における耐腐食性皮膜の形成を、水100質量に対して、アクリル系樹脂(ポリアクリル酸(分子量1万、酸価778))2質量部、硝酸クロム2質量部、リン酸0.04質量部を含む処理液を用いて行ったこと以外は、実施例1と同様にして、基材層(25μm)/接着剤層(3μm)/両面に耐腐食性皮膜(30nm)を備えたバリア層(40μm)/接着層(2μm)/熱融着性樹脂層(40μm)がこの順に積層された蓄電デバイス用外装材を得た。
【0155】
比較例8
実施例1において、バリア層の表面における耐腐食性皮膜の形成を、水100質量に対して、アクリル系樹脂(ポリアクリル酸(分子量1万、酸価778))2質量部、硝酸クロム2質量部、リン酸21質量部を含む処理液を用いて行ったこと以外は、実施例1と同様にして、基材層(25μm)/接着剤層(3μm)/両面に耐腐食性皮膜(30nm)を備えたバリア層(40μm)/接着層(2μm)/熱融着性樹脂層(40μm)がこの順に積層された蓄電デバイス用外装材を得た。
【0156】
<飛行時間型2次イオン質量分析>
耐腐食性皮膜の分析は、次のようにして行った。まず、バリア層と接着層との間を引き剥がした。この際、水や有機溶剤、酸やアルカリの水溶液などを利用せずに、物理的に剥離させた。バリア層と接着層との間を剥離した後には、バリア層の表面に接着層が残存していたため、残存している接着層をAr-GCIBによるエッチングで除去した。このようにして得られたバリア層の表面について、飛行時間型2次イオン質量分析法を用いて、耐腐食性皮膜の分析を行った。それぞれ、CrPO4 -、PO2 -、及びPO3 -に由来するピーク強度PCrPO4、PPO2、PPO3、と、ピーク強度PCrPO4に対するピーク強度PPO2の比PPO2/CrPO4と、ピーク強度PCrPO4に対するピーク強度PPO3の比PPO3/CrPO4を、それぞれ、表1に示す。なお、比較例4においては、化成処理の処理液にセリウム化合物が使用されており、クロム化合物は使用されていないため、表1には、CrPO4 -のピーク強度PCrPO4に関する項目について「-」で示した。
【0157】
飛行時間型2次イオン質量分析法の測定装置及び測定条件の詳細は次の通りである。
測定装置:ION-TOF社製 飛行時間型2次イオン質量分析装置TOF.SIMS5
(測定条件)
1次イオン:ビスマスクラスターのダブルチャージイオン(Bi3 ++
1次イオン加速電圧:30 kV
質量範囲(m/z):0~1500
測定範囲:100μm×100μm
スキャン数:16 scan/cycle
ピクセル数(1辺):256 pixel
エッチングイオン:Arガスクラスターイオンビーム(Ar-GCIB)
エッチングイオン加速電圧:5.0 kV
【0158】
<X線光電子分光法(XPS)による分析>
XPSによる耐腐食性皮膜の分析は、次のようにして行った。まず、バリア層と接着層との間を引き剥がした。この際、水や有機溶剤、酸やアルカリの水溶液などを利用せずに、物理的に剥離させた。バリア層と接着層との間を剥離した後には、バリア層の表面に接着層が残存していたため、残存している接着層をAr-GCIBによるエッチングで除去した。このようにして得られたバリア層の表面について、XPSを用いて、耐腐食性皮膜の分析を行い、以下のピークの観察を行った。ピークPOCOの高さをピークPC-Cの高さで除して得られるピーク高さ比の値POCO/C-C、さらに、クロム化合物に由来するピーク、及びリン酸化合物に由来するピークの有無を表1に示す。
【0159】
これらの各ピークについては、以下の情報に基づいて同定した。
C-C:285eVのC-C結合のC1sに由来するピーク。測定条件に記載の通り、XPSデータ全体を本ピークの最大強度が285eVとなる様に補正。
OCO:287eVから290eVの範囲のO-C=O結合のC1sに由来するピーク
Cr:576eVから581eVのクロム化合物のCr2p3/2に由来するピーク
P:132eVから135eVの範囲のリン酸化合物のP2p由来するピーク
【0160】
X線光電子分光法の測定装置及び測定条件の詳細は次の通りである。
測定装置:島津製作所(英国Kratos社製)「ESCA-3400」
入射X線:Mg Kα(非単色化X線、hν=1253.6ev)
X線出力:10kV・20mA(200W)
光電子取込角度:90度(試料法線上にインプットレンズを配置)
測定領域:6mmφ
ピークシフト補正:C1sピークにおいて、ピーク強度が最大となる結合エネルギーが285eVとなるように補正。
【0161】
<密着性の評価>
以下の方法により、蓄電デバイス用外装材に、水分を含む電解液が付着した場合のバリア層と熱融着性樹脂層との間の密着性の評価を、剥離強度(N/15mm)を測定することにより行った。
【0162】
まず、上記で得られた各蓄電デバイス用外装材をそれぞれ、15mm(TD:Transverse Direction、横方向)、100mm(MD:Machine Direction、縦方向)のサイズに裁断し、試験片の熱融着性樹脂層とバリア層間を10mm程度剥離させて試験片とした。ガラス瓶に試験片を入れ、さらに水分を含む電解液(エチレンカーボネート:ジエチルカーボネート:ジメチルカーボネート=1:1:1の容積比で混合した溶液に6フッ化リン酸リチウム(溶液中濃度1×103mol/m3)、水分濃度1000ppm)を入れて、試験片の全体が電解液に浸漬されるようにした。この状態でガラス瓶に蓋をして密封した。密封したガラス瓶を、85℃に設定されたオーブン内に入れ、24時間静置した。次に、ガラス瓶をオーブンから取り出し、さらに試験片をガラス瓶から取り出して水洗した後、水を入れた容器に試験片を含浸させた。
【0163】
次に、試験片の熱融着性樹脂層とバリア層間を剥離させ、試験片の接着層側とバリア層側とを引張試験機(島津製作所製の商品名AG-XPlus)を用いて、標線間距離50mm、50mm/分の速度で180°の方向に引張り、試験片の剥離強度(N/15mm)を測定した。なお、試験片の剥離強度の測定は、前述のガラス瓶から取り出して水洗した試験片の表面が濡れたままの試験片について、10分以内に行った。標線間距離が65mmに達した際の強度を試験片の「取り出し直後の剥離強度」とした。また、前述のガラス瓶から取り出して水洗した後、水を入れた容器に試験片を含浸させたまま3時間経過して、水に電解液が溶解することで熱融着性樹脂層の膨潤(電解液が浸透したことに起因)がなくなった状態の試験片について、同様にして剥離強度を測定して、「3時間経過後の剥離強度」とした。それぞれ、結果を表1に示す。
【0164】
一方、初期密着性を次のようにして評価した。まず、上記で得られた各蓄電デバイス用外装材を15mm(TD)、100mm(MD)のサイズに裁断して試験片とした。次に、試験片の熱融着性樹脂層とバリア層間を剥離させ、熱融着性樹脂層とバリア層とを引張試験機(島津製作所製の商品名AG-XPlus)を用いて、標線間距離50mm、50mm/分の速度で180°の方向に引張り、試験片の剥離強度(N/15mm)を測定し、標線間距離が65mmに達した際の強度を初期密着性とした。結果を表1に示す。初期密着性における剥離強度を100%とし、これに対する、前記の電解液浸漬後の密着性における各剥離強度の維持率についても表1に示す。なお、熱融着性樹脂層とバリア層間を剥離させた際、これらの層の間に位置する接着層は、熱融着性樹脂層とバリア層のいずれか一方又は両層に積層された状態となる。
【0165】
【表1】
【0166】
実施例1~6の蓄電デバイス用外装材は、少なくとも、基材層と、バリア層と、接着層と、熱融着性樹脂層とをこの順に備える積層体から構成されており、接着層は、イソシアネート基を有する化合物を含む樹脂組成物の硬化物である。さらに、バリア層の少なくとも前記接着層側の表面に、耐腐食性皮膜を備えており、耐腐食性皮膜について、飛行時間型2次イオン質量分析法を用いて分析した場合に、CrPO4 -に由来するピーク強度PCrPO4に対するPO3 -に由来するピーク強度PPO3の比PPO3/CrPO4が、6~120の範囲内にあり、かつ、耐腐食性皮膜のX線光電子分光法による分析によって、287eVから290eVの範囲にO-C=O結合のC1sに由来するピークPOCOと、285eVにC-C結合のC1sに由来するピークPC-Cが検出され、前記ピークPOCOの高さを前記ピークPC-Cの高さで除して得られるピーク高さ比の値POCO/C-Cが、0.10以上0.50以下の範囲にある。表1に示される結果から明らかなとおり、耐腐食性皮膜と接着層とがこれらの特徴を備える実施例1~6の蓄電デバイス用外装材は、水分を含む電解液に浸漬された場合にも、耐腐食性皮膜を備えたバリア層と接着層との密着性に優れていた。
【0167】
以上の通り、本開示は、下記に掲げる態様の発明を提供する。
項1. 少なくとも、基材層と、バリア層と、接着層と、熱融着性樹脂層とをこの順に備える積層体から構成されており、
前記接着層は、イソシアネート基を有する化合物を含む樹脂組成物の硬化物であり、
前記バリア層の少なくとも前記接着層側の表面に、耐腐食性皮膜を備えており、
前記耐腐食性皮膜について、飛行時間型2次イオン質量分析法を用いて分析した場合に、CrPO4 -に由来するピーク強度PCrPO4に対するPO3 -に由来するピーク強度PPO3の比PPO3/CrPO4が、6以上120以下の範囲内にあり、
前記耐腐食性皮膜のX線光電子分光法による分析によって、287eVから290eVの範囲にO-C=O結合のC1sに由来するピークPOCOと、285eVにC-C結合のC1sに由来するピークPC-Cが検出され、
前記ピークPOCOの高さを前記ピークPC-Cの高さで除して得られるピーク高さ比の値POCO/C-Cが、0.10以上0.50以下の範囲にある、蓄電デバイス用外装材。
項2. 前記耐腐食性皮膜のX線光電子分光法による分析によって、576eVから581eVの範囲に、クロム化合物のCr2p3/2に由来するピークが検出される、項1に記載の蓄電デバイス用外装材。
項3. 前記耐腐食性皮膜のX線光電子分光法による分析によって、132eVから135eVの範囲に、リン酸化合物のP2pに由来するピークが検出される、項1又は2に記載の蓄電デバイス用外装材。
項4. 前記耐腐食性皮膜のX線光電子分光法による分析によって、685eVから689eVの範囲に、フッ素化合物のF1sに由来するピークが検出される、項1~3のいずれか1項に記載の蓄電デバイス用外装材。
項5. 前記耐腐食性皮膜が、少なくとも、COOH基を有するアクリル系樹脂、クロム化合物、及びリン酸化合物を含む組成物から形成されている、項1~4のいずれか1項に記載の蓄電デバイス用外装材。
項6. 前記アクリル系樹脂が、ポリアクリル酸、ポリアクリル酸のアンモニウム塩、ポリアクリル酸のナトリウム塩、及びポリアクリル酸のアミン塩からなる群より選択される少なくとも1種である、項5に記載の蓄電デバイス用外装材。
項7. 前記アクリル系樹脂が、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体、前記共重合体のアンモニウム塩、前記共重合体のナトリウム塩、及び前記共重合体のアミン塩からなる群より選択される少なくとも1種である、項5に記載の蓄電デバイス用外装材。
項8. 前記クロム化合物が、フッ化クロム(III)及び硝酸クロム(III)の少なくとも一方である、項5~7のいずれか1項に記載の蓄電デバイス用外装材。
項9. 前記接着層を構成している樹脂組成物に含まれる樹脂は、ポリオレフィン骨格を有している、項1~8のいずれか1項に記載の蓄電デバイス用外装材。
項10. 前記接着層が、酸変性ポリオレフィンを含む、項1~9のいずれか1項に記載の蓄電デバイス用外装材。
項11. 前記接着層を赤外分光法で分析すると、無水マレイン酸に由来するピークが検出される、項1~10のいずれか1項に記載の蓄電デバイス用外装材。
項12. 前記接着層の前記酸変性ポリオレフィンが、無水マレイン酸変性ポリプロピレンであり、
前記熱融着性樹脂層が、ポリプロピレンを含む、項10に記載の蓄電デバイス用外装材。
項13. 少なくとも、基材層と、バリア層と、接着層と、熱融着性樹脂層とがこの順となるように積層して積層体を得る工程を備えており、
前記接着層は、イソシアネート基を有する化合物を含む樹脂組成物の硬化物であり、
前記バリア層の少なくとも前記接着層側の表面に、耐腐食性皮膜を備えており、
前記耐腐食性皮膜について、飛行時間型2次イオン質量分析法を用いて分析した場合に、CrPO4 -に由来するピーク強度PCrPO4に対するPO3 -に由来するピーク強度PPO3の比PPO3/CrPO4が、6以上120以下の範囲内にあり、
前記耐腐食性皮膜のX線光電子分光法による分析によって、287eVから290eVの範囲にO-C=O結合のC1sに由来するピークPOCOと、285eVにC-C結合のC1sに由来するピークPC-Cが検出され、
前記ピークPOCOの高さを前記ピークPC-Cの高さで除して得られるピーク高さ比の値POCO/C-Cが、0.10以上0.50以下の範囲にある、蓄電デバイス用外装材の製造方法。
項14. 少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子が、項1~12のいずれか1項に記載の蓄電デバイス用外装材により形成された包装体中に収容されている、蓄電デバイス。
【符号の説明】
【0168】
1…基材層
2…接着剤層
3…バリア層
3a,3b…耐腐食性皮膜
4…熱融着性樹脂層
5…接着層
6…表面被覆層
10…蓄電デバイス用外装材
図1
図2
図3
図4