(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024068727
(43)【公開日】2024-05-21
(54)【発明の名称】膨張弁
(51)【国際特許分類】
F16K 31/68 20060101AFI20240514BHJP
F25B 41/335 20210101ALI20240514BHJP
【FI】
F16K31/68 S
F25B41/335 B
【審査請求】未請求
【請求項の数】8
【出願形態】OL
(21)【出願番号】P 2022179280
(22)【出願日】2022-11-09
(71)【出願人】
【識別番号】391002166
【氏名又は名称】株式会社不二工機
(74)【代理人】
【識別番号】110000062
【氏名又は名称】弁理士法人第一国際特許事務所
(72)【発明者】
【氏名】冨塚 真弘
(72)【発明者】
【氏名】岡田 隆雄
(72)【発明者】
【氏名】伊坂 充晶
【テーマコード(参考)】
3H057
【Fターム(参考)】
3H057AA04
3H057BB32
3H057CC06
3H057DD04
3H057HH18
(57)【要約】
【課題】製造コストの増加の程度を抑えつつ、ダイアフラムの局所的変形などを抑制できる膨張弁を提供する。
【解決手段】膨張弁は、冷媒流路と、前記冷媒流路に連通孔を介して連通する凹部とを備えた弁本体と、ケースと、前記ケースに取り付けられたダイアフラムと、前記ケース内で前記ダイアフラムに当接するストッパ部材とを備え、前記凹部に取り付けられるパワーエレメントと、前記ストッパ部材に一端を当接させ、前記弁本体に対して移動可能な作動棒と、前記ストッパ部材と、前記凹部内で前記ストッパ部材に対向する対向壁との間に配置されたバリア部材と、を有し、前記バリア部材は、弾性変形可能な素材から中空筒状に形成され、前記連通孔を囲うように配置されており、前記弁本体に組付けられた状態で少なくとも一部が弾性変形し、前記弾性変形によって生じた弾性力により、前記バリア部材は前記ストッパ部材と前記対向壁とに対して密着する。
【選択図】
図1
【特許請求の範囲】
【請求項1】
冷媒流路と、前記冷媒流路に連通孔を介して連通する凹部とを備えた弁本体と、
ケースと、前記ケースに取り付けられたダイアフラムと、前記ケース内で前記ダイアフラムに当接するストッパ部材とを備え、前記凹部に取り付けられるパワーエレメントと、
前記ストッパ部材に一端を当接させ、前記弁本体に対して移動可能な作動棒と、
前記ストッパ部材と、前記凹部内で前記ストッパ部材に対向する対向壁との間に配置されたバリア部材と、を有し、
前記バリア部材は、弾性変形可能な素材から中空筒状に形成され、前記連通孔を囲うように配置されており、前記弁本体に組付けられた状態で少なくとも一部が弾性変形し、前記弾性変形によって生じた弾性力により、前記バリア部材は前記ストッパ部材と前記対向壁とに対して密着する、
ことを特徴とする膨張弁。
【請求項2】
前記バリア部材は、前記弁本体に組付けられた状態で弾性変形する変形部を有し、前記変形部は、前記膨張弁の軸線方向の一方側に向かうにつれて縮径する中空円錐部である、
ことを特徴とする請求項1に記載の膨張弁。
【請求項3】
前記中空円錐部は、前記ストッパ部材側の径が前記対向壁側の径よりも小さい、
ことを特徴とする請求項2に記載の膨張弁。
【請求項4】
前記中空円錐部は、前記ストッパ部材側の径が前記対向壁側の径よりも大きい、
ことを特徴とする請求項2に記載の膨張弁。
【請求項5】
前記バリア部材は、前記凹部の側壁又は前記パワーエレメントのケースに当接することにより、前記膨張弁の軸線に直交する方向の移動が制限される、
ことを特徴とする請求項1~4のいずれか一項に記載の膨張弁。
【請求項6】
前記側壁にくぼみが形成され、前記バリア部材の一部が前記くぼみに係合する、
ことを特徴とする請求項5に記載の膨張弁。
【請求項7】
前記バリア部材は、前記作動棒の外周に当接することにより、前記膨張弁の軸線に直交する方向の移動が制限される、
ことを特徴とする請求項1~4のいずれか一項に記載の膨張弁。
【請求項8】
前記バリア部材は、前記弁本体に組付けられた状態で弾性変形する変形部を有し、前記変形部は、蛇腹構造である、
ことを特徴とする請求項1に記載の膨張弁。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、膨張弁に関する。
【背景技術】
【0002】
従来、例えば自動車に搭載される空調装置に用いる冷凍サイクルにおいては、冷媒の通過量を温度に応じて調整する感温式の温度膨張弁が使用されている。このような温度膨張弁において、封入した作動ガスの圧力で弁体を駆動するパワーエレメントが採用されている。
【0003】
一般的なパワーエレメントは、ダイアフラムと、ダイアフラムとの間で作動ガスが封入される圧力作動室を形成する上蓋部材と、中央部に貫通孔を備えるとともにダイアフラムに関して上蓋部材と反対側に配置される受け部材と、ダイアフラムと受け部材との間に形成される流体流入室に配置され、弁体を駆動する作動棒に連結されたストッパ部材と、を備える。ダイアフラムは、薄く可撓性を有する金属製の板から形成されている。
【0004】
流体流入室に流入する冷媒の温度が低ければ、冷媒が圧力作動室の作動ガスから熱を奪うことで作動ガスの収縮が生じ、また該冷媒の温度が高ければ、冷媒が圧力作動室の作動ガスに熱を付与することで作動ガスの膨張が生じる。作動ガスの収縮/膨張に応じて生じるダイアフラムの変形量に応じて、作動棒が弁体を開閉させる。
【0005】
ところで、一般的な冷凍サイクルにおいては、冷媒に混入した異物を捕獲すべく、冷凍サイクルのメインとなる流路中にストレーナが設けられている。しかしながら、微小な異物がストレーナを通過してパワーエレメント内に進入することがある。かかる場合、受け部材とダイアフラムとの間に異物が入り込むことで、ダイアフラムの局所的な変形などを招くおそれがある。これに対し、微小な異物まで捕獲できる性能をストレーナに持たせることも一案であるが、それによりストレーナにおける圧損が高まり、冷凍サイクルにおける冷媒の搬送効率が悪化するおそれがある。
【0006】
これに対し特許文献1には、パワーエレメントの流体流入室の入り口にフィルタが設けられる膨張弁が開示されている。特許文献1に開示される膨張弁は、作動棒を内部に配置するホルダを有している。当該ホルダは流体流入室と弁本体に形成された流路とをつなぐ連通孔を有するとともに、当該連通孔にフィルタが設けられている。フィルタはホルダにインサート成形されている。このように、メインの流路に設けられるフィルタとは別に、流入流路の入口にフィルタを設けることで、当該フィルタに微小な異物まで捕獲できる性能を持たせても、冷凍サイクルのメインの流路の圧損が高くなることを防止できる。
【先行技術文献】
【特許文献】
【0007】
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、特許文献1に開示された膨張弁は、ホルダを備えるとともに、ホルダにフィルタをインサート成形する構成であることから、膨張弁の構造が複雑になっており、結果、膨張弁の製造コストの増大を招いている。
【0009】
そこで本発明は、製造コストの増加の程度を抑えつつ、ダイアフラムの局所的変形などを抑制できる膨張弁を提供することを目的とする。
【課題を解決するための手段】
【0010】
上記目的を達成するために、本発明による膨張弁は、
冷媒流路と、前記冷媒流路に連通孔を介して連通する凹部とを備えた弁本体と、
ケースと、前記ケースに取り付けられたダイアフラムと、前記ケース内で前記ダイアフラムに当接するストッパ部材とを備え、前記凹部に取り付けられるパワーエレメントと、
前記連通孔に挿通され、前記ストッパ部材に一端を当接させた作動棒と、
前記ストッパ部材と、前記凹部内で前記ストッパ部材に対向する対向壁との間に配置されたバリア部材と、を有し、
前記バリア部材は、弾性変形可能な素材から中空筒状に形成され、前記連通孔を囲うように配置されており、前記弁本体に組付けられた状態で少なくとも一部が弾性変形し、前記弾性変形によって生じた弾性力により、前記バリア部材は前記ストッパ部材と前記対向壁とに対して密着する、ことを特徴とする。
【発明の効果】
【0011】
本発明により、製造コストの増加の程度を抑えつつ、ダイアフラムの局所的変形などを抑制できる膨張弁を提供することができる。
【図面の簡単な説明】
【0012】
【
図1】
図1は、第1の実施形態における膨張弁を、冷媒循環システムに適用した例を模式的に示す概略断面図である。
【
図2】
図2は、第1の実施形態における膨張弁を示す概略断面図である。
【
図4】
図4は、第1変形例にかかるバリア部材の周辺を拡大して示す断面図である。
【
図5】
図5は、第2変形例にかかるバリア部材の斜視図である。
【
図6】
図6は、第2の実施形態における膨張弁を示す概略断面図である。
【
図7】
図7は、第2の実施形態における膨張弁を示す概略断面図である。
【
図8】
図8は、第3の実施形態における膨張弁を示す概略断面図である。
【
図9】
図9は、第4の実施形態における膨張弁を示す概略断面図である。
【
図10】
図10は、第5の実施形態における膨張弁を示す概略断面図である。
【
図11】
図11は、第6の実施形態における膨張弁を示す概略断面図である。
【
図12】
図12は、第7の実施形態にかかるバリア部材の断面図である。
【発明を実施するための形態】
【0013】
以下、図面を参照して、本発明にかかる実施形態について説明する。
【0014】
(方向の定義)
本明細書において、弁体3から作動棒5に向かう方向を「上方向」と定義し、作動棒5から弁体3に向かう方向を「下方向」と定義する。よって、本明細書では、膨張弁1の姿勢に関わらず、弁体3から作動棒5に向かう方向を「上方向」と呼ぶ。また、「円筒」は中空円筒と中実円筒を含む。
【0015】
(第1の実施形態)
図1及び
図2を参照して、第1の実施形態におけるパワーエレメントを含む膨張弁1の概要について説明する。
図1は、本実施形態における膨張弁1を、冷媒循環システム100に適用した例を模式的に示す概略断面図である。
図1は、後述する連通状態のうち、最大開弁状態にある膨張弁1を示している。
図2は、後述する非連通状態にある膨張弁1を示す概略断面図である。本実施形態では、膨張弁1は、コンプレッサ101と、コンデンサ102と、エバポレータ104とに流体接続されている。膨張弁1の作動棒5の中心線を軸線Lとする。
【0016】
図1及び
図2において、膨張弁1は、弁室VCを備える弁本体2と、弁体3と、付勢装置4と、作動棒5と、パワーエレメント8を具備する。
【0017】
弁本体2は、弁室VCに加え、第1流路21と、第2流路22と、中間室221と、戻り流路(冷媒流路ともいう)23とを備える。第1流路21は供給側流路であり、弁室VCには、供給側流路を介して冷媒が供給される。第2流路22は排出側流路であり、弁室VC内の流体は、通流孔27、中間室221及び排出側流路を介して膨張弁外に排出される。
【0018】
第1流路21と弁室VCとは、第1流路21より小径の接続路21aにより連通している。弁室VCと中間室221とは、弁座20及び通流孔27を介して連通している。
【0019】
中間室221の上方に形成された作動棒挿通孔28は、作動棒5をガイドする機能を有し、作動棒挿通孔28の上方に形成された環状凹部29は、リングばね6を収容する機能を有する。リングばね6は、作動棒5の外周に複数のばね片を当接させて、所定の付勢力を付与するものである。
【0020】
弁体3は弁室VC内に配置される。
図2に示すように弁体3が弁本体2の弁座20に着座しているとき、通流孔27の冷媒の流れが制限される。この状態を非連通状態という。ただし、弁体3が弁座20に着座した場合でも、制限された量の冷媒を流すこともある。一方、弁体3が弁座20から離間しているとき、通流孔27を通過する冷媒の流れが増大する。この状態を連通状態という。
図1に示す膨張弁1は、連通状態において弁体3が最大に開いた状態である最大開弁状態にある。
【0021】
作動棒5は、通流孔27に所定の隙間を持って挿通されている。作動棒5の下端は、弁体3の上面に接触している。作動棒5の上端は、後述するストッパ部材84の嵌合孔84cに嵌合している。
【0022】
作動棒5は、付勢装置4による付勢力に抗して弁体3を開弁方向に押圧することができる。作動棒5が下方向に移動するとき、弁体3は、弁座20から離間し、膨張弁1が開状態となる。
【0023】
図1及び
図2において、付勢装置4は、断面円形の線材を螺旋状に巻いたコイルばね41と、弁体サポート42と、ばね受け部材43とを有する。
【0024】
弁体サポート42は、コイルばね41の上端に取り付けられており、その上面には球状の弁体3が溶接され、両者は一体となっている。
【0025】
コイルばね41の下端を支持するばね受け部材43は、弁本体2に対して螺合可能となっていて、弁室VCを密封する機能と、コイルばね41の付勢力を調整する機能とを有する。
【0026】
次に、パワーエレメント8について説明する。パワーエレメント8は、栓81と、上蓋部材82と、ダイアフラム83と、受け部材86と、ストッパ部材84とを有する。上蓋部材82と受け部材86とで、ケースを構成する。ここでも、上蓋部材82側が上側であり、受け部材86側が下側であるものとする。
【0027】
上蓋部材82は、例えば金属製の板材にプレス加工を施すことによって成形される。上蓋部材82は、環状の外側フランジ部82aと、外側フランジ部82aの内周に連設されドーム状に盛り上がった中央部82bとを有し、中央部82bの中央には開口82cが形成され、栓81により封止可能となっている。
【0028】
上蓋部材82に対向する受け部材86は、例えば金属製の板材にプレス加工を施すことによって成形される。受け部材86は、外側フランジ部82aの外径とほぼ同じ外径を持つ第1フランジ部86aと、第1フランジ部86aの内周に連設され下側に向かう中空の第1円筒部86bと、第1円筒部86bの下端に連設された環状の第2フランジ部86cと、第2フランジ部86cの内周に連設された中空の第2円筒部86dとを有している。第2円筒部86dの外周には、雄ねじ86eが形成されている。
【0029】
弁本体2の上端には、ストッパ部材84に対向する底壁(対向壁ともいう)2dを備えた円筒形状の凹部2aが形成され、凹部2aの内周には、雄ねじ86eに螺合可能な雌ねじ2cが形成されている。
【0030】
上蓋部材82と受け部材86との間に配置されるダイアフラム83は、薄く可撓性を有する金属(たとえばSUS)製の板材からなり、上蓋部材82及び受け部材86の外径とほぼ同じ外径を有する。
【0031】
ストッパ部材84は、中実円筒状の本体84aと、本体84aの上端に連設され径方向に延在する円盤部84bと、本体84aの下面中央に形成された袋穴状の嵌合孔84cとを有する。円盤部84bは、ダイアフラム83の中央部下面と接している。
【0032】
ストッパ部材84の下面と、凹部2aの底壁2dとの間であって、後述する連通孔2bを囲うようにしてその周囲にバリア部材87が配置されている。
【0033】
図3は、バリア部材87の斜視図である。バリア部材87は、弾性変形可能な樹脂材から中空筒状に形成され、環状の小径部87aと、下方に向かうにつれて拡径する中空円錐部(変形部ともいう、以下同じ)87bと、小径部87aよりも大径である環状の大径部87cとを連設してなる。小径部87aは、中空円錐部87bから径方向内側に延在し、大径部87cは、中空円錐部87bから径方向外側に延在する。バリア部材87の肉厚は均一であると好ましい。バリア部材87を、異物は通過できないが液化した冷媒は通過可能な材料から形成してもよい。この材料は、例えば、異物は通過できないが液化した冷媒は通過可能なメッシュ又はスポンジ材である。バリア部材87の上端形状は、ストッパ部材84の下端形状と一致していなくてもよい。
【0034】
本実施形態では、バリア部材87の寸法は、小径部87aの内径が、連通状態及び非連通状態の両状態で作動棒5の外径より大きくなっている寸法に設定されていると好ましく、それによりバリア部材87の弾性変形機能を確保できる。また、バリア部材87の寸法は、大径部87cの外径が、非連通状態で凹部2aの内径と等しくなっている寸法に設定されていると好ましく、それにより凹部2a内にバリア部材87を設置したときに、凹部2a内でバリア部材87が軸線Lに交差する方向に移動することを制限できる。
【0035】
バリア部材87は、膨張弁1の非連通状態では、ストッパ部材84及び凹部2aの底壁2dとの間で圧縮されている。そして、バリア部材87は、この圧縮により生じる復元力によって、ストッパ部材の下端および凹部2aの底壁2dに当接する。
【0036】
さらに、バリア部材87は、
図2に示すように膨張弁1が非連通状態から
図1に示すように最大開弁状態になる過程で、圧縮されて変形する。本実施形態では、バリア部材87は、例えば、小径部87a及び中空円錐部87bが変形する。具体的には、小径部87aが径方向で内方に変位するように変形する。なお、
図1及び
図2の間で生じるバリア部材87の変形は、わかりやすくするために誇張して描かれている。また、
図1及び
図2の間で生じるバリア部材87の変形は、一例である。膨張弁1の非連通状態及び最大開弁状態の間で生じるバリア部材の変形は、バリア部材87の寸法等に応じて生じる。例えば、バリア部材87は、大径部87cが径方向で外方に変位するように、中空円錐部87b及び大径部87cが変形してもよい。
【0037】
次に、パワーエレメント8の組み立て手順を説明する。ダイアフラム83と受け部材86との間にストッパ部材84を配置しつつ、上蓋部材82の外側フランジ部82aと、ダイアフラム83の外周部と、受け部材86の第1フランジ部86aをこの順序で重ね合わせ軸線方向に押圧しつつ、その外周を例えばTIG溶接やレーザ溶接、プラズマ溶接等により溶接して全周にわたって溶接し、これらを一体化する。
【0038】
続いて、上蓋部材82に形成された開口82cから、上蓋部材82とダイアフラム83とで囲われる空間(圧力作動室POという)内に作動ガスを封入した後、開口82cを栓81で封止し、更に例えばプロジェクション溶接を用いて、栓81を上蓋部材82に固定する。
【0039】
このとき、圧力作動室POに封入された作動ガスにより、ダイアフラム83の中央部は、受け部材86側に張り出す形で圧力を受けるため、ダイアフラム83と受け部材86とで囲われる下部空間(冷媒流入室)LSに配置されたストッパ部材84の上面に、ダイアフラム83の中央部が当接して支持される。
【0040】
以上のようにアッセンブリ化したパワーエレメント8を弁本体2に組み付ける前に、バリア部材87を弁本体2に取り付ける。具体的には、大径部87cを底壁2dに当接させるようにして、バリア部材87を凹部2a内に配置する。このとき、大径部87cの外周が凹部2aの側壁内周に当接することで、バリア部材87の軸線直交方向の移動が制限される。バリア部材87は、工具を用いることなく作業者の手で容易に設置できるとともに、既存の膨張弁1に対しても設計変更することなく後付けが可能である。ただし、バリア部材87を、接着剤やねじなどを用いて底壁2dに固定してもよい。
【0041】
その後、パワーエレメント8の第2円筒部86dの下端外周に形成した雄ねじ86eを、弁本体2の凹部2aの内周に形成した雌ねじ2cに螺合させ、雄ねじ86eを雌ねじ2cに対して螺進させてゆくと、受け部材86の第2フランジ部86cの下面が弁本体2の上端面に当接する。これによりパワーエレメント8を弁本体2に固定できる。
【0042】
このとき、小径部87aの上面はストッパ部材84の下面に当接し、また大径部87cの下面は底壁2dの上面に当接しているため、それぞれ全周が密着した状態となり、さらに主としてバリア部材87の中空円錐部87bが弾性変形する。その際に生じた弾性変形力により、小径部87aの上面はストッパ部材84の下面に向かって付勢され、また大径部87cの下面は底壁2dの上面に向かって付勢される。なお、組付けた状態で、第2円筒部86dの下端により、バリア部材87の大径部87cの上端面を押圧するようしてもよい。
【0043】
図1に示すように、最大開弁状態では、バリア部材87は、ストッパ部材84により押圧されることで、バリア部材87の上端が径方向で内側に移動するように変形する。または、バリア部材87の形状や各部分の寸法によっては、本実施形態では小径部87a、中空円錐部87b、及び大径部87cの寸法によっては、最大開弁状態ではストッパ部材84に押圧されることで、小径87aが中空円円錐部87bの上端から下方に屈曲するように変形する場合もある。
【0044】
組付けたパワーエレメント8と弁本体2との間には、パッキンPKが介装され、下部空間LSにつながる凹部2a内の空間が封止されて、凹部2aからの冷媒のリークを防止する。かかる状態で、パワーエレメント8の下部空間LSは、凹部2aの底壁2dと戻り流路23との間に形成された連通孔2bを介して、戻り流路23と連通している。その後、弁本体2の下方から作動棒5を挿入し、その上端を連通孔2b及びバリア部材87の小径部87aを通過させて、ストッパ部材84の嵌合孔84cに嵌合させる。さらに、弁体3や付勢装置4を組み込むことで、膨張弁1が完成する。
【0045】
(膨張弁の動作)
図1及び
図2を参照して、膨張弁1の動作例について説明する。コンプレッサ101で加圧された冷媒は、コンデンサ102で液化され、膨張弁1に送られる。また、膨張弁1で断熱膨張された冷媒はエバポレータ104に送り出され、エバポレータ104で、エバポレータの周囲を流れる空気と熱交換される。エバポレータ104から戻る冷媒は、膨張弁1(より具体的には、戻り流路23)を通ってコンプレッサ101側へ戻される。このとき、エバポレータ104を通過することで、第2流路22内の流体圧は、戻り流路23の流体圧より大きくなる。
【0046】
膨張弁1には、コンデンサ102から高圧冷媒が供給される。より具体的には、コンデンサ102からの高圧冷媒は、第1流路21を介して弁室VCに供給される。
【0047】
図2に示すように弁体3が弁座20に着座しているとき(非連通状態のとき)には、弁室VCから通流孔27、中間室221及び第2流路22を通ってエバポレータ104へ送り出される冷媒の流量が制限される。他方、
図1に示すように弁体3が弁座20から離間しているとき(連通状態のとき)には、弁室VCから通流孔27、中間室221及び第2流路22を通って、エバポレータ104へ送り出される冷媒の流量が増大する。膨張弁1の閉状態と開状態との間の切り換えは、ストッパ部材84を介してパワーエレメント8に接続された作動棒5によって行われる。
【0048】
図1及び
図2において、パワーエレメント8の内部には、ダイアフラム83により仕切られた圧力作動室POと下部空間LSとが設けられている。このため、圧力作動室PO内の作動ガスが液化されると、ダイアフラム83が上昇するため、コイルばね41の付勢力に応じてストッパ部材84及び作動棒5が上方向に移動する。ストッパ部材84が上昇することにより、バリア部材87の弾性変形量が低下するが、弾性変形から完全に復帰しないため、小径部87aの上面はストッパ部材84の下面に向かって付勢され、また大径部87cの下面は底壁2dの上面に向かって付勢されたままである。ただし、気化した冷媒は、バリア部材87と、ストッパ部材84又は底壁2dとの間の隙間を通って通過可能であってもよい。
【0049】
一方、液化された作動ガスが気化すると、ダイアフラム83とストッパ部材84が下方に押圧されるため、作動棒5は下方向に移動する。ストッパ部材84の下降に応じて、バリア部材87の弾性変形量が増大するため、ストッパ部材84の下降を妨げることが抑制される。バリア部材87は、中空円錐部87bを有するため、その縮径側端部(ここでは上端部)がさらに縮径するように弾性変形が可能である。明らかであるが、小径部87aの上面はストッパ部材84の下面に向かって付勢され、また大径部87cの下面は底壁2dの上面に向かって付勢されたままである。このようにして、膨張弁1の開状態と閉状態との間の切り換えが行われる。
【0050】
更に、気化した冷媒は、バリア部材87の内側から、ストッパ部材84又は底壁2dとの間の隙間を通って、パワーエレメント8の下部空間LSまで通過可能である。このため、戻り流路23を流れる冷媒の温度・圧力に応じて、圧力作動室PO内の作動ガスの体積が変化し、作動棒5が駆動される。換言すれば、
図1及び
図2に記載の膨張弁1では、エバポレータ104から膨張弁1に戻る冷媒の温度・圧力に応じて、膨張弁1からエバポレータ104に向けて供給される冷媒の量が自動的に調整される。なお、気化した冷媒がバリア部材87によって遮断された場合でも、ストッパ部材84を介して圧力作動室POへの熱伝達が行われるため、パワーエレメント8の動作は阻害されない。
【0051】
本実施形態によれば、ストッパ部材84の軸線方向位置にかかわらず、バリア部材87の上端がストッパ部材84に当接し、バリア部材87の下端は底壁2dに当接するため、たとえ冷媒中に異物が混入していた場合でも、バリア部材87の内側から外側に異物が通過することができない。このため、冷媒中の異物はダイアフラム83まで到達できないため、ダイアフラム83の異物噛み込みなどを抑制できる。結果、ダイアフラムの局所的変形などを抑制できる。さらに、比較的簡素な形状のバリア部材87をストッパ部材84と底壁2dとの間に配置する構成であることから、膨張弁1の製造コストの増加の程度を抑えることができる。バリア部材87の径はなるべく大きくした方が、パワーエレメント8の動作に対する影響が少ないので好ましい。
【0052】
(第1変形例)
図4は、第1変形例にかかるバリア部材87Aの周辺を拡大して示す断面図である。本変形例においては、弁本体2A及びバリア部材87Aの構成のみが第1の実施形態に対して異なり、それ以外の構成については、第1の実施形態と同様であるため重複説明を省略する。
図4は、最大開弁状態にある膨張弁1を示している。
【0053】
弁本体2Aにおいて、凹部2Aaの形状のみが第1の実施形態と異なり、それ以外の構成については、第1の実施形態と同様であるため重複説明を省略する。凹部2Aaは、その側壁2Aeの下端を、径方向外側に切削加工することで、底壁2Adにフラットにつながる周溝(くぼみともいう)2Afを形成している。周溝2Afは、雌ねじ2Acよりも径方向外側に位置すると好ましい。
【0054】
バリア部材87Aは、第1の実施形態と同様に、環状の小径部87Aaと、下方に向かうにつれて拡径する中空円錐部87Abと、小径部87Aaよりも大径である環状の大径部87Acとを連設してなるが、大径部87Acの外径が、凹部2Aaの側壁2eの内径より大きくなっている。それ以外のバリア部材87Aの構成については、第1の実施形態と同様であるため重複説明を省略する。
【0055】
大径部87Acの外径は、周溝2Afの内径に略等しく、大径部87Acの肉厚は、周溝2Afの軸線方向幅に略等しくなっている。バリア部材87Aの組付時には、縮径するように大径部87Acを弾性変形させながら、バリア部材87を凹部2Aa内に挿入する。大径部87Acが底壁2Adに到達した時点で大径部87Acを弾性変形から復帰させると、大径部87Acは拡径することで周溝2Af内に進入して周溝2Afに係合する。この係合により、バリア部材87Aは凹部2Aaに対して軸線方向及び軸線直交方向に固定される。本変形例は、後述する実施形態においても同様に適用できる。
【0056】
(第2変形例)
図5は、第2変形例にかかるバリア部材87Bの斜視図である。バリア部材87Bは、下方に向かうにつれて拡径する中空円錐部87Bbのみからなる。すなわち、バリア部材87Bは小径部及び大径部を有していないため、第1の実施形態に比較してさらに弾性変形しやすくなっている。ただし、小径部及び大径部の一方を配設してもよい。それ以外のバリア部材87Bの構成については、第1の実施形態と同様であるため重複説明を省略する。本変形例は、後述する実施形態においても同様に適用できる。
【0057】
(第2の実施形態)
図6及び
図7は、本実施形態における膨張弁1Cを示す概略断面図である。
図6は、非連通状態にある膨張弁1Cを示している。
図7は、連通状態にある膨張弁1Cを示している。
図7は、最大開弁状態を示している。本実施形態においては、第1の実施形態に対してバリア部材87Cの構成のみが異なり、それ以外の構成については、第1の実施形態と同様であるため重複説明を省略する。
【0058】
バリア部材87Cは、環状の大径部87Caと、下方に向かうにつれて縮径する中空円錐部87Cbと、大径部87Caよりも小径である環状の小径部87Ccとを連設してなる。大径部87Caの外径は、受け部材86の第2円筒部86dの内径と略等しくなっており、バリア部材87Cの組付け時に大径部87Caの外周が第2円筒部86dの内周に当接する。本実施形態では、受け部材86が、バリア部材87Cの軸線直交方向の移動を制限する。
【0059】
小径部87Ccの外径は、連通孔2bの内径より大きく、雌ねじ2cの内径より小さい。バリア部材87Cは、第1の実施形態のバリア部材87の天地を逆とした形状と類似する。それ以外のバリア部材87Aの構成については、第1の実施形態と同様であるため重複説明を省略する。
【0060】
なお、本実施形態においても、バリア部材87Cは、膨張弁1の非連通状態では、ストッパ部材84及び凹部2aの底壁2dとの間で圧縮されている。そして、バリア部材87Cは、この圧縮により生じる復元力によって、ストッパ部材84の下端および凹部2aの底壁2dに当接する。
さらに、バリア部材87Cは、
図6に示すように膨張弁1が非連通状態から
図7に示すように最大開弁状態になる過程で圧縮されて変形する。本実施形態では、例えば、小径部87Cc及び中空円錐部87Cbが変形する。具体的には、小径部8Ccが径方向で内方に変位するように変形する。なお、
図6及び
図7の間で生じるバリア部材87Cの変形は、わかりやすくするために誇張して描かれている。また、
図6及び
図7の間で生じるバリア部材87Cの変形は、一例である。膨張弁1の非連通状態及び最大開弁状態の間で生じるバリア部材87Cの変形は、バリア部材87の形状や寸法等に応じて生じる。例えば、バリア部材87Cは、中空円錐部87Cb及び大径部87Caが変形し、大径部87Caが径方向で外方に変位するように変形するように形成されてもよい。
【0061】
(第3の実施形態)
図8は、本実施形態における膨張弁1Dを示す概略断面図である。
図8は、連通状態にある膨張弁1Dを示している。
図8は、最大開弁状態を示している。本実施形態においては、第1の実施形態に対してバリア部材87Dの構成のみが異なり、それ以外の構成については、第1の実施形態と同様であるため重複説明を省略する。
【0062】
バリア部材87Dは、環状の小径部87Daと、下方に向かうにつれて拡径する中空円錐部87Dbと、小径部87Daよりも大径である環状の大径部87Dcとを連設してなる。大径部87Dcの外径は、連通状態及び非連通状態の両状態において、連通孔2bの内径より大きく、雌ねじ2cの内径より小さくなる寸法を有している。小径部87Daの内径は、最大開弁状態において、これを貫通する作動棒5の外径よりわずかに大きくなっていて一部が当接可能であり、小径部87Daと作動棒5との隙間を介して、バリア部材87Dの内部の冷媒がストッパ部材84の下面に到達可能となっている。バリア部材87Dの寸法は、小径部87Daと作動棒5との間の隙間が、膨張弁1が非連通状態及び連通状態のいずれの状態であっても確保されるように、設定されている。例えば、バリア部材87Dが、膨張弁1の連通状態において圧縮されて変形することで小径部87Daが径方向で内方に変位するように変形する場合においても、小径部87Daと作動棒5との間に冷媒が流動可能な隙間が確保されるように、バリア部材87Dの寸法が設定されている。
【0063】
本実施形態では、作動棒5が、バリア部材87Dの軸線直交方向の移動を制限する。それ以外のバリア部材87Dの構成については、第1の実施形態と同様であるため重複説明を省略する。
【0064】
(第4の実施形態)
図9は、本実施形態における膨張弁1Eを示す概略断面図である。
図9は、連通状態にある膨張弁1Eを示している。
図9は、最大開弁状態を示している。本実施形態においては、第1の実施形態に対してバリア部材87Eの構成のみが異なり、それ以外の構成については、第1の実施形態と同様であるため重複説明を省略する。
【0065】
バリア部材87Eは、環状の大径部87Eaと、下方に向かうにつれて縮径する中空円錐部87Ebと、大径部87Eaよりも小径である環状の小径部87Ecとを連設してなる。換言すれば、バリア部材87Eは、第3の実施形態のバリア部材87Dの天地を逆とした形状と類似する。小径部87Ecの外径は、連通状態及び非連通状態の両状態において、連通孔2bの内径より大きく、大径部87Eaの外径は、雌ねじ2cの内径より小さくなる寸法を有している。また、小径部87Ecの内径は、これを貫通する作動棒5の外径よりわずかに大きくなっていて小径部87Eの一部が作動棒5に当接可能であり、戻り流路23内の冷媒が、小径部87Ecと作動棒5との隙間を介して、バリア部材87Eの内部へと進入してストッパ部材84の下面に到達可能となっている。
【0066】
バリア部材87Eの寸法は、小径部87Eaと作動棒5との間の隙間が、膨張弁1が非連通状態及び連通状態のいずれの状態であっても確保されるように、設定されている。例えば、バリア部材87Eが、膨張弁1の連通状態において圧縮されて変形することで小径部87Eaが径方向で内方に変位するように変形する場合においても、小径部87Eaと作動棒5との間に冷媒が流動可能な隙間が確保されるように、バリア部材87Eの寸法が設定されている。
【0067】
本実施形態では、作動棒5が、バリア部材87Eの軸線直交方向の移動を制限する。それ以外のバリア部材87Eの構成については、第1の実施形態と同様であるため重複説明を省略する。
【0068】
(第5の実施形態)
図10は、本実施形態における膨張弁1Fを示す概略断面図である。
図10は、連通状態にある膨張弁1Fを示している。
図10は、最大開弁状態を示している。本実施形態においては、第1の実施形態に対してバリア部材87Fの構成のみが異なり、それ以外の構成については、第1の実施形態と同様であるため重複説明を省略する。
【0069】
バリア部材87Fは、環状の小径部87Faと、下方に向かうにつれて拡径する中空円錐部87Fbと、小径部87Faよりも大径である環状の大径部87Fcとを連設してなる。バリア部材87Fの寸法は、膨張弁1が最大開弁状態にあるときに、大径部87Fcの外径が凹部2aの側壁内径に略等しくなり小径部87Faの外径がストッパ部材84の本体84aの外径より大きくかつ受け部材86の第2円筒部86dの内径より小さくなるように寸法に設定されている。また小径部87Faの内径は、これを貫通する作動棒5の外径よりわずかに大きくなっていて小径部87Faの一部が作動棒5に当接可能であり、小径部87Faと作動棒5との隙間を介して、バリア部材87Fの内部の冷媒がストッパ部材84の下面に到達可能となっている。
【0070】
また、バリア部材87Fの寸法は、小径部87Faと作動棒5との間の隙間が、膨張弁1が非連通状態及び連通状態のいずれの状態であっても確保されるように、設定されている。例えば、バリア部材87Fが、膨張弁1の連通状態において圧縮されて変形することで小径部87Faが径方向で内方に変位するように変形する場合においても、小径部87Faと作動棒5との間に冷媒が流動可能な隙間が確保されるように、バリア部材87Fの寸法が設定されている。
【0071】
本実施形態では、凹部2aの側壁が、バリア部材87Fの軸線直交方向の移動を制限する。それ以外のバリア部材87Fの構成については、第1の実施形態と同様であるため重複説明を省略する。
【0072】
(第6の実施形態)
図11は、本実施形態における膨張弁1Gを示す概略断面図である。
図11は、連通状態にある膨張弁1Gを示している。
図11は、最大開弁状態を示している。本実施形態においては、第1の実施形態に対してバリア部材87Gの構成のみが異なり、それ以外の構成については、第1の実施形態と同様であるため重複説明を省略する。
【0073】
バリア部材87Gは、環状の大径部87Gaと、下方に向かうにつれて縮径する中空円錐部87Gbと、大径部87Gaよりも小径である環状の小径部87Gcとを連設してなるが、大径部87Gaの外径は、受け部材86の第2円筒部86dの内径と略等しくなっており、組付け時に大径部87Gaの外周が第2円筒部86dの内周に当接する。本実施形態では、受け部材86が、バリア部材87Gの軸線直交方向の移動を制限する。
【0074】
バリア部材87Gは、第5の実施形態のバリア部材87Fの天地を逆とした形状と類似する。小径部87Gcの外径は、連通孔2bの内径より大きい。また、小径部87Gcの内径は、これを貫通する作動棒5の外径よりわずかに大きくなっていて小径部87Gcの一部が作動棒5に当接可能であり、戻り流路23内の冷媒が、小径部87Gcと作動棒5との隙間を介して、バリア部材87Gの内部へと進入してストッパ部材84の下面に到達可能となっている。
【0075】
なお、バリア部材87Gの寸法は、小径部87Gaと作動棒5との間の隙間が膨張弁1が非連通状態及び連通状態のいずれの状態であっても確保されるように、設定されている。例えば、バリア部材87Gが、膨張弁1の連通状態において圧縮されて変形することで小径部87Gaが径方向で内方に変位するように変形する場合においても、小径部87Gaと作動棒5との間に冷媒が流動可能な隙間が確保されるように、バリア部材87Gの寸法が設定されている。
【0076】
それ以外のバリア部材87Gの構成については、第1の実施形態と同様であるため重複説明を省略する。
【0077】
(第7の実施形態)
図12は、第7の実施形態にかかるバリア部材87Hの断面図である。本実施形態においては、バリア部材87Hは、弾性変形可能な樹脂素材からなり、上端環状部87Haと、径が周期的に変わる蛇腹構造を持つ蛇腹部(変形部ともいう)87Hbと、上端環状部87Haと略同径の下端環状部87Hcとを連設してなる。上端環状部87Haの外径は、ストッパ部材84の本体84aの外径より小さく、下端環状部87Hcの内径は、連通孔2bの内径より大きい。作動棒5がバリア部材87Hの内部を貫通する。
【0078】
図1を参照して、膨張弁にバリア部材87Hを組付けたとき、上端環状部87Haの上面はストッパ部材84の下面に当接し、また下端環状部87Hcの下面は底壁2dの上面に当接して、それぞれ全周が密着した状態となり、さらに主として蛇腹部87Hbが弾性変形する。その際に生じた弾性変形力により、上端環状部87Haの上面はストッパ部材84の下面に向かって付勢され、また下端環状部87Hcの下面は底壁2dの上面に向かって付勢される。このため、冷媒中に異物が混入していた場合でも、バリア部材87Hの内側から外側に異物が通過することができない。本実施形態を、上述した実施形態と組み合わせてもよい。
【0079】
なお、本発明は上述の実施形態に限定されない。本発明の範囲内において、上述の実施形態の任意の構成要素の変形が可能である。また、上述の実施形態において任意の構成要素の追加または省略が可能である。
【0080】
本明細書は、以下の発明の開示を含む。
(第1の態様)
冷媒流路と、前記冷媒流路に連通孔を介して連通する凹部とを備えた弁本体と、
ケースと、前記ケースに取り付けられたダイアフラムと、前記ケース内で前記ダイアフラムに当接するストッパ部材とを備え、前記凹部に取り付けられるパワーエレメントと、
前記連通孔に挿通され、前記ストッパ部材に一端を当接させた作動棒と、
前記ストッパ部材と、前記凹部内で前記ストッパ部材に対向する対向壁との間に配置されたバリア部材と、を有し、
前記バリア部材は、弾性変形可能な素材から中空筒状に形成され、前記連通孔を囲うように配置されており、前記弁本体に組付けられた状態で少なくとも一部が弾性変形し、前記弾性変形によって生じた弾性力により、前記バリア部材は前記ストッパ部材と前記対向壁とに対して密着する、
ことを特徴とする膨張弁。
【0081】
(第2の態様)
前記バリア部材は、前記弁本体に組付けられた状態で弾性変形する変形部を有し、前記変形部は、前記膨張弁の軸線方向の一方側に向かうにつれて縮径する中空円錐部である、
ことを特徴とする第1の態様の膨張弁。
【0082】
(第3の態様)
前記中空円錐部は、前記ストッパ部材側の径が前記対向壁側の径よりも小さい、
ことを特徴とする第2の態様の膨張弁。
【0083】
(第4の態様)
前記中空円錐部は、前記ストッパ部材側の径が前記対向壁側の径よりも大きい、
ことを特徴とする第2の態様の膨張弁。
【0084】
(第5の態様)
前記バリア部材は、前記凹部の側壁又は前記パワーエレメントのケースに当接することにより、前記膨張弁の軸線に直交する方向の移動が制限される、
ことを特徴とする第1の態様~第4の態様のいずれかの膨張弁。
【0085】
(第6の態様)
前記側壁にくぼみが形成され、前記バリア部材の一部が前記くぼみに係合する、
ことを特徴とする第1の態様~第5の態様のいずれかの膨張弁。
【0086】
(第7の態様)
前記バリア部材は、前記作動棒の外周に当接することにより、前記膨張弁の軸線に直交する方向の移動が制限される、
ことを特徴とする第1の態様~第4の態様のいずれかの膨張弁。
【0087】
(第8の態様)
前記バリア部材は、前記弁本体に組付けられた状態で弾性変形する変形部を有し、前記変形部は、蛇腹構造である、
ことを特徴とする第1の態様~第7の態様のいずれかの膨張弁。
【符号の説明】
【0088】
1、1C、1D、1E、1F、1G :膨張弁
2、2A :弁本体
3 :弁体
4 :付勢装置
5 :作動棒
6 :リングばね
8 :パワーエレメント
87、87A、87B、87C、87D、87E、87F、87G、87H:バリア部材
20 :弁座
21 :第1流路
22 :第2流路
221 :中間室
23 :戻り流路
27 :通流孔
28 :作動棒挿通孔
29 :環状凹部
41 :コイルばね
42 :弁体サポート
43 :ばね受け部材
81 :栓
82 :上蓋部材
83 :ダイアフラム
84 :ストッパ部材
86 :受け部材
100 :冷媒循環システム
101 :コンプレッサ
102 :コンデンサ
104 :エバポレータ
VC :弁室