IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社カワタの特許一覧

特開2024-65781スラリー調製方法、スラリー調製装置、粉体製造方法、粉体製造システムおよびコーティング溶液調製方法
<>
  • 特開-スラリー調製方法、スラリー調製装置、粉体製造方法、粉体製造システムおよびコーティング溶液調製方法 図1
  • 特開-スラリー調製方法、スラリー調製装置、粉体製造方法、粉体製造システムおよびコーティング溶液調製方法 図2
  • 特開-スラリー調製方法、スラリー調製装置、粉体製造方法、粉体製造システムおよびコーティング溶液調製方法 図3
  • 特開-スラリー調製方法、スラリー調製装置、粉体製造方法、粉体製造システムおよびコーティング溶液調製方法 図4
  • 特開-スラリー調製方法、スラリー調製装置、粉体製造方法、粉体製造システムおよびコーティング溶液調製方法 図5
  • 特開-スラリー調製方法、スラリー調製装置、粉体製造方法、粉体製造システムおよびコーティング溶液調製方法 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024065781
(43)【公開日】2024-05-15
(54)【発明の名称】スラリー調製方法、スラリー調製装置、粉体製造方法、粉体製造システムおよびコーティング溶液調製方法
(51)【国際特許分類】
   B01J 2/00 20060101AFI20240508BHJP
   B01F 23/50 20220101ALI20240508BHJP
   B01F 23/53 20220101ALI20240508BHJP
   B01F 35/75 20220101ALI20240508BHJP
   B01F 33/82 20220101ALI20240508BHJP
   B01F 33/40 20220101ALI20240508BHJP
   B01F 33/83 20220101ALI20240508BHJP
   H01M 4/139 20100101ALN20240508BHJP
   H01M 4/36 20060101ALN20240508BHJP
【FI】
B01J2/00 B
B01F23/50
B01F23/53
B01F35/75
B01F33/82
B01F33/40
B01F33/83
H01M4/139
H01M4/36 C
【審査請求】未請求
【請求項の数】12
【出願形態】OL
(21)【出願番号】P 2022174809
(22)【出願日】2022-10-31
(71)【出願人】
【識別番号】000129183
【氏名又は名称】株式会社カワタ
(74)【代理人】
【識別番号】100129643
【弁理士】
【氏名又は名称】皆川 祐一
(72)【発明者】
【氏名】張 春暁
(72)【発明者】
【氏名】大堀 進一
(72)【発明者】
【氏名】富永 圭介
(72)【発明者】
【氏名】廣川 治永
【テーマコード(参考)】
4G004
4G035
4G036
4G037
5H050
【Fターム(参考)】
4G004BA00
4G035AB44
4G035AB46
4G035AE13
4G035AE15
4G036AC02
4G036AC03
4G036AC65
4G037AA13
4G037EA01
4G037EA02
4G037EA05
5H050AA19
5H050BA17
5H050CA01
5H050CA08
5H050CA09
5H050FA17
5H050FA18
5H050GA02
5H050GA05
5H050GA10
5H050GA12
5H050GA14
5H050GA22
5H050GA27
5H050GA29
(57)【要約】
【課題】コーティング粒子のロスの増大を抑制しつつ、原料粒子の表面に形成されるコーティング粒子の被膜の膜厚の増大を図ることができる、スラリー調製方法、スラリー調製装置、粉体製造方法、粉体製造システムおよびコーティング溶液調製方法を提供する。
【解決手段】コーティング溶液準備工程(S1)では、被膜となる溶質を溶媒に溶かしたコーティング溶液が準備される。そして、原料粒子添加工程(S2)で、コーティング溶液に原料粒子が添加され、撹拌工程(S3)で、それらが混ぜ合わされることにより、コーティング溶液と原料粒子との混合液が生成される。その後の濃縮工程(S4)では、混合液に含まれるコーティング溶液から溶媒が減らされることにより、コーティング溶液が濃縮される。濃縮工程後の混合液は、スラリーとして、スラリーを原料粒子の表面にコーティング溶液が付着した粉体に分散させるコーティング装置に供給される。
【選択図】図2
【特許請求の範囲】
【請求項1】
原料粒子の表面にコーティング粒子の被膜が形成された粉体の製造に用いられるスラリーを調製する方法であって、
前記被膜となる溶質を溶媒に溶かしたコーティング溶液を準備する準備工程と、
前記準備工程で準備した前記コーティング溶液に前記原料粒子を添加して混合する混合工程と、
前記混合工程後、前記コーティング溶液から前記溶媒を減少させて、前記コーティング溶液を濃縮する濃縮工程と、を含む、スラリー調製方法。
【請求項2】
前記濃縮工程では、前記コーティング溶液と前記原料粒子との混合液を加熱することにより、前記溶媒を蒸発させる、請求項1に記載のスラリー調製方法。
【請求項3】
前記準備工程後、前記濃縮工程での前記溶媒の蒸発速度を調整するための調整剤を添加する調整剤添加工程、をさらに含む、請求項2に記載のスラリー調製方法。
【請求項4】
前記調整剤は、有機酸または有機溶媒である、請求項3に記載のスラリー調製方法。
【請求項5】
前記濃縮工程後、凝集した固体を分散させる解砕工程、をさらに含む、請求項1に記載のスラリー調製方法。
【請求項6】
原料粒子の表面にコーティング粒子の被膜が形成された粉体の製造に用いられるスラリーを調製する装置であって、
前記被膜となる溶質を溶媒に溶かしたコーティング溶液に前記原料粒子を添加して混合する混合部と、
前記混合部で得られる前記コーティング溶液と前記原料粒子との混合液から前記溶媒を減少させて、前記コーティング溶液を濃縮する濃縮部と、を含む、スラリー調製装置。
【請求項7】
原料粒子の表面にコーティング粒子の被膜が形成された粉体を製造する方法であって、
スラリー調製装置において、前記被膜となる溶質を溶媒に溶かしたコーティング溶液と前記原料粒子とを混合したスラリーを調製する調製工程と、
前記スラリー調製装置からコーティング装置にスラリーを輸送する輸送工程と、
前記コーティング装置において、前記スラリーを前記原料粒子の表面に前記コーティング溶液が付着した粉体に分散させる分散工程と、を含み、
前記調製工程では、請求項1~5のいずれか一項に記載のスラリー調製方法が用いられる、粉体製造方法。
【請求項8】
前記分散工程では、前記コーティング装置に形成された流路にスラリー導入口からスラリーが導入されて、スラリーが前記流路を流れる流体から剪断力を受けることにより前記原料粒子の表面に前記コーティング溶液が付着した粉体に分散される、請求項7に記載の粉体製造方法。
【請求項9】
前記輸送工程は、
前記スラリー調製装置からスラリー容器にスラリーを定量供給する定量供給工程と、
前記スラリー容器内の圧力と前記スラリー導入口における圧力との圧力差により、前記スラリー容器から前記スラリー導入口にスラリーが輸送される圧力差輸送工程と、を含む、請求項8に記載の粉体製造方法。
【請求項10】
前記定量供給工程では、粉体を定量供給可能な粉体用フィーダが用いられる、請求項9に記載の粉体製造方法。
【請求項11】
原料粒子の表面にコーティング粒子の被膜が形成された粉体を製造するシステムであって、
前記被膜となる溶質を溶媒に溶かしたコーティング溶液と前記原料粒子とを混合したスラリーを調製するスラリー調製装置と、
前記スラリーを前記原料粒子の表面に前記コーティング溶液が付着した粉体に分散させるコーティング装置と、
前記スラリー調製装置から前記コーティング装置にスラリーを輸送する輸送装置と、を含み、
前記輸送装置は、
スラリー容器と、
前記スラリー調製装置から前記スラリー容器にスラリーを供給するスラリー供給機と、
前記スラリー容器と前記コーティング装置とに接続され、前記スラリー容器から前記コーティング装置に向けてスラリーが流通するスラリー流通路と、を備え、
前記スラリー供給機は、粉体を定量供給可能な粉体用フィーダである、粉体製造システム。
【請求項12】
原料粒子の表面への被膜の形成に用いられるコーティング溶液を調製する方法であって、
前記被膜となる溶質を溶媒に溶かした溶液を準備する準備工程と、
前記溶液から前記溶媒を減少させて、前記溶液を濃縮する濃縮工程と、を含む、コーティング溶液調製方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、スラリー調製方法、スラリー調製装置、粉体製造方法、粉体製造システムおよびコーティング溶液調製方法に関する。
【背景技術】
【0002】
粉体の表面改質・複合化の技術では、主原料となる原料粒子にコーティング粒子を結合させて、原料粒子の表面にコーティング粒子の被膜を形成することにより、粉体に種々の機能性が付与される。その技術は、食品、医薬品、化粧品などの分野で盛んに利用されており、それ以外の分野においても、電子部品や電池に用いられる電子・電気材料の製造に利用されている。
【0003】
出願人は、原料粒子の表面にコーティング粒子の被膜を形成するコーティング装置を先に提案している。そのコーティング装置では、原料粒子の粉体とコーティング溶液とを予め混合して調製されたスラリーが用いられる。なお、スラリーとは、固体粒子と液体との混合物全般を指す。スラリーが高速の分散気流に導入されることにより、スラリーが分散気流から剪断力を受け、原料粒子の表面にコーティング溶液が付着した粉体に分散される。そして、コーティング粒子が原料粒子の表面に固着することにより、原料粒子の表面にコーティング粒子の被膜を有する粉体が得られる。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2020-94278号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
最近、電子・電気材料の製造の現場では、コーティング粒子の被膜の膜厚を大きくしたいという要望がある。コーティング粒子の被膜を厚膜化する方策として、コーティング溶液の濃度(溶液に対する溶質の割合)を大きくすることが考えられる。しかし、コーティング溶液の一部が原料粒子から分離して固化するため、コーティング溶液の濃度を大きくすると、コーティング粒子のロスが増えてしまう。
【0006】
本発明の目的は、コーティング粒子のロスの増大を抑制しつつ、原料粒子の表面に形成されるコーティング粒子の被膜の膜厚の増大を図ることができる、スラリー調製方法、スラリー調製装置、粉体製造方法、粉体製造システムおよびコーティング溶液調製方法を提供することである。
【課題を解決するための手段】
【0007】
前記の目的を達成するため、本発明の一の局面に係るスラリー調製方法は、原料粒子の表面にコーティング粒子の被膜が形成された粉体の製造に用いられるスラリーを調製する方法であって、被膜となる溶質を溶媒に溶かしたコーティング溶液を準備する準備工程と、準備工程で準備したコーティング溶液に原料粒子を添加して混合する混合工程と、混合工程後、コーティング溶液から溶媒を減少させて、コーティング溶液を濃縮する濃縮工程とを含む。
【0008】
この方法によれば、被膜となる溶質を溶媒に溶かしたコーティング溶液が準備される。そして、コーティング溶液に原料粒子が添加されて混ぜ合わされて、コーティング溶液と原料粒子との混合液が生成される。その後、混合液に含まれるコーティング溶液から溶媒が減らされることにより、コーティング溶液が濃縮される。
【0009】
コーティング溶液の濃縮によって、コーティング溶液の粘度が上がる。コーティング溶液の濃縮前にコーティング溶液と原料粒子とが混合されているので、コーティング溶液の粘度が上がっても、混合液中に原料粒子が分散した状態が維持される。一方で、コーティング溶液の粘度が上がることにより、原料粒子へのコーティング溶液の付着性が上がる。そのため、コーティング装置が高速の分散気流によりスラリーを粉体に分散させる構成であっても、原料粒子からのコーティング溶液の分離を抑制することができる。その結果、原料粒子からコーティング溶液が分離することによるコーティング粒子のロスの増大を抑制しつつ、原料粒子の表面に形成されるコーティング粒子の被膜の膜厚の増大を図ることができる。
【0010】
濃縮工程では、混合液を加熱することにより、溶媒を蒸発させてもよい。
【0011】
その場合、準備工程後に、濃縮工程での溶媒の蒸発速度を調整するための調整剤を添加する調整剤添加工程が設けられてもよい。これにより、溶媒の蒸発時間を精度よく調整できるので、コーティング溶液の濃度を精度よく調製でき、ひいては適正な流動性を有するスラリーをコーティング装置に供給することができる。
【0012】
調整剤は、有機酸または有機溶媒であってもよい。有機酸としては、クエン酸およびグリコール酸などのヒドロキシ酸、ならびに酢酸などのカルボン酸を例示することができる。有機溶媒としては、アセト酢酸エチルおよびエチレングリコールなどを例示することができる。
【0013】
濃縮工程後に、凝集した固体を分散させる解砕工程が設けられてもよい。これにより、濃縮工程で凝集による固体が生じても、その固体を分散させることができ、適正な分散性および流動性を有するスラリーをコーティング装置に供給することができる。
【0014】
本発明の他の局面に係るスラリー調製装置は、原料粒子の表面にコーティング粒子の被膜が形成された粉体の製造に用いられるスラリーを調製する装置であって、被膜となる溶質を溶媒に溶かしたコーティング溶液に原料粒子を添加して混合する混合部と、溶液と原料粒子との混合液から溶媒を減少させて、混合液を濃縮する濃縮部とを含む。
【0015】
かかる構成のスラリー調製装置において、前述のスラリー調製方法を実施することができる。
【0016】
本発明のさらに他の局面に係る粉体製造方法は、原料粒子の表面にコーティング粒子の被膜が形成された粉体を製造する方法であって、スラリー調製装置において、被膜となる溶質を溶媒に溶かしたコーティング溶液と原料粒子とを混合したスラリーを調製する調製工程と、スラリー調製装置からコーティング装置にスラリーを輸送する輸送工程と、コーティング装置において、スラリーを原料粒子の表面にコーティング溶液が付着した粉体に分散させる分散工程とを含み、調製工程では、前述のスラリー調製方法が用いられる。
【0017】
この方法によれば、スラリー調製方法に関連して述べた効果、すなわち、コーティング装置において、原料粒子からコーティング溶液が分離することによるコーティング粒子のロスの増大を抑制しつつ、原料粒子の表面に形成されるコーティング粒子の被膜の膜厚の増大を図ることができる。
【0018】
分散工程では、コーティング装置に形成された流路にスラリー導入口からスラリーが導入されて、スラリーが流路を流れる流体から剪断力を受けることにより原料粒子の表面にコーティング溶液が付着した粉体に分散されてもよい。
【0019】
輸送工程は、スラリー調製装置からスラリー容器にスラリーを定量供給する定量供給工程と、スラリー容器内の圧力とスラリー導入口における圧力との圧力差により、スラリー容器からスラリー導入口にスラリーが輸送される圧力差輸送工程とを含んでもよい。
【0020】
スラリーを調製する調製工程にコーティング溶液を濃縮する濃縮工程が含まれ、濃縮工程でコーティング溶液の溶媒が減らされることにより、スラリーを粉体のように取り扱うことが可能となる。そのため、定量供給工程では、粉体を定量供給可能な粉体用フィーダを用いることができ、スラリー調製装置からコーティング装置にスラリーを良好に定量供給することができる。
【0021】
定量供給工程で粉体用フィーダを用いる粉体製造方法は、次の粉体製造システムで実施することができる。
【0022】
粉体製造システムは、原料粒子の表面にコーティング粒子の被膜が形成された粉体を製造するシステムであって、被膜となる溶質を溶媒に溶かしたコーティング溶液と原料粒子とを混合したスラリーを調製するスラリー調製装置と、スラリーを原料粒子の表面にコーティング溶液が付着した粉体に分散させるコーティング装置と、スラリー調製装置からコーティング装置にスラリーを輸送する輸送装置とを含み、輸送装置は、スラリー容器と、スラリー調製装置からスラリー容器にスラリーを供給するスラリー供給機と、スラリー容器とコーティング装置とに接続され、スラリー容器からコーティング装置に向けてスラリーが流通するスラリー流通路とを備え、スラリー供給機は、粉体を定量供給可能な粉体用フィーダである。
【0023】
本発明のさらに他の局面に係るコーティング溶液調製方法は、原料粒子の表面への被膜の形成に用いられるコーティング溶液を調製する方法であって、被膜となる溶質を溶媒に溶かした溶液を準備する準備工程と、溶液から溶媒を減少させて、溶液を濃縮する濃縮工程とを含む。
【0024】
このコーティング溶液調製方法をスラリー調製方法に採用することによって、前述のスラリー調製方法を実施可能となり、コーティング装置において、原料粒子からコーティング溶液が分離することによるコーティング粒子のロスの増大を抑制しつつ、原料粒子の表面に形成されるコーティング粒子の被膜の膜厚の増大を図ることができる。
【発明の効果】
【0025】
本発明によれば、コーティング装置において、コーティング粒子のロスの増大を抑制しつつ、原料粒子の表面に形成されるコーティング粒子の被膜の膜厚の増大を図ることができる。
【図面の簡単な説明】
【0026】
図1】本発明の一実施形態に係る粉体製造システムの構成を図解的に示す断面図である。
図2】スラリー調製手順の一例を示す工程図である。
図3】スラリー輸送手順の一例を示す工程図である。
図4】粉体製造手順の一例を示す工程図である。
図5】スラリー調製手順の他の例を示す工程図である。
図6】スラリー調製手順のさらに他の例を示す工程図である。
【発明を実施するための形態】
【0027】
以下では、本発明の実施の形態について、添付図面を参照しつつ詳細に説明する。
【0028】
<粉体製造システム>
図1は、本発明の一実施形態に係る粉体製造システム1の構成を図解的に示す断面図である。
【0029】
粉体製造システム1は、原料粒子の表面にコーティング粒子の被膜が形成された粉体を製造するシステムである。粉体製造システム1には、被膜となる溶質を溶媒に溶かしたコーティング溶液と原料粒子とを混合したスラリーを調製するスラリー調製装置2と、スラリーを原料粒子の表面にコーティング溶液が付着した粉体に分散させるコーティング装置3と、スラリー調製装置2からコーティング装置3にスラリーを輸送する輸送装置4とが含まれる。
【0030】
<スラリー調製装置>
スラリー調製装置2は、混合部11および濃縮部12を備えている。
【0031】
混合部11では、コーティング粒子の被膜となる溶質を溶媒に溶かしたコーティング溶液と原料粒子とが混合される。その混合のために、混合部11には、コーティング溶液および原料粒子を収容する混合容器(図示せず)と、混合容器内のコーティング溶液および原料粒子を撹拌する撹拌機(図示せず)とが設けられている。撹拌機としては、マグネチックスターラ、ホモジナイザ、スタティックミキサーおよびダイナミックミキサーなどの各種ミキサー、ならびに遊星ボールミルなどが例示される。
【0032】
濃縮部12では、混合部11で得られるコーティング溶液と原料粒子との混合液が濃縮される。混合液の濃縮のため、混合液からコーティング溶液の溶媒が減らされる(コーティング溶液が濃縮される)。混合液を濃縮する方法としては、加熱乾燥、減圧乾燥および凍結乾燥のほか、ろ過、吸着分離、遠心分離および貧溶媒添加法などが例示される。たとえば、加熱乾燥によって混合液が濃縮される場合、混合液が混合容器または攪拌機から乾燥容器(図示せず)に移されて、乾燥容器内で混合液がコーティング溶液の沸点以下の乾燥温度に加熱される。乾燥容器は、浅底かつ広底であることが好ましい。
【0033】
濃縮部12における濃縮後の混合液は、スラリーとして、コーティング装置3に輸送される。
【0034】
<コーティング装置>
コーティング装置3は、分散部21、乾燥部22、分級部23、第1捕集部24および第2捕集部25を備えている。
【0035】
分散部21には、流路31が形成されている。流路31の一端は、閉じられている。流路31の他端は、粉体流排出口32として開放されている。流路31の一端部には、分散エア導入口33が開口している。流路31の一端部と他端との間には、スラリー導入口34が開口している。そして、流路31には、分散エア導入口33とスラリー導入口34との間の途中部に、その流路断面が気流の流通方向に収縮した後に拡大することにより、ラバルノズル35が形成されている。
【0036】
分散エア導入口33には、分散エア供給管36の一端が接続されている。分散エア供給管36には、その他端から高圧流体である圧縮ガス(窒素、二酸化炭素、アルゴン等の不活性ガスや大気を高圧ガス状態としたもの)が分散エアとして供給される。分散エア供給管36の途中部には、ミストセパレータ37が介装されている。また、分散エア供給管36は、ミストセパレータ37よりも分散エアの流通方向の下流側において、分散エアヒータ38を経由している。分散エア供給管36を流れる分散エアは、ミストセパレータ37で水分が除去された後、分散エアヒータ38により加温されて、分散エア導入口33から流路31に供給される。流路31に供給された分散エアは、ラバルノズル35を通過することにより、流速が大きく上昇し、たとえば、流速が音速の3倍まで達する。
【0037】
スラリー導入口34は、ラバルノズル35の出口付近、つまり流路断面が収縮から拡大に転じた直後の位置に形成されている。そのため、分散エアが流路31を流れている状態では、スラリー導入口34の圧力が大気圧よりも大きく低下する。スラリー導入口34には、輸送装置4のスラリー流通路73(後述する)が接続されており、スラリー流通路73からスラリーが供給される。スラリー導入口34に供給されるスラリーは、スラリー導入口34から流路31に導入される。一方、そのスラリーが導入される部分には、ラバルノズル35の作用による分散エアの高速気流が生じている。分散エアの高速気流が流路31に導入されるスラリーを追い越すことにより、スラリーは、高速気流から剪断力を受け、原料粒子の表面にコーティング溶液が付着した粉体に分散される。そして、その粉体を乗せた気流(粉体流)が粉体流排出口32から排出される。
【0038】
乾燥部22は、円筒状の第1円筒部41と、第1円筒部41から離れるにつれて窄まる縮径部42と、縮径部42から第1円筒部41側と反対側に延び、第1円筒部41よりも小径の円筒状の第2円筒部43とを一体的に有している。第1円筒部41の縮径部42側と反対側の一端は、端面板44で閉じられている。端面板44には、第1円筒部41の中心線上に、粉体流導入口45が形成されている。分散部21の粉体流排出口32が粉体流導入口45に重ね合わされて、分散部21が乾燥部22に接続されることにより、分散部21の流路31と乾燥部22内とが連通している。
【0039】
第1円筒部41の周面には、アシストエア導入口51が形成されている。アシストエア導入口51には、アシストエア供給管52の一端が接続されている。アシストエア供給管52の他端は、エア供給源53に接続されている。エア供給源53としては、たとえば、ブロワ、ポンプ、エアコンプレッサ、圧縮ガスボンベなどを挙げることができる。アシストエア供給管52には、エア供給源53からエアが供給され、そのエアがアシストエア導入口51に向けて流れる。アシストエア供給管52の途中部には、ミストセパレータ54が介装されている。また、アシストエア供給管52は、ミストセパレータ54よりもアシストエアの流通方向の下流側において、アシストエアヒータ55を経由している。アシストエア供給管52を流れるエアは、ミストセパレータ54で水分が除去された後、アシストエアヒータ55で加温されることにより、加温乾燥エアとなり、アシストエア導入口51から乾燥部22内にアシストエアとして導入される。
【0040】
アシストエア供給管52は、アシストエアがアシストエア導入口51から第1円筒部41内に第1円筒部41の内周面の接線方向に吹き出すように、アシストエア導入口51に接続されている。そのため、アシストエア導入口51から乾燥部22内に導入されるアシストエアは、第1円筒部41の内周面に沿って流れる渦状の気流となって、第2円筒部43に向けて流れる。
【0041】
分散部21の粉体流排出口32から排出される粉体を乗せた気流は、粉体流導入口45から乾燥部22内に導入される。そして、粉体は、アシストエアの渦状の気流に乗って、乾燥部22内を第2円筒部43に向けて搬送される。この搬送中に、原料粒子の表面に付着したコーティング溶液が乾燥することにより、原料粒子の表面がコーティング粒子の前駆体で被覆された粉体(以下、この粉体を「ドライゲル粉体」という。)が生成される。コーティング溶液の乾燥を促進するため、乾燥部22がヒータなどで加温されてもよい。
【0042】
ドライゲル粉体を乗せた気流は、乾燥部22の第2円筒部43を通過して、分級部23に流入する。分級部23は、サイクロン型分級装置からなる。分級部23では、乾燥部22からの気流が旋回して渦流となり、その渦流が有する遠心力により渦流からドライゲル粉体が分離する。
【0043】
具体的には、分級部23は、外筒部61、内筒部62および円錐部63を有している。外筒部61は、中心線が上下方向に延びる円筒状に形成されている。外筒部61の上端は、上面板64で閉じられている。内筒部62は、外筒部61と同心かつ外筒部61よりも小径の円筒状に形成されて、上面板64を貫通して設けられている。円錐部63は、外筒部61の下端に連続し、外筒部61から離れるにつれて窄まっている(縮径している)。
【0044】
外筒部61の周面には、接続口65が形成されている。乾燥部22の第2円筒部43は、第2円筒部43を通過する気流が接続口65から外筒部61内に外筒部61の内周面の接線方向に吹き出すように、接続口65に接続されている。内筒部62の上端には、内筒部62と交差する方向に延びる吸引管66が接続されている。内筒部62内は、吸引管66内と連通している。なお、吸引管66は、内筒部62と一体に形成されていてもよい。吸引管66内は、ブロワ67の吸込口と連通している。
【0045】
ブロワ67が作動すると、外筒部61、内筒部62、円錐部63および吸引管66内が負圧となり、第2円筒部43から接続口65を介して外筒部61内にドライゲル粉体を含むエアが積極的に吸い込まれて、そのドライゲル粉体を含むエアが外筒部61および円錐部63の内周面に沿って螺旋状に旋回しつつ下降する。ドライゲル粉体を含むエアが円錐部63の下端部に達すると、エアの流れが円錐部63の中心部を螺旋状に旋回しつつ上昇する方向に変わり、エアが内筒部62内に吸い出される。エアに含まれるドライゲル粉体は、旋回しながら、遠心力が働くことにより旋回半径の方向に移動して円錐部63の内周面に集まり、エアから分離して、円錐部63の内周面に沿って螺旋状に下降する。
【0046】
第1捕集部24は、略円筒形状の容器であり、分級部23の円錐部63の下端は、第1捕集部24に接続されている。円錐部63の下端は、開口しており、第1捕集部24内と分級部23内とは、その開口を介して連通している。分級部23内でエアから分離したドライゲル粉体は、円錐部63の下端の開口から第1捕集部24内に入り、第1捕集部24内に集まる。
【0047】
第2捕集部25は、吸引管66の途中部に介装されている。第2捕集部25には、バグフィルタ68が設けられている。乾燥部22内では、原料粉体に付着していないコーティング溶液の液滴が乾燥することによる乾燥片が生じ、分級部23内でドライゲル粉体と分離したエアには、ドライゲル粉体よりも粒径および重量の小さい乾燥片が含まれる。その乾燥片を含むエアは、内筒部62内に吸い出されて、内筒部62内から吸引管66内に流入し、吸引管66内をブロワ67に向けて流れる。乾燥片を含むエアが第2捕集部25を通過する際に、乾燥片がバグフィルタ68に捕獲され、エアがバグフィルタ68を通過する。その結果、ドライゲル粉体および乾燥片が除去された後の清浄なエアがブロワ67の吐出口から吐出される。
【0048】
粉体製造システム1が全固体電池用の正極活物質粉体の生成に用いられる場合、スラリーに含まれる原料粒子は、たとえば、リチウム金属複合酸化物であり、体積平均径が2~30μm程度の粒子である。リチウム金属複合酸化物としては、LiCoO、LiNiO、LiMn、LiNi1/3Mn1/3Co1/3、LiTi12、LiFePO、LiNi0.8Co0.15Al0.05などを挙げることができる。原料粒子と結合するコーティング粒子がニオブ酸リチウム(LiNbO)である場合、スラリーに含まれるコーティング溶液には、リチウムおよびニオブのアルコキシド溶液、たとえば、リチウム・ニオブ混合エトキシ溶液を用いることができる。コーティング溶液がリチウム・ニオブ混合エトキシ溶液である場合、コーティング装置3の第1捕集部24に捕集されたドライゲル粉体を250℃以上500℃未満で焼成することにより、原料粒子がニオブ酸リチウム薄膜で被覆された正極活物質粉体を得ることができる。
【0049】
<輸送装置>
輸送装置4は、スラリー容器71、スラリー供給機72およびスラリー流通路73を備えている。
【0050】
スラリー容器71は、スラリーを貯留可能な容器であり、上端が開放されている。スラリー容器71の底面は、下方ほど窄まる形状、たとえば、漏斗状または半円形状に形成されている。
【0051】
スラリー供給機72は、粉体を定量供給可能な粉体用フィーダである。その一例では、スラリー供給機72(粉体用フィーダ)は、中空円柱状の管部74と、軸部75の周囲に螺旋状の羽根76を有するスクリュ77とを備えている。管部74は、中心線が水平に延びるように設置される。管部74の一端部には、上方に向けて開放されるスラリー投入口78が形成されている。管部74の他端部には、下方に向けて開放されるスラリー排出口79が形成されている。スラリー容器71とスラリー供給機72とは、スラリー排出口79がスラリー容器71の上方に配置されるように位置合わせされている。スクリュ77は、管部74内に配置されて、軸部75が管部74の中心線に沿って延びるように設けられている。
【0052】
スラリー流通路73は、一端がスラリー容器71の最底部に接続されて、スラリー容器71内と連通している。スラリー流通路73の他端は、前述したように、コーティング装置3の分散部21のスラリー導入口34に接続されている。
【0053】
スラリー調製装置2の濃縮部12で混合液を濃縮して得られるスラリーは、スラリー供給機72のスラリー投入口78から管部74内に投入される。スクリュ77の軸部75には、モータ(図示せず)が結合されている。モータが駆動されると、軸部75および羽根76が一体に回転し、その回転する羽根76によって、スラリーが管部74内をスラリー排出口79に向けて送られる。スラリー排出口79に到達したスラリーは、スラリー排出口79から落下し、スラリー容器71に受け取られる。
【0054】
コーティング装置3の運転中は、分散部21の流路31を分散エアが流れ、スラリー導入口34の圧力が大気圧よりも大きく低下する。スラリー容器71の上端が開放されることにより、スラリー容器71内の圧力が大気圧であるため、コーティング装置3の運転中は、スラリー導入口34の圧力とスラリー容器71内の圧力とに差が生じる。この圧力差により、スラリー容器71内のスラリーがスラリー流通路73に吸い出され、スラリー流通路73を流通するスラリーがスラリー導入口34から流路31に導入される。
【0055】
<スラリー調製手順>
図2は、スラリー調製手順の一例を示す工程図である。
【0056】
スラリー調製装置2では、スラリーの調製に際して、コーティング溶液が準備される(S1:コーティング溶液準備工程)。
【0057】
たとえば、コーティング溶液がリチウム・ニオブ混合エトキシ溶液である場合、エトキシリチウム(LiOC)とペンタエトキシニオブ(Nb(OC)とが当モル(mol)になるよう秤量されて、その当モルのエトキシリチウムおよびペンタエトキシニオブが超脱水エタノールに0.4mol/Lのモル濃度になるように溶解されることにより、リチウム・ニオブ混合エトキシ溶液の原液が調製される。
【0058】
一方、リチウム・ニオブ混合エトキシ溶液の原液に含まれるペンタエトキシニオブの1モルに対して0.5~3molに相当するモル量の純水が超脱水エタノールに添加され、それらを充分に撹拌して相溶させることにより、水添加エタノールが調整される。
【0059】
そして、リチウム・ニオブ混合エトキシ溶液の原液に水添加エタノールが添加されることにより、目標のモル濃度(0.1~0.3mol/L)に希釈したコーティング溶液が得られる。
【0060】
こうして準備されたコーティング溶液がスラリー調製装置2の混合部11の混合容器に入れられて、その混合容器内のコーティング溶液に原料粒子が添加される(S2:原料粒子添加工程)。コーティング溶液と原料粒子との比率は、原料粒子の比表面積とかさ比重によって定まるが、体積比で液体:粉体=0.5:1~1.2:1の範囲とすることが好ましい。たとえば、リチウムニオブ混合エトキシ溶液を希釈加水して調製したゾル溶液をコーティング溶液とし、一般的な正極活物質であるコバルト酸リチウムを原料粒子とした場合、体積比で液体:粉体=0.8:1~1:1とすることが好ましい。
【0061】
攪拌機により、混合容器内のコーティング溶液および原料粒子が撹拌される(S3:撹拌工程)。撹拌工程(S3)の一部は、原料粒子添加工程(S2)と並行して行われてもよい。すなわち、コーティング溶液への原料粒子の添加が開始される前または開始以後に、混合容器内のコーティング溶液の撹拌が開始されて、コーティング溶液が撹拌されながら、コーティング溶液に原料粒子が添加されてもよい。撹拌工程(S3)は、たとえば、10~60分間行われる。
【0062】
撹拌工程(S3)の終了後、混合容器内のコーティング溶液と原料粒子との混合液が濃縮部12の乾燥容器に移される。そして、乾燥容器内の混合液がコーティング溶液の沸点以下の乾燥温度に加熱される。これにより、コーティング溶液の溶媒が蒸発して減り、混合液(コーティング溶液)が濃縮される(S4:濃縮工程)。濃縮工程(S4)は、たとえば、30~360分間行われる。このとき、濃縮工程の途中で、コーティング溶液と原料粒子との混合液が複数回注ぎ足されて、混合液の濃度がさらに高められてもよい。その結果、混合液に含まれるコーティング溶液のモル濃度は、0.5~2.0mol/Lまで上昇する。
【0063】
濃縮工程(S4)の終了後、乾燥容器内の混合液は、スラリーとして、輸送装置4のスラリー供給機72の管部74内にスラリー投入口78を介して投入される。
【0064】
<スラリー輸送手順>
図3は、スラリー輸送手順の一例を示す工程図である。
【0065】
輸送装置4では、コーティング装置3の運転(スラリーからドライゲル粉体を生成して捕集するコーティング処理)が開始されると、スラリー供給機72が作動し、スラリー供給機72からスラリー容器71にスラリーが定量供給される(S5:定量供給工程)。
【0066】
コーティング装置3の運転中は、分散部21の流路31を分散エアが高速で流れることにより、その流路31に開口するスラリー導入口34周辺の気体の圧力が大きく低下する。そのため、スラリー導入口34周辺の気体の圧力とスラリー容器71内の気体の圧力とに差が生じる。スラリー容器71に供給されたスラリーは、スラリー導入口34の圧力とスラリー容器71内の圧力との圧力差により、スラリー容器71からスラリー流通路73を通してスラリー導入口34に輸送される(S6:圧力差輸送工程)。
【0067】
<粉体製造手順>
図4は、粉体製造手順の一例を示す工程図である。
【0068】
コーティング装置3の運転中は、分散部21の流路31に、分散エアの高速気流が生じている。スラリー導入口34に輸送されるスラリーは、スラリー導入口34から分散部21の流路31に導入される。分散エアの高速気流が流路31に導入されたスラリーを追い越すことにより、スラリーは、高速気流から剪断力を受け、原料粒子の表面にコーティング溶液が付着した粉体に分散される(S7:分散工程)。粉体は、気流に乗って、分散部21の流路31から乾燥部22内に導入される。
【0069】
コーティング装置3の運転中は、乾燥部22内に、アシストエアの渦状の気流が生じている。分散部21の流路31から乾燥部22内に導入される粉体は、渦状の気流に乗って、乾燥部22内を搬送される。この搬送中に、原料粒子の表面に付着したコーティング溶液が乾燥することにより、ドライゲル粉体が生成される(S8:乾燥工程)。
【0070】
ドライゲル粉体を乗せた気流は、乾燥部22から分級部23に流入する。分級部23では、乾燥部22から流入する気流が旋回して渦流となり、その渦流からドライゲル粉体が分離する。渦流から分離したドライゲル粉体は、分級部23から第1捕集部24内に入り、第1捕集部24に捕集される(S9:捕集工程)。
【0071】
<作用効果>
以上のように、コーティング溶液準備工程(S1)では、被膜となる溶質を溶媒に溶かしたコーティング溶液が準備される。そして、原料粒子添加工程(S2)で、コーティング溶液に原料粒子が添加され、撹拌工程(S3)で、それらが混ぜ合わされることにより、コーティング溶液と原料粒子との混合液が生成される。その後の濃縮工程(S4)では、混合液に含まれるコーティング溶液から溶媒が減らされることにより、コーティング溶液が濃縮される。
【0072】
コーティング溶液の濃縮によって、コーティング溶液の粘度が上がる。コーティング溶液の濃縮前にコーティング溶液と原料粒子とが混合されているので、コーティング溶液の粘度が上がっても、混合液中に原料粒子が分散した状態が維持される。一方で、コーティング溶液の粘度が上がることにより、原料粒子へのコーティング溶液の付着性が上がる。そのため、コーティング装置3の分散部21において、原料粒子からのコーティング溶液の分離を抑制することができる。その結果、原料粒子からコーティング溶液が分離することによるコーティング粒子のロスの増大を抑制しつつ、原料粒子の表面に形成されるコーティング粒子の被膜の膜厚の増大を図ることができる。
【0073】
また、スラリー調製装置2からコーティング装置3へのスラリーの輸送手順には、スラリー調製装置2から輸送装置4のスラリー供給機72にスラリーを投入する投入工程と、スラリー供給機72から輸送装置4のスラリー容器71にスラリーを定量供給する定量供給工程(S5)と、スラリー容器71内の圧力とコーティング装置3のスラリー導入口34における圧力との圧力差により、スラリー容器71からスラリー導入口34にスラリーを輸送する圧力差輸送工程(S6)とが含まれる。
【0074】
スラリー調製手順の濃縮工程でコーティング溶液の溶媒が減らされることにより、スラリーを粉体のように取り扱うことが可能となる。そのため、定量供給工程(S5)では、粉体を定量供給可能な粉体用フィーダをスラリー供給機72に用いることができ、スラリー調製装置2からコーティング装置3にスラリーを良好に定量供給することができる。
【0075】
<他のスラリー調製手順>
図5は、スラリー調製手順の他の例を示す工程図である。
【0076】
図5に示されるスラリー調製手順では、コーティング溶液準備工程(S11)の後、調整剤添加工程(S12)および撹拌工程(S13)が行われる。撹拌工程(S13)の後は、原料粒子添加工程(S14)、撹拌工程(S15)および濃縮工程(S16)が行われる。
【0077】
コーティング溶液準備工程(S11)、原料粒子添加工程(S14)、撹拌工程(S15)および濃縮工程(S16)は、それぞれ図2に示されるコーティング溶液準備工程(S1)、原料粒子添加工程(S2)、撹拌工程(S3)および濃縮工程(S4)と同一であるから、それらについての説明を省略する。
【0078】
調整剤添加工程(S12)では、コーティング溶液準備工程(S11)で準備されたコーティング溶液がスラリー調製装置2の混合部11の混合容器に入れられて、その混合容器内のコーティング溶液に濃縮工程(S16)での溶媒の蒸発速度を調整するための調整剤が添加される。調整剤は、有機酸または有機溶媒であってもよい。コーティング溶液の溶媒がアルコールである場合、有機酸としては、クエン酸およびグリコール酸などのヒドロキシ酸、ならびに酢酸などのカルボン酸を例示することができる。有機溶媒としては、アセト酢酸エチルおよびエチレングリコールなどを例示することができる。調整剤は、溶媒の蒸発速度を調整するとともに、溶液の濃縮により一部の溶質成分が結晶化して析出せず、かつ、コーティングされる原料粒子が凝集することを防ぐ作用があるものが望ましい。
【0079】
撹拌工程(S13)では、攪拌機により、混合容器内のコーティング溶液および調整剤が撹拌される。撹拌工程(S13)の一部は、調整剤添加工程(S12)と並行して行われてもよい。すなわち、コーティング溶液への調整剤の添加が開始される前または開始以後に、混合容器内のコーティング溶液の撹拌が開始されて、コーティング溶液が撹拌されながら、コーティング溶液に調整剤が添加されてもよい。撹拌工程(S13)は、たとえば、10~60分間行われる。
【0080】
<作用効果>
コーティング溶液に濃縮工程(S16)での溶媒の蒸発速度を調整するための調整剤が添加されることにより、濃縮工程(S16)における溶媒の蒸発時間を精度よく調整できる。その結果、コーティング溶液の濃度を精度よく調製でき、ひいては適正な流動性を有するスラリーをコーティング装置3に供給することができる。
【0081】
<さらに他のスラリー調製手順>
図6は、スラリー調製手順のさらに他の例を示す工程図である。
【0082】
図6に示されるスラリー調製手順では、濃縮工程(S16)の後に、解砕工程(S17)が行われる。
【0083】
濃縮工程(S16)では、乾燥容器内に、混合液の凝集による固体が生じる可能性がある。解砕工程(S17)では、濃縮工程(S16)で生じた固体が解砕される。乾燥容器の内面に固体が固着している場合、乾燥容器に振動が付与されることにより、固体が乾燥容器の内面から剥離されてもよいし、へらを用いた手作業により、固体が乾燥容器の内面から剥離されてもよい。混合液中に存在する固体は、低速ミルを用いて粉砕されてもよい。
【0084】
<作用効果>
解砕工程(S17)が設けられることにより、濃縮工程(S16)で凝集による固体が生じても、その固体を分散させることができる。その結果、適正な分散性および流動性を有するスラリーをコーティング装置3に供給することができる。
【0085】
<変形例>
以上、本発明の実施の形態について説明したが、本発明は、さらに他の形態で実施することもできる。
【0086】
たとえば、濃縮工程(S4,S16)の後に、乾燥容器内の混合液にコーティング溶液を追加する追加工程が設けられて、追加工程後に、コーティング溶液の溶媒を蒸発させる濃縮工程が再び行われてもよい。追加工程およびその後の濃縮工程は、複数回繰り返されてもよい。追加工程およびその後の濃縮工程が追加されることにより、原料粒子の表面に形成されるコーティング粒子の被膜の膜厚のさらなる増大を図ることができる。
【0087】
スラリーの濃度や粘度は、必要に応じて選択される。スラリーは、液体に近く、流動性が高いものであってもよいし、逆に、液体の割合が少なく、高粘度で流動性が低いものであってもよい。スラリーの輸送方式もこれに応じて選択され、本実施形態で例示した空気の圧力差による輸送方式の他、スラリーの流動性が高い場合には、ポンプ等で加圧してスラリーの液体自体の圧力差を利用して輸送する方式が採用されてもよい。
【0088】
また、前述の実施形態では、粉体製造システム1が全固体電池用の正極活物質粉体の生成に用いられ、スラリーに含まれる原料粒子が体積平均径が2~30μm程度のリチウム金属複合酸化物であるとした。これに限らず、粉体製造システム1は、食品、医薬品および化粧品などの分野における粉体の生成に用いられてもよい。また、粉体製造システム1では、コーティング粒子の被膜の形成の対象である原料粒子として、体積平均径が0.001~1000μmの粒子を扱うことができ、体積平均径が0.01~100μmの粒子を好適に扱うことができ、体積平均径が0.1~10μmの粒子をさらに好適に扱うことができる。原料粒子は、金属粒子以外の粒子であってもよく、たとえば、セラミック粒子であってもよい。
【0089】
その他、前述の構成には、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
【符号の説明】
【0090】
1:粉体製造システム
2:スラリー調製装置
3:コーティング装置
4:輸送装置
11:混合部
12:濃縮部
31:流路
34:スラリー導入口
71:スラリー容器
72:スラリー供給機
73:スラリー流通路
図1
図2
図3
図4
図5
図6