IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社日立産機システムの特許一覧

<>
  • 特開-移動体測位装置及び移動体測位方法 図1
  • 特開-移動体測位装置及び移動体測位方法 図2
  • 特開-移動体測位装置及び移動体測位方法 図3
  • 特開-移動体測位装置及び移動体測位方法 図4
  • 特開-移動体測位装置及び移動体測位方法 図5
  • 特開-移動体測位装置及び移動体測位方法 図6
  • 特開-移動体測位装置及び移動体測位方法 図7
  • 特開-移動体測位装置及び移動体測位方法 図8
  • 特開-移動体測位装置及び移動体測位方法 図9
  • 特開-移動体測位装置及び移動体測位方法 図10
  • 特開-移動体測位装置及び移動体測位方法 図11
  • 特開-移動体測位装置及び移動体測位方法 図12
  • 特開-移動体測位装置及び移動体測位方法 図13
  • 特開-移動体測位装置及び移動体測位方法 図14
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024066324
(43)【公開日】2024-05-15
(54)【発明の名称】移動体測位装置及び移動体測位方法
(51)【国際特許分類】
   G01S 19/43 20100101AFI20240508BHJP
   G01C 21/28 20060101ALI20240508BHJP
   G01S 19/52 20100101ALI20240508BHJP
【FI】
G01S19/43
G01C21/28
G01S19/52
【審査請求】未請求
【請求項の数】15
【出願形態】OL
(21)【出願番号】P 2022175841
(22)【出願日】2022-11-01
(71)【出願人】
【識別番号】502129933
【氏名又は名称】株式会社日立産機システム
(74)【代理人】
【識別番号】110001829
【氏名又は名称】弁理士法人開知
(72)【発明者】
【氏名】佐藤 裕明
(72)【発明者】
【氏名】谷川原 誠
【テーマコード(参考)】
2F129
5J062
【Fターム(参考)】
2F129BB02
2F129BB48
2F129BB62
5J062AA09
5J062BB01
5J062CC07
5J062DD23
5J062EE01
5J062EE04
(57)【要約】      (修正有)
【課題】構成が簡易であり、慣性センサの検出精度に依存することなく、移動局の静止状態を判定する移動体測位装置を実現する。
【解決手段】移動体測位装置2は、移動局29が受信した衛星信号10と、基地局4から配信された衛星信号10に基づく補正信号11に基づいて現在時刻あるいは未来において配信される衛星信号10の予測モデルと、を含む衛星信号予測情報19を算出する衛星信号予測部26と、衛星信号10及び衛星信号予測情報19に基づいて衛星信号10の連続性に関する情報である衛星信号連続性情報16を算出する衛星信号連続性判定部27と、衛星信号連続性情報16に基づいて移動局29の静止状態を判定する演算制御部28と、を備える。演算制御部28は、衛星信号連続性情報16に基づいて衛星信号10の連続性を検出した場合、移動局29が静止状態であると判断する。
【選択図】図1
【特許請求の範囲】
【請求項1】
移動局が受信した衛星信号と、基地局から配信された衛星信号に基づく補正信号に基づいて現在時刻あるいは未来において配信される前記衛星信号の予測モデルと、を含む衛星信号予測情報を算出する衛星信号予測部と、
前記衛星信号及び前記衛星信号予測情報に基づいて前記衛星信号の連続性に関する情報である衛星信号連続性情報を算出する衛星信号連続性判定部と、
前記衛星信号連続性情報に基づいて前記移動局の静止状態を判定する演算制御部と、
を備え、
前記演算制御部は、前記衛星信号連続性情報に基づいて前記衛星信号の連続性を検出した場合、前記移動局が静止状態であると判断することを特徴とする移動体測位装置。
【請求項2】
請求項1に記載の移動体測位装置において、
前記演算制御部は、前記移動局の静止状態を示す静止状態情報を算出することを特徴とする移動体測位装置。
【請求項3】
請求項1に記載の移動体測位装置において、
補正信号予測部をさらに備え、
前記補正信号予測部は、過去に受信した前記補正信号から現在時刻あるいは未来において前記基地局で配信される前記補正信号の予測モデルを含む補正信号予測情報を算出し、
前記衛星信号予測部は、前記衛星信号と前記補正信号予測情報に基づいて、前記補正信号予測情報を前記衛星信号で補正することで前記衛星信号予測情報を算出することを特徴とする移動体測位装置。
【請求項4】
請求項2に記載の移動体測位装置において、
前記衛星信号予測部は、前記衛星信号予測情報の予測モデルの出力値と、前記衛星信号との差分から、衛星信号予測誤差分布を算出し、衛星信号予測精度を算出することを特徴とする移動体測位装置。
【請求項5】
請求項4に記載の移動体測位装置において、
前記衛星信号予測部は、前記静止状態情報に基づいて、前記移動局が静止状態の場合、前記衛星信号予測精度を算出することを特徴とする移動体測位装置。
【請求項6】
請求項5に記載の移動体測位装置において、
前記衛星信号連続性判定部は、前記衛星信号予測精度に基づいて前記衛星信号の連続性を判定することを特徴とする移動体測位装置。
【請求項7】
請求項1に記載の移動体測位装置において、
前記衛星信号及び前記補正信号は、少なくとも搬送波位相を含むことを特徴とする移動体測位装置。
【請求項8】
請求項1に記載の移動体測位装置において、
前記演算制御部の指示に従って、前記補正信号を記録する補正信号記録部を、さらに備えることを特徴とする移動体測位装置。
【請求項9】
移動局が受信した衛星信号と、基地局から配信された衛星信号に基づく補正信号に基づいて現在時刻あるいは未来において配信される前記衛星信号の予測モデルと、を含む衛星信号予測情報を算出し、
前記衛星信号及び前記衛星信号予測情報に基づいて前記衛星信号の連続性に関する情報である衛星信号連続性情報を算出し、
前記衛星信号連続性情報に基づいて、前記衛星信号の連続性を検出した場合、前記移動局が静止状態であると判断することを特徴とする移動体測位方法。
【請求項10】
請求項9に記載の移動体測位方法において、
前記移動局が静止状態であると判断すると、静止状態を示す静止状態情報を算出し、外部端末に送信することを特徴とする移動体測位方法。
【請求項11】
請求項9に記載の移動体測位方法において、
過去に受信した前記補正信号から現在時刻あるいは未来において前記基地局で配信される前記補正信号の予測モデルを含む補正信号予測情報を算出し、
前記衛星信号と前記補正信号予測情報に基づいて、前記補正信号予測情報を前記衛星信号で補正することで前記衛星信号予測情報を算出することを特徴とする移動体測位方法。
【請求項12】
請求項10に記載の移動体測位方法において、
前記衛星信号予測情報の予測モデルの出力値と、前記衛星信号との差分から、衛星信号予測誤差分布を算出し、衛星信号予測精度を算出することを特徴とする移動体測位方法。
【請求項13】
請求項12に記載の移動体測位方法において、
前記静止状態情報に基づいて、前記移動局が静止状態の場合、前記衛星信号予測精度を算出することを特徴とする移動体測位方法。
【請求項14】
請求項13に記載の移動体測位方法において、
前記衛星信号予測精度に基づいて前記衛星信号の連続性を判定することを特徴とする移動体測位方法。
【請求項15】
請求項9に記載の移動体測位方法において、
前記衛星信号及び前記補正信号は、少なくとも搬送波位相を含むことを特徴とする移動体測位方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、移動体測位装置及び移動体測位方法に関する。
【背景技術】
【0002】
従来においては、地球上空に位置する人工衛星から地球上に送信された衛星信号を受信することで測位を行うGNSS(Global Navigation Satellite System)が検出した車両位置の誤差を補正する技術が知られている。
【0003】
特許文献1には、以下のようなGNSSと移動体の運動量及び姿勢変化を検出する慣性センサそれぞれの検出位置を統合する技術が開示されている。
【0004】
「GNSS出力位置及びデッドレコニング(DR)位置の各誤差分散値を用いて第1時点における最尤位置を計算し、第1時点から第2時点までにDR装置が算出した相対位置を最尤位置に足し合わせて仮定DR位置を算出し、上記相対位置を第1時点におけるGNSS出力位置に足し合わせて適応DR位置を算出し、GNSS出力位置と適応DR位置との差を適応DR誤差として求めるとともにその時の車両状態も決定する。車両状態に応じた適応DR誤差を記憶しておき、新たに算出した適応DR誤差を加味して、適応DR誤差の平均値と分散値を更新し、仮定DR位置に基づく誤差楕円に仮定DR位置を適応DR誤差の平均値分ずらした位置を中心とする誤差楕円を加えた存在可能性範囲内にGNSS出力位置があればそれを基に、なければ仮定DR位置を基に最尤誤差楕円を求める。」
上述した車両の位置補正手法では、慣性センサによる計測値から算出される、車両の運動量と姿勢変化を積分し求めた車両の位置・姿勢に基づいてGNSSが検出した車両の位置を補正する。
【0005】
この手法では、慣性センサの誤差が徐々に車両位置の推定誤差として蓄積されるため、慣性センサの計測精度が非常に重要となり、これら慣性センサの校正が必要である。
【0006】
また、慣性センサの校正は、誤差成分を明確に推定可能となる車両が静止状態の際に、高精度に実施することが可能である。
【0007】
したがって、慣性センサの校正には車両の静止状態判定が重要であり、特許文献2には以下の技術が開示されている。
【0008】
「移動体の進行方向加速度信号を入力すると共に、移動体の静止を検出する複数の信号により移動体の静止を判定して、該静止判定時に上記進行方向加速度信号に含まれるバイアス値を測定して、該測定したバイアス値を用いて上記進行方向加速度信号を補正し、かつ該補正後の進行方向加速度信号と上記スケールファクタ・速度推定部が出力する上記移動体速度推定値とを用いて、移動体の推定加速度と距離推定値とを演算して出力する加速度推定部、とを備えたことを特徴とする移動体加速度・距離推定回路。」
また、特許文献3には、「変動検出器から入力される出力信号が閾値範囲内のときは動体が静止していると判定する」といった技術が開示されている。
【0009】
これらの技術を用いることで車両の静止状態を判定することができる。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特許6900341号公報
【特許文献2】特開2005-195395号公報
【特許文献3】特開2001-242192号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
特許文献2に記載の技術によれば、複数センサを用いて車両の静止状態を判断している。
【0012】
しかし、複数センサを用いる場合、車両搭載機器の構成の複雑化が課題となる。
【0013】
また、特許文献3に記載の技術によれば、慣性センサの検出した運動量及び姿勢変化の大小から静止状態を判断している。
【0014】
しかし、検出精度が低い慣性センサを用いる場合、静止状態の判定精度も低くなるという課題がある。
【0015】
本発明の目的は、構成が簡易であり、慣性センサの検出精度に依存することなく、移動局(GNSSアンテナが備えられた移動体)の静止状態を判定する移動体測位装置及び移動体測位方法を実現することである。
【課題を解決するための手段】
【0016】
上記目的を達成するため、本発明は次のように構成される。
【0017】
移動体測位装置において、移動局が受信した衛星信号と、基地局から配信された衛星信号に基づく補正信号に基づいて現在時刻あるいは未来において配信される前記衛星信号の予測モデルと、を含む衛星信号予測情報を算出する衛星信号予測部と、前記衛星信号及び前記衛星信号予測情報に基づいて前記衛星信号の連続性に関する情報である衛星信号連続性情報を算出する衛星信号連続性判定部と、前記衛星信号連続性情報に基づいて前記移動局の静止状態を判定する演算制御部と、を備え、前記演算制御部は、前記衛星信号連続性情報に基づいて前記衛星信号の連続性を検出した場合、前記移動局が静止状態であると判断する。
【0018】
また、移動体測位方法において、移動局が受信した衛星信号と、基地局から配信された衛星信号に基づく補正信号に基づいて現在時刻あるいは未来において配信される前記衛星信号の予測モデルと、を含む衛星信号予測情報を算出し、前記衛星信号及び前記衛星信号予測情報に基づいて前記衛星信号の連続性に関する情報である衛星信号連続性情報を算出し、前記衛星信号連続性情報に基づいて、前記衛星信号の連続性を検出した場合、前記移動局が静止状態であると判断する。
【発明の効果】
【0019】
本発明によれば、構成が簡易であり、慣性センサの検出精度に依存することなく、移動局の静止状態を判定する移動体測位装置及び移動体測位方法を実現することができる。
【図面の簡単な説明】
【0020】
図1】実施例1に係る移動体測位装置を有する静止状態判定システムのハードウェア構成を示す図である。
図2】補正信号DBが記録する補正信号を示す図である。
図3】補正信号予測部が補正信号予測情報として算出する擬似距離及び搬送波位相を説明する図である。
図4】補正信号予測部が補正信号DBに基づいて、補正信号予測情報として算出する数式モデルのパラメータを示す図である。
図5図1の演算制御部から受信した補正信号と補正信号予測情報から予測した予測値との差分である補正信号予測誤差を示す図である。
図6図1の補正信号予測結果DBが補正信号予測誤差から算出した補正信号予測誤差分布を示す図である。
図7】衛星信号予測部が衛星信号予測情報として算出する擬似距離及び搬送波位相に関する数式モデルを示す図である。
図8】衛星信号予測部が補正信号予測結果DBに基づいて、衛星信号予測情報として算出する数式モデルのパラメータを示す図である。
図9】衛星信号連続性判定部の処理を示すフローチャートである。
図10図1の演算制御部が出力する位置情報及び静止状態情報のデータ構成を示す図である。
図11】移動体測位装置の処理を示すフローチャートである。
図12】移動体測位装置の処理を示すフローチャートである。
図13】移動体測位装置の処理を示すフローチャートである。
図14】実施例2における衛星信号連続性判定部が衛星信号の連続性を検出する処理手順を示すフローチャートである。
【発明を実施するための形態】
【0021】
以下、図面を参照して本発明に係る移動局における静止状態判定システム及び静止状態判定システムにおける判定方法の実施形態について説明する。図面の説明において同一の要素には同一符号を付し、重複する説明は省略する。
【0022】
また、本発明はこれらの図面に限定されず、一部の構成要素を用いない場合もあり、以下で説明する各実施例の構成要素は適宜組み合わせることができる。
【実施例0023】
(実施例1)
本発明に係る移動体測位装置2を有する静止状態判定システム1は、例えば自動車や鉄道、農業機械や建設機械といった移動体の静止状態判定に用いられるシステムである。
【0024】
図1は、実施例1に係る移動体測位装置2を有する静止状態判定システム1のハードウェア構成を示す図である。
【0025】
図1において、静止状態判定システム1は、移動体測位装置2と、測位衛星3と、基地局4と、配信サーバ5と、を備える。
【0026】
[測位衛星3]
測位衛星3は、地球上空の衛星軌道に位置する複数の人工衛星で構成され、地面に向けて衛星信号10を送信することで、全地球航法衛星システム(GNSS)を構築する。GNSSにおいては、複数の測位衛星3からの衛星信号10のうち、いくつかを受信し、受信した複数の衛星信号10を用いることによって、GNSSアンテナ29の地球上の自己位置の取得を可能とする。衛星信号10には、少なくとも測位衛星3の位置情報及び衛星時計誤差が含まれている。測位衛星3は、複数の周波数帯における衛星信号10を送信することで、GNSSの冗長化を図っている。
【0027】
本実施例1に係る測位システム1は、単一周波数帯における衛星信号10の利用であるとして記載しているが、本発明を複数周波数帯における衛星信号10を用いた測位システムにも同様に適用できる。
【0028】
[基地局4]
基地局4は、地球上の異なる地点に複数設置されており、それぞれの測位衛星3が送信する衛星信号10を受信する。基地局4は、複数の測位衛星3から受信した衛星信号10を、配信サーバ5(詳細は後述する)に送信する。全ての基地局4は、あらかじめ地球上における位置が高精度に測位されており、その位置情報は配信サーバ5に記憶されている。
【0029】
[配信サーバ5]
配信サーバ5は、基地局4から衛星信号10を受信することで、補正信号11を生成する。配信サーバ5は、RRS方式で補正信号11を生成する。RRS方式は、測位装置2(後述する)から取得した生成位置情報30(後述する)に基づいてその位置近傍に存在する基地局4で受信した衛星信号10から補正信号11を生成する。
【0030】
また、配信サーバ5はVRS方式で補正信号11を生成してもよい。VRS方式は、仮想基準局を任意の位置に生成し、仮想基準局の付近に設置されている基地局4で受信した衛星信号10から仮想基準局で受信されるのであろう衛星信号10を算出する。配信サーバ5は、測位装置2から取得した生成位置情報30に基づいてその位置近傍に基地局4を仮想基準局として生成しその補正信号11を演算することで、測位装置2に補正信号11を送信する。
【0031】
本実施例1に係る静止状態判定システム1は、配信サーバ5としてRRS方式の利用であるとして記載しているが、本発明を配信サーバ5としてVRS方式を用いた静止状態判定システム1にも同様に適用できる。
【0032】
配信サーバ5としては、移動体測位装置2の製造会社とは異なる会社、例えば通信キャリアによって提供される有償のサービスを利用することができる。配信サーバ5と測位装置2は、無線通信回線やその他の公知の無線通信回線を用いたネットワーク網によって双方向に通信可能である。
【0033】
配信サーバ5は、移動体測位装置2から取得した生成位置情報30に応じて、移動体測位装置2に新たな補正信号11を送信するようにしてもよい。その場合、配信サーバ5は移動体測位装置2から取得した生成位置情報30に、一番近くに生成された基地局4を選択し、その基地局4から受信した衛星信号10により補正信号11を生成し、補正信号11を移動体測位装置2に送信する。
【0034】
基地局4には、それぞれを識別するための情報である基地局ID102(図2参照)が定められている。配信サーバ5は、基地局ID102を含む補正信号11を生成する。配信サーバ5は、移動体測位装置2から取得した生成位置情報30に応じて選択した基地局4を変更するたびに、補正信号11に含む基地局ID102を変更する。よって、移動体測位装置2は配信サーバ5から受信した補正信号11に記載されている基地局ID102(図2参照)が変更されたか否かによって基地局4の切替を検知できる。
【0035】
配信サーバ5は、基地局4から受信した衛星信号10に基づいて、各測位衛星3に対し擬似距離7(図2参照)と搬送波位相8(図2参照)を算出し、擬似距離7と搬送波位相8を含む補正信号11を算出する。擬似距離7は、測位衛星3から送信された衛星信号10がGNSSアンテナ29で受信されるまでの時間を計測することで算出される測位衛星3とGNSSアンテナ29までの距離である。擬似距離7は、受信機時計誤差、衛星時計誤差、電離圏遅延、対流圏遅延、その他雑音が含まれている。
【0036】
搬送波位相8は、同時刻における測位衛星3が送信する衛星信号10の位相とGNSSアンテナ29が受信した衛星信号10の位相差である。搬送波位相8は、整数値バイアス、受信機時計誤差、衛星時計誤差、電離圏遅延、対流圏遅延、その他雑音が含まれている。
【0037】
搬送波位相8は、測位衛星3が送信する衛星信号10の波長を掛け合わせることで、距離成分として記載してもよい。その場合、移動体測位装置2の処理は搬送波位相8に衛星信号10の波長の逆数を乗じて実行される。補正信号11には、少なくとも基地局4における各測位衛星3の擬似距離7、搬送波位相8、基地局4の地球上における位置、基地局ID102が含まれている。
【0038】
[移動体測位装置2]
移動体測位装置2は、GNSSアンテナ29を用いて受信した衛星信号10と配信サーバ5から取得した補正信号11に基づいてGNSSアンテナ29の静止状態を表す静止状態情報15を算出する。また、移動体測位装置2は、GNSSアンテナ29を用いて受信した衛星信号10と配信サーバ5から取得した補正信号11に基づいてGNSSアンテナ29の位置を示す位置情報12を算出する。
【0039】
移動体測位装置2は、図1に示すように、測位演算部20と、通信部21と、補正信号DB(補正信号データベース)22と、補正信号予測部23と、補正信号予測結果DB(補正信号予測結果データベース)24と、を備える。
【0040】
移動体測位装置2は、さらに、衛星信号予測部26と、衛星信号予測結果DB(衛星信号予測結果データベース)25と、衛星信号連続性判定部27と、演算制御部28と、GNSSアンテナ29と、を備えている。
【0041】
測位演算部20、通信部21、補正信号DB22(補正信号記録部)、補正信号予測部23、補正信号予測結果DB24、衛星信号予測部26、衛星信号予測結果DB25、及び衛星信号連続性判定部27は、演算制御部28の動作指令に応じて定められた処理を実行する。
【0042】
演算制御部28は、測位演算部20の動作周期に応じて位置情報12及び静止状態情報15を出力する。なお、移動体測位装置2の各要素は、ハードウェアによって、又は、コンピュータプログラムを実行することによってソフトウェアによりその機能が実現されるように構成しても良い。また、移動体測位装置2の各要素は、必ずしも単体のハードウェア内に構成される必要はなく、それぞれ独立した別の機器、例えば外部機器や外部サーバとして構成されてもよい。その場合、移動体測位装置2の各要素は、それぞれが通信可能に構成すると良い。
【0043】
[GNSSアンテナ29]
GNSSアンテナ29は、地球上空に位置する複数の測位衛星3からの衛星信号10を受信し、受信した衛星信号10を演算制御部28に送信する。ここで、衛星信号10はアナログ信号であり、GNSSアンテナ29は、受信した衛星信号10をA/D変換してデジタル信号による衛星信号10を測位演算部29に送信するように構成する。
【0044】
GNSSアンテナ29は、被測位物体において位置を取得したい個所に設置される。例えば、移動体測位装置2が車両に用いられる場合、GNSSアンテナ29は対象とする移動体である車両の車体に設置すれば良い。
【0045】
[測位演算部20]
測位演算部20は、演算制御部28から受信した測位衛星3からの衛星信号10と補正信号11に基づき、GNSSアンテナ29の地球上の位置を演算し、概略位置データ13と精密位置データ14のどちらか一つ以上を演算する。測位演算部20は、演算された概略位置データ13及び精密位置データ14のどちらか一つを位置情報12として演算制御部28に出力する。
【0046】
概略位置データ13は、測位演算部20が単独測位を用いて算出したGNSSアンテナ29の概略位置である。精密位置データ14は、測位演算部20が干渉測位を用いて算出したGNSSアンテナ29の精密位置である。精密位置データ14は、概略位置データ13よりもGNSSアンテナ29の実際の位置に近い高精度な測位結果とする。
【0047】
測位演算部20は、GNSSアンテナ29が受信した衛星信号10に基づいて、各測位衛星3に対し擬似距離7と搬送波位相8を算出することで、概略位置データ13と精密位置データ14のどちらか一つ以上を演算する。
【0048】
単独測位では、測位演算部20は、GNSSアンテナ29で受信した複数の衛星信号10に基づいて、概略位置データ13を算出する。単独測位では、少なくとも4機以上の測位衛星3と、GNSSアンテナ29との間の擬似距離7から、三角測量の原理を用いて、概略位置データ13を算出する。上記の擬似距離7は、各測位衛星3の軌道、移動体測位装置2や測位衛星3に使用されている時計の精度、電離層や対流圏を通過する際に生じる搬送波の遅延、などに起因する誤差を含んでいる。
【0049】
干渉測位では、測位演算部20は、GNSSアンテナ29で受信した衛星信号10と、演算制御部28から受信した補正信号11の双方に基づいて、精密位置データ14を算出する。干渉測位では、GNSSアンテナ29で受信した衛星信号10に含まれる少なくとも5機以上の測位衛星3とGNSSアンテナ29との間の擬似距離7及び搬送波位相8、補正信号11に含まれる少なくとも5機以上の測位衛星3と基地局4との間の擬似距離7及び搬送波位相8、から精密位置データ14を算出する。
【0050】
また、干渉測位では、測位衛星3とGNSSアンテナ29との間の搬送波位相8、測位衛星3と基地局4との間の搬送波位相8の差分である搬送波位相差を算出する。干渉測位では、搬送波位相差を算出する際、GNSSアンテナ29が衛星信号10を受信したとき、衛星信号10の搬送波位相8においてそれが連続波のどの部分であるか波数の小数部は分かるが、波数小数部を除いた波数整数部は不明である。干渉測位では、この波数整数部を確定した際、基地局4とGNSSアンテナ29との間の基線長を正確に求めることができる。
【0051】
干渉測位では、基地局4の地球上の位置が補正信号11に記載されているため、基地局4の位置とGNSSアンテナ29との間の基線長から、GNSSアンテナ29の位置を予測できる。
【0052】
よって、測位演算部20は、基地局4の位置とGNSSアンテナ29との間の基線長から予測したGNSSアンテナ29の位置を用いて、単独測位結果である概略位置データ13を補正することで精密位置データ14を算出する。この際、測位演算部20は、過去時刻における搬送波位相差に含まれる波数整数部と現在時刻における波数整数部が連続的であることを仮定し、カルマンフィルタ等を用いることで、精密位置データ14を算出する。
【0053】
測位演算部20は、演算制御部28から演算初期化指令を受信した場合、それまでの波数整数部が連続的であるという仮定を棄却し、再度波数整数部及び基線長の演算を開始する。測位演算部20は、演算初期化指令を受信した直後、衛星信号10の搬送波位相8においてそれが連続波の波数小数部のみ推定可能であるため、連続波の波数整数部を確定するまで一時的に測位精度が低下する。測位演算部20は、搬送波位相差の波数小数部及び波数整数部を確定できなかった場合、干渉測位の演算に失敗したと判断する。
【0054】
測位演算部20は、精密位置データ14が算出できた場合、精密位置データ14を位置情報12として出力し、精密位置データ14を算出できなかった場合のみ、概略位置データ13を位置情報12として出力する。測位演算部20は、位置情報12を演算制御部28に出力する。
【0055】
[通信部21]
通信部21は、演算制御部28から受信した生成位置情報域を配信サーバ5に送信する。配信サーバ5は、通信部21から受信した生成位置情報30に応じて補正信号11を生成し、通信部21に対して出力する。通信部21が配信サーバ5から受信する補正信号11には、少なくとも測位衛星3の識別番号である衛星識別番号100(図2参照)、補正信号11を生成した時刻である補正信号生成時刻101(図2参照)、基地局ID102、擬似距離7、搬送波位相8が含まれている。通信部21は、配信サーバ5から受信した補正信号11を演算制御部28に出力する。通信部21は、例えば電波的な障害や通信部21または配信サーバ5のどちらかに障害が生じている場合、補正信号11の受信に失敗することがある。
【0056】
[補正信号DB22]
補正信号DB22は、演算制御部28の指示に従って、補正信号11を記録する。補正信号DB22は、過去に演算制御部28から受信した補正信号11として、少なくとも衛星識別番号100、補正信号生成時刻101、基地局ID102、擬似距離7、及び搬送波位相8が記録されている。補正信号DB22は、演算制御部28が通信部21を介して配信サーバ5から受信した補正信号11を演算制御部28から取得して、補正信号11を記憶する。
【0057】
図2は、補正信号DB22が記録する補正信号11の詳細を示すデータテーブルを示す図である。
【0058】
補正信号DB22は、補正信号生成時刻101の時系列順で補正信号11を記憶し、かつ同時刻においては少なくとも衛星識別番号100順に補正信号11を記憶する。演算制御部28から受信した補正信号11と同一時刻及び同一測位衛星3の補正信号11が既に記録されていた場合には、補正信号DB22は、記録されている補正信号11の擬似距離7及び搬送波位相8、基地局ID102を更新する。
【0059】
補正信号DB22は、記録されている補正信号生成時刻101が最も新しいデータ群を最新の補正信号11と判断する。図2は、補正信号生成時刻101の07:00:00~07:30:00までの補正信号11が格納された例を示しており、補正信号生成時刻101が“07:30:00”のデータ群が最新の補正信号11に相当する。
【0060】
補正信号DB22は、補正信号予測部23及び演算制御部28から常に補正信号11を参照可能な状態で構成される。補正信号DB22は、十分な記憶領域を確保できない場合、例えば、あらかじめ定められた一定期間のみの補正信号11を記録し、記録時間が一定期間以上となった際、最も古いレコードを削除する処理を実行してもよい。また、補正信号DB22は、演算制御部28から初期化指令を受信した場合、記録された補正信号11の全てのレコードを削除する。
【0061】
[補正信号予測部23]
補正信号予測部23は、補正信号DB22に記録された補正信号11、及び演算制御部28からの補正信号11に基づいて、補正信号DB22に記録された補正信号11と演算制御部28から受信した補正信号11から補正信号予測情報18を算出する。つまり、補正信号予測部23は、過去に受信した補正信号11から現在時刻あるいは未来において基地局4で配信される補正信号11の予測モデルを含む補正信号予測情報18を算出する。
【0062】
補正信号予測部23は、補正信号DB22に記録されている補正信号11(過去の補正信号11)に基づいて、演算制御部28から受信した補正信号11に記載された擬似距離7と搬送波位相8を予測するための数式モデルを構築し、補正信号予測情報18として算出する。以降、本明細書では、補正信号予測部23が演算制御部28から受信した補正信号11に記載されている時刻を“t”と称する。
【0063】
図3は、補正信号予測部23が補正信号予測情報18として算出する擬似距離7及び搬送波位相8に関する数式モデルを示す図である。図3は、数式モデルをグラフ化したものである。補正信号予測情報18は、図3に示すように、あらかじめ設定された個数の時刻、例えば補正信号DB22に記録された過去の5つの時刻における擬似距離7及び搬送波位相8の値を用いて算出された数式モデルで表現される。
【0064】
補正信号DB22に記録された過去の5つの時刻をそれぞれ、t、t、t、t、t、該時刻に対応する擬似距離7あるいは搬送波位相8を、y、y、y、y、y、とすると、これらは次式(1)、次式(2)で示すことができ、時刻tにおける擬似距離7あるいは搬送波位相8の予測値は、次式(3)で求めることができる。
【0065】
【数1】
【0066】
【数2】
【0067】
【数3】
【0068】
なお、上記式(2)における“T”については、後述する。
【0069】
補正信号予測部23は、補正信号DB22及び演算制御部28に基づいて、演算制御部28から時刻tにおいて受信した補正信号11に記載された全ての測位衛星3に対して数式モデルを構築し、補正信号予測情報18を算出する。
【0070】
図4は、補正信号予測部23が補正信号DB22に基づいて、補正信号予測情報18として算出する数式モデルのパラメータを示す図である。
【0071】
補正信号予測部23は、時刻tにおける各測位衛星3の擬似距離7と搬送波位相8を予測する数式モデルのパラメータを補正信号予測情報18として算出する。補正信号予測部23は、例えば補正信号DB22に過去5つ以上の時刻で特定の測位衛星3の擬似距離7と搬送波位相8を記録している場合、測位衛星3に対応した補正信号予測情報18を算出する。
【0072】
補正信号予測部23は、過去5つ以上の時刻で特定の測位衛星3の擬似距離7と搬送波位相8を記録していない場合、測位衛星3に対し補正信号予測情報18を算出しない。
【0073】
補正信号予測部23は、図5に示すように、演算制御部28から受信した補正信号11と補正信号予測情報18から予測した予測値との差分を補正信号予測誤差36として算出する。補正信号予測部23は、演算制御部28から補正信号11を受信した場合のみ補正信号予測情報18及び補正信号予測誤差36を算出してもよいし、5秒・10秒といった制御周期を設定し、制御周期において直近で演算制御部28から受信した補正信号11に対し補正信号予測情報18及び補正信号予測誤差36を算出してもよい。補正信号予測部23は、補正信号予測情報18及び補正信号予測誤差36を補正信号予測結果DB24に出力する。
【0074】
[補正信号予測結果DB24]
補正信号予測結果DB24は、補正信号予測部23の出力に基づいて、測位衛星3の補正信号予測情報18及び補正信号予測誤差分布37(図6参照)を記録する。補正信号予測結果DB24は、図4に示す形式で補正信号予測情報18を記録する。補正信号予測結果DB24は、補正信号予測部22から補正信号予測誤差36を受信し記録することで、補正信号予測誤差36の確率分布である補正信号予測誤差分布37を算出する。
【0075】
これにより、縦軸が発生確率を示し、横軸が補正信号予測誤差36を示すようにすると、補正信号予測誤差分布37を表す図6に示すようなグラフを生成することができる。
【0076】
補正信号予測結果DB24は、補正信号予測情報18を算出した全測位衛星3において補正信号予測誤差分布37を算出し、記録する。補正信号予測結果DB24は、衛星信号予測部26及び衛星信号連続性判定部27から補正信号予測情報18及び補正信号予測誤差分布37を参照可能に構成される。
【0077】
補正信号予測結果DB24は、例えば、あらかじめ定められた一定期間以上補正信号予測情報18が更新されない測位衛星3が存在する場合、補正信号予測結果DB24に記録されている測位衛星3に紐づいた補正信号予測情報18及び補正信号予測誤差分布37を削除する処理を実行してもよい。
【0078】
また、補正信号予測結果DB24は、演算制御部28から初期化指令を受信した場合、記録された全ての測位衛星3の補正信号予測情報18及び補正信号予測誤差分布37を削除する。
【0079】
[衛星信号予測部26]
概略すると、衛星信号予測部26は、移動局29が受信した衛星信号10と、基地局4から配信された衛星信号10に基づく補正信号11に基づいて現在時刻あるいは未来において配信される衛星信号10の予測モデルと、を含む衛星信号予測情報19を算出する。
【0080】
衛星信号予測部26は、演算制御部28から衛星信号10を受信した場合のみ動作する。衛星信号予測部26は、補正信号予測結果DB24、及び演算制御部28に基づいて、補正信号予測結果DB24に記録された補正信号予測情報18と演算制御部28から受信した衛星信号10から衛星信号予測情報19を算出する。
【0081】
衛星信号予測部26は、補正信号予測結果DB24に記録されている補正信号予測情報18を用いて算出した補正信号11の予測値と衛星信号10から、GNSSアンテナ29が静止した状態を仮定した場合、次にGNSSアンテナ29で受信する衛星信号10を予測するための数式モデル(現在時刻あるいは未来において配信される衛星信号10の予測モデル)を構築し、衛星信号予測情報19として算出する。
【0082】
以降、本明細書では、衛星信号予測部26が演算制御部28から受信した衛星信号10に記載されている時刻を“T”と称する。
【0083】
図7は、衛星信号予測部26が衛星信号予測情報19として算出する擬似距離7及び搬送波位相8に関する数式モデルを示している。図7は、数式モデルをグラフ化したものである。
【0084】
衛星信号予測情報19は、図7に示すように、時刻Tにおける衛星信号10と補正信号予測情報18から算出した補正信号11の予測値に記載された擬似距離7あるいは搬送波位相8の差分dを次式(4)から算出する。
【0085】
【数4】
【0086】
そして、衛星信号予測部26は補正信号予測情報18の数式モデルを上記式(4)で算出した差分dを用いて補正することで、任意時刻“T1”におけるGNSSアンテナ29が静止した状態を仮定した場合、GNSSアンテナ29で受信する衛星信号10の擬似距離7及び搬送波位相8を算出可能な衛星信号予測情報19を、次式(5)を用いて算出する。
【0087】
【数5】
【0088】
つまり、衛星信号予測部26は、衛星信号10と補正信号予測情報18に基づいて、補正信号予測情報18を衛星信号10で補正することで衛星信号予測情報19を算出する。
【0089】
衛星信号予測部26は、算出した衛星信号予測情報19を衛星信号予測結果DB25に出力する。
【0090】
[衛星信号予測結果DB25]
衛星信号予測結果DB25は、衛星信号予測部26及び演算制御部28の出力に基づいて、測位衛星3の衛星信号予測情報19を記録する。衛星信号予測結果DB25は、図8に示す形式で衛星信号予測情報19を記録する。衛星信号予測結果DB25は、衛星信号連続性判定部27から衛星信号予測情報19を参照可能に構成される。
【0091】
衛星信号予測結果DB25は、例えば、あらかじめ定められた一定期間以上衛星信号予測情報19が更新されない測位衛星3が存在する場合、衛星信号予測結果DB25に記録されている測位衛星3に紐づいた衛星信号予測情報19を削除する処理を実行してもよい。また、衛星信号予測結果DB25は、演算制御部28から初期化指令を受信した場合、記録された全ての測位衛星3の衛星信号予測情報19を削除する。
【0092】
[衛星信号連続性判定部27]
衛星信号連続性判定部27は、演算制御部28から衛星信号10を受信した場合のみ動作する。衛星信号連続性判定部27は、補正信号予測結果DB24、衛星信号予測結果DB25、及び演算制御部28からの情報に基づいて、補正信号予測結果DB24に記録された補正信号予測誤差分布37、衛星信号予測結果DB25に記録された衛星信号予測情報19、及び演算制御部28から受信した衛星信号10を用いて、GNSSアンテナ29が受信した衛星信号10に記載された擬似距離7及び搬送波位相8の連続性を検出する。
【0093】
衛星信号連続性判定部27は、演算制御部28から受信した衛星信号10に記載された擬似距離7及び搬送波位相8の連続性を衛星信号連続性情報16として演算制御部28に通知する。演算制御部28は、衛星信号連続性判定部27から受信した衛星信号10に記載された擬似距離7及び搬送波位相8の連続性に応じて、GNSSアンテナ29の動作状態を推定可能である。以降本実施例においては、衛星信号連続性判定部27は、搬送波位相8の連続性のみを検出するが、擬似距離7を用いる場合においても本発明を同様に適用可能である。
【0094】
図9は、衛星信号連続性判定部27の処理を示すフローチャートである。図9に示すフローチャートは、衛星信号連続性判定部27が演算制御部28から衛星信号10を受信した後の衛星信号連続性判定部27が実施する処理を示している。
【0095】
ステップS301では、衛星信号予測結果DB25に衛星信号予測情報19が記録されているか確認する。衛星信号予測結果DB25に衛星信号予測情報19が記録されている場合、ステップS302に進み、記録されていない場合、ステップS310に進む。
【0096】
ステップS302では、演算制御部28から受信した衛星信号10に記載されている測位衛星3の総数であるS_SUMを算出する。
【0097】
ステップS303では、S_SUMが5機以上であり、干渉測位が可能か確認する。5機以上の場合、衛星信号10に記載されている一つ目の測位衛星3をSとして選択し(ステップS303a)、Nを0として(ステップS303b)、ステップS304に進む。
【0098】
ステップS303において、S_SUMが5機未満の場合、ステップS310に進む。
【0099】
ステップS304では、衛星信号予測情報19の上述した数式モデルを用いて、演算制御部28から受信した衛星信号10に含まれる、GNSSアンテナ29が衛星信号10を受信した時刻tにおける測位衛星Sに関する衛星信号10の搬送波位相8を予測する。
【0100】
ステップS305では、ステップ304で算出した搬送波位相8の予測値と演算制御部28から受信した衛星信号10に含まれる搬送波位相8の実測値の差分である搬送波位相予測誤差ε1を算出する。
【0101】
ステップS306では、ステップS304において衛星信号10に記載されている測位衛星Sに対する搬送波位相8が正確に予測されているか判断する閾値である搬送波位相予測誤差閾値ε1_MAXを算出する。
【0102】
搬送波位相予測誤差閾値ε1_MAXは、例えば、補正信号予測結果DB24に記録された補正信号予測誤差分布37の1σ、2σあるいは3σ区間の値を閾値とし、閾値をステップS305で算出した搬送波位相予測誤差ε1が越えた際、測位衛星Sに対する搬送波位相8が正確に予測されていないと判断してもよい。
【0103】
ステップS307では、搬送波位相予測誤差ε1が搬送波位相予測誤差閾値ε1_MAX以上か判断する。ステップS307において、搬送波位相予測誤差ε1がε1_MAX以上の場合、搬送波位相8の連続性が失われた衛星数Nとしてカウントし(ステップS307a)、ステップS308に進む。ステップS307において、搬送波位相予測誤差ε1が搬送波位相予測誤差閾値ε1_MAX未満の場合、特定の処理は実施せずステップS308に進む。
【0104】
ステップS308では、測位衛星Sとして演算制御部28から受信した衛星信号10に記載されている全ての測位衛星3を選択したか否か判断する。全ての測位衛星3を選択した場合、ステップS309に進む。
【0105】
ステップS308において、全ての測位衛星3を選択してはいない場合、次の測位衛星3をSとして選択し(ステップS308a)、ステップS304に戻る。
【0106】
ステップS309では、搬送波位相8の連続性が失われた衛星数Nが測位衛星数閾値N_MAX以上か否かを判断する。連続性が失われた衛星数Nが測位衛星数閾値N_MAX未満の場合、ステップS312に進む。連続性が失われた衛星数Nが測位衛星数閾値N_MAX閾値以上の場合、ステップS311に進む。
【0107】
測位衛星数閾値N_MAXの決定方法については、例えば、演算制御部28から受信した衛星信号10に記載されている測位衛星3内のα%以上において搬送波位相8の連続性が失われたかを基準として設定してもよい。その場合、測位衛星数閾値N_MAXの算出式は、S_SUMを変数とした次式(6)で与えられる。なお、次式(6)におけるαは予め定められるパーセンテージである。
【0108】
【数6】
【0109】
先に示したステップS310では、衛星信号連続性判定部27は、演算制御部28に対して演算制御部28から受信した衛星信号10の衛星信号連続性情報16を出力しない。
【0110】
ステップS311では、衛星信号連続性判定部27は、演算制御部28に対して演算制御部28から受信した衛星信号10の連続性なしとして、衛星信号連続性情報16を出力する。
【0111】
ステップS312では、衛星信号連続性判定部27は、演算制御部28に対して演算制御部28から受信した衛星信号10の連続性ありとして、衛星信号連続性情報16を出力する。
【0112】
[演算制御部28]
演算制御部28は、測位演算部20、通信部21、補正信号予測部23、衛星信号予測部26及び衛星信号連続性判定部27に対し動作指令を行うことで測位演算部20から位置情報12を取得し、衛星信号連続性判定部27から衛星信号連続性情報16を取得する。
【0113】
演算制御部28は、衛星信号連続性判定部27から取得した衛星信号連続性情報16に応じてGNSSアンテナ29の静止状態である静止状態情報15を算出する。そして、演算制御部28は、取得した位置情報12と、算出した静止状態情報15とを外部端末(図示省略)に送信する(移動局29が静止状態であると判断すると、静止状態を示す静止状態情報15を算出し、外部端末に送信する)。外部端末に関しては、本実施例において限定せず、例えば本発明が移動体用位置・姿勢推定システムに用いられる場合、移動体の位置情報12及び静止状態情報15を必要とする車体制御モジュールや慣性センサ校正モジュールなどが外部端末に該当する。
【0114】
演算制御部28は、補正信号DB22、補正信号予測結果DB24、及び衛星信号予測結果DB25に記録されたデータの参照及び編集を行う。演算制御部28が、測位演算部20、通信部21、補正信号予測部23、衛星信号予測部26及び衛星信号連続性判定部27に対し動作指令を行う順序やその判断手法に関しては後述する。
【0115】
演算制御部28は、GNSSアンテナ29から受信した衛星信号10を測位演算部20に送信することで、測位演算部20に位置情報12の算出を指示する。演算制御部28は、通信部21を介し配信サーバ5から補正信号11を取得している場合、測位演算部20に衛星信号10と補正信号11を送信することで、測位演算部20に位置情報12の算出を指示する。
【0116】
演算制御部28は、通信部21を介して生成位置情報30を配信サーバ5に送信することで、配信サーバ5から基地局4に対応した補正信号11を受信する。生成位置情報30は、配信サーバ5が補正信号11を生成する基地局4を選択するための位置情報であり演算制御部28内に記録される。配信サーバ5は、演算制御部28から受信した位置情報12に応じて補正信号11を生成する基地局4を選択する。
【0117】
演算制御部28は、通信部21から受信した補正信号11の基地局ID102が変更された場合、配信サーバ5が補正信号11を生成する基地局4を変更したと判断する。演算制御部28は、補正信号11を生成する基地局4が変更された場合、測位演算部20の演算を初期化する。
【0118】
そして、演算制御部28は、通信部21から受信した補正信号11を補正信号予測部23に送信することで、補正信号予測部23に対し、補正信号予測情報18の算出を指示する。演算制御部28は、GNSSアンテナ29から受信した衛星信号10を衛星信号予測部26に送信することで、衛星信号予測部26に対し、衛星信号予測情報19の算出を指示する。
【0119】
演算制御部28は、GNSSアンテナ29から受信した衛星信号10を衛星信号連続性判定部27に送信することで、衛星信号連続性判定部27に対し、衛星信号連続性情報16の算出を指示する。
【0120】
演算制御部28は、図10に示す形式で位置情報12及び静止状態情報15を出力する。演算制御部28は、測位演算部20が位置情報12を算出する際に使用した衛星信号10をGNSSアンテナ29で受信した時刻である出力時刻103と衛星信号10を用いて算出した位置情報12及び静止状態情報15を紐づけて外部端末(図示省略)に送信する。
【0121】
図10は、説明の便宜上テーブル形式で出力時刻103、位置情報12、及び静止状態情報15を記載しているが、演算制御部28は、複数の出力時刻における位置情報12及び静止状態情報15を一斉に送信するわけではなく、測位演算部20から受信した位置情報12及び演算制御部28で算出した静止状態情報15を出力時刻と紐づけて、つど外部端末(図示省略)に送信する。
【0122】
演算制御部28は、衛星信号連続性判定部27から衛星信号連続性情報16を受信し、静止状態情報15を算出する。演算制御部28は、衛星信号連続性情報16を連続性ありとして受信した場合、図10に示すように静止状態情報15を静止として外部端末に出力する。
【0123】
演算制御部28は、衛星信号連続性情報16を連続性なしとして受信した場合、図10に示すように、静止状態情報15を動作として外部端末に出力する。
【0124】
演算制御部28は、衛星信号連続性情報16を受信しなかった場合、図10に示すように静止状態情報15をNULLとして外部端末に出力する。
【0125】
[移動体測位装置2全体]
以下、図11図12及び図13を参照して、演算制御部28が動作指令を行う順序及びその判断方法を説明することで移動体測位装置2の処理を説明する。
【0126】
以下に示す処理は、GNSSアンテナ29が測位衛星3から衛星信号10を受信するたびに実行される。
【0127】
図11は、移動体測位装置2の処理のうち、ステップS201からS207までを示すフローチャートである。図12は、移動体測位装置2の処理のうち、ステップS208からステップS217までを示すフローチャートである。図13は、移動体測位装置2の処理のうち、ステップS218からS232までを示すフローチャートである。
【0128】
図11において、ステップS201では、GNSSアンテナ29が測位衛星3から受信した衛星信号10を演算制御部28に送信する。
【0129】
ステップS202では、演算制御部28が衛星信号連続性判定部27にGNSSアンテナ29から取得した衛星信号10を送信し、演算を指令する。衛星信号連続性判定部27は、図9に示したステップS301からステップS312までの処理を実行する。
【0130】
ステップS203では、演算制御部28が衛星信号連続性判定部27から衛星信号連続性情報16を受信したかを確認する。衛星信号連続性情報16を受信した場合、ステップS204に進む。ステップS203において、演算制御部28が衛星信号連続性情報16を受信しなかった場合、ステップS207に進む。
【0131】
ステップS204では、演算制御部28が衛星信号連続性判定部27から受信した衛星信号連続性情報16に「連続性あり」と記載があるか否かを確認する。衛星信号連続性情報16に「連続性あり」と記載されている場合、ステップS205に進む。衛星信号連続性情報16に「連続性あり」と記載されていない場合、ステップS206に進む。
【0132】
ステップS205では、演算制御部28が静止状態情報15を「静止」として算出する。
【0133】
ステップS206では、演算制御部28が静止状態情報15を「動作」として算出する。
【0134】
ステップS207では、演算制御部28が静止状態情報15を「NULL」として算出する。
【0135】
次に、図12のステップS208では、演算制御部28が生成位置情報30を記録しているか否かを確認する。演算制御部28が生成位置情報30を記録している場合、ステップS209に進む。ステップS208において、演算制御部28が生成位置情報30を記録していない場合、ステップS227(図13に示す)に進む。
【0136】
ステップS209では、演算制御部28が生成位置情報30を通信部21に送信する。
【0137】
ステップS210では、通信部21が演算制御部28から受信した生成位置情報30を配信サーバ5に送信することで、配信サーバ5から補正信号11を受信する。通信部21は配信サーバ5から受信した補正信号11を演算制御部28に送信する。
【0138】
ステップS211では、演算制御部28は通信部21を介して配信サーバ5から補正信号11を受信できたか否かを確認する。演算制御部28が補正信号11を受信できた場合、ステップS212に進む。演算制御部28が補正信号11を受信できなかった場合、ステップS223(図13に示す)に進む。
【0139】
ステップS212では、演算制御部28が補正信号DB22に補正信号11が記録されているか否かを確認する。補正信号DB22に補正信号11が記録されている場合、ステップS213に進む。補正信号DB22に補正信号11が記録されていない場合、ステップS218(図13に示す)に進む。
【0140】
ステップS213では、演算制御部28がステップS210で通信部21から受信した補正信号11の基地局ID102が補正信号DB22に記録されている補正信号11の基地局ID102と同一か否かを確認する。受信した補正信号11の基地局ID102と、記録されている補正信号11の基地局ID102とが同一の場合はステップS218(図13に示す)に進み、同一でない場合はステップS214に進む。
【0141】
ステップS214では、演算制御部28が補正信号DB22に記録されている補正信号11を削除することで、補正信号DB22を初期化する。
【0142】
ステップS215では、演算制御部28が補正信号予測結果DB24に記録されている補正信号予測情報18を削除することで、補正信号予測結果DB24を初期化する。
【0143】
ステップS216では、演算制御部28が衛星信号予測結果DB25に記録されている衛星信号予測情報19を削除することで、衛星信号予測結果DB25を初期化する。
【0144】
ステップS217では、演算制御部28が測位演算部20に初期化指令を送信することで、測位演算部20の測位演算を初期化する。
【0145】
ステップS218(図13に示す)では、演算制御部28がステップS210で通信部21から受信した補正信号11を補正信号予測部23に送信し、補正信号予測部23に対し処理を指令する。その後、補正信号予測部23は補正信号予測情報18及び補正信号予測誤差36を補正信号予測結果DB24に送信し、補正信号予測結果DB24は補正信号予測情報18及び補正信号予測誤差分布37を記録する。
【0146】
ステップS219では、演算制御部28がステップS201でGNSSアンテナ29から受信した衛星信号10を衛星信号予測部26に送信し、衛星信号予測部26に対し処理を指令する。その後、衛星信号予測部26は衛星信号予測情報19を衛星信号予測結果DB25に送信し、衛星信号予測結果DB25は衛星信号予測情報19を記録する。
【0147】
ステップS220では、演算制御部28がステップS210で通信部21から受信した補正信号11を補正信号DB22に記録する。
【0148】
ステップS221では、演算制御部28がステップS201でGNSSアンテナ29から受信した衛星信号10を測位演算部20に送信する。
【0149】
ステップS222では、演算制御部28がステップS210で通信部21から受信した補正信号11を測位演算部20に送信する。
【0150】
ステップS223では、演算制御部28がステップS201でGNSSアンテナ29から受信した衛星信号10を測位演算部20に送信する。
【0151】
ステップS224では、演算制御部28が補正信号DB22に補正信号11が記録されているか否かを確認する。補正信号DB22に補正信号11が記録されている場合、ステップS225に進む。補正信号DB22に補正信号11が記録されていない場合、ステップS227に進む。
【0152】
ステップS225では、演算制御部28が補正信号DB22に記録されている補正信号11を測位演算部20に送信する。
【0153】
ステップS226では、演算制御部28が測位演算部20に干渉測位を指令する。
【0154】
ステップS227では、演算制御部28が測位演算部20に単独測位を指令する。
【0155】
ステップS228では、演算制御部28が、測位演算部20は干渉測位に成功したか否かを判断する。ここで、演算制御部28は、測位演算部20が搬送波位相差の波数小数部及び波数整数部のどちらか一つを確定した場合に、干渉測位に成功したと判断する。干渉測位に成功した場合、ステップS229に進む。干渉測位に失敗した場合、ステップS230に進む。
【0156】
ステップS229では、測位演算部20が単独測位結果を干渉測位結果で補正することで精密位置データ14を算出し、位置情報12として演算制御部28に出力する。
【0157】
ステップS230では、測位演算部20が単独測位結果である概略位置データ13を算出し、位置情報12として演算制御部28に出力する。
【0158】
ステップS231では、演算制御部28が外部端末に位置情報12及び静止状態情報15を出力する。
【0159】
ステップS232では、演算制御部28が測位演算部20から取得した位置情報12を、演算制御部28が生成位置情報30として記録した後に処理を終了する。
【0160】
本実施例1の移動体測位装置2では、GNSSアンテナ29が測位衛星3から受信した衛星信号10と、通信部21が配信サーバ5から受信した補正信号11と、を用いて、GNSSアンテナ29が測位衛星3から受信する衛星信号10を予測し、予測値と実測値との乖離からGNSSアンテナ29が受信する衛星信号10の連続性を検出する。
【0161】
そして、移動体測位装置2は、受信した衛星信号10の連続性が検出された場合、GNSSアンテナ29が静止状態にあると判断する。
【0162】
このように構成すれば、姿勢計測装置等を搭載することなくGNSSのみを用いることで移動体の静止状態を判断することが可能となり、構造の簡易化が可能となる。
【0163】
本実施例1によれば、静止状態判定システムにおいて、測位衛星3から取得した衛星信号10と、基地局4から取得した補正信号と、から取得した衛星信号10の連続性を判定可能である。静止状態判定システムは、取得した衛星信号10が連続的な場合、車両が静止状態にあると判定可能であり、構成の簡易化及び慣性センサに依存しない静止状態判定が可能となる。
【0164】
つまり、本発明の実施例1によれば、構成が簡易であり、慣性センサの検出精度に依存することなく、移動局の静止状態を判定する移動体測位装置及び移動体測位方法を実現することができる。
【0165】
(実施例2)
次に、本発明の実施例2について、説明する。
【0166】
本実施例2の移動体測位装置2は、その構成は、実施例1と同様であるが、衛星信号予測部26、衛星信号予測結果DB25、衛星信号連続性判定部27及び演算制御部28の処理において実施例1と異なっている。このため、実施例2の全体構成は図1と同様となるので、図示は省略する。
【0167】
以下では、実施例1と実施例2との相違点について説明する。
【0168】
実施例2と実施例1との異なる部分は、演算制御部28が静止状態情報15を「静止」として算出した場合、演算制御部28が衛星信号予測結果DB25に対し衛星信号予測誤差分布39の演算を指示するとともに、衛星信号連続性判定部27は、衛星信号予測結果DB25が算出した衛星信号予測誤差分布39に基づいて衛星信号10の連続性を判定し、衛星信号連続性情報16を算出する点である。
【0169】
[衛星信号予測結果DB25]
衛星信号予測結果DB25は、衛星信号予測部26及び演算制御部28に基づいて、演算制御部28から受信した衛星信号10と衛星信号予測情報19から予測した予測値との差分を衛星信号予測誤差38として算出する。
【0170】
そして、衛星信号予測結果DB25は、算出した衛星信号予測誤差38を受信し記録することで、衛星信号予測誤差38の確率分布である衛星信号予測誤差分布39を算出する。衛星信号予測結果DB25は、演算制御部28から衛星信号予測誤差分布39の演算を指示された場合のみ、衛星信号予測誤差分布39を算出する。
【0171】
[衛星信号連続性判定部27]
衛星信号連続性判定部27は、衛星信号予測結果DB25に衛星信号予測誤差分布39が記録されている場合、衛星信号予測誤差分布39に基づいてGNSSアンテナ29が受信した衛星信号10に記載された擬似距離7及び搬送波位相8の連続性を検出し、衛星信号の連続性を判定する。
【0172】
以下、図14に示したフローチャートを参照して、衛星信号連続性判定部27が擬似距離7及び搬送波位相8の連続性を検出する処理手順を説明する。
【0173】
図14は、図9のフローチャートに示したステップS305とS307の間にS306の代替として挿入される処理であり、衛星信号連続性判定部27に含まれるプロセッサがコンピュータプログラムを実行することによって実現できる。
【0174】
ステップS313では、衛星信号連続性判定部27が衛星信号予測結果DB25に衛星信号予測誤差分布39が記録されているか否かを確認する。衛星信号予測結果DB25に衛星信号予測誤差分布39が記録されている場合、ステップS314に進む。衛星信号予測結果DB25に衛星信号予測誤差分布39が記録されていない場合、ステップS315に進む。
【0175】
ステップS314では、衛星信号連続性判定部27が衛星信号予測結果DB25に記録された衛星信号予測誤差分布39に基づいて、ステップS304において衛星信号10に記載されている測位衛星Sに対する搬送波位相8が正確に予測されているか判断する閾値である搬送波位相予測誤差閾値ε1_MAXを算出する。搬送波位相予測誤差閾値ε1_MAXは、例えば、衛星信号予測誤差分布39の1σ、2σあるいは3σ区間の値を閾値とし、閾値をステップS305で算出した搬送波位相予測誤差ε1が越えた際、測位衛星Sに対する搬送波位相8が正確に予測されていないと判断してもよい。
【0176】
ステップS315では、衛星信号連続性判定部27が補正信号予測結果DB24に記録された補正信号予測誤差分布37に基づいて、ステップS304において衛星信号10に記載されている測位衛星Sに対する搬送波位相8が正確に予測されているか判断する閾値である搬送波位相予測誤差閾値ε1_MAXを算出する。
【0177】
[演算制御部28]
演算制御部28は、衛星信号連続性判定部27から取得した衛星信号連続性情報16に応じてGNSSアンテナ29の静止状態情報15を算出する。そして、演算制御部28は、静止状態情報15を「静止」と算出した場合、衛星信号予測結果DB25に対し衛星信号10を送信することで、衛星信号予測誤差分布39の算出を指示する。演算制御部28が衛星信号予測結果DB25に対し演算を指示する動作は、図11に示すステップ205の直後に実行される。
【0178】
上述した構成により、実施例2において、移動体測位装置2はGNSSアンテナ29が静止状態である場合の衛星信号予測情報19の予測精度を算出可能となり、予測誤差分布に基づいて、適切な予測誤差閾値を算出することができる。
【0179】
したがって、移動体測位装置2は、高精度な衛星信号10の連続性判定が可能となり、静止判定精度の向上が可能となる。
【0180】
つまり、本発明の実施例2によれば、構成が簡易であり、慣性センサの検出精度に依存することなく、静止判定精度が向上された、移動局の静止状態を判定する移動体測位装置及び移動体測位方法を実現することができる。
【0181】
なお、衛星信号予測結果DB25に代えて、衛星信号予測部26が、演算制御部28から受信した衛星信号10と衛星信号予測情報19から予測した予測値(予測モデル)との差分を算出し、算出した差分から衛星信号予測誤差38の確率分布である衛星信号予測誤差分布39を算出することもできる。そして、衛星信号予測部26は、衛星信号予測誤差分布39から衛星信号予測精度を算出することができる。衛星信号予測部26は、静止状態情報15に基づいて、移動局が静止状態の場合、衛星信号予測精度を算出する。そして、衛星信号連続性判定部27は、衛星信号予測精度に基づいて、衛星信号の連続性を判定する。
【0182】
また、本明細書等においては、移動局とは、GNSSアンテナ29が備えられた移動体(例えば自動車や鉄道、農業機械や建設機械)である。また、図1に示したGNSSアンテナ29には、GNSSアンテナ29が備えられた移動体、つまり、移動局も含まれるものとする。
【符号の説明】
【0183】
1・・・静止状態判定システム、2・・・移動体測位装置、3・・・測位衛星、4・・・基地局、5・・・配信サーバ、7・・・擬似距離、8・・・搬送波位相、10・・・衛星信号、11・・・補正信号、12・・・位置情報、13・・・概略位置データ、15・・・静止状態情報、16・・・衛星信号連続性情報、18・・・補正信号予測情報、19・・・衛星信号予測情報、20・・・測位演算部、21・・・通信部、22・・・補正信号DB(補正信号記録部)、23・・・補正信号予測部、24・・・補正信号予測結果DB、25・・・衛星信号予測結果DB、26・・・衛星信号予測部、27・・・衛星信号連続性判定部、28・・・演算制御部、29・・・GNSSアンテナ(移動局)
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14