IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ヨータイの特許一覧

特開2024-64543キャスタブル乾式吹付材及びその施工方法
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024064543
(43)【公開日】2024-05-14
(54)【発明の名称】キャスタブル乾式吹付材及びその施工方法
(51)【国際特許分類】
   C04B 35/66 20060101AFI20240507BHJP
   F27D 1/00 20060101ALI20240507BHJP
   F27D 1/16 20060101ALI20240507BHJP
【FI】
C04B35/66
F27D1/00 N
F27D1/16 C
【審査請求】有
【請求項の数】5
【出願形態】OL
(21)【出願番号】P 2022173203
(22)【出願日】2022-10-28
(11)【特許番号】
(45)【特許公報発行日】2023-11-17
(71)【出願人】
【識別番号】000138772
【氏名又は名称】株式会社ヨータイ
(74)【代理人】
【識別番号】110001885
【氏名又は名称】弁理士法人IPRコンサルタント
(72)【発明者】
【氏名】河合 伸哉
(72)【発明者】
【氏名】茂田 純一
【テーマコード(参考)】
4K051
【Fターム(参考)】
4K051AA09
4K051AB03
4K051AB05
4K051BE03
4K051LA02
4K051LA12
(57)【要約】
【課題】高い熱間強度と良好な耐爆裂性を有することに加えて、施工時のポンプ圧送性に優れたキャスタブル乾式吹付材及びその簡便かつ効率的な施工方法を提供する。
【解決手段】シリカゾルで混練されたキャスタブル耐火物からなり、シリカゾルのシリカ濃度が10質量%以上20質量%未満であり、シリカゾルに含まれるシリカ微粒子の平均粒子径が5~10nmであること、を特徴とするキャスタブル乾式吹付材。
【選択図】なし
【特許請求の範囲】
【請求項1】
シリカゾルで混練されたキャスタブル耐火物からなり、
前記シリカゾルのシリカ濃度が10質量%以上20質量%未満であり、
前記シリカゾルに含まれるシリカ微粒子の平均粒子径が5~10nmであること、
を特徴とするキャスタブル乾式吹付材。
【請求項2】
セメントの含有量が3質量%以下であること、
を特徴とする請求項1に記載のキャスタブル乾式吹付材。
【請求項3】
1300℃における曲げ強さが8MPa以上であること、
を特徴とする請求項1又は2に記載のキャスタブル乾式吹付材。
【請求項4】
シリカゾルで混練されたキャスタブル耐火物原料を用い、
前記シリカゾルのシリカ濃度を10質量%以上20質量%未満とし、
前記シリカゾルに含まれるシリカ微粒子の平均粒径を5~10nmとし、
前記キャスタブル耐火物原料を吹付成形した後、乾燥させること、
を特徴とするキャスタブル乾式吹付材の施工方法。
【請求項5】
シリカ微粒子の平均粒子径が異なる2種以上のシリカゾルを混合してシリカゾル混合液を調整し、
前記シリカゾル混合液を用いて前記キャスタブル耐火物原料を混錬すること、
を特徴とする請求項4に記載のキャスタブル乾式吹付材の施工方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、各種窯炉に使用することができるキャスタブル乾式吹付材及びその施工方法に関する。
【背景技術】
【0002】
従来、耐火キャスタブルを吹付材として使用する場合、混練液には水が用いられる。この場合、耐火物は水分を大量に含有することから、水を蒸発させる必要がある。しかしながら、当該目的のために水で混練した耐火キャスタブルを急激に昇温すると、爆裂が発生することが問題となっていた。
【0003】
これに対し、例えば、特許文献1(特開2013-116830号公報)においては、耐火材料と、シリカ固形分の濃度が20質量%以上50質量%以下のシリカゾルとを含み、前記シリカゾルは、そのシリカゾル合量中に含まれるシリカ固形分が、前記耐火材料の合量100質量%に対して外掛けで、3質量%以上30質量%以下となるように添加され、前記耐火材料は、粒径10μm以下のMg又はCaを含む化合物を含有し、前記耐火材料中の粒径10μm以下のMg又はCaを含む化合物の含有量は、前記シリカゾル合量中のシリカ固形分含有量に対して0.02以上である乾式吹き付け用不定形耐火物、が提案されている。
【0004】
上記特許文献1に記載の乾式吹き付け用不定形耐火物においては、Mg又はCaを含む化合物(Mg・Ca化合物)の粒径が10μm以下と微細であり、このMg・Ca化合物の含有量がシリカゾルによりもたらされるシリカ固形分含有量に対して0.02以上であるので、シリカゾルとMg・Ca化合物との反応による耐火材料の硬化反応が適度に促進される。その結果、乾式吹き付け施工方法を用いた場合において、耐用性の優れた吹き付け用耐火物を実現することができる、とされている。
【0005】
また、特許文献2(特開平5-148041号公報)においては、アルミナクリンカーを60~90wt%およびスピネルクリンカーを10~40wt%配合した母材に、マグネシア超微粉を0.05~1.0wt%およびSiOを15~25wt%含有したシリカゾルを6~8wt%添加したことを特徴とする吹付耐火物、が提案されている。
【0006】
上記特許文献2に記載の吹付耐火物においては、シリカゾルとマグネシア超微粉によりゾルゲル反応を起こさせ、この反応を利用して耐火母材を硬化させる機構を利用することで、アルミナクリンカーおよびスピネルクリンカーを母材として、マグネシア超微粉とシリカゾルを添加することによって、従来のような結合剤および硬化剤を使用しない吹付耐火物を得ることができる、とされている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2013-116830号公報
【特許文献2】特開平5-148041号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、上記特許文献1に記載の乾式吹き付け用不定形耐火物や上記特許文献2に記載の吹付耐火物においては、吹付施工する際に使用するシリカゾルの濃度上昇に伴って粘度が増加し、混合液のポンプ圧送性が低下して施工体のばらつきや施工トラブルが発生することが問題となる。また、キャスタブル乾式吹付材の熱間強度及び耐爆裂性とポンプ圧送性の両立については全く考慮されていない。即ち、施工時のポンプ圧送性に優れると共に、高い熱間強度と良好な耐爆裂性を有するキャスタブル乾式吹付材及びその施工方法は存在しないのが実情である。
【0009】
以上のような従来技術における問題点に鑑み、本発明の目的は、高い熱間強度と良好な耐爆裂性を有することに加えて、施工時のポンプ圧送性に優れたキャスタブル乾式吹付材及びその簡便かつ効率的な施工方法を提供することにある。
【課題を解決するための手段】
【0010】
本発明者らは、上記目的を達成すべく、キャスタブル乾式吹付材の組成等について鋭意研究を重ねた結果、キャスタブル耐火物原料の混練に用いるシリカゾルのシリカ濃度及びシリカ微粒子の平均粒子径等が極めて重要であることを見出し、本発明に到達した。
【0011】
即ち、本発明は、
シリカゾルで混練されたキャスタブル耐火物からなり、
前記シリカゾルのシリカ濃度が10質量%以上20質量%未満であり、
前記シリカゾルに含まれるシリカ微粒子の平均粒子径が5~10nmであること、
を特徴とするキャスタブル乾式吹付材、を提供する。
【0012】
本発明のキャスタブル乾式吹付材においては、シリカゾルのシリカ濃度を10質量%以上とすることで、得られるキャスタブル乾式吹付材に高い熱間強度と良好な耐爆裂性を付与することができる。一方で、シリカゾルのシリカ濃度を20質量%未満とすることで、施工時のポンプ圧送性を向上させることができる。
【0013】
また、シリカゾルに含まれるシリカ微粒子の平均粒子径を5~10nmとすることで、キャスタブル乾式吹付材の気孔率を上昇させることなく、連続貫通気孔の量を増加させることができ、耐爆裂性を維持しつつ、優れたポンプ圧送性を付与することができる。加えて、平均粒子径が10nm以下の微細なシリカ粒子は比表面積が大きく焼結性及び充填性に優れていることから、キャスタブル乾式吹付材に高い熱間強度を付与することができる。
【0014】
本発明のキャスタブル乾式吹付材においては、セメントの含有量が3質量%以下であること、が好ましい。セメントの含有量を3質量%以下にすることで、水和物の生成が抑制され、優れた耐爆裂性を有するキャスタブル乾式吹付材を実現することができる。
【0015】
更に、本発明のキャスタブル乾式吹付材においては、1300℃における曲げ強さが8MPa以上であること、が好ましい。1300℃における曲げ強さを8MPa以上とすることで、各種窯炉に好適に使用することができる。
【0016】
また、本発明は、
シリカゾルで混練されたキャスタブル耐火物原料を用い、
前記シリカゾルのシリカ濃度を10質量%以上20質量%未満とし、
前記シリカゾルに含まれるシリカ微粒子の平均粒径を5~10nmとし、
前記キャスタブル耐火物原料を吹付成形した後、乾燥させること、
を特徴とするキャスタブル乾式吹付材の施工方法、も提供する。
【0017】
本発明のキャスタブル乾式吹付材の施工方法においては、キャスタブル耐火物原料の混練に用いるシリカゾルのシリカ濃度及びシリカ微粒子の平均粒径が最適化されており、ポンプ圧送性に優れているため、施工体のばらつきや施工トラブルを抑制することができる。
【0018】
加えて、シリカゾルのシリカ濃度及びシリカ微粒子の平均粒径は、得られるキャスタブル乾式吹付材の耐爆裂性及び熱間強度の観点からも最適化されているため、吹付成形後に乾燥させることで、優れた耐爆裂性と高い熱間強度を有するキャスタブル乾式吹付材を簡便かつ効率的に得ることができる。
【0019】
更に、本発明のキャスタブル乾式吹付材の施工方法においては、シリカ微粒子の平均粒子径が異なる2種以上のシリカゾルを混合してシリカゾル混合液を調整し、前記シリカゾル混合液を用いて前記キャスタブル耐火物原料を混錬すること、が好ましい。平均粒子径が異なる2種類以上のシリカ微粒子を混合して使用することで、熱間強度を向上させることができる。当該状況において熱間強度が向上する理由は必ずしも明らかになっていないが、粒径が異なる粒子が混合することで充填密度が上昇すること等に起因していると考えられる。
【発明の効果】
【0020】
本発明によれば、高い熱間強度と良好な耐爆裂性を有することに加えて、施工時のポンプ圧送性に優れたキャスタブル乾式吹付材及びその簡便かつ効率的な施工方法を提供することができる。
【発明を実施するための形態】
【0021】
以下、本発明のキャスタブル乾式吹付材及びその施工方法の代表的な実施形態について詳細に説明するが、本発明はこれらのみに限定されるものではない。
【0022】
(1)キャスタブル乾式吹付材
本発明のキャスタブル乾式吹付材は、シリカゾルで混練されたキャスタブル耐火物からなり、シリカゾルのシリカ濃度が10質量%以上20質量%未満であり、シリカゾルに含まれるシリカ微粒子の平均粒子径が5~10nmであることを特徴とするものである。以下、主成分と添加成分及びキャスタブル乾式吹付材の特性について詳細に説明する。
【0023】
(1-1)主成分(耐火性骨材)
主成分は本発明の効果を損なわない限りにおいて特に限定されず、流し込みキャスタブルに一般的に使用されているものを使用することができる。具体的には、例えば、アルミナ、ムライト、クロミア、マグネシア、スピネル、シリカ、ジルコニア、ジルコン等を使用することができ、これらを単独で使用してもよく、任意の組み合わせで混合してもよい。
【0024】
主成分の含有量は本発明の効果を損なわない限りにおいて特に限定されず、キャスタブル乾式吹付材に求められる特性に応じて適宜調整すればよいが、70~95質量%とすることが好ましい。また、主成分の粒子形状及び粒子径についても、本発明の効果を損なわない限りに特に限定されず、流し込みキャスタブルに一般的に使用されている原料を用いることができる。
【0025】
アルミナ原料には、例えば、電融アルミナ、電融ムライト、焼結アルミナ、合成ムライト、ボーキサイト、シリマナイト、バン土頁岩等の高アルミナ質原料を用いることができる。
【0026】
ムライト原料には、例えば、電融ムライトや焼結ムライトを用いることができる。ここで、ムライト原料の粒径は本発明の効果を損なわない限りにおいて特に限定されないが、200μm以下の微粉とすることで焼結が促進され、熱膨張が抑制されることで耐熱衝撃性の改善効果を高めることができる。
【0027】
クロミア(Cr)の原料としては、例えば、酸化クロム、電融クロミア、焼成クロミア、クロミアを含む電融原料、クロミアを含む焼成原料及びクロム鉱を用いることができる。これらの原料を使用することで、簡便かつ効率的にキャスタブル耐火物に所望の量のCrを添加することができる。
【0028】
マグネシアの原料としては、例えば、電融マグネシア、海水マグネシア及び天然マグネシア等を使用することができる。また、マグネシア原料の純度に関して、不純物による耐食性の低下や過焼結の影響を避けるために、95重量%以上の高純度のものを使用することが好ましい。
【0029】
その他、スピネル、シリカ、ジルコニア、ジルコン等についても、流し込みキャスタブルに一般的に使用されている原料を用いればよい。
【0030】
(1-2)必須の添加成分(セメント原料)
本発明のキャスタブル乾式吹付材には、結合剤として、アルミナセメントが添加されている。アルミナセメントとしては、一般に市販されているものが使用でき、添加量は1~3質量%とすることが好ましい。セメントの含有量が1質量%未満ではキャスタブル耐火物の強度を向上させる効果に乏しく、3質量%を超える場合はCaO成分過多により、耐食性低下の原因となる。また、セメントの含有量を3質量%以下とすることで、キャスタブル乾式吹付材の耐熱性を改善させることができ、耐食性も向上させることができる。
【0031】
(1-3)混練液(シリカゾル)
本発明のキャスタブル乾式吹付材は、シリカゾルで混練されたキャスタブル耐火物からなるものである。
【0032】
シリカゾルのシリカ濃度は10質量%以上20質量%未満となっている。シリカゾルのシリカ濃度を10質量%以上とすることで、得られるキャスタブル乾式吹付材に高い熱間強度と良好な耐爆裂性を付与することができる。一方で、シリカゾルのシリカ濃度を20質量%未満とすることで、施工時のポンプ圧送性を向上させることができる。
【0033】
また、シリカゾルに含まれるシリカ微粒子の平均粒子径は5~10nmとなっている。シリカゾルに含まれるシリカ微粒子の平均粒子径を5~10nm以上とすることで、キャスタブル乾式吹付材の気孔率を上昇させることなく、連続貫通気孔の量を増加させることができ、耐爆裂性を維持しつつ、優れたポンプ圧送性を付与することができる。加えて、平均粒子径が10nm以下の微細なシリカ粒子は比表面積が大きく焼結性及び充填性に優れていることから、キャスタブル乾式吹付材に高い熱間強度を付与することができる。より好ましいシリカ微粒子の平均粒径は5~8.5nmである。
【0034】
混練液として用いるシリカゾルに起因して、最終的に得られるキャスタブル乾式吹付材には微量のSiO固形分が含まれる。SiO固形分の含有量はシリカゾルのSiO固形分濃度やシリカゾルの添加量に依存するが、5~10質量%となることが好ましい。
【0035】
(1-4)任意の添加成分
本発明のキャスタブル乾式吹付材には、任意の添加成分として、流し込みキャスタブルに一般的に使用されている原料を添加することができる。
【0036】
例えば、ZrOを添加することで、キャスタブル耐火物の耐熱衝撃性を向上させることができる。ZrO微粉末には粒径1mm以下のジルコニア原料を用いることが好ましく、含有量は1~10質量%とすることが好ましい。
【0037】
また、シリカフラワーや粘度等の超微粉原料を添加してもよい。粒径が10μm以下の超微粉原料を使用することで流動性が向上し、緻密な施工体を得ることができる。耐火性超微粉末の含有量は本発明の効果を損なわない限りにおいて特に限定されず、キャスタブル乾式吹付材の施工時に求められる流動性等に応じて適宜調整すればよい。
【0038】
(1-5)キャスタブル乾式吹付材の特性
本発明のキャスタブル乾式吹付材はシリカ濃度及びシリカ微粒子の平均粒径が最適化されたシリカゾルを用いて混練されたキャスタブル原料からなり、優れた耐爆裂性と高い熱間強度を有している。
【0039】
より具体的には、本発明のキャスタブル乾式吹付材は、1300℃における曲げ強さが8MPa以上であることが好ましい。1300℃における曲げ強さを8MPa以上とすることで、各種窯炉に好適に使用することができる。1300℃におけるより好ましい曲げ強さは9MPa以上であり、最も好ましい曲げ強さは11MPa以上である。
【0040】
また、本発明のキャスタブル乾式吹付材の耐爆裂性は、低セメント質キャスタブルと比較して良好である。
【0041】
(2)キャスタブル乾式吹付材の施工方法
本発明のキャスタブル乾式吹付材の施工方法は、シリカゾルで混練されたキャスタブル耐火物原料を用い、シリカゾルのシリカ濃度を10質量%以上20質量%未満とし、シリカゾルに含まれるシリカ微粒子の平均粒径を5~10nmとし、キャスタブル耐火物原料を吹付成形した後、乾燥させること、を特徴とするものである。
【0042】
混練液として使用するシリカゾル及びキャスタブル耐火物原料の特徴は、「(1)キャスタブル乾式吹付材」に記載のとおりである。
【0043】
本発明のキャスタブル乾式吹付材の施工方法においては、キャスタブル耐火物原料の混練に用いるシリカゾルのシリカ濃度及びシリカ微粒子の平均粒径が最適化され、ポンプ圧送性に優れているため、施工体のばらつきや施工トラブルを抑制することができる。
【0044】
ポンプ圧送性に関して、より具体的には、粘度が3.0mPa・s以下となることが好ましい。
【0045】
加えて、キャスタブル耐火物原料のシリカゾルのシリカ濃度及びシリカ微粒子の平均粒径は得られるキャスタブル乾式吹付材の耐爆裂性及び熱間強度の観点からも最適化されているため、吹付成形後に乾燥させることで、優れた耐爆裂性と高い熱間強度を有するキャスタブル乾式吹付材を簡便かつ効率的に得ることができる。
【0046】
更に、本発明のキャスタブル乾式吹付材の施工方法においては、シリカ微粒子の平均粒子径が異なる2種以上のシリカゾルを混合してシリカゾル混合液を調整し、当該シリカゾル混合液を用いてキャスタブル耐火物原料を混錬することが好ましい。平均粒子径が異なる2種類以上のシリカ微粒子を混合して使用することで、熱間強度を向上させることができる。当該状況において熱間強度が向上する理由は必ずしも明らかになっていないが、粒径が異なる粒子が混合することで充填密度が上昇すること等に起因していると考えられる。ここで、例えば、2種類のシリカゾルを混合する場合、シリカ濃度及びシリカ微粒子の平均粒径は各シリカゾルの平均値として評価することができる。
【0047】
その他の施工条件は、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々のキャスタブル乾式吹付材の施工条件を適用することができる。
【0048】
以上、本発明の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではなく、種々の設計変更が可能であり、それら設計変更は全て本発明の技術的範囲に含まれる。
【実施例0049】
≪実施例≫
表1に実施例1~実施例7として示す割合で原料及び添加剤を調製し、混練液としてシリカゾルを添加して、1.0~2.0barの吹付圧にてアンカー付き鉄板の表面に施工を行い、本発明のキャスタブル乾式吹付材を得た。ここで、表1における「混練液」は、2種のシリカゾルを混合した場合は混合後の状態を示している(1種のみのシリカゾルを使用した場合は当該シリカゾルの値を示している。)。
【0050】
【表1】
【0051】
[評価]
各キャスタブル耐火物原料を吹付成形する際のポンプ圧送性及び得られた各キャスタブル乾式吹付材の耐爆裂性及び熱間強度を評価した。
【0052】
(1)ポンプ圧送性
原料及び添加剤に混練液を添加して混錬した状態の粘度にて、ポンプ圧送性を評価した。粘度が3mPa・s以下の場合を5、3mPa・sより大きく5mPa・s以下の場合を4、5mPa・sより大きく7mPa・s以下の場合を3、7mPa・sより大きく10mPa・s以下の場合を2、10mPa・s以上の場合を1として、得られた結果を表1に示す。
【0053】
(2)耐爆裂性
混練したキャスタブル耐火物原料を紙コップに流し込み、24時間自然養生した。養生後のサンプルを紙コップから取り出し、任意の温度に保温した電気炉に入れ、15分間加熱し、爆裂の有無を確認した。ここで、爆裂が全く認められない場合を5、クラックが発生した場合は、クラックの度合いで4(僅かにクラックが発生した場合)~2(クラックが顕著に発生した場合)とし、爆散しサンプルの形状が残らなかった場合を1として評価した。得られた結果を表1に示す。
【0054】
(3)熱間強度
30mm×30mm×120mmの試片を、熱間曲げ試験装置を用いて熱間強度を測定した。1300℃の大気雰囲気下で三点曲げ(支点間距離80mm)を行った結果を数値(MPa)で表示している。得られた結果を表1に示す。
【0055】
(1)~(3)の結果を総合し、キャスタブル乾式吹付材の評価を行った。ポンプ圧送性と耐爆裂性が共に5で、1300℃における曲げ強さが9MPa以上の場合は◎、ポンプ圧送性と耐爆裂性が共に5で、1300℃における曲げ強さが8MPa以上の場合は〇、ポンプ圧送性及び耐爆裂性の何れかが5以外となった場合は×とした。得られた結果を表1に示す。
【0056】
≪比較例≫
表1に比較例1~比較例7として示す割合で原料を調整したこと以外は実施例と同様にして、キャスタブル乾式吹付材を得た。なお、比較例1ではシリカゾルを添加しておらず、水を添加している。また、実施例と同様にして、各キャスタブル乾式吹付材のポンプ圧送性、耐爆裂性及び熱間強度を評価し、得られた結果を基に総合評価を行った。得られた結果を表1に示す。
【0057】
表1に示す評価結果より、全ての実施例(実施例1~実施例7)において、ポンプ圧送性と耐爆裂性の評価が5となっている。また、全ての実施例(実施例1~実施例7)において、得られたキャスタブル乾式吹付材の1300℃における曲げ強さは8MPa以上となっており、特に、シリカ微粒子の平均粒径が異なる2種のシリカゾルを添加した実施例2、実施例6及び実施例7において、より高い曲げ強さが得られている。これらの結果より、本発明のキャスタブル乾式吹付材は、高い熱間強度と良好な耐爆裂性を有することに加えて、施工時のポンプ圧送性に優れていることが分かる。
【0058】
これに対し、シリカゾルのシリカ濃度が高い比較例2(シリカ濃度40%)及び比較例3(シリカ濃度30%)においては、良好な耐爆裂性と高い熱間強度が得られているものの、ポンプ圧送性が極めて悪くなっている。
【0059】
また、シリカゾルを添加していない比較例1では耐爆裂性が最低の評価となっており、シリカゾルのシリカ微粒子の平均粒径が10nmよりも大きな比較例4~比較例6については、耐爆裂性が低い評価となっている。更に、シリカゾルのシリカ濃度が低い比較例7(シリカ濃度7%)においても、耐爆裂性が低い評価となっている。
【0060】
加えて、熱間強度に関して、シリカゾルのシリカ濃度が高い比較例2(シリカ濃度40%)及び比較例3(シリカ濃度30%)以外については、いずれの比較例においても5MPa以下の低い値となっている。
【0061】
以上の結果より、高い熱間強度と良好な耐爆裂性を有することに加えて、施工時のポンプ圧送性に優れたキャスタブル乾式吹付材を実現するためには、シリカ濃度が10質量%以上20質量%未満であり、シリカ微粒子の平均粒子径が5~10nmであるシリカゾルで混練されたキャスタブル耐火物を使用することが極めて重要であることが分かる。
【手続補正書】
【提出日】2023-10-18
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
シリカゾルで混練されたキャスタブル耐火物からなり、
前記シリカゾルのシリカ濃度が10質量%以上20質量%未満であり、
前記シリカゾルに含まれるシリカ微粒子の平均粒子径が5~9.8nmであること、
を特徴とするキャスタブル乾式吹付材。
【請求項2】
セメントの含有量が3質量%以下であること、
を特徴とする請求項1に記載のキャスタブル乾式吹付材。
【請求項3】
1300℃における曲げ強さが8MPa以上であること、
を特徴とする請求項1又は2に記載のキャスタブル乾式吹付材。
【請求項4】
シリカゾルで混練されたキャスタブル耐火物原料を用い、
前記シリカゾルのシリカ濃度を10質量%以上20質量%未満とし、
前記シリカゾルに含まれるシリカ微粒子の平均粒径を5~10nmとし、
前記キャスタブル耐火物原料を吹付成形した後、乾燥させること、
を特徴とするキャスタブル乾式吹付材の施工方法。
【請求項5】
シリカ微粒子の平均粒子径が異なる2種以上のシリカゾルを混合してシリカゾル混合液を調整し、
前記シリカゾル混合液を用いて前記キャスタブル耐火物原料を混錬すること、
を特徴とする請求項4に記載のキャスタブル乾式吹付材の施工方法。
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】0050
【補正方法】変更
【補正の内容】
【0050】
【表1】
【手続補正3】
【補正対象書類名】明細書
【補正対象項目名】0011
【補正方法】変更
【補正の内容】
【0011】
即ち、本発明は、
シリカゾルで混練されたキャスタブル耐火物からなり、
前記シリカゾルのシリカ濃度が10質量%以上20質量%未満であり、
前記シリカゾルに含まれるシリカ微粒子の平均粒子径が5~9.8nmであること、
を特徴とするキャスタブル乾式吹付材、を提供する。
【手続補正4】
【補正対象書類名】明細書
【補正対象項目名】0013
【補正方法】変更
【補正の内容】
【0013】
また、シリカゾルに含まれるシリカ微粒子の平均粒子径を5~9.8nmとすることで、キャスタブル乾式吹付材の気孔率を上昇させることなく、連続貫通気孔の量を増加させることができ、耐爆裂性を維持しつつ、優れたポンプ圧送性を付与することができる。加えて、平均粒子径が9.8nm以下の微細なシリカ粒子は比表面積が大きく焼結性及び充填性に優れていることから、キャスタブル乾式吹付材に高い熱間強度を付与することができる。