IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 国立大学法人金沢大学の特許一覧

特開2024-65445選定方法、コンピュータプログラム及び選定装置
<>
  • 特開-選定方法、コンピュータプログラム及び選定装置 図1
  • 特開-選定方法、コンピュータプログラム及び選定装置 図2
  • 特開-選定方法、コンピュータプログラム及び選定装置 図3
  • 特開-選定方法、コンピュータプログラム及び選定装置 図4
  • 特開-選定方法、コンピュータプログラム及び選定装置 図5
  • 特開-選定方法、コンピュータプログラム及び選定装置 図6
  • 特開-選定方法、コンピュータプログラム及び選定装置 図7
  • 特開-選定方法、コンピュータプログラム及び選定装置 図8
  • 特開-選定方法、コンピュータプログラム及び選定装置 図9
  • 特開-選定方法、コンピュータプログラム及び選定装置 図10
  • 特開-選定方法、コンピュータプログラム及び選定装置 図11
  • 特開-選定方法、コンピュータプログラム及び選定装置 図12
  • 特開-選定方法、コンピュータプログラム及び選定装置 図13
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024065445
(43)【公開日】2024-05-15
(54)【発明の名称】選定方法、コンピュータプログラム及び選定装置
(51)【国際特許分類】
   G01H 17/00 20060101AFI20240508BHJP
   H02N 2/18 20060101ALI20240508BHJP
【FI】
G01H17/00 Z
H02N2/18
【審査請求】未請求
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2022174307
(22)【出願日】2022-10-31
(71)【出願人】
【識別番号】504160781
【氏名又は名称】国立大学法人金沢大学
(74)【代理人】
【識別番号】100109210
【弁理士】
【氏名又は名称】新居 広守
(72)【発明者】
【氏名】上野 敏幸
【テーマコード(参考)】
2G064
5H681
【Fターム(参考)】
2G064AA11
2G064AB01
2G064AB02
2G064BA02
2G064BD02
2G064CC41
2G064CC42
2G064DD02
5H681BB08
5H681BC09
5H681DD15
5H681DD30
5H681DD44
5H681DD53
5H681GG32
(57)【要約】
【課題】発生電圧を高めることができる共振周波数及び錘の質量を容易に選定することができる選定方法を提供する。
【解決手段】選定方法は、第1感度関数を取得する第1取得ステップ(S10)と、第1質量関数を取得する第2取得ステップ(S20)と、加振源装置の位置の変位に係る物理量の第1スペクトルを取得する第3取得ステップ(S30)と、第1スペクトルが含む複数の第1ピーク周波数のそれぞれでの発生電圧を算出する第2算出ステップ(S50)と、複数の発生電圧のうち最も大きい値を示す第1ピーク周波数を決定する決定ステップ(S60)と、決定された第1ピーク周波数に対応する第1錘の質量を算出する第3算出ステップ(S70)と、決定された第1ピーク周波数と、算出された第1錘の質量とを出力する出力ステップ(S80)と、を含む。
【選択図】図8
【特許請求の範囲】
【請求項1】
第1錘を備える第1振動発電デバイスの選定装置による選定方法であって、
前記第1振動発電デバイスが加振されたときの発生電圧を物理量で除算した第1発電感度の共振周波数への依存性を示す第1感度関数を取得する第1取得ステップと、
前記第1錘の質量の前記共振周波数への依存性を示す第1質量関数を取得する第2取得ステップと、
加振源装置の位置の変位に係る前記物理量の第1スペクトルを取得する第3取得ステップと、
取得された前記第1スペクトルが含む複数の第1ピーク周波数のそれぞれと、取得された前記第1感度関数とに基づいて、前記複数の第1ピーク周波数のそれぞれに対応する前記第1発電感度を算出する第1算出ステップと、
算出された複数の前記第1発電感度のそれぞれと、算出された当該第1発電感度を示す前記第1ピーク周波数の前記物理量とを乗算することで、前記複数の第1ピーク周波数のそれぞれでの発生電圧を算出する第2算出ステップと、
算出された複数の前記発生電圧のうち最も大きい値を示す前記第1ピーク周波数を決定する決定ステップと、
決定された前記第1ピーク周波数と、取得された前記第1質量関数とに基づいて、決定された前記第1ピーク周波数に対応する前記第1錘の質量を算出する第3算出ステップと、
決定された前記第1ピーク周波数と、算出された前記第1錘の質量とを出力する出力ステップと、
を含む
選定方法。
【請求項2】
前記物理量は、加速度である
請求項1に記載の選定方法。
【請求項3】
取得された前記第1感度関数は、有限要素法により算出された関数である
請求項1に記載の選定方法。
【請求項4】
前記物理量の前記第1スペクトルは、第1時刻から前記第1時刻よりも後の時刻である第2時刻までの前記物理量に基づく複数のスペクトルの和である
請求項1に記載の選定方法。
【請求項5】
前記選定方法は、前記第1振動発電デバイスと、第2錘を備え前記第1振動発電デバイスとは異なる第2振動発電デバイスの前記選定装置による選定方法であって、
前記第1取得ステップでは前記第2振動発電デバイスが加振されたときの発生電圧を前記物理量で除算した第2発電感度の前記第2振動発電デバイスの共振周波数への依存性を示す第2感度関数を取得し、
前記第2取得ステップでは、前記第2錘の質量の前記第2振動発電デバイスの前記共振周波数への依存性を示す第2質量関数を取得し、
前記第3取得ステップでは、前記加振源装置の位置の変位に係る前記物理量の第2スペクトルを取得し、
前記第1算出ステップでは、取得された前記第2スペクトルが含む複数の第2ピーク周波数のそれぞれと、取得された前記第2感度関数とに基づいて、前記複数の第2ピーク周波数のそれぞれに対応する前記第2発電感度を算出し、
前記第2算出ステップでは、算出された複数の前記第2発電感度のそれぞれと、算出された当該第2発電感度を示す前記第2ピーク周波数の前記物理量とを乗算することで、前記複数の第2ピーク周波数のそれぞれでの発生電圧を算出し、
前記決定ステップでは、前記第1振動発電デバイスについて算出された複数の前記発生電圧及び前記第2振動発電デバイスについて算出された複数の前記発生電圧のうち最も大きい値を示す前記第1ピーク周波数又は前記第2ピーク周波数である最大ピーク周波数を決定し、
前記第3算出ステップでは、決定された前記最大ピーク周波数と、取得された前記第1質量関数又は前記第2質量関数とに基づいて、決定された前記最大ピーク周波数に対応する前記第1錘の質量又は前記第2錘の質量を算出し、
前記出力ステップでは、決定された前記最大ピーク周波数と、決定された前記最大ピーク周波数に対応する算出された前記第1錘の質量又は前記第2錘の質量と、前記第1振動発電デバイス及び前記第2振動発電デバイスのうち決定された前記最大ピーク周波数を示す振動発電デバイスとを示す情報を出力する
請求項1に記載の選定方法。
【請求項6】
請求項1~5のいずれか1項に記載の選定方法をコンピュータに実行させるためのコンピュータプログラム。
【請求項7】
第1錘を備える第1振動発電デバイスの選定装置であって、
前記第1振動発電デバイスが加振されたときの発生電圧を物理量で除算した第1発電感度の共振周波数への依存性を示す第1感度関数を取得する第1取得部と、
前記第1錘の質量の前記共振周波数への依存性を示す第1質量関数を取得する第2取得部と、
加振源装置の位置の変位に係る前記物理量の第1スペクトルを取得する第3取得部と、
取得された前記第1スペクトルが含む複数の第1ピーク周波数のそれぞれと、取得された前記第1感度関数とに基づいて、前記複数の第1ピーク周波数のそれぞれに対応する前記第1発電感度を算出する第1算出部と、
算出された複数の前記第1発電感度のそれぞれと、算出された当該第1発電感度を示す前記第1ピーク周波数の前記物理量とを乗算することで、前記複数の第1ピーク周波数のそれぞれでの発生電圧を算出する第2算出部と、
算出された複数の前記発生電圧のうち最も大きい値を示す前記第1ピーク周波数を決定する決定部と、
決定された前記第1ピーク周波数と、取得された前記第1質量関数とに基づいて、決定された前記第1ピーク周波数に対応する前記第1錘の質量を算出する第3算出部と、
決定された前記第1ピーク周波数と、算出された前記第1錘の質量とを出力する出力部と、
を備える
選定装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、選定方法及び選定装置に関する。
【背景技術】
【0002】
従来、身近な振動を電力に変換する技術の開発が盛んに行われている。その技術の1つとして圧電素子又は磁歪素子を用いた振動発電デバイスが知られている。振動発電デバイスが用いられる際には、振動発電デバイスの発電効率を高めるために、共振周波数の調整が行われる場合がある。
【0003】
例えば、特許文献1では、圧電素子を有する板部の振動により発電を行う振動発電デバイスが開示されており、この振動発電デバイスは、上記の板部と、板部の共振周波数の調整が可能でありかつ板部の上に載置される錘とを備えている。この振動発電デバイスにおいては、発電効率を高めるために、錘の質量を変化させることで、板部のたわみの共振周波数の調整が行われている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2015-204713号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、近年、振動発電デバイスが温度センサなどと共に生産機械又は工作機械などの機械装置などに取り付けられ、機械装置の異常(例えば高温状態)などを検知するために利用されることがある。この場合、振動発電デバイスは、機械装置などにより加振されることで発電するため、上記センサなどの電源として利用される。
【0006】
このような機械装置などの振動は、複数の周波数成分を有している場合が多い。この場合、この複数の周波数のうち、どの周波数が振動発電デバイスの発生電圧を高めることができる周波数(つまりは共振周波数)であるかを選定することが難しい。このため、発生電圧を高めることができる共振周波数を容易に選定することができる選定方法が求められている。さらには、上記の通り、この共振周波数は、錘の質量によって調整される。従って、振動発電デバイスの共振周波数を、発生電圧を高めることができる共振周波数とするための錘の質量を容易に選定することも求められる。
【0007】
本発明は、上述した課題を解決しようとするものであり、発生電圧を高めることができる共振周波数及び錘の質量を容易に選定することができる選定方法などを提供することを目的とする。
【課題を解決するための手段】
【0008】
上記目的を達成するために、本発明の一態様に係る選定方法は、第1錘を備える第1振動発電デバイスの選定装置による選定方法であって、前記第1振動発電デバイスが加振されたときの発生電圧を物理量で除算した第1発電感度の共振周波数への依存性を示す第1感度関数を取得する第1取得ステップと、前記第1錘の質量の前記共振周波数への依存性を示す第1質量関数を取得する第2取得ステップと、加振源装置の位置の変位に係る前記物理量の第1スペクトルを取得する第3取得ステップと、取得された前記第1スペクトルが含む複数の第1ピーク周波数のそれぞれと、取得された前記第1感度関数とに基づいて、前記複数の第1ピーク周波数のそれぞれに対応する前記第1発電感度を算出する第1算出ステップと、算出された複数の前記第1発電感度のそれぞれと、算出された当該第1発電感度を示す前記第1ピーク周波数の前記物理量とを乗算することで、前記複数の第1ピーク周波数のそれぞれでの発生電圧を算出する第2算出ステップと、算出された複数の前記発生電圧のうち最も大きい値を示す前記第1ピーク周波数を決定する決定ステップと、決定された前記第1ピーク周波数と、取得された前記第1質量関数とに基づいて、決定された前記第1ピーク周波数に対応する前記第1錘の質量を算出する第3算出ステップと、決定された前記第1ピーク周波数と、算出された前記第1錘の質量とを出力する出力ステップと、を含む。
【0009】
また、上記目的を達成するために、本発明の一態様に係るコンピュータプログラムは、上記記載の選定方法をコンピュータに実行させる。
【0010】
また、上記目的を達成するために、本発明の一態様に係る選定装置は、第1錘を備える第1振動発電デバイスの選定装置であって、前記第1振動発電デバイスが加振されたときの発生電圧を物理量で除算した第1発電感度の共振周波数への依存性を示す第1感度関数を取得する第1取得部と、前記第1錘の質量の前記共振周波数への依存性を示す第1質量関数を取得する第2取得部と、加振源装置の位置の変位に係る前記物理量の第1スペクトルを取得する第3取得部と、取得された前記第1スペクトルが含む複数の第1ピーク周波数のそれぞれと、取得された前記第1感度関数とに基づいて、前記複数の第1ピーク周波数のそれぞれに対応する前記第1発電感度を算出する第1算出部と、算出された複数の前記第1発電感度のそれぞれと、算出された当該第1発電感度を示す前記第1ピーク周波数の前記物理量とを乗算することで、前記複数の第1ピーク周波数のそれぞれでの発生電圧を算出する第2算出部と、算出された複数の前記発生電圧のうち最も大きい値を示す前記第1ピーク周波数を決定する決定部と、決定された前記第1ピーク周波数と、取得された前記第1質量関数とに基づいて、決定された前記第1ピーク周波数に対応する前記第1錘の質量を算出する第3算出部と、決定された前記第1ピーク周波数と、算出された前記第1錘の質量とを出力する出力部と、を備える。
【発明の効果】
【0011】
本発明によれば、発生電圧を高めることができる共振周波数及び錘の質量を容易に選定することができる選定方法などを実現することができる。
【図面の簡単な説明】
【0012】
図1図1は、実施の形態に係る第1振動発電デバイスの平面図である。
図2図2は、実施の形態に係る加振源装置の一例である。
図3図3は、第1振動発電デバイスの発電感度特性を示す図である。
図4図4は、実施の形態に係る有限要素モデルを示す模式図である。
図5図5は、実施の形態に係る加振源装置の位置の変位に係る物理量の時間変化を示す図である。
図6図6は、図5が示す物理量の時間変化に対してFFT(Fast Fourier Transform)解析が施された図を示す。
図7図7は、実施の形態に係る選定装置の機能構成を示すブロック図である。
図8図8は、実施の形態に係る選定装置の動作例1のフローチャートである。
図9図9は、実施の形態に係る第1振動発電デバイスの第1錘の質量がそれぞれ変更された場合の発生電圧の時間変化が示された図である。
図10図10は、図9が示す複数の発生電圧の詳細な表を示す図である。
図11図11は、変形例に係る第2振動発電デバイスの側面図である。
図12図12は、第1振動発電デバイスの発電感度特性と第2振動発電デバイスの発電感度特性と模式的に示す図である。
図13図13は、変形例に係る選定装置の動作例2のフローチャートである。
【発明を実施するための形態】
【0013】
以下、実施の形態について、図面を参照しながら具体的に説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
【0014】
なお、各図は模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付し、重複する説明は省略又は簡略化される場合がある。
【0015】
また、本明細書及び図面において、x軸、y軸及びz軸は、三次元直交座標系の三軸を示している。なお、各図において、x軸方向及びy軸方向は互いに直交する方向であり、z軸方向は、x軸及びy軸に対し垂直な方向である。
【0016】
(実施の形態)
[振動発電デバイスの構成]
本実施の形態に係る第1振動発電デバイス1の構成例について用いて説明する。図1は、本実施の形態に係る第1振動発電デバイス1の側面図である。
【0017】
本実施の形態に係る第1振動発電デバイス1は、背景技術で記載の通り、機械装置(以下、加振源装置2)に取り付けられている。第1振動発電デバイス1は、加振源装置2の振動によって電力を発生させ、温度センサなどの電源として利用される。
【0018】
図2は、本実施の形態に係る加振源装置2の一例である。図2が示すように、加振源装置2は、例えば、振動ローラであるがこれに限られない。第1振動発電デバイス1は、振動ローラに取り付けられ、振動ローラの異常(例えば高温状態)などを検知するために利用される。
【0019】
第1振動発電デバイス1は、フレーム21と、発電部30と、連結部材22と、第1錘60とを備える。なお、発電部30は、コイル31と磁歪素子32と発電用磁石33とを有し、振動により発電する要素である。
【0020】
フレーム21は、自由端部F1及び固定端部F2を有する。また、フレーム21は、屈曲部Bを有する。フレーム21の形状はU字状を有する部材であり、より具体的には、フレーム21の形状は、側面視において、U字状を有する。
【0021】
また、フレーム21は、1枚の平板形状の部材がU字状を有するように、屈曲されて形成されている。なお、フレーム21の厚みd1は例えば0.5mmであるが、これに限られない。また、フレーム21の全体にわたって厚みd1は略均等である。フレーム21の全長L1は、一例として数cm以上数十cm以下であるが、これに限られない。
【0022】
なお、図示されないが、フレーム21の形状は上記U字状のかわりにV字状を有する部材であってもよく、この場合には、フレーム21の形状が、側面視において、V字状を有するとよい。また、フレーム21は、1枚の平板形状の部材がV字状を有するように、屈曲されて形成されている。
【0023】
フレーム21は、屈曲部Bを挟んで一方の端部が固定端部F2、他方の端部が自由端部F1になるような状態、いわゆる片持ち梁の状態で固定支持される。なお、第1振動発電デバイス1では、フレーム21が有する固定端部F2が加振源装置2に固定されて設置されている。
【0024】
自由端部F1が自由振動する場合には、自由端部F1が固定端部F2から離れる方向又は固定端部F2に近づく方向に動き、フレーム21自体も振動(変形)する。このとき、自由端部F1が固定端部F2から離れるように自由端部F1が動いた状態(開状態)、及び、自由端部F1が固定端部F2に近づくように自由端部F1が動いた状態(閉状態)が繰り返される。換言すると、自由端部F1と固定端部F2とのギャップが大きくなる状態(開状態)、及び、当該ギャップが小さくなる状態(閉状態)が繰り返される。
【0025】
フレーム21には発電部30が有する磁歪素子32及び発電用磁石33が設けられており、フレーム21は、これらの構成要素を支持する部材である。フレーム21を構成する材料は、特に限られないが、例えば、弾性を有する材料で構成されているとよい。また、フレーム21を構成する材料は、例えば、鉄を含む材料で構成されているとよい。フレーム21は、例えば、バネ鋼(ベーナイト鋼)、冷間圧延鋼帯(SPCC:Steel Plate Cold Commercial)などによって構成される。
【0026】
U字状を有するフレーム21は、図1が示すように、互いに向かい合う第1内側面211及び第2内側面212と、第1外側面213及び第2外側面214とを有している。
【0027】
続いて、発電部30について説明する。発電部30が有する磁歪素子32は、フレーム21に接合される部材である。ここでは、磁歪素子32は、屈曲部Bと自由端部F1との間の、第1外側面213に接合されている。
【0028】
磁歪素子32の形状は、特に限られないが平板形状であり、磁歪素子32の大きさは、例えば、4mm×0.5mm×16mm程度であるがこれに限られない。なお、本実施の形態においては、フレーム21に接合される磁歪素子32の平面であって、第1振動発電デバイス1が振動していない場合の当該平面と平行な面がxy平面である。
【0029】
磁歪素子32は、磁歪材料によって構成されている。磁歪材料は、一例として、鉄ガリウム合金であるが、これに限られず、例えば、鉄アルミ合金であってもよいし、その他の材料であってもよい。
【0030】
磁歪素子32は、加振によって変形する素子である。本実施の形態においては、磁歪素子32は、フレーム21に接合されているためフレーム21が振動すると、磁歪素子32は変形する。
【0031】
コイル31は、フレーム21が有する第1内側面211及び第1外側面213と磁歪素子32とに巻かれている。コイル31は、電磁誘導の法則により磁歪素子32を通る磁束の時間的変化に比例して電圧を発生させる。
【0032】
コイル31の材質は、一例として、銅であるが、特に限定されない。また、コイル31の巻き数を変更することで、電圧の大きさを調整することができる。
【0033】
発電用磁石33は、フレーム21の第2内側面212に設けられている。発電用磁石33は、一例として、永久磁石であるが、これに限られず電磁石であってもよい。発電用磁石33からの磁束が磁歪素子32を通過する。
【0034】
なお、図示されないが、第1振動発電デバイス1が磁石用台座を備え、第2内側面212に当該磁石用台座及び発電用磁石33が順に積み重ねられてもよい。当該磁石用台座が設けられることで、発電用磁石33を磁歪素子32に近づけることができる。
【0035】
例えば、加振源装置2が振動するとともに、フレーム21が振動する。このとき、フレーム21において開状態と閉状態とが繰り返されて振動する場合には、フレーム21に接合される磁歪素子32には引張応力と圧縮応力とが交互に発生し、磁歪素子32は伸長し又は収縮して変形する。
【0036】
このように、フレーム21が振動すると、磁歪素子32の磁束は逆磁歪効果により増加又は減少し、コイル31を貫く磁束密度も増加又は減少する。この磁束密度の時間的変化により、コイル31に誘導電圧(又は誘導電流)が発生する。このように、発電部30は、フレーム21の振動により発電することができる。
【0037】
また、フレーム21が振動したときに、磁歪素子32の歪が大きいほど、つまりは、磁歪素子32の変形量が大きいほど、磁歪素子32の磁束の増加又は減少の程度が大きくなる。つまりは、磁歪素子32の歪が大きいほど、発電部30の発生電圧は大きくなる。
【0038】
連結部材22は、フレーム21と第1錘60とを接続する部材である。連結部材22は、フレーム21の自由端部F1に取り付けられている部材である。また、連結部材22は、第1外側面213に取り付けられている部材でもある。連結部材22は、例えば、L1字ブラケットであるが、これに限られず、第1錘60とフレーム21との位置関係を固定できればどのような部材であってもよい。
【0039】
第1錘60は、連結部材22に取り付けられる錘である。第1錘60は、フレーム21の自由端部F1に連結部材22を介して取り付けられる。第1錘60の質量が変わることで、第1振動発電デバイス1の共振周波数が変化する。また、第1錘60の質量及び大きさが変更可能に設けられている。
【0040】
本実施の形態においては、第1錘60は、L1字ブラケットである連結部材22の固定端部F2方向(つまりz軸負方向)に延びる面に取り付けられているが、これに限られない。第1錘60は、フレーム21の自由端部F1側に連結部材22を介さずに取り付けられてもよい。
【0041】
本実施の形態においては、連結部材22とフレーム21とは、ネジ及びナットにより締結されている。同様に、連結部材22と第1錘60とは、ネジ及びナットにより締結されている。
【0042】
ここで、図3を用いて、第1錘60の質量と第1振動発電デバイス1の共振周波数との関係について説明する。
【0043】
図3は、第1振動発電デバイス1の発電感度特性を示す図である。図3においては、第1錘60の質量が0.64g、1.05g、1.40g、2.16g、2.85g、3.76g及び5.07gである複数の条件のそれぞれにおける第1振動発電デバイス1の発電感度特性が示されている。
【0044】
ここでは、質量が変更された複数の条件のそれぞれで、第1振動発電デバイス1は、ファンクションジェネレータで発生したホワイトノイズが与えられることで加振されている。より具体的には、ここでは、振動用台座に第1振動デバイス1が設置され、当該振動用台座にホワイトノイズが与えられることで当該振動用台座が振動し、当該振動用台座が振動することで第1振動発電デバイス1も振動する。
【0045】
この加振により第1振動発電デバイス1が発電する。第1振動発電デバイス1が加振されたときの発生電圧(V)が、所定の物理量で除算された値が図3の縦軸に示されている。この発生電圧が所定の物理量で除算された値のピーク値が、発電感度であり、第1振動発電デバイス1の発電感度を第1発電感度とする。つまり、第1発電感度は、第1振動発電デバイス1において、発生電圧が所定の物理量で除算された値の一例である。
【0046】
なお、この所定の物理量とは、加振源装置2の位置の変位に係る物理量である。ここでは、上記振動用台座が振動することで第1振動発電デバイス1が振動しているため、振動用台座が加振源装置2であるとみなすことができる。このため、この所定の物理量とは、振動用台座(加振源装置2)が振動する際の振動用台座(加振源装置2)の加速度(m/s)である。また換言すると、この所定の物理量とは、振動用台座(加振源装置2)の振動により第1振動発電デバイス1に与えられた加速度である。
【0047】
つまり、図3においては、第1振動発電デバイス1が加振されたときの発生電圧(V)が、振動用台座(加振源装置2)の加速度(m/s)で除算された値が、縦軸で示されている。また、本実施の形態においては、第1発電感度は、第1振動発電デバイス1において、発生電圧が加速度で除算された値の一例(ピーク値)である。
【0048】
なお、所定の物理量は、加振源装置2の位置の変位に係る物理量であれば、位置の変位が2階微分された上記加速度に限られない。所定の物理量は、加振源装置2の位置の変位であってもよく、加振源装置2の位置の変位が微分された速度であってもよい。
【0049】
図3が示すように、第1錘60の質量が変更されることで、共振周波数が変更される。つまりは、共振周波数は第1錘60の質量によって調整されることができ、共振周波数と第1錘60の質量とは1対1の関係にある。さらに言えば、第1錘60の質量は、共振周波数に依存する。なお、共振周波数とは、発生電圧が加速度で除算された値がピーク値となる周波数であり、第1発電感度に対応する周波数である。また、共振周波数が変更されることで、第1発電感度が変更される。つまりは、第1発電感度は共振周波数によって調整されることができ、第1発電感度は共振周波数に依存する。
【0050】
例えば、第1錘60の質量が0.64gである場合においては、共振周波数は190Hzであり、第1発電感度は4.2V/m/sである。また例えば、第1錘60の質量が2.85gである場合においては、共振周波数は98Hzであり、第1発電感度は6.5V/m/sである。
【0051】
さらに、第1振動発電デバイス1に与えられる振動の周波数が98Hz以上200Hz以下の領域を領域A1、50Hz以上98Hz未満の領域を領域A2とする。領域A1及びA2のそれぞれにおいては、第1錘60の質量が重くなるほど、第1発電感度が高くなる。これは、以下の式1及び式2によって説明できる。
【0052】
E = (α/c)×F = (α/c)×m×a(式1)
【0053】
さらに式1が変形されると、式2となる。
【0054】
E/a = (α/c)×m(式2)
【0055】
なお、Eは発生電圧であり、αは力係数であり、cは減衰係数であり、Fは第1振動発電デバイス1に与えられる力であり、mは第1錘60の質量であり、aは振動用台座(加振源装置2)の加速度である。なお、力係数であるαは、第1振動発電デバイス1に固有の値である。
【0056】
式2の左辺は、発生電圧が加速度により除されているため、第1発電感度に相当する。つまり、第1錘60質量が増加するとつまりは重くなるほど第1発電感度が高くなることが、式1及び式2によって示された。
【0057】
また、領域A1及びA2のそれぞれにおいては、第1振動発電デバイス1の共振周波数が小さいほど第1発電感度が高くなる、とも言える。しかし、共振周波数が80Hz以下になると、第1発電感度が急激に低下してしまうことが図3には示されている。
【0058】
なお、図3においては、図1が示す第1振動発電デバイス1の発生電圧が、電圧測定装置などが用いられ、実験により実測されることで得られている。さらに、加振源装置2の加速度は、加速度を測定するための加速度測定装置などが上記振動用台座に取り付けられた状態で、実験により実測されることで得られているがこれに限られない。
【0059】
つまりこのように、第1振動発電デバイス1における発生電圧及び加速度が実験により測定されることで、図3が示す発電感度特性を得ることができるが、これに限られない。以下では、有限要素法を用いた計算により、図3が示す発電感度特性を得る方法について説明する。
【0060】
図4は、本実施の形態に係る有限要素モデルを示す模式図である。この有限要素モデルにおいては、第1振動発電デバイス1、フレーム21、発電部30、コイル31、磁歪素子32、第1錘60及び固定端部F2がそれぞれ、第1振動発電デバイス1a、フレーム21a、発電部30a、コイル31a、磁歪素子32a、第1錘60a及び固定端部F2aとして示されている。
【0061】
また有限要素モデルでは、第1振動発電デバイス1aは、複数の節点及び複数のバーで示されている。図4においては、節点が白抜きの丸で、バーが線で示されている。複数の節点及び複数のバーのそれぞれには、剛性、質量及び減衰係数などの特性が付与されている。
【0062】
このような有限要素法を用いた計算によって、図3が示す発電感度特性を得ることもできる。
【0063】
この計算によって、第1錘60aの質量をパラーメータとした複数の条件のそれぞれにおいて、第1振動発電デバイス1aに与えられる振動の周波数ごとに磁歪素子32aの歪の変形速度が算出される。磁歪素子32aの歪の変形速度が大きいほど、発電部30aの発生電圧は大きくなる。この磁歪素子32aの歪の変形速度が有限要素法を用いた計算により算出された加速度で除算された値が、図3における第1振動発電デバイス1が加振されたときの発生電圧(V)が、振動用台座(加振源装置2)の加速度(m/s)で除算された値に相当する。
【0064】
このように、上記のような有限要素法を用いた計算によっても、図3が示す発電感度特性を得ることができる。
【0065】
ここでさらに、加振源装置2が第1振動発電デバイス1に与える振動について説明する。
【0066】
図5は、本実施の形態に係る加振源装置2の位置の変位に係る物理量の時間変化を示す図である。上記の通り、本実施の形態に係る当該物理量は、加振源装置2が振動する際の加振源装置2の加速度である。また換言すると、当該物理量は、加振源装置2の振動により第1振動発電デバイス1に与えられた加速度である。
【0067】
図5が示す加速度は、加振源装置2に加速度測定装置などが取り付けられた状態で、実験により実測されることで得られている。
【0068】
図6は、図5が示す物理量の時間変化に対してFFT(Fast Fourier Transform)解析が施された図を示す。図6は、加振源装置2の位置の変位に係る物理量(ここでは加速度)を示すパワースペクトルであり、このパワースペクトルを第1スペクトルとする。
【0069】
図6が示すように、加振源装置2の振動は、複数の周波数成分を有していることを示している。また、この第1スペクトルは、複数の第1ピーク周波数を含む。複数の第1ピーク周波数のそれぞれは、54Hz、107Hz及び160Hzである。なお、加速度が所定の閾値を超えている周波数を第1ピーク周波数とするとよい。なおノイズに相当するピークは、平均化処理などにより除去されるとよい。
【0070】
本実施の形態においては、図5が示すように、0秒から8秒までの加速度が測定されている。図6が示す第1スペクトルは、図5が示す0秒から8秒までの加速度に対してFFT解析が施されることで得られており、つまりは、数秒間の加速度に対してFFT解析が施されることで得られている。
【0071】
また図5は、0秒から4秒までの加速度と4秒から8秒まで加速度とを含むグラフでもある。よって、第1スペクトルは、0秒から4秒までの加速度に対してFFT解析が施されることで得られるスペクトルと、4秒から8秒までの加速度に対してFFT解析が施されることで得られるスペクトルとの和でもある。
【0072】
このように本実施の形態においては、第1スペクトルは、第1時刻(例えば0秒)から第1時刻よりも後の時刻である第2時刻(例えば8秒)までの物理量に基づく複数のスペクトル(ここでは2つのスペクトル)の和でもある。
【0073】
図6が示すように、加振源装置2の振動は、複数の周波数成分を有し、より具体的には、複数の第1ピーク周波数を有している。この場合、この複数の第1ピーク周波数のうち、適切な周波数を第1振動発電デバイス1の共振周波数として選定することができれば、第1振動発電デバイス1の発生電圧を高めることができる。また、上記の通り共振周波数は、第1錘60の質量によって調整される。このことから、第1振動発電デバイス1の共振周波数が上記適切な周波数となる第1錘60の質量を選定することができれば、第1振動発電デバイス1の発生電圧を高めることができる。
【0074】
以下では、第1振動発電デバイス1の発生電圧を高めることができる共振周波数及び第1錘60の質量を選定するための選定装置100について説明する。
【0075】
[選定装置の構成]
図7は、本実施の形態に係る選定装置100の機能構成を示すブロック図である。本実施の形態に係る選定装置100は、第1振動発電デバイス1の発生電圧を高めることができる共振周波数及び第1錘60の質量を選定するための装置であり、第1振動発電デバイス1の選定のための選定装置である。
【0076】
例えば、選定装置100は、例えば、スマートフォン又はタブレット端末などの携帯端末である。また、選定装置100は、第1振動発電デバイス1の発生電圧を高めることができる共振周波数及び第1錘60の質量を選定するための専用装置であってもよい。
【0077】
図7が示すように、選定装置100は、情報処理部110と、通信部120と、センサ部130と、記憶部140と、表示装置150とを備える。
【0078】
まずは、情報処理部110について簡単に説明するが、より詳細な説明は下記[動作例]で行う。また、情報処理部110は、例えば、マイクロコンピュータによって実現されるが、プロセッサによって実現されてもよい。
【0079】
情報処理部110は、第1振動発電デバイス1の発生電圧を高めることができる共振周波数及び第1錘60の質量を選定する処理部である。情報処理部110は、取得部111と、算出部112と、決定部113と、出力部114とを有する。
【0080】
取得部111は、第1取得部1111、第2取得部1112及び第3取得部1113を含む。
【0081】
取得部111は、第1感度関数、第1質量関数及び第1スペクトルを取得する処理部である。一例として、取得部111は、記憶部140に記憶されている第1感度関数、第1質量関数及び第1スペクトルを取得する。また、第1取得部1111は第1感度関数を、第2取得部1112は第1質量関数を、第3取得部1113は第1スペクトルを取得する。
【0082】
第1感度関数は、第1発電感度の共振周波数への依存性を示す関数である。図3が示すように、領域A1及びA2のそれぞれにおいては、第1振動発電デバイス1の共振周波数が小さいほど、第1発電感度が高くなる。つまり、第1発電感度は、共振周波数に依存しており、第1感度関数は、この依存性を示す関数である。
【0083】
第1質量関数は、第1錘60の質量の共振周波数への依存性を示す関数である。図3が示すように、領域A1及びA2のそれぞれにおいては、共振周波数と第1錘60の質量とは1対1の関係にある。第1錘60の質量は、共振周波数に依存しており、第1質量関数は、この依存性を示す関数である。
【0084】
第1スペクトルは、加振源装置2の位置の変位に係る物理量(ここでは加速度)を示すスペクトルであり、図6に示されるスペクトルである。
【0085】
算出部112は、第1算出部1121、第2算出部1122及び第3算出部1123を含む。
【0086】
第1算出部1121は、取得部111によって取得された第1スペクトルが含む複数の第1ピーク周波数のそれぞれと、取得された第1感度関数とに基づいて、複数の第1ピーク周波数のそれぞれに対応する第1発電感度を算出する。
【0087】
さらに、第2算出部1122は、第1算出部1121によって算出された複数の第1発電感度のそれぞれと、算出された当該第1発電感度を示す第1ピーク周波数の物理量(ここでは加速度)とを乗算する。これにより第2算出部1122は、複数の第1ピーク周波数のそれぞれでの発生電圧を算出する。
【0088】
さらに、第3算出部1123は、後述する決定部113によって決定された第1ピーク周波数と、取得された第1質量関数とに基づいて、決定された第1ピーク周波数に対応する第1錘60の質量を算出する。
【0089】
決定部113は、算出部112によって算出された複数の発生電圧のうち最も大きい値(最も大きい発生電圧)を示す第1ピーク周波数を決定する。
【0090】
出力部114は、決定部113によって決定された第1ピーク周波数と、算出部112によって算出された第1錘60の質量とを出力する。
【0091】
通信部120は、選定装置100が、選定装置100以外の装置と通信を行うための通信モジュール(通信回路)である。例えば、通信部120は、上記の電圧測定装置及び加速度測定装置と通信を行う。通信部120は、第1感度関数を電圧測定装置又は加速度測定装置から取得する。通信部120によって行われる通信は、例えば、無線通信であるが、有線通信であってもよい。通信に用いられる通信規格についても特に限定されない。
【0092】
センサ部130は、加速度を測定する加速度センサ131と、センサ制御部132とを有する。例えば、加速度センサ131によって、図5が示す加振源装置2の加速度が測定される。さらにセンサ制御部132によって、FFT(Fast Fourier Transform)解析が行われ、図6が示す第1スペクトルを得ることができる。得られた第1スペクトルは、記憶部140に記憶される。
【0093】
このように、センサ部130が加速度センサ131を有していることから、スマートフォンである選定装置100は、加速度を測定するための加速度測定装置であるとも言える。センサ制御部132は、例えば、マイクロコンピュータによって実現されるが、プロセッサによって実現されてもよい。
【0094】
なお、上記の通り、選定装置100(加速度測定装置)が加振源装置2に取り付けられることで、加速度が測定される。センサ部130のセンサ制御部132は、このような加速度に基づいてFFT解析を行い、これにより、図6が示す第1スペクトルが得られる。
【0095】
記憶部140は、取得部111によって取得された第1感度関数、第1質量関数及び第1スペクトルが記憶されている記憶装置である。記憶部140には、算出部112及び決定部113によって実行されるプログラム、及び、情報処理を行うために用いられる各種情報なども記憶されている。さらに、記憶部140には、表示装置150で表示される画像も記憶されている。
【0096】
また、記憶部140は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)、フラッシュメモリなどの半導体メモリ、又は、SSD(Solid State Drive)などの記憶装置によって実現される。
【0097】
表示装置150は、情報処理部110によって決定された第1ピーク周波数と、算出された第1錘60の質量を示す情報を表示する装置である。表示装置150は、例えば、液晶パネル又は有機EL1(Electro Luminescence)パネル等のディスプレイを備える。
【0098】
表示装置150は、表示部151と、受付部152とを有する。
【0099】
表示部151は、表示画面を表示するディスプレイである。
【0100】
受付部152は、ユーザからの指示(操作)を受け付けるキーボード、マウス等のユーザインターフェースである。例えば、表示部151と受付部152とは、タッチパネルディスプレイ等によって一体に形成されていてもよい。なお、以下では、表示装置150は、表示部151と受付部152とが一体に形成されたタッチパネルディスプレイを備えるとして説明する。
【0101】
[動作例1]
以下、選定装置100の動作例1について図8を用いて説明する。
【0102】
図8は、本実施の形態に係る選定装置100の動作例1のフローチャートである。図8が示す動作例1は、例えば、第1振動発電デバイス1が加振源装置2に取り付けられるときに、行われる動作例である。このとき、選定装置100のユーザは、取り付けられる第1振動発電デバイス1の発生電圧を高めることができるように、適切な質量の第1錘60を連結部材22に取り付ける必要がある。以下の動作例1が行われることで、第1振動発電デバイス1の発生電圧を高めることができる。例えば、選定装置100の受付部152が、当該ユーザから動作例1を開始するための操作を受付けたときに、以下の動作例1が開始される。
【0103】
まず、取得部111(より具体的には、第1取得部1111)は、第1振動発電デバイス1が加振されたときの発生電圧を物理量(ここでは加速度)で除算した第1発電感度の共振周波数への依存性を示す第1感度関数を取得する(S10)。例えば、取得部111は、記憶部140に記憶されている第1感度関数を取得する。なお、このステップS10が第1取得ステップに相当する。
【0104】
上記の通り、第1発電感度は、第1振動発電デバイス1が加振されたときの発生電圧(V)が、振動用台座(加振源装置2)の加速度(m/s)で除算された値のピーク値である。図3が示す例では、共振周波数が190Hzである場合には、第1発電感度は4.2V/m/sであり、共振周波数が98Hzである場合には、第1発電感度は6.5V/m/sである。
【0105】
図3が示す例では、領域A1及びA2のそれぞれにおいては、第1振動発電デバイス1の共振周波数が小さいほど第1発電感度が高くなるが、共振周波数が80Hz以下になると、第1発電感度が急激に低下してしまう。このため、本実施の形態においては、取得部111は、領域A1の第1感度関数、及び、領域A2の第1感度関数のそれぞれを記憶部140から取得する。
【0106】
領域A1の第1感度関数は、式3で示される。
【0107】
(ftip) = -0.023ftip+8.713 (式3)
【0108】
なお、Sが領域A1における第1発電感度である。
【0109】
領域A2の第1感度関数は、式4で示される。
【0110】
(ftip) = -0.044ftip+8.628 (式4)
【0111】
なお、Sが領域A2における第1発電感度である。図3には、第1発電感度であるS及びSが示されている。また、式3及び式4では、共振周波数がftipで表されている。つまり、共振周波数が98Hz以上200Hz以下(つまりは領域A1の範囲)である場合には、第1感度関数である式3に共振周波数であるftipに数値が代入されると、その共振周波数での第1発電感度であるSが算出される。同様に、共振周波数が50Hz以上98Hz未満(つまりは領域A2の範囲)である場合には、第1感度関数である式4に共振周波数であるftipに数値が代入されると、その共振周波数での第1発電感度であるSが算出される。
【0112】
なおここでは、第1感度関数は1次関数であったが、これに限られない。例えば、第1感度関数は、n次関数(nは2以上の自然数)であってもよく、指数関数であってもよい。
【0113】
次に、取得部111(より具体的には、第2取得部1112)は、第1錘60の質量の共振周波数への依存性を示す第1質量関数を取得する(S20)。例えば、取得部111は、記憶部140に記憶されている第1質量関数を取得する。なお、このステップS20が第2取得ステップに相当する。
【0114】
上記の通り、第1錘60の質量は、共振周波数に依存する。第1質量関数は、この依存性を示す関数である。第1錘60の質量と共振周波数との関係は、式5で表される。
【0115】
【数1】
【0116】
さらに、式5が変形されると、第1質量関数を示す式6が得られる。
【0117】
【数2】
【0118】
式5及び式6においては、第1錘60の質量がmで、第1振動発電デバイス1のばね定数がKで、第1振動発電デバイス1の等価質量(第1錘60が無いときの質量)がMで表されている。
【0119】
なお、本実施の形態においては、第1質量関数である式6は、上記の理論式である式5に基づいて得られるが、これに限られない。
【0120】
例えば、第1質量関数は、有限要素法を用いた計算により導出されてもよい。また、例えば、第1質量関数は、実験が行われ実測により導出されてもよい。
【0121】
続いて、取得部111(より具体的には、第3取得部1113)は、加振源装置2の位置の変位に係る物理量(ここでは加速度)の第1スペクトルを取得する(S30)。例えば、取得部111は、記憶部140に記憶されている第1スペクトルを取得する。なお、このステップS30が第3取得ステップに相当する。
【0122】
本実施の形態に係る第1スペクトルは、図6が示すパワースペクトルである。
【0123】
なお、このように、ステップS10~S30においては、取得部111によって第1感度関数、第1質量関数及び第1スペクトルが記憶部140から取得されている。つまり、ステップS10~S30が行われる前に、記憶部140に第1感度関数、第1質量関数及び第1スペクトルが記憶されているとよく、このために、一例として、ステップS10~S30の処理が行われる前に、以下の処理が行われているとよい。
【0124】
本実施の形態においては、図3が示す発電感度特性では、発生電圧が電圧測定装置によって、加速度が加速度測定装置によって測定されている。例えば、電圧測定装置又は加速度測定装置が、測定された発電感度特性に基づいて第1感度関数を算出し、算出された第1感度関数を選定装置が有する通信部120に出力する。これにより、通信部120は、第1感度関数を取得し、取得された第1感度関数が記憶部140に記憶されているとよい。
【0125】
また、選定装置100の受付部152は、第1質量関数を示す情報を記憶部140に記憶させるための操作を、選定装置100のユーザから受付けているとよい。この操作に基づいて、第1質量関数が記憶部140に記憶されているとよい。
【0126】
また、本実施の形態においては、センサ部130によって、図5が示す加振源装置2の加速度が測定され、FFT解析が行われ、図6が示す第1スペクトルを得ることができる。得られた第1スペクトルが記憶部140に記憶されているとよい。
【0127】
さらに、図8を用いて、動作例1を説明する。
【0128】
算出部112(より具体的には、第1算出部1121)は、取得された第1スペクトルが含む複数の第1ピーク周波数のそれぞれと、取得された第1感度関数(ここでは領域A1の第1感度関数及び領域A2の第1感度関数)とに基づいて、複数の第1ピーク周波数のそれぞれに対応する第1発電感度を算出する(S40)。なお、このステップS40が第1算出ステップに相当する。
【0129】
以下ステップS40について詳細に説明する。
【0130】
第1スペクトルが含む複数の第1ピーク周波数のそれぞれとは、54Hz、107Hz及び160Hzである。3つの第1ピーク周波数が、式3及び式4が示す第1感度関数のftipとして代入されることで、3つの第1ピーク周波数に対応する第1発電感度が算出される。なお、本実施の形態においては、領域A1の第1感度関数と、領域A2の第1感度関数とが取得されているため、3つの第1ピーク周波数のうち、107Hz及び160Hzが領域A1の第1感度関数のftipとして、54Hzが領域A2の第1感度関数のftipとして、代入される。
【0131】
ステップS40により、第1振動発電デバイス1において、共振周波数が複数の第1ピーク周波数のそれぞれである場合の第1発電感度が算出される。つまりここでは、共振周波数が54Hzである場合と、共振周波数が107Hzである場合と、共振周波数が160Hzである場合との第1発電感度が算出される。
【0132】
このように、ステップS40では、複数の第1発電感度が算出される。
【0133】
続いて、算出部112(より具体的には、第2算出部1122)は、算出された複数の第1発電感度のそれぞれと、算出された当該第1発電感度を示す第1ピーク周波数の物理量(ここでは加速度)とを乗算することで、複数の第1ピーク周波数のそれぞれでの発生電圧を算出する(S50)。なお、このステップS50が第2算出ステップに相当する。
【0134】
一例として、共振周波数が160Hzである場合の第1発電感度についての発生電圧について説明する。ステップS30にて、共振周波数が160Hz(第1ピーク周波数の一例)である場合の第1発電感度が算出されている。当該第1発電感度を示す第1ピーク周波数とは160Hzであり、この第1ピーク周波数の物理量(加速度)とは図6が示す通り3.4m/sである。上記の通り、第1発電感度は、発生電圧(V)が加速度(m/s)で除算された値である。従って、算出部112が、共振周波数が160Hz(第1ピーク周波数の一例)である場合の第1発電感度(V/m/s)と、当該第1発電感度を示す第1ピーク周波数の加速度(m/s)とを乗算することで、発生電圧(V)が算出される。この発生電圧(V)とは、共振周波数が160Hz(第1ピーク周波数の一例)である場合の発生電圧を意味する。
【0135】
ステップS50では、共振周波数が、160Hzとは異なる他の複数の第1ピーク周波数の場合でも同様の処理が行われる。つまりは、算出部112は、共振周波数が160Hzである場合の発生電圧に加えて、共振周波数が54Hz(第1ピーク周波数の一例)である場合の発生電圧、及び、共振周波数が107Hz(第1ピーク周波数の一例)である場合の発生電圧を算出する。
【0136】
より具体的には、共振周波数が54Hz、107Hz及び160Hzである場合の発生電圧はそれぞれ、11.0V、12.6V及び17.2Vであった。つまり、共振周波数が54Hz、107Hz及び160Hzとなる順に、発生電圧が大きくなることが予想される。
【0137】
このように、ステップS50では、算出部112は、第1振動発電デバイス1について複数の(3つの)発生電圧を算出する。
【0138】
続いて、決定部113は、算出部112によって算出された複数の発生電圧のうち最も大きい値を示す第1ピーク周波数を決定する(S60)。このステップS60が決定ステップに相当する。
【0139】
算出された複数の発生電圧のうち最も大きい値(発生電圧)は、17.2Vである。この値を示す第1ピーク周波数は、160Hzである。つまり、決定部113は、算出部112によって算出された複数の発生電圧のうち最も大きい値を示す第1ピーク周波数が160Hzであると決定する。
【0140】
さらに、算出部112(より具体的には、第3算出部1123)は、決定部113によって決定された第1ピーク周波数と、取得部111によって取得された第1質量関数とに基づいて、決定された第1ピーク周波数に対応する第1錘60の質量を算出する(S70)。このステップS70が第3算出ステップに相当する。
【0141】
算出部112は、決定された第1ピーク周波数(160Hz)と、式6で示される第1質量関数とに基づいて、決定された第1ピーク周波数に対応する第1錘60の質量を算出する。ここでは、決定された第1ピーク周波数が、式6が示す第1質量関数のftipとして代入されることで、決定された第1ピーク周波数に対応する第1錘60の質量が算出される。なお、決定された第1ピーク周波数に対応する第1錘60の質量とは、共振周波数が決定された第1ピーク周波数(160Hz)となるための第1錘60の質量である。つまり、この質量の第1錘60を第1振動発電デバイス1が備えることで、第1振動発電デバイス1の共振周波数が決定された第1ピーク周波数(160Hz)となる。
【0142】
また、本実施の形態においては、算出された第1錘60の質量は、0.94gであった。
【0143】
続いて、出力部114は、決定部113によって決定された第1ピーク周波数(160Hz)と、算出部112によって算出された第1錘60の質量(0.94g)とを出力する(S80)。このステップS80が出力ステップに相当する。
【0144】
出力部114が第1ピーク周波数と第1錘60の質量とを出力することで、表示部151には、第1ピーク周波数が160Hzであること、及び、第1錘60の質量が0.94gであることを示す画像が表示される。例えば、このような画像は、記憶部140に記憶されているとよい。
【0145】
このように、第1ピーク周波数が160Hzであること、及び、第1錘60の質量が0.94gであることを示す画像が表示されることで、ユーザは、第1ピーク周波数が160Hzとなるように質量が0.94gである第1錘60をフレーム21に取り付けることができる。
【0146】
上記の通り、第1錘60の質量が0.94gであれば、共振周波数を160Hzとすることができ、この場合の発生電圧を複数の発生電圧のうち最も大きい値(発生電圧)とすることができる。つまりは、第1振動発電デバイス1の発生電圧を高めることができる。
【0147】
さらに、発明者らは、第1ピーク周波数が160Hzであり、かつ、第1錘60の質量が0.94gであれば、第1振動発電デバイス1の発生電圧を最も高めることができるかを実証するため、以下の実証実験を行った。
【0148】
[実証実験]
ここでは、共振周波数が複数の第1ピーク周波数(54Hz、107Hz及び160Hz)のそれぞれとなるように、第1錘60の質量が変更されて、第1振動発電デバイス1の発生電圧が測定された。
【0149】
つまりここでは、同一の第1振動発電デバイス1について、共振周波数が54Hzとなる質量の第1錘60、共振周波数が107Hzとなる質量の第1錘60、及び、共振周波数が160Hzとなる質量の第1錘60が順に取り付けられて、発生電圧が測定された。
【0150】
なお、どの第1錘60が取り付けられた場合でも、第1振動発電デバイス1には図5が示す振動(加速度)が与えられて、発生電圧が測定された。ここでは、第1振動発電デバイス1が加振源装置2に取り付けられ、加振された。この場合のそれぞれの発生電圧が測定された。
【0151】
図9は、本実施の形態に係る第1振動発電デバイス1の第1錘60の質量がそれぞれ変更された場合の発生電圧の時間変化が示された図である。図9には、共振周波数が54Hz、107Hz及び160Hzとなる順に、発生電圧が大きくなることが示されている。
【0152】
図10は、図9が示す複数の発生電圧の詳細な表を示す図である。Vp-pは発生電圧の最小値と最大値との差分を示し、Vrmsは発生電圧の平均値を示している。Vp-p及びVrmsのいずれも、共振周波数が54Hz、107Hz及び160Hzとなる順に、大きくなる。
【0153】
動作例1では、共振周波数が54Hz、107Hz及び160Hzとなる順に、発生電圧が大きくなることが予想されたが、この予想通りの実験結果が実証され、予想が正しいことが示された。
【0154】
このように、第1ピーク周波数が160Hzであり、かつ、第1錘60の質量が0.94gであれば、第1振動発電デバイス1の発生電圧を最も高めることができることが実証された。
【0155】
なお、ステップS80で出力された質量の第1錘60が取り付けられた後に、さらに、共振周波数を精緻に調整するために、以下の処理が行われてもよい。
【0156】
第1錘60に、スズによって構成されたスズ板が取り付けられ、当該スズ板が必要に応じて折り曲げられる処理が行われるとよい。第1振動発電デバイス1の共振周波数は、スズ板が取り付けられること、及び、当該スズ板が折り曲げられることのそれぞれにより、さらに調整されることができる。これにより、さらに共振周波数が調整されるため、第1振動発電デバイス1の発生電圧をさらに高めることができる。
【0157】
[効果など]
本実施の形態に係る選定方法は、第1錘60を備える第1振動発電デバイス1の選定装置100による選定方法であって、第1取得ステップと、第2取得ステップと、第3取得ステップと、第1及び第2算出ステップと、決定ステップと、第3算出ステップと、出力ステップとを含む。第1取得ステップ(ステップS10)では、第1振動発電デバイス1が加振されたときの発生電圧を物理量で除算した第1発電感度の共振周波数への依存性を示す第1感度関数を取得する。第2取得ステップ(ステップS20)では、第1錘60の質量の共振周波数への依存性を示す第1質量関数を取得する。第3取得ステップ(ステップS30)では、加振源装置2の位置の変位に係る物理量の第1スペクトルを取得する。第1算出ステップ(ステップS40)では、取得された第1スペクトルが含む複数の第1ピーク周波数のそれぞれと、取得された第1感度関数とに基づいて、複数の第1ピーク周波数のそれぞれに対応する第1発電感度を算出する。第2算出ステップ(ステップS50)では、算出された複数の第1発電感度のそれぞれと、算出された当該第1発電感度を示す第1ピーク周波数の物理量とを乗算することで、複数の第1ピーク周波数のそれぞれでの発生電圧を算出する。決定ステップ(ステップS60)では、算出された複数の発生電圧のうち最も大きい値を示す第1ピーク周波数を決定する。第3算出ステップ(ステップS70)では、決定された第1ピーク周波数と、取得された第1質量関数とに基づいて、決定された第1ピーク周波数に対応する第1錘60の質量を算出する。出力ステップ(ステップS80)では、決定された第1ピーク周波数と、算出された第1錘60の質量とを出力する。
【0158】
このように、本実施の形態に係る選定方法では、決定された第1ピーク周波数と、算出された第1錘60の質量とが出力される。例えば、動作例1では、表示部151には、第1ピーク周波数が160Hzであること、及び、第1錘60の質量が0.94gであることを示す画像が表示される。決定された第1ピーク周波数とは、第1スペクトルが含む複数の第1ピーク周波数のそれぞれでの発生電圧のうち最も大きい値(最も大きい発生電圧)を示す周波数である。第1振動発電デバイス1の共振周波数が決定された第1ピーク周波数となることで、第1振動発電デバイス1の発生電圧を高めることができる。さらに、算出された第1錘60の質量とは、決定された第1ピーク周波数に対応する質量であり、共振周波数が決定された第1ピーク周波数(160Hz)となるための質量である。
【0159】
従って、本実施の形態に係る選定方法が上記構成を含み、決定された第1ピーク周波数と算出された第1錘60の質量とが出力されることで、ユーザは、共振周波数が第1ピーク周波数となるような質量の第1錘60をフレーム21に取り付けることができる。この結果、第1振動発電デバイス1の発生電圧を高めることができる。つまりは、発生電圧を高めることができる共振周波数及び第1錘60の質量を容易に選定することができる選定方法が実現される。
【0160】
本実施の形態においては、物理量は、加速度である。
【0161】
これにより、第3取得ステップでは、第1スペクトルを容易に取得することができる。
【0162】
本実施の形態においては、取得された第1感度関数は、有限要素法により算出された関数であってもよい。
【0163】
上記の通り、有限要素法を用いた計算により図3が示す発電感度特性が得られてもよい。この場合、当該計算により得られた発電感度特性に基づいて、第1感度特性が得られてもよい。つまり、第1振動発電デバイス1の発生電圧が電圧測定装置が用いられることで実験により実測されなくても、発電感度特性が得られるため、より簡便に第1感度特性を得ることができる。
【0164】
本実施の形態においては、物理量の第1スペクトルは、第1時刻から第1時刻よりも後の時刻である第2時刻までの物理量に基づく複数のスペクトルの和である。
【0165】
これにより、第1スペクトルが、加振源装置2の位置の変位に係る物理量をより正確に表すことができる。
【0166】
本実施の形態に係るコンピュータプログラムは、上記記載の選定方法をコンピュータに実行させるためのコンピュータプログラムである。
【0167】
これにより、発生電圧を高めることができる共振周波数及び第1錘60の質量を容易に選定することができる選定方法が実現される。
【0168】
本実施の形態に係る選定装置100は、第1錘60を備える第1振動発電デバイス1の選定装置100である。選定装置100は、第1取得部1111と、第2取得部1112と、第3取得部1113と、第1算出部1121と、第2算出部1122と、決定部113と、第3算出部1123と、出力部114とを備える。第1取得部1111は、第1振動発電デバイス1が加振されたときの発生電圧を物理量で除算した第1発電感度の共振周波数への依存性を示す第1感度関数を取得する。第2取得部1112は、第1錘60の質量の共振周波数への依存性を示す第1質量関数を取得する。第3取得部1113は、加振源装置2の位置の変位に係る物理量の第1スペクトルを取得する。第1算出部1121は、取得された第1スペクトルが含む複数の第1ピーク周波数のそれぞれと、取得された第1感度関数とに基づいて、複数の第1ピーク周波数のそれぞれに対応する第1発電感度を算出する。第2算出部1122は、算出された複数の第1発電感度のそれぞれと、算出された当該第1発電感度を示す第1ピーク周波数の物理量とを乗算することで、複数の第1ピーク周波数のそれぞれでの発生電圧を算出する。決定部113は、算出された複数の発生電圧のうち最も大きい値を示す第1ピーク周波数を決定する。第3算出部1123は、決定された第1ピーク周波数と、取得された第1質量関数とに基づいて、決定された第1ピーク周波数に対応する第1錘60の質量を算出する。出力部114は、決定された第1ピーク周波数と、算出された第1錘60の質量とを出力する。
【0169】
このように、本実施の形態に係る選定装置100では、決定された第1ピーク周波数と、算出された第1錘60の質量とが出力される。例えば、動作例1では、表示部151には、第1ピーク周波数が160Hzであること、及び、第1錘60の質量が0.94gであることを示す画像が表示される。決定された第1ピーク周波数とは、第1スペクトルが含む複数の第1ピーク周波数のそれぞれでの発生電圧のうち最も大きい値(最も大きい発生電圧)を示す周波数である。第1振動発電デバイス1の共振周波数が決定された第1ピーク周波数となることで、第1振動発電デバイス1の発生電圧を高めることができる。さらに、算出された第1錘60の質量とは、決定された第1ピーク周波数に対応する質量であり、共振周波数が決定された第1ピーク周波数(160Hz)となるための質量である。
【0170】
従って、本実施の形態に係る選定装置100が上記構成を含み、決定された第1ピーク周波数と算出された第1錘60の質量とが出力されることで、ユーザは、共振周波数が第1ピーク周波数となるような質量の第1錘60をフレーム21に取り付けることができる。この結果、第1振動発電デバイス1の発生電圧を高めることができる。つまりは、発生電圧を高めることができる共振周波数及び第1錘60の質量を容易に選定することができる選定装置100が実現される。
【0171】
(変形例)
以下、実施の形態の変形例について説明する。以下では、実施の形態との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
【0172】
[構成]
実施の形態においては、選定装置100の対象となるデバイスは、第1振動発電デバイス1だけであったが、変形例では、これに限られない。本変形例においては、選定装置100は、第1振動発電デバイス1と、第1振動発電デバイス1とは異なる第2振動発電デバイス1bとのうち、発生電圧がより高いデバイスを選定する。
【0173】
まずは、本変形例に係る第2振動発電デバイス1bについて説明する。
【0174】
図11は、本変形例に係る第2振動発電デバイス1bの側面図である。第2振動発電デバイス1bは、フレーム21にかえてフレーム21bを備える点、及び、第1錘60にかえて第2錘60bを備える点を除いて、第1振動発電デバイス1と同じ構成を有する。
【0175】
フレーム21bは、厚みd2が厚みd1よりも厚い点、及び、全長L2が全長L1よりも長い点を除いて、フレーム21と同じ構成を有する。例えば、厚みd2は厚みd1の2倍厚く、全長L2は全長L1の2倍長い。また、第2振動発電デバイス1bが備える磁歪素子32は、第1振動発電デバイス1が備える磁歪素子32よりも大きくてもよい。
【0176】
つまり、第2振動発電デバイス1bは、第1振動発電デバイス1よりも大型のデバイスである。
【0177】
第2錘60bは、第1錘60と同じく、連結部材22に取り付けられる錘である。第2錘60bの質量が変わることで、第2振動発電デバイス1bの共振周波数が変化する。また、第2錘60bの質量及び大きさが変更可能に設けられている。
【0178】
本変形例においては、識別のため、第2振動発電デバイス1bが備える錘を第2錘60b、第1振動発電デバイス1が備える錘を第1錘60として記載されている。
【0179】
上記の通り、第1振動発電デバイス1と第2振動発電デバイス1bとは、互いに大きさが異なる。このため、第1振動発電デバイス1と第2振動発電デバイス1bとでは、発電感度特性が異なる。第1振動発電デバイス1の発電感度特性は、図3に示される通りである。ここで、第1振動発電デバイス1の発電感度特性と第2振動発電デバイス1bの発電感度特性とを比較する。
【0180】
図12は、第1振動発電デバイス1の発電感度特性と第2振動発電デバイス1bの発電感度特性と模式的に示す図である。ここでは、図12の(a)が第1振動発電デバイス1の発電感度特性を模式的に示す図であり、図12の(b)が第2振動発電デバイス1bの発電感度特性を模式的に示す図である。
【0181】
ここで、第2振動発電デバイス1bに係る第2発電感度は、第1振動発電デバイス1に係る第1発電感度に相当する値であり、第2振動発電デバイス1bにおいて、発生電圧が加速度で除算された値の一例(ピーク値)である。
【0182】
図12の(b)が示すように、第2錘60bの質量が変更されることで、第2振動発電デバイス1bの共振周波数が変更される。つまりは、共振周波数は第2錘60bの質量によって調整されることができ、共振周波数と第2錘60bの質量とは1対1の関係にある。さらに言えば、第2錘60bの質量は、共振周波数に依存する。なお、共振周波数とは、発生電圧が加速度で除算された値がピーク値となる周波数であり、第2発電感度に対応する周波数である。また、共振周波数が変更されることで、第2発電感度が変更される。つまりは、第2発電感度は共振周波数によって調整されることができ、第2発電感度は共振周波数に依存する。
【0183】
例えば、第1振動発電デバイス1の共振周波数と第2振動発電デバイス1bの共振周波数とが同じになるように(例えば周波数f1となるように)、第1錘60の質量と第2錘60bの質量とが用いられても、第1発電感度の値と第2発電感度の値とは、異なる。
【0184】
このため、本変形例のように、大きさが互いに異なる第1振動発電デバイス1と第2振動発電デバイス1bとがある場合には、どちらのデバイスを加振源装置2に取り付ければ、より高い発生電圧が得られるかを判断することが求められる。以下では、選定装置100を用いて、発生電圧がより高いデバイスを選定する動作例2について説明する。
【0185】
[動作例2]
以下、選定装置100の動作例2について図13を用いて説明する。なお、動作例1と共通する点については、説明を省略又は簡略化する。
【0186】
図13は、本変形例に係る選定装置100の動作例2のフローチャートである。図13が示す動作例2は、例えば、第1振動発電デバイス1又は第2振動発電デバイス1bが加振源装置2に取り付けられるときに、行われる動作例である。
【0187】
まず、第1取得ステップでは、取得部111は、ステップS10と同じく第1感度関数を取得し、ここでは第2感度関数も取得する(S11)。なお、第2振動発電デバイス1bに係る第2感度関数は、第1振動発電デバイス1に係る第1感度関数に相当する関数である。つまり、第2感度関数は、第2振動発電デバイス1bが加振されたときの発生電圧を物理量(ここでは加速度)で除算した第2発電感度の共振周波数(より具体的には、第2振動発電デバイス1bの共振周波数)への依存性を示す関数である。
【0188】
次に、第2取得ステップでは、取得部111は、ステップS20と同じく第1質量関数を取得し、ここでは第2質量関数も取得する(S21)。なお、第2振動発電デバイス1bに係る第2質量関数は、第1振動発電デバイス1に係る第1質量関数に相当する関数である。つまり、第2質量関数は、第2錘60bの質量の共振周波数(より具体的には、第2振動発電デバイス1bの共振周波数)への依存性を示す関数である。
【0189】
続いて、第3取得ステップでは、取得部111は、ステップS30と同じく第1スペクトルを取得し、ここでは、第2スペクトルも取得する(S31)。なお、第2振動発電デバイス1bに係る第2スペクトルは、第1振動発電デバイス1に係る第1スペクトルに相当するスペクトルである。つまり、第2スペクトルは、加振源装置2の位置の変位に係る物理量(ここでは加速度)のスペクトルである。
【0190】
ここで、第2スペクトルについて説明する。選定装置100(加速度測定装置)が加振源装置2に取り付けられることで、加振源装置2の加速度が測定されている。センサ部130のセンサ制御部132は、このような加速度に基づいてFFT解析を行い、これにより、第2スペクトルが得られる。
【0191】
なお、第1スペクトル及び第2スペクトルはいずれも、加振源装置2の加速度が測定されることで、得られている。このため、本変形例においては、第1スペクトルと第2スペクトルとは、同じスペクトルとなる。
【0192】
なお、ステップS11~S31においては、取得部111によって第1感度関数、第1質量関数、第1スペクトル、第2感度関数、第2質量関数及び第2スペクトルが記憶部140から取得されている。つまり、ステップS11~S31が行われる前に、記憶部140に第1感度関数、第1質量関数、第1スペクトル、第2感度関数、第2質量関数及び第2スペクトルが記憶されているとよい。
【0193】
さらに、第1算出ステップでは、算出部112は、ステップS40と同じく第1発電感度を算出し、ここでは第2発電感度も算出する(S41)。算出部112は、取得された第2スペクトルが含む複数の第2ピーク周波数のそれぞれと、取得された第2感度関数とに基づいて、複数の第2ピーク周波数のそれぞれに対応する第2発電感度を算出する。
【0194】
本変形例においては、第1スペクトルと第2スペクトルとは同じスペクトルである。よって、第2スペクトルが含む複数の第2ピーク周波数のそれぞれは、第1スペクトルが含む複数の第1ピーク周波数のそれぞれと同じであり、54Hz、107Hz及び160Hzである。3つの第2ピーク周波数のそれぞれと、第2感度関数とに基づいて、3つの第2ピーク周波数に対応する第2発電感度が算出される。
【0195】
ステップS41により、第1振動発電デバイス1において、共振周波数が複数の第1ピーク周波数のそれぞれである場合の第1発電感度が算出される。つまりここでは、共振周波数が54Hzである場合と、共振周波数が107Hzである場合と、共振周波数が160Hzである場合との第1発電感度が算出される。同様に、第2振動発電デバイス1bにおいて、共振周波数が複数の第2ピーク周波数のそれぞれである場合の第2発電感度が算出される。つまりここでは、共振周波数が54Hzである場合と、共振周波数が107Hzである場合と、共振周波数が160Hzである場合との第2発電感度が算出される。
【0196】
このように、ステップS41では、3つの第1発電感度と3つの第2発電感度とが算出される。
【0197】
続いて、第2算出ステップでは、算出部112は、ステップS50と同じく第1振動発電デバイス1について複数の(3つの)発生電圧を算出し、ここでは、第2振動発電デバイス1bについて複数の(3つの)発生電圧も算出する(S51)。
【0198】
算出部112は、算出された複数の第2発電感度のそれぞれと、算出された当該第2発電感度を示す第2ピーク周波数の物理量(ここでは加速度)とを乗算することで、複数の第2ピーク周波数のそれぞれでの発生電圧を算出する。より具体的には、第2振動発電デバイス1bの共振周波数が54Hz、107Hz及び160Hzである場合の、第2振動発電デバイス1bの発生電圧がそれぞれ算出される。
【0199】
このように、ステップS51では、算出部112は、第1振動発電デバイス1について複数の(3つの)発生電圧と、第2振動発電デバイス1bについて複数の(3つの)発生電圧とを算出する。つまり、算出部112は、6つの発生電圧を算出する。
【0200】
続いて、決定ステップでは、決定部113は、第1振動発電デバイス1について算出された複数の発生電圧及び第2振動発電デバイス1bについて算出された複数の発生電圧のうち最も大きい値を示す第1ピーク周波数又は第2ピーク周波数である最大ピーク周波数を決定する(S61)。
【0201】
例えば、第1振動発電デバイス1の共振周波数が160Hzである場合の第1振動発電デバイス1の発生電圧が、上記6つの発生電圧のうち、最も大きい値であるときには、決定部113は、第1ピーク周波数である160Hzを最大ピーク周波数として決定する。以下、第1ピーク周波数である160Hzが最大ピーク周波数として決定された条件を、条件1とする。
【0202】
同様に、例えば、第2振動発電デバイス1bの共振周波数が54Hzである場合の第2振動発電デバイス1bの発生電圧が、上記6つの発生電圧のうち、最も大きい値であるときには、決定部113は、第2ピーク周波数である54Hzを最大ピーク周波数として決定する。以下、第2ピーク周波数である54Hzが最大ピーク周波数として決定された条件を、条件2とする。
【0203】
さらに、第3算出ステップでは、算出部112は、決定された最大ピーク周波数と、取得された第1質量関数又は第2質量関数とに基づいて、決定された最大ピーク周波数に対応する第1錘60の質量又は第2錘60bの質量を算出する(S71)。
【0204】
上記条件1である場合とは、第1振動発電デバイス1の発生電圧が上記6つの発生電圧のうち最も大きい値である場合でもある。この場合には、最大ピーク周波数である第1ピーク周波数(160Hz)と、第1振動発電デバイス1に係る第1質量関数と基づいて、最大ピーク周波数に対応する第1錘60の質量が算出される。なお、最大ピーク周波数として、他の第1ピーク周波数が決定された場合も同様の処理が行われる。
【0205】
上記条件2である場合とは、第2振動発電デバイス1bの発生電圧が上記6つの発生電圧のうち最も大きい値である場合でもある。この場合には、最大ピーク周波数である第2ピーク周波数(54Hz)と、第2振動発電デバイス1bに係る第2質量関数と基づいて、最大ピーク周波数に対応する第2錘60bの質量が算出される。なお、最大ピーク周波数として、他の第2ピーク周波数が決定された場合も同様の処理が行われる。
【0206】
続いて、出力ステップでは、出力部114は、決定された最大ピーク周波数と、算出された第1錘60の質量又は第2錘60bの質量と、第1振動発電デバイス1及び第2振動発電デバイス1bのうち決定された最大ピーク周波数を示す振動発電デバイスとを示す情報を出力する(S81)。なお、算出された第1錘60の質量又は第2錘60bの質量とは、決定部113によって決定された最大ピーク周波数に対応する第1錘60の質量又は第2錘60bの質量である。
【0207】
例えば、上記条件1である場合には、最大ピーク周波数である第1ピーク周波数(160Hz)と、最大ピーク周波数に対応する第1錘60の質量と、最大ピーク周波数を示す振動発電デバイスが第1振動発電デバイス1であることを示す情報が出力される。
【0208】
また例えば、上記条件2である場合には、最大ピーク周波数である第2ピーク周波数(54Hz)と、最大ピーク周波数に対応する第2錘60bの質量と、最大ピーク周波数を示す振動発電デバイスが第2振動発電デバイス1bであることを示す情報が出力される。
【0209】
ステップS81の処理が行われることで、表示部151には、決定された最大ピーク周波数と、第1錘60の質量又は第2錘60bの質量と、より発生電圧が高い振動発電デバイスとを示す画像が表示される。
【0210】
これにより、ユーザは、より発生電圧が高い振動発電デバイスを選定し、その振動発電デバイスの共振周波数が最大ピーク周波数となるような質量の第1錘60又は第2錘60bを使用することができる。
【0211】
なお、本変形例においては、選定装置100の対象となるデバイスは、第1振動発電デバイス1及び第2振動発電デバイス1bだけであったが、これに限られない。選定装置100は、互いに異なる大きさの3個以上の振動発電デバイスを対象としてもよい。選定装置100は、上記動作例2と同様の処理を行うことで、当該3個以上の振動発電デバイスのうち、発生電圧がより高いデバイスを選定することができる。
【0212】
[効果など]
本変形例に係る選定方法は、第1振動発電デバイス1と、第2錘60bを備え第1振動発電デバイス1とは異なる第2振動発電デバイス1bの選定装置100による選定方法である。第1取得ステップでは、第2振動発電デバイス1bが加振されたときの発生電圧を物理量で除算した第2発電感度の第2振動発電デバイス1bの共振周波数への依存性を示す第2感度関数を取得する。第2取得ステップでは、第2錘60bの質量の第2振動発電デバイス1bの共振周波数への依存性を示す第2質量関数を取得する。第3取得ステップでは、加振源装置2の位置の変位に係る物理量の第2スペクトルを取得する。第1算出ステップでは、取得された第2スペクトルが含む複数の第2ピーク周波数のそれぞれと、取得された第2感度関数とに基づいて、複数の第2ピーク周波数のそれぞれに対応する第2発電感度を算出する。第2算出ステップでは、算出された複数の第2発電感度のそれぞれと、算出された当該第2発電感度を示す第2ピーク周波数の物理量とを乗算することで、複数の第2ピーク周波数のそれぞれでの発生電圧を算出する。決定ステップでは、第1振動発電デバイス1について算出された複数の発生電圧及び第2振動発電デバイス1bについて算出された複数の発生電圧のうち最も大きい値を示す第1ピーク周波数又は第2ピーク周波数である最大ピーク周波数を決定する。第3算出ステップでは、決定された最大ピーク周波数と、取得された第1質量関数又は第2質量関数とに基づいて、決定された最大ピーク周波数に対応する第1錘60の質量又は第2錘60bの質量を算出する。出力ステップでは、決定された最大ピーク周波数と、決定された最大ピーク周波数に対応する算出された第1錘60の質量又は第2錘60bの質量と、第1振動発電デバイス1及び第2振動発電デバイス1bのうち決定された最大ピーク周波数を示す振動発電デバイスとを示す情報を出力する。
【0213】
これにより、ユーザは、より発生電圧が高い振動発電デバイスを選定し、その振動発電デバイスの共振周波数が最大ピーク周波数となるような質量の第1錘60又は第2錘60bを使用することができる。つまりは、発生電圧を高めることができる共振周波数と第1錘60又は第2錘60bの質量と振動発電デバイスとを容易に選定することができる選定方法が実現される。
【0214】
(その他の実施の形態)
以上、本発明に係る振動発電デバイスについて、実施の形態及び変形例に基づいて説明したが、本発明は、これらの実施の形態及び変形例に限定されるものではない。本発明の主旨を逸脱しない限り、当業者が思いつく各種変形を実施の形態に施したものや、実施の形態及び変形例における一部の構成要素を組み合わせて構築される別の形態も、本発明の範囲に含まれる。
【0215】
なお、選定装置100は、クラウドサーバなどのサーバ装置であってもよい。この場合、選定装置100は、センサ部130を備えていなくてもよく、センサ部130が選定装置100と別体であるとよい。この場合、センサ部130により得られた図6が示す第1スペクトルが、選定装置100に出力されるとよい。これにより、選定装置100は、図6が示す第1スペクトルを得ることができる。
【0216】
なお、実施の形態及び変形例で説明した共振周波数は、1次共振周波数であったが、これに限られない。1次共振周波数のかわりに2次共振周波数が用いられてもよく、より高次の共振周波数が用いられてもよい。
【0217】
また、上記の実施の形態は、特許請求の範囲又はその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
【産業上の利用可能性】
【0218】
本発明は、発生電圧を高めることができる振動発電デバイスを選定する方法として利用することができる。
【符号の説明】
【0219】
1、1a 第1振動発電デバイス
1b 第2振動発電デバイス
2 加振源装置
21、21a、21b フレーム
22 連結部材
30、30a 発電部
31、31a コイル
32、32a 磁歪素子
33 発電用磁石
60、60a 第1錘
60b 第2錘
100 選定装置
110 情報処理部
111 取得部
112 算出部
113 決定部
114 出力部
120 通信部
130 センサ部
131 加速度センサ
132 センサ制御部
140 記憶部
150 表示装置
151 表示部
152 受付部
211 第1内側面
212 第2内側面
213 第1外側面
214 第2外側面
1111 第1取得部
1112 第2取得部
1113 第3取得部
1121 第1算出部
1122 第2算出部
1123 第3算出部
A1、A2 領域
B 屈曲部
d1、d2 厚み
F1 自由端部
F2、F2a 固定端部
L1、L2 全長
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13