(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024065135
(43)【公開日】2024-05-15
(54)【発明の名称】箱形断面柱とH形鋼梁の接合構造および接合構造の製造方法
(51)【国際特許分類】
E04B 1/58 20060101AFI20240508BHJP
E04B 1/24 20060101ALI20240508BHJP
【FI】
E04B1/58 508S
E04B1/24 L
【審査請求】未請求
【請求項の数】6
【出願形態】OL
(21)【出願番号】P 2022173869
(22)【出願日】2022-10-31
(71)【出願人】
【識別番号】000001258
【氏名又は名称】JFEスチール株式会社
(74)【代理人】
【識別番号】100184859
【弁理士】
【氏名又は名称】磯村 哲朗
(74)【代理人】
【識別番号】100123386
【弁理士】
【氏名又は名称】熊坂 晃
(74)【代理人】
【識別番号】100196667
【弁理士】
【氏名又は名称】坂井 哲也
(74)【代理人】
【識別番号】100130834
【弁理士】
【氏名又は名称】森 和弘
(72)【発明者】
【氏名】大庭 諒介
(72)【発明者】
【氏名】木下 智裕
(72)【発明者】
【氏名】森岡 宙光
【テーマコード(参考)】
2E125
【Fターム(参考)】
2E125AA03
2E125AA13
2E125AB01
2E125AB16
2E125AC15
2E125AC16
2E125AG41
2E125AG49
2E125AG57
2E125BB03
2E125BD01
2E125CA90
(57)【要約】
【課題】 製作効率が高く、部材どうしの組立精度を確実に確保できる、箱形断面柱とH形鋼梁の接合構造および接合構造の製造方法を提供する
【解決手段】 4枚のスキンプレートが角溶接により相互に接合されて構成される溶接組立箱形断面柱に、外ダイアフラムを介してH形鋼梁が接合されてなる、箱形断面柱とH形鋼梁との接合構造であって、前記スキンプレートの表面と前記外ダイアフラムの端面との間に、当て金により囲まれた溶接用の孔が設けられ、該溶接用の孔にエレクトロスラグ溶接により溶融金属を充填して形成された溶接部により、前記箱形断面柱と前記外ダイアフラムとが接合されている、箱形断面柱とH形鋼梁の接合構造。
【選択図】
図2
【特許請求の範囲】
【請求項1】
4枚のスキンプレートが角溶接により相互に接合されて構成される溶接組立箱形断面柱に、外ダイアフラムを介してH形鋼梁が接合されてなる、箱形断面柱とH形鋼梁との接合構造であって、
前記スキンプレートの表面と前記外ダイアフラムの端面との間に、当て金により囲まれた溶接用の孔が設けられ、該溶接用の孔にエレクトロスラグ溶接により溶融金属を充填して形成された溶接部により、前記箱形断面柱と前記外ダイアフラムとが接合されている、箱形断面柱とH形鋼梁の接合構造。
【請求項2】
前記溶接用の孔が前記外ダイアフラムの板厚方向に二つ以上の孔に分割されるように、前記溶接用の孔の内部に鋼片からなる隔壁が設けられている、請求項1に記載の箱形断面柱とH形鋼梁の接合構造。
【請求項3】
前記外ダイアフラムの降伏強度が前記H形鋼梁のフランジの降伏強度よりも大きい、請求項1または請求項2に記載の箱形断面柱とH形鋼梁の接合構造。
【請求項4】
4枚のスキンプレートが角溶接により相互に接合されて構成される溶接組立箱形断面柱に、外ダイアフラムを介してH形鋼梁を接合する、箱形断面柱とH形鋼梁との接合構造の製造方法であって、
前記スキンプレートの表面と前記外ダイアフラムの端面との間を当て金で囲むことにより溶接用の孔を設け、該溶接用の孔に100~1500kJ/cmの入熱量でエレクトロスラグ溶接を行うことにより溶融金属を充填して溶接部を形成することで、前記箱形断面柱と前記外ダイアフラムとを接合する、箱形断面柱とH形鋼梁の接合構造の製造方法。
【請求項5】
前記溶接用の孔が前記外ダイアフラムの板厚方向に二つ以上の孔に分割されるように、前記溶接用の孔の内部に鋼片からなる隔壁を設ける、請求項4に記載の箱形断面柱とH形鋼梁の接合構造の製造方法。
【請求項6】
前記外ダイアフラムの降伏強度が前記H形鋼梁のフランジの降伏強度よりも大きい、請求項4または請求項5に記載の箱形断面柱とH形鋼梁の接合構造の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、建築物における柱と梁との接合構造および接合構造の製造方法に関し、特に箱形断面柱とH形鋼梁との接合構造および接合構造の製造方法に関する。
【背景技術】
【0002】
超高層の鋼構造建築物では、4枚のスキンプレートが角溶接により相互に接合されて構成される溶接組立箱形断面柱が使用されることが多い。箱形断面柱とH形鋼梁の接合部においては、地震時など建築物に水平力が作用する時にH形鋼梁のフランジから箱形断面柱のスキンプレートに応力が伝達する。この応力により、箱形断面柱のスキンプレートに局所的な変形が生じないように、箱形断面柱には、ダイアフラムと称する水平補剛材を、H形鋼梁のフランジと同じ高さに設けることが一般的に行なわれている。
【0003】
箱形断面柱とH形鋼梁との接合部は、内ダイアフラムを用いる内ダイアフラム形式、通しダイアフラムを用いる通しダイアフラム形式、外ダイアフラムを用いる外ダイアフラム形式に大別される。
【0004】
このうち、内ダイアフラム形式は、箱形断面柱とH形鋼梁との接合部に最も多く採用されている。
図6(a)および
図6(b)に、内ダイアフラム形式による箱形断面柱81とH形鋼梁82との接合部の斜視図および平面図を示す。また、
図7および
図8に、内ダイアフラム形式による箱形断面柱81とH形鋼梁82との接合部の要部の縦断面図を示す。
図7および
図8に示すように、箱形断面柱81のスキンプレート811と内ダイアフラム84とは、エレクトロスラグ溶接により接合されることが一般的である。
【0005】
具体的には、スキンプレート811を組み合わせて箱形断面柱81を製作する途中で、箱形断面柱81の内側に内ダイアフラム84を設置する。そして、
図7に示すように、スキンプレート811の裏面と内ダイアフラム84の端面との間の隙間の両側を当て金841で囲むことにより、矩形断面を有する溶接用の孔842を設ける。さらに、この溶接用の孔842内に溶融スラグ浴を形成した上で、溶融スラグ浴中に溶接ワイヤを送給しつつ溶接ワイヤから電流を供給することにより溶融スラグを抵抗発熱させる。このようにして、最大で数百万J/cm程度の大入熱を与えながら、
図8に示すように、溶接用の孔842の周囲の母材を溶融させつつ溶接用の孔842に溶融金属を充填する。エレクトロスラグ溶接は、手動または半自動のガスシールドアーク溶接と比べると、きわめて能率が高い。
【0006】
しかし、内ダイアフラム84および当て金841を、箱形断面柱81の内側に接合する必要があるため、箱形断面柱81のスキンプレート811と内ダイアフラム84とのルート間隔84Gおよび当て金841などの組立精度の確保が難しい。
【0007】
図9(a)および
図9(b)に、通しダイアフラム形式による箱形断面柱81とH形鋼梁82との接合部の斜視図および平面図を示す。
図9(a)および
図9(b)に示すように、通しダイアフラム形式による箱形断面柱81とH形鋼梁82との接合部では、箱形断面柱81の断面を貫通するように通しダイアフラム85が設けられている。そして、通しダイアフラム形式による箱形断面柱とH形鋼梁との接合部の組立ては、箱形断面柱81を通しダイアフラム85を設ける位置で切断し、通しダイアフラム85を切断位置に挿入し、箱形断面柱81と通しダイアフラム85とを溶接する方法で行われる。
【0008】
ここで、箱形断面柱81と通しダイアフラム85との溶接部86は完全溶込み溶接とされ、これにより、箱形断面柱81の断面を貫通するように通しダイアフラム85が設けられていても、箱形断面柱81の性能が確保されるようにしている。
【0009】
しかし、上述のとおり、通しダイアフラム形式による箱形断面柱とH形鋼梁との接合部の組立ては、箱形断面柱81を通しダイアフラム85を設ける位置で切断し、通しダイアフラム85を切断位置に挿入し、箱形断面柱81と通しダイアフラム85とを溶接して行われる。よって、箱形断面柱81の切断や、箱形断面柱81を通しダイアフラム85との完全溶込み溶接の開先加工に手間を要するとともに、溶接量が多くなりやすい。また、通しダイアフラム85の上下に接合される箱形断面柱81の位置合わせなどの精度確保に高い技量を必要とする。
【0010】
さらに、箱形断面柱81の断面を貫通するように設けられる通しダイアフラム85は、箱形断面柱81の一部を構成するものとして、建築物が設計される。この設計の前提条件として、箱形断面柱81と通しダイアフラム85との溶接部86には、箱形断面柱81の強度と同等以上の強度を有する溶接材料を用いる必要があり、材料費および施工負荷が高くなりやすい。超高層建築物で使用されることが多い箱形断面柱81には、高強度鋼材を用いることが多く、箱形断面柱81と通しダイアフラム85との溶接部86にも、箱形断面柱81と同等以上の強度クラスの高強度の溶接材料を用いる必要が生じる。
【0011】
図10(a)および
図10(b)に、外ダイアフラム形式による箱形断面柱とH形鋼梁との接合部の斜視図および平面図を示す。
図10(a)および
図10(b)に示すように、外ダイアフラム形式による箱形断面柱とH形鋼梁との接合部では、箱形断面柱81と外ダイアフラム83との溶接は、箱形断面柱81の外部から行われる。よって、箱形断面柱81に外ダイアフラム83を取り付けやすく、部材どうしの組立精度を確保しやすい。さらに、箱形断面柱81の内部にはダイアフラムが挿入されないため、箱形断面柱81の内部にコンクリートを充填する場合の施工性にも優れている。
【0012】
図11~
図13に、外ダイアフラム形式による箱形断面柱81とH形鋼梁82との接合部の要部の縦断面図を示す。
図11は、箱形断面柱81と外ダイアフラム83との溶接部87を隅肉溶接とした例である。
図12は、箱形断面柱81と外ダイアフラム83との溶接部88を完全溶込み溶接とした例である。
図13は、箱形断面柱81と外ダイアフラム83との溶接部89を部分溶込み溶接とした例である。
【0013】
箱形断面柱81と外ダイアフラム83とは、
図11に示すように隅肉溶接で接合されるか、または、
図12および
図13に示すように、外ダイアフラム83に開先加工を施した上で、完全溶込み溶接または部分溶込み溶接により接合されることが一般的である。これら隅肉溶接、完全溶込み溶接および部分溶込み溶接には、半自動のガスシールドアーク溶接などが適用される。ただし、断面の大きいH形鋼梁2が用いられる場合には、地震時などにH形鋼梁82のフランジ821から箱形断面柱81のスキンプレート811に作用する応力が大きくなり、箱形断面柱81のスキンプレート811に局所的な変形が生じないようにするために、外ダイアフラム83の板厚を増大させなければならない。外ダイアフラム83の板厚が大きい程、ガスシールドアーク溶接では溶接時のパス数が多くなり、内ダイアフラム形式で採用されるエレクトロスラグ溶接と比べると、製作効率が低くなりやすい。
【0014】
さらに、
図10(b)に示すように、外ダイアフラム形式による箱形断面柱81とH形鋼梁82との接合部では、柱梁接合部の耐力を確保するために、箱形断面柱81のスキンプレート811からの外ダイアフラム83の突出幅83hを大きくすることが多い。よって、外ダイアフラム83が取り付けられた箱形断面柱81を鉄骨製作工場で製作し、これを建設現場に搬入するとき、外ダイアフラム83の突出幅83hが大きいと、運搬車両に一度に積載できる箱形断面柱81の本数が制限されてしまい、運搬効率が悪化しやすい。
【0015】
そこで、特許文献1および特許文献2では、外ダイアフラムの突出幅を抑えつつ柱梁接合部の耐力を確保可能な外ダイアフラムおよびこれを用いた柱梁接合構造が提案されている。
【0016】
具体的には、特許文献1では、角形鋼管柱の外周面に沿うように平鋼を面外に折り曲げて形成したスリーブ状の外ダイアフラムを用いることにより、従来の外ダイアフラムに比べて平面形状を縮小することが提案されている。
【0017】
また、特許文献2では、4枚のL字形鋼片を組み合わせて外ダイアフラムを構成し、L字形鋼片に板厚の大きい材料を用いることにより、外ダイアフラムの寸法を抑えることが提案されている。L字形鋼片どうしの接合は、表裏面での隅肉溶接や部分溶け込み溶接などにより行われている。
【先行技術文献】
【特許文献】
【0018】
【特許文献1】特開2006-002351号公報
【特許文献2】特開2016-108868号公報
【発明の概要】
【発明が解決しようとする課題】
【0019】
ここで、箱形断面柱または角形鋼管柱と外ダイアフラムとの溶接部の品質を確保するには、角形鋼管柱と外ダイアフラムのルート間隔を適切な精度で確保する必要がある。ルート間隔が小さすぎると溶接欠陥が生じやすくなり、ルート間隔が大きすぎると溶接量が増大して施工性が悪化するためである。しかし、特許文献1では、平鋼を面外に折り曲げる際に平鋼内に局所的な残留応力が発生するため、外ダイアフラム製作時の寸法精度、および外ダイアフラムを箱形断面柱または角形鋼管柱に取り付けるときの組立精度を確保することが難しいという課題がある。
【0020】
また、特許文献1および特許文献2では、箱形断面柱または角形鋼管柱と外ダイアフラムとを、ガスシールドアーク溶接による隅肉溶接により、または外ダイアフラムに開先加工を施した上で部分溶込み溶接により接合することを前提としている。よって、内ダイアフラム形式で採用されるエレクトロスラグ溶接と比べると、製作効率が低いという課題がある。
【0021】
本発明は、かかる課題を解決するためになされたものであり、製作効率に優れ、部材どうしの組立精度を確実に確保できる、箱形断面柱とH形鋼梁の接合構造および接合構造の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0022】
上記課題を解決するため、本発明は以下の特徴を有する。
【0023】
[1] 4枚のスキンプレートが角溶接により相互に接合されて構成される溶接組立箱形断面柱に、外ダイアフラムを介してH形鋼梁が接合されてなる、箱形断面柱とH形鋼梁との接合構造であって、前記スキンプレートの表面と前記外ダイアフラムの端面との間に、当て金により囲まれた溶接用の孔が設けられ、該溶接用の孔にエレクトロスラグ溶接により溶融金属を充填して形成された溶接部により、前記箱形断面柱と前記外ダイアフラムとが接合されている、箱形断面柱とH形鋼梁の接合構造。
【0024】
[2] 前記溶接用の孔が前記外ダイアフラムの板厚方向に二つ以上の孔に分割されるように、前記溶接用の孔の内部に鋼片からなる隔壁が設けられている、[1]に記載の箱形断面柱とH形鋼梁の接合構造。
【0025】
[3] 前記外ダイアフラムの降伏強度が前記H形鋼梁のフランジの降伏強度よりも大きい、[1]または[2]に記載の箱形断面柱とH形鋼梁の接合構造。
【0026】
[4] 4枚のスキンプレートが角溶接により相互に接合されて構成される溶接組立箱形断面柱に、外ダイアフラムを介してH形鋼梁を接合する、箱形断面柱とH形鋼梁との接合構造の製造方法であって、前記スキンプレートの表面と前記外ダイアフラムの端面との間を当て金で囲むことにより溶接用の孔を設け、該溶接用の孔に100~1500kJ/cmの入熱量でエレクトロスラグ溶接を行うことにより溶融金属を充填して溶接部を形成することで、前記箱形断面柱と前記外ダイアフラムとを接合する、箱形断面柱とH形鋼梁の接合構造の製造方法。
【0027】
[5] 前記溶接用の孔が前記外ダイアフラムの板厚方向に二つ以上の孔に分割されるように、前記溶接用の孔の内部に鋼片からなる隔壁を設ける、[4]に記載の箱形断面柱とH形鋼梁の接合構造の製造方法。
【0028】
[6] 前記外ダイアフラムの降伏強度が前記H形鋼梁のフランジの降伏強度よりも大きい、[4]または[5]に記載の箱形断面柱とH形鋼梁の接合構造の製造方法。
【発明の効果】
【0029】
本発明に係る箱形断面柱とH形鋼梁の接合構造および接合構造の製造方法では、箱形断面柱と外ダイアフラムとがエレクトロスラグ溶接により接合されている。よって、ガスシールドアーク溶接により接合される一般的な外ダイアフラム形式による箱形断面柱とH形鋼梁の接合構造に比べて、製作効率を大幅に高めることができる。
【0030】
また、本発明に係る箱形断面柱とH形鋼梁の接合構造および接合構造の製造方法では、箱形断面柱と外ダイアフラムとのエレクトロスラグ溶接は、箱形断面柱の外部から行われる。よって、箱形断面柱のスキンプレートの表面と外ダイアフラムの端面とのルート間隔や当て金などの組立精度を確実に確保できる。
【図面の簡単な説明】
【0031】
【
図1】
図1は、本発明の第一の実施形態に係る箱形断面柱とH形鋼梁の接合構造の要部を示す縦断面図である。
【
図2】
図2は、本発明の第一の実施形態に係る箱形断面柱とH形鋼梁の接合構造の要部を示す縦断面図である。
【
図3】
図3(a)~
図3(f)は、本発明の箱形断面柱とH形鋼梁の接合構造における外ダイアフラムの形状の例を示す平面図である。
【
図4】
図4は、本発明の第二の実施形態に係る箱形断面柱とH形鋼梁の接合構造の要部を示す縦断面図である。
【
図5】
図5は、本発明の第二の実施形態に係る箱形断面柱とH形鋼梁の接合構造の要部を示す縦断面図である。
【
図6】
図6(a)および
図6(b)は、内ダイアフラム形式による箱形断面柱とH形鋼梁との接合部を示す斜視図および平面図である。
【
図7】
図7は、内ダイアフラム形式による箱形断面柱とH形鋼梁との接合部の要部を示す縦断面図である。
【
図8】
図8は、内ダイアフラム形式による箱形断面柱とH形鋼梁との接合部の要部を示す縦断面図である。
【
図9】
図9(a)および
図9(b)は、通しダイアフラム形式による箱形断面柱とH形鋼梁との接合部を示す斜視図および平面図である。
【
図10】
図10(a)および
図10(b)は、外ダイアフラム形式による箱形断面柱とH形鋼梁との接合部を示す斜視図および平面図である。
【
図11】
図11は、外ダイアフラム形式による箱形断面柱とH形鋼梁との接合部の要部を示す縦断面図である。
【
図12】
図12は、外ダイアフラム形式による箱形断面柱とH形鋼梁との接合部の要部を示す縦断面図である。
【
図13】
図13は、外ダイアフラム形式による箱形断面柱とH形鋼梁との接合部の要部を示す縦断面図である。
【発明を実施するための形態】
【0032】
以下、図面を参照して、本発明の箱形断面柱とH形鋼梁の接合構造および接合構造の製造方法の実施形態について、詳細に説明する。
(第一の実施形態)
図1および
図2に、本発明の第一の実施形態に係る箱形断面柱とH形鋼梁の接合構造の要部の縦断面図を示す。
【0033】
図1および
図2に示すように、本実施形態の箱形断面柱とH形鋼梁の接合構造は、4枚のスキンプレート11が角溶接(図示せず)により相互に接合されて構成される溶接組立箱形断面柱1に、外ダイアフラム3を介してH形鋼梁2が接合されたものである。具体的には、
図1に示すように、箱形断面柱1のスキンプレート11の表面と外ダイアフラム3の端面との間に、当て金31により囲まれた溶接用の孔32が設けられている。そして、
図2に示すように、溶接用の孔32にエレクトロスラグ溶接により溶融金属を充填して形成された溶接部5により、箱形断面柱1と外ダイアフラム3とが接合されている。
【0034】
図1に示すように、エレクトロスラグ溶接の溶接用の孔4の断面形状は、内ダイアフラム形式による箱形断面柱とH形鋼梁との接合部におけるスキンプレートと内ダイアフラムとの間のエレクトロスラグ溶接の溶接用の孔と同様に、矩形状とされている。
【0035】
箱形断面柱1に接続するH形鋼梁2には、圧延成形されるH形鋼および溶接組立H形鋼のいずれも使用できる。
【0036】
また、当て金31には、内ダイアフラム形式による箱形断面柱とH形鋼梁との接合部におけるスキンプレートと内ダイアフラムとの間のエレクトロスラグ溶接で使用される鋼材と同様のものを使用できる。
【0037】
また、外ダイアフラム3の降伏強度は、外ダイアフラム3に取り付くH形鋼梁2のフランジの降伏強度よりも大きくすることが好ましい。このようにすると、地震時などにH形鋼梁2のフランジ21から箱形断面柱1のスキンプレート11に作用する応力に対して、柱梁接合部の耐力を低下させることなく、
図1に示す外ダイアフラム3の突出幅h
dを低減できる。そして、外ダイアフラム3が取り付けられた箱形断面柱1を鉄骨製作工場で製作し、これを建設現場に搬入するとき、外ダイアフラム3の突出幅h
dによって箱形断面柱1の運搬効率が損なわれにくくなる。
【0038】
本実施形態の箱形断面柱とH形鋼梁の接合構造では、箱形断面柱1と外ダイアフラム3とがエレクトロスラグ溶接により接合されている。よって、ガスシールドアーク溶接により接合される一般的な外ダイアフラム形式による箱形断面柱とH形鋼梁の接合構造に比べて、製作効率を大幅に高めることができる。
【0039】
また、本発明に係る箱形断面柱とH形鋼梁の接合構造では、外ダイアフラム3が箱形断面柱1の外側に取り付けられるため、箱形断面柱1と外ダイアフラム3とのエレクトロスラグ溶接は、箱形断面柱1の外部から行われる。よって、箱形断面柱1のスキンプレート11の表面と外ダイアフラム3の端面とのルート間隔Gや当て金31などの組立精度を確実に確保できる。
【0040】
なお、本実施形態の箱形断面柱とH形鋼梁の接合構造における箱形断面柱1のスキンプレート11の表面と外ダイアフラム3の端面とのルート間隔Gは、内ダイアフラム形式による箱形断面柱とH形鋼梁との接合部における箱形断面柱の内面と内ダイアフラムの端面とのルート間隔と同様に、適宜の寸法に設定できる。
【0041】
図3(a)~
図3(f)に、本実施形態の箱形断面柱とH形鋼梁の接合構造における、外ダイアフラム3(3A~3C)の形状の様々な例を示す。
図3(a)~
図3(f)に示すように、箱形断面柱1に取り付くH形鋼梁2の本数に応じて、箱形断面柱1の4つの側面のうち1~4面に、外ダイアフラム3が接合される。
【0042】
図3(a)および
図3(b)は、外ダイアフラム3Aとして、多角形に形成された鋼板を用いた例である。また、
図3(c)および
図3(d)は、外ダイアフラム3Bとして、矩形に形成された鋼板を用いた例である。さらに、
図3(e)および
図3(f)は、外ダイアフラム3Cの平面形状の一部に円弧を有するようにした例である。
図3(e)および
図3(f)に示すように、外ダイアフラム3Cの平面形状の一部に円弧を有するようにすると、H形鋼梁2のフランジ21から外ダイアフラムを経由して箱形断面柱1のスキンプレート11へと応力を円滑に伝達できる。よって、外ダイアフラム3に亀裂や破断が生じることを抑制できるので好ましい。
【0043】
また、本実施形態の箱形断面柱とH形鋼梁の接合構造の製造方法は、上述の箱形断面柱1とH形鋼梁2の接合構造を製作する際に、入熱量が100~1500kJ/cmとなるようにエレクトロスラグ溶接を行うことにより実現される。
(第二の実施形態)
図4および
図5に、本発明の第二の実施形態に係る箱形断面柱とH形鋼梁の接合構造の要部の縦断面図を示す。
【0044】
図4および
図5に示すように、本実施形態の箱形断面柱とH形鋼梁の接合構造では、第一の実施形態の箱形断面柱とH形鋼梁の接合構造に比べて、H形鋼梁2のフランジ21および外ダイアフラム3の板厚が大きい。一般の建築構造用鋼材に対して、大入熱のエレクトロスラグ溶接を適用すると、エレクトロスラグ溶接による溶接部5の靭性が低下して、地震時にH形鋼梁2のフランジ21から外ダイアフラム3に伝達する応力により、溶接部5で脆性破断が生じやすい。特に、本実施形態のように、外ダイアフラム3の板厚が大きい場合には、エレクトロスラグ溶接時に溶接用の孔の周囲の部材への溶接金属の溶込みを確保するために必要となる入熱量が増大するため、溶接部5の著しい靭性低下を引き起こしやすくなる。
【0045】
そこで、本実施形態の箱形断面柱とH形鋼梁の接合構造では、
図4および
図5に示すように、箱形断面柱1のスキンプレート11の表面、外ダイアフラム3の端面と、当て金31とにより囲まれて設けられた溶接用の孔の内部に、鋼片からなる隔壁33が設けられている。これにより、箱形断面柱1のスキンプレート11の表面、外ダイアフラム3の端面と、当て金31とにより囲まれて設けられた溶接用の孔が、外ダイアフラム3の板厚方向に二つの溶接用の孔34、35に分割されている。このようにすると、各溶接用の孔34、35の外ダイアフラム3の板厚方向の幅w
1、w
2を小さくすることができる。すなわち、H形鋼梁2のフランジ21や外ダイアフラム3の板厚が大きい場合でも、エレクトロスラグ溶接時に溶接用の孔の周囲の部材への溶接金属の溶込みを確保するために必要となる入熱量を抑えることができ、溶接部5の著しい靭性低下を抑制できる。
【0046】
以上、本発明の箱形断面柱とH形鋼梁の接合構造および接合構造の製造方法の実施形態について説明したが、本発明の具体的な構成は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で設計変更することが可能である。
【0047】
例えば、
図4および
図5では、溶接用の孔34、35の幅w
1、w
2が同一の場合を示したが、溶接用の孔34、35の幅w
1、w
2を異ならせても良い。また、
図4および
図5では、箱形断面柱1のスキンプレート11の表面、外ダイアフラム3の端面と、当て金31とにより囲まれて設けられた溶接用の孔が二つの溶接用の孔34、35に分割されている例を示したが、外ダイアフラム3の板厚方向に三つ以上の溶接用の孔に分割しても良い。地震時などにH形鋼梁2のフランジ21から外ダイアフラム3に伝達する応力に対して、溶接部5の脆性破断を効果的に抑制できるように、使用する鋼材の種類、寸法、エレクトロスラグ溶接の溶接条件などを考慮して、溶接用の孔の分割数や幅を適宜設定することが好ましい。
【実施例0048】
第二の実施形態の箱形断面柱とH形鋼梁の接合構造において、溶接用の孔の内部に隔壁33を設けて、外ダイアフラム3の板厚方向に二つの溶接用の孔34、35に分割することにより、エレクトロスラグ溶接の入熱量をどの程度小さくできるかについて検証を行った。
【0049】
まず、
図1および
図2に示した第一の実施形態の箱形断面柱とH形鋼梁の接合構造に基づく計算例No.1~5を設定した。表1に、計算例No.1~5の各々における、箱形断面柱1の外径D
cおよびスキンプレート11の板厚t
c、外ダイアフラム3の突出幅h
dおよび板厚t
d、溶接用の孔32のルート間隔Gおよび幅w
0を示す。
【0050】
【0051】
表1に示すとおり、計算例No.1~5では、箱形断面柱1の外径Dcを500mm、800mm、1000mm、1200mm、1500mm、の五種類に変化させた。また、箱形断面柱1の外径Dcの大きさに対応するように、計算例No.1~5において、箱形断面柱1のスキンプレートの板厚tc、ならびに外ダイアフラム3の突出幅hdおよび板厚tdを変化させた。溶接用の孔32のルート間隔Gは、計算例No.1~5の全てにおいて、23mmに設定した。
【0052】
エレクトロスラグ溶接時に溶接用の孔32の周囲の部材への溶接金属の溶込みを確保するために必要となる入熱量は、溶接用の孔32の周囲の部材の寸法に依存して変化する。そこで、本実施例では、計算の基準として、計算例No.1の入熱量が300kJ/cmであるものと仮定した。そして、計算例No.2~5の入熱量の計算は、計算例No.1に対する計算例No.2~5の溶接用の孔32の断面積、箱形断面柱1のスキンプレート11の板厚tc、外ダイアフラム3の突出幅hdおよび板厚tdによる放熱量の変化に基づいて行った。この計算結果を、表1に併せて示す。
【0053】
表1の計算例No.1~5から分かるように、外ダイアフラム3の板厚tdが小さい場合には、エレクトロスラグ溶接の入熱量が小さく抑えられ、溶接部5の著しい靭性低下を引き起こしにくい。これに対し、外ダイアフラム3の板厚tdが大きくなるにつれて、エレクトロスラグ溶接の入熱量も大きくなり、溶接部5の著しい靭性低下を引き起こしやすくなる。
【0054】
次に、
図4および
図5に示した第二の実施形態の箱形断面柱とH形鋼梁の接合構造に基づく計算例No.3A~5Aを設定して、エレクトロスラグ溶接の入熱量を計算した。表2に、計算例No.3A~5Aにおける、箱形断面柱1の外径D
cおよびスキンプレートの板厚t
c、外ダイアフラム3の突出幅h
dおよび板厚t
d、溶接用の孔34、35のルート間隔Gおよび幅w
1、w
2を示す。計算例No.3A~5Aは、それぞれ表1に示した計算例No.3~5の溶接用の孔32の内部に隔壁33を設けて、外ダイアフラム3の板厚方向に二つの溶接用の孔34、35に分割したものである。計算例No.3Aにおける隔壁33の厚さBは15mmとし、溶接用の孔34、35の幅w
1、w
2がそれぞれ22.5mmになるものとした。計算例No.4Aにおける隔壁33の厚さBは15mmとし、溶接用の孔34、35の幅w
1、w
2がそれぞれ32.5mmになるものとした。計算例No.5Aにおける隔壁33の厚さBは20mmとし、溶接用の孔34、35の幅w
1、w
2がそれぞれ40mmになるものとした。
【0055】
【0056】
そして、計算例No.1~5と同様の方法で、計算例No.3A~5Aについて、エレクトロスラグ溶接による入熱量を計算した。この計算結果を、表2に併せて示している。
【0057】
表2の計算例No.3A~5Aから分かるように、エレクトロスラグ溶接の溶接用の孔を隔壁33で二つの溶接用の孔34、35に分割して、各溶接用の孔34、35にエレクトロスラグ溶接を施すことで、表1の計算例No.1、2と同程度まで入熱量が小さく抑えられている。つまり、エレクトロスラグ溶接の溶接用の孔を隔壁33で二つの溶接用の孔34、35に分割して、各溶接用の孔34、35にエレクトロスラグ溶接を施すことで、溶接部5の著しい靭性低下を抑制できることが確認された。