IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ウォルトマン,スティーヴン,ビー.の特許一覧 ▶ チャン,テュリス,ワイ.の特許一覧

<>
  • 特開-異化マーカーの監視 図1
  • 特開-異化マーカーの監視 図2
  • 特開-異化マーカーの監視 図3
  • 特開-異化マーカーの監視 図4
  • 特開-異化マーカーの監視 図5
  • 特開-異化マーカーの監視 図6
  • 特開-異化マーカーの監視 図7
  • 特開-異化マーカーの監視 図8
  • 特開-異化マーカーの監視 図9
  • 特開-異化マーカーの監視 図10
  • 特開-異化マーカーの監視 図11
  • 特開-異化マーカーの監視 図12
  • 特開-異化マーカーの監視 図13
  • 特開-異化マーカーの監視 図14
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024069191
(43)【公開日】2024-05-21
(54)【発明の名称】異化マーカーの監視
(51)【国際特許分類】
   A61B 5/00 20060101AFI20240514BHJP
   G16H 50/20 20180101ALI20240514BHJP
【FI】
A61B5/00 102C
G16H50/20
【審査請求】有
【請求項の数】19
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2024015711
(22)【出願日】2024-02-05
(62)【分割の表示】P 2021506613の分割
【原出願日】2019-04-15
(31)【優先権主張番号】62/658,765
(32)【優先日】2018-04-17
(33)【優先権主張国・地域又は機関】US
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.ZIGBEE
(71)【出願人】
【識別番号】520404919
【氏名又は名称】ウォルトマン,スティーヴン,ビー.
【氏名又は名称原語表記】WALTMAN,Steven,B.
(71)【出願人】
【識別番号】520404920
【氏名又は名称】チャン,テュリス,ワイ.
【氏名又は名称原語表記】CHANG,Tylis,Y.
(74)【代理人】
【識別番号】110001302
【氏名又は名称】弁理士法人北青山インターナショナル
(72)【発明者】
【氏名】ウォルトマン,スティーヴン,ビー.
(72)【発明者】
【氏名】チャン,テュリス,ワイ.
(57)【要約】      (修正有)
【課題】健康と治療は、健康マーカーをモニタリングすることによって改善される。
【解決手段】一例では、本方法は、患者の生化学的マーカーの量を異なる時間に繰り返し測定するステップと、測定量を患者に関連するエントリとしてログに格納するステップと、複数のログエントリ間でマーカーの量を比較することによって格納された測定量を分析するステップと、最近のエントリが以前のログエントリと異なる場合、例えば、最近のエントリが閾値を超えて異なる場合、または複数の格納された測定量からベースラインレベルまたは正常なパターンが確立されて、最近のエントリが閾値を超えるベースラインからの変化である場合に、病気の状態を判定するステップとを含む。一定の偏差が見い出されると、患者に関するアラート状態が判定される。
【選択図】図1
【特許請求の範囲】
【請求項1】
患者の生化学的異化マーカーの量を異なる時間に繰り返し測定して、複数の測定量を取得するステップと、
複数の測定量を患者に関連付けられたログに保存するステップであって、各測定量が、それぞれの測定量に関連付けられたタイムスタンプを有する、ステップと、
患者の生化学的異化マーカーの複数の測定量の変化に基づいて、患者の疾患値を求めるステップと、
求めた疾患値が閾値を超えている場合に、患者に関する病気の状態を判断するステップと、
病気の状態を示すアラートを生成するステップと、
病気の状態の原因を特定するように患者に助言するために、患者にアラートを送信するステップとを備えることを特徴とする方法。
【請求項2】
請求項1に記載の方法において、
異化マーカーが、例えば尿、汗または呼気中に検出される、尿素、尿酸、乳酸またはアンモニアの濃度のうちの1または複数であることを特徴とする方法。
【請求項3】
請求項1または2に記載の方法において、
測定が、例えば指、耳たぶ、手首または腕での経皮測定を含むことを特徴とする方法。
【請求項4】
請求項1乃至3の何れか一項に記載の方法において、
測定が、ラマン分光器、中赤外線または遠赤外線分光器、核磁気共鳴分光器、質量分析計、ガスクロマトグラフまたは選択的イオンプローブのうちの少なくとも1つによる測定を含むことを特徴とする方法。
【請求項5】
請求項1乃至4の何れか一項に記載の方法において、
アラートを遠隔地にある診療所に送信するステップと、前記診療所での、進行した病気の状態に関する患者の診察をスケジューリングするステップとをさらに含むことを特徴とする方法。
【請求項6】
請求項1乃至5の何れか一項に記載の方法において、
アラートの送信には、ローカル音響トランスデューサを作動させること、ローカルディスプレイ上にメッセージを生成すること、接続されたコンピュータにデータパケットを送信すること、またはモデムを介してリモートデバイスにデータパケットを送信することが含まれることを特徴とする方法。
【請求項7】
患者の生化学的マーカーの量を異なる時間に繰り返し測定するステップと、
測定量を患者に関連付けられたエントリとしてログに保存するステップであって、各測定量が、それぞれの測定量に関連付けられたタイムスタンプを有する、ステップと、
複数のログエントリ間でマーカーの量を比較することにより、保存された測定量を分析するステップと、
最近のエントリが以前のログエントリと異なる場合、例えば、最近のエントリが閾値を超えて異なる場合に、または保存された複数の測定量からベースラインレベルまたは正常のパターンが確立されて、最近のエントリのベースラインからの変化が閾値を超える場合に、病気の状態を判定するステップと、
偏差が見い出された場合に、患者に関するアラート状態を判定するステップとを含むことを特徴とする方法。
【請求項8】
請求項7に記載の方法において、
ベースラインが、例えば保存された測定量にフーリエ変換を適用することによって、例えば食事、運動および投薬を含む、マーカーの日中変動または周期的変動を補正することを特徴とする方法。
【請求項9】
請求項1乃至8の何れか一項に記載の方法において、
分析には、測定量の1次、2次またはそれより高次の導関数を経時的に分析して、ベースラインレベルまたは正常のパターンに対する最近の測定量の差を求めることが含まれることを特徴とする方法。
【請求項10】
請求項1乃至9の何れか一項に記載の方法において、
分析には、保存された測定量を画像としてレンダリングして、検出のために画像認識技術を利用することが含まれることを特徴とする方法。
【請求項11】
請求項7に記載の方法において、
生化学的マーカーが異化の量を示すものであり、このマーカーが、例えば尿、汗または呼気中に検出される、尿素、尿酸、乳酸またはアンモニアの濃度のうちの1または複数であることを特徴とする方法。
【請求項12】
請求項1乃至11の何れか一項に記載の方法において、
生化学的マーカーが、筋肉または組織の破壊、炎症または水分補給の状態を示すことを特徴とする方法。
【請求項13】
請求項1乃至12の何れか一項に記載の方法において、
測定が、例えば指、耳たぶ、手首または腕での経皮測定を含むことを特徴とする方法。
【請求項14】
請求項1乃至13の何れか一項に記載の方法において、
アラート状態が判定された場合に、アラート状態をリモートコンポーネントに送信して、患者の診察を要求するステップをさらに含むことを特徴とする方法。
【請求項15】
請求項1乃至14の何れか一項に記載の方法において、
スケジュールに基づいて測定時間の発生を判定するステップと、
測定時間の通知を生成するステップと、
通知に応答して測定量を受信するステップとをさらに含むことを特徴とする方法。
【請求項16】
コンピュータ可読媒体であって、
コンピュータによって実行されたときに、上記方法の請求項のうちの1または複数の方法のステップを実行する命令を含むことを特徴とするコンピュータ可読媒体。
【請求項17】
上記方法の請求項のうちの1または複数の動作を実行するための手段を含むことを特徴とする装置。
【請求項18】
複数の測定量を取得するために、患者の生化学的異化マーカーの存在を繰り返し測定するセンサと、
繰り返し測定された測定量および各測定量に関連付けられたタイムスタンプを格納するログと、
測定量を互いに比較することによりログ内の複数の測定量を分析して、病気の状態が存在するか否かを判定するプロセッサと、
病気の状態が判定されたときに、アラートを送信する送信機とを備えることを特徴とする装置。
【請求項19】
請求項18に記載の装置において、
センサが、分光器、例えば患者に導かれるレーザを有するラマン分光器と、レーザ光を患者組織に結合するための集光レンズと、患者組織からの集光レンズまでの距離を決定するためのスペーサと、レーザ光が結合された患者組織から放出されるエネルギーを検出するための光検出器とを含むことを特徴とする装置。
【請求項20】
請求項19に記載の装置において、
ラマン分光器がさらに、
レーザ光を集光レンズに導くとともに、患者組織から放出されたエネルギーを光検出器に導くビームスプリッタと、
ビームスプリッタと光検出器との間に設けられ、レーザ光を除去するフィルタとを備えることを特徴とする装置。
【請求項21】
請求項19または20に記載の装置において、
プロセッサがさらに、複数の異なる温度または他の動作パラメータでレーザを駆動して、患者の組織に結合するための複数の異なるレーザ光の周波数を生成することを特徴とする装置。
【請求項22】
請求項19に記載の装置において、
分光器が、中赤外線分光器、遠赤外線分光器、テラヘルツ分光器、核磁気共鳴分光器、四重極核磁気共鳴分光器、例えば永久磁石を利用する核磁気共鳴分光器、ゼロ磁場核磁気共鳴分光器、質量分析計、またはガスクロマトグラフを含むことを特徴とする装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、異化マーカーの監視に関する。
【背景技術】
【0002】
現代医学は、患者の健康に対して2つの主要なアプローチを取っている。第1のアプローチは、患者が症状に気付いた時に始まる。患者は医師や他の臨床医に症状を報告し、医師等は、徴候を探したり、追加の症状について問い合わせたりすることにより、患者を分析して、診断を下す。その後、診断は具体的な治療に繋がる。このアプローチは、初期の明らかな症状がある場合に有効である。軽度の症状や、疾病の発症の後半にのみ現れる症状の場合には、患者が症状を報告するのが、効果的な治療を行うには遅過ぎることがある。
【0003】
第2のアプローチは、体内の何らかの状態または徴候を監視し、監視される状態を修正するために治療を施すというものである。その状態は通常、病気や損傷ではないが、治療の目的上、病気や損傷に関連していると見なされる。一般的な例としては、血液中の様々なコレステロールの存在を監視することが挙げられる。特定のコレステロールの濃度を下げるために、投薬や食事の変更が処方される。この濃度は心不全と関連しており、多くの患者がコレステロール低下薬によって寿命を延ばしている。しかしながら、コレステロールが低い患者の中には心不全で亡くなる人もいれば、コレステロールが高い患者の中には心不全にならない人もいる。コレステロール値または他の何らかの身体状態を制御することで、多くの患者の健康状態を改善し、緊急事態を回避することができる一方で、コレステロール値を制御しても、病気の検出や緊急時の治療の有用性に対処することにはならない。
【0004】
これらのアプローチはどちらも、早期発見と治療への迅速なアクセスを必要とする。今日では、多くの人々が医療専門家や治療に容易かつ迅速にアクセスすることができる。同時に、如何に容易かつ迅速に医師や診療所に到達することができたとしても、いつ医師や診療所を訪れるべきかは必ずしも明確ではない。疾病や病気が重篤化した後で、人々の到着が遅過ぎる場合も多くある。費用のかからない医師や診療所がまだ開いていた時には症状が深刻であると考えなかったために、週末や夜間に病院の救急治療室や救急医療センタに入る人々も多く見られる。
【0005】
全病院受診のうちの半分以上が計画外の受診であり、最も費用のかかる救急治療室が病院の主な収入源となっている。入院の多くは救急治療室で始まり、その後病院の他の場所に移動する。病院は、計画的な入院よりも高い料金を救急治療室の受診に対して請求することも認められている。病院が医療費全体に占める割合は減少しているが、病院は独自の機能と統合の増加により、依然として集中治療のすべてを提供している。ここ数十年の間に、医療費、特に病院の費用を削減する圧力が高まってきている。病院のコストが診療所よりも高く、救急治療室の受診が計画的な入院よりも高い場合、救急治療室の受診を減らすことでリソースを節約することができる。
【0006】
このようなコストに対する検証の増加は、量から価値へのシフトとして説明されている。コスト削減の取り組みの一つとして、患者に提供される治療の強度ではなく、患者に提供される価値に対して医療提供者に報酬を与えることを目的とした代替的な支払いモデルがある。その一側面では、患者が退院した直後に病院に再入院した場合、その病院は責任を問われる。
【0007】
病院は様々な方法で再入院を減らしている。1つの対策は、患者が正しい退院指示書と処方箋を持って退院できるようにすることである。別の対策は、患者が急性期後の治療の選択肢をナビゲートし、退院後30日間フォローアップするのを助けることができるケアコーディネータを割り当てることである。より費用のかかる対策としては、再入院の前に早期に患者を訪問するように訪問看護師を割り当てることである。自宅で患者を診察することにより、問題に対処して、患者が再入院するのを回避することができる。別の対策は、直接、または自宅で問題が発生したときに、患者を看護施設に移すことである。病院の代わりに、看護施設が介入して問題を解決することができる。
【図面の簡単な説明】
【0008】
本発明は、限定としてではなく、例示として添付図面に示されており、それら図面において、同様の符号は同様の構成要素を指している。
図1図1は、実施形態に係る生化学的モニタリングシステムを使用して健康状態を判定するためのシステムの簡略化されたブロック図である。
図2図2は、図1のシステムの動作の一例のプロセスフロー図である。
図3図3は、実施形態に係る中央サーバによる健康分析のためのメッセージング図である。
図4図4は、実施形態に係るローカル端末による健康分析のためのメッセージング図である。
図5図5は、実施形態に係る卓上NMR測定システムの図である。
図6図6は、図5のシステムの動作の一例のプロセスフロー図である。
図7図7は、実施形態に係るウェアラブル測定システムの図である。
図8図8Aは、実施形態に係るポータブル測定システムの図である。図8Bは、耳たぶを測定するための図8Aのシステムのセンサの拡大図である。
図9図9は、実施形態に係る代替的なポータブル測定システムの図である。
図10図10は、実施形態に係る固定尿素測定システムの図である。
図11図11は、実施形態に適したコンピュータシステムのブロック図である。
図12図12は、実施形態に係る図7のシステムのコンポーネントの図である。
図13図13は、実施形態に係るラマン分光システムの図である。
図14図14は、実施形態に係る代替的なラマン分光システムの図である。
【発明を実施するための形態】
【0009】
本明細書に記載のように、生化学的シグネチャ(biochemical signatures)は、広範囲の病気の発症を急性になる前に識別するための早期警告指標として使用される。早期警告は、診察の予定を立てるために使用することができ、緊急治療室を回避することができる。また、早期警告は、疾病が進行しすぎて手遅れになる前に治療をスケジュールするためにも使用することができる。これは、米国の国内総生産(GDP)の2%を占める市場に影響を与える。生化学的シグネチャは、従来の医療機器を使用して、または特殊なデバイスを使用して、追跡および監視することができる。小型の家庭用デバイスを、継続的または頻繁な非侵襲的モニタリングに使用することができる。このデバイスは、疾患の徴候があった場合に人々を医療専門家に繋げるための通信機能を備えることもできる。
【0010】
病院および緊急医療クリニックの医療は、混乱の危機に瀕している。医療エコシステムへの最も痛みを伴うエントリーポイントの1つである緊急医療についても、本明細書で取り上げる。本明細書に記載のように、患者の健康の徴候は、患者の健康がいつ悪化しているのかを判断するために、頻繁に、そして場合によっては非侵襲的に監視される。このような判断は、患者および医療提供者が、多くの形態の病気との闘いにおいて、反応的なプレーヤ以上のものになることを可能にする。早期発見とコミュニケーションにより、医師、臨床医、その他の医療提供者などの専門家は、適切なツールと即時のフィードバックを使用して、連絡を取り、直接治療を開始することができるようになる。本明細書に記載のように監視されるシグネチャの多くは、単一の疾患または疾患の症状に焦点を当てるのではなく、身体のシステム全体にわたる多くのまたはすべてのタイプの疾患を示している。
【0011】
本明細書に記載の方法およびシステムは、リスク層別化および早期発見に関心のあるすべての人に適用される。一つの応用例は、病院への再入院を減らすことである。これは緊急に必要とされている分野であり、最近では、優れた臨床実践、方針、財政的圧力の間で調整が行われている。病院は、必要のないときに患者を病院から遠ざけることで、評価と支払いを増やし、患者の転帰を改善し、治療を必要としているより多くの患者を治療することができる。これは、老齢化と長寿化が進む中で、益々当てはまる。
【0012】
他の応用例は、ケアマネジメント会社、保険会社および雇用者向けのものである。これらのグループは何れも、患者と従業員の健康を維持し、コストを抑えることに関心を持っている。同様に、養護施設やその他の長期療養施設は、患者を病院に行かせないようにしたいと考えている。誰もが、患者が治療を必要とする時期を手遅れになる前に判断したいと考えている。症状が顕在化する前に重篤な疾病を発見することで、緊急治療室への入院を回避し、その代わりに、定期的な治療を利用することができる。
【0013】
もう一つの新しいトレンドとして、市場にはフィットネスモニタまたはトラッカ、スマートウォッチが氾濫している。これらのデバイスは通常、心拍数と手首の全体的な動きを測定する。その中には、手首や胴体の他の電気生理学的現象を測定できるものもある。そのようなデバイスは、フィットネストレーニングや睡眠中の活動を監視するのに役立つが、運動レベルを測定するためのものである。それらは病気を示すものではない。フィットネスモニタは、運動に対する健康のベースラインを提供するものではなく、活動時の身体活動に対する安静時の身体活動のベースラインを提供するものである。
【0014】
別の監視のトレンドは、特定の疾病を対象とした非常に的を絞った検査を使用することである。測定を繰り返して、患者が特定の疾病から回復したか否かを判定することを目的としている。この種の監視には、特定の集中的で頻繁なヒューマンエラーの多い介入が必要となる。この種のケアマネジメントは、非常にマニュアル的で高い水準の提案となる。ケアコーディネータや看護師は、拡張性がなく費用のかかる方法で個々の患者を診断する。診断や注意喚起のためのツールは初歩的なものである。
【0015】
対照的に、本明細書に記載の方法およびシステムは、患者または近くの医療提供者が、全体的な健康状態を測定するために、1またはいくつかの状態を繰り返し確実に監視することを可能にする。いくつかの実施形態では、患者毎に異なるベースラインを個別に設定することができる。このベースラインからの変動は、ある種のアラートまたは警告をトリガするために使用することができる。
【0016】
図1は、生化学的モニタリングシステムを使用して全般的な健康を評価するためのシステムの簡略化されたブロック図である。この例では、患者102が生化学的モニタリングシステム104にアクセスして、1または複数の特定の生化学的マーカーの値を測定できるようにしている。モニタは、固定式またはポータブルデバイスまたはウェアラブルデバイスとすることができる。デバイスは、患者に特定の操作を行うように要求することができ、またはデバイスは自律的または自動的に動作することができる。一例として、デバイスは、患者が指をスキャニングデバイスに挿入し、その指を一定時間そこに保持することを要求することができる。別の例として、デバイスは、手首または別の場所に装着されるようにしても、または衣服に装着されるようにしても、あるいは衣服の一部であってもよく、適切な間隔で測定を行うことができる。別の例として、デバイスは、技師または医療提供者によって操作されるものであってもよい。
【0017】
モニタ104は、1または複数の生化学的マーカーの値を生成し、それらをログ106に提供する。ログは、時間の経過とともに複数の測定量を記憶する。ログは、プロセッサまたはコントローラ108に利用可能とされ、プロセッサまたはコントローラは、以前のログエントリに照らして新しいログエントリを分析し、次いで、アラート送信機または通信インターフェース112によって伝達されるアラート110を生成する。送信されたアラートは、異常を識別するためだけに使用されてもよいし、正常な結果に対するアラートが存在してもよい。アラートは、患者を検査する必要があることを示すためにのみ使用される場合もあれば、健康状態が良好または安定していることを示すためにアラートが発せられる場合もある。ログにより、測定量を経時的に比較することができる。殆どのマーカーには、健康レベルと不健康レベルがある。それらのレベルは患者によって異なる場合がある。ログにより、不健康なレベルは、正常な健康レベルの範囲からの変動として識別することができる。マーカーを使用して回復を評価する場合、マーカーを監視して、初期状態と比較して健康状態が改善しているか否かを判定することができる。
【0018】
図1の例では、アラート状態は、ログに接続されたコントローラ108で判定される。このコントローラは、モニタとともに動作するローカルデバイスの一部であってもよいし、モニタの一部であってもよい。代替的には、コントローラは、アラートの判定に使用するための追加情報を提供するサーバシステム116または別のシステムに、通信インターフェース112を介して接続されてもよい。更なる代替として、アラートを判定するために、サーバシステムまたは別のリモートデバイスに情報を送信するようにしてもよい。この場合、コントローラは、リモート判定を受信し、それに応じてアラートを発する。
【0019】
アラートは、生成された後、特定の実施形態に応じて適宜、1または複数の異なるエンティティに送信される。アラートは、直接回線120で患者102に送信されてもよいし、他の受信者を介して間接的に送信されてもよい。また、アラートは、例えば、診療所または病院114、サーバシステム116、担当医師118、または患者の健康に関与する他の適切な人にも送信することができる。アラートは、友人や家族に送信するようにしてもよい。
【0020】
サーバまたは分析システム116は、受信したデータを保存および分析する。システムは、アラートの深刻度を判定し、その後、アラートを送る医師や診療所などの他の関係者を決定するために使用することができる。システムが他の多くの患者からデータを受信する場合、データを分析して傾向を調べ、健康のベースラインを決定することができる。様々なデータ分析を適用して、発生したパターンを判別および分析することができる。アラートは、医師118または診療所114と患者102との間のコミュニケーションを確立するために使用されてもよい。コミュニケーションは、予約を取るように要求するか、または追加の検査を行うように要求するという形をとることができる。言い換えれば、アラートが、患者が病気であるか又は悪化していることを示している場合、医師または診療所は、診察を手配するように患者に通知することができる。予約は、早期診断を決定し、治療計画を立てるために使用することができる。
【0021】
いくつかの実施形態では、アラートが特定の病気または疾患を示さない。プロセスの次のステップは、より多くの情報を収集することである。患者は、いくつかの診断情報を個別に収集し、それを医師または診療所に提供することができる。患者は、診断情報が収集される可能性のある地元のクリニックまたは診療所に報告するようにしてもよい。また、患者は、追加の測定を実行して診断を得るために、医師または他の専門家と会ったり、連絡を取ったりすることもできる。多くのシステムとは異なり、アラート状態の存在は特定の疾患の存在を示すものではない。特定の疾患が監視されるわけではない。その代わりに、アラートは健康または病気の全般的な量(general amount)を示すものであり、次のステップで、アラートの原因を特定するために患者が診断される。
【0022】
図2は、図1のようなシステムの動作の特定の例のプロセスフロー図である。図1は、患者の体内または身体上の生化学的マーカーの測定から始まる。多くの例では、マーカーは患者の尿素濃度であってもよい。しかしながら、以下でより詳細に説明するように、多くの他のマーカーを使用することができる。尿素は、可溶性の結晶性窒素化合物であり、ヒトの体内でタンパク質が分解される際に生成される。それは主に尿に含まれているが、血液、唾液および他の体液中にも含まれている。尿素はタンパク質の分解によって生成されるため、体内の尿素濃度は、体内の異化率が高くなるに連れて上昇する。異化は、生命維持に必要なプロセスや活動をサポートするためにタンパク質からエネルギーを生成することを含む代謝の分解的な部分である。尿素は、体内で供給されているエネルギー需要を特定するために使用することができる。これは、患者の身体活動レベルと比較することができる。
【0023】
各人は、体の特定の部分において尿素濃度の正常範囲、典型的範囲または通常の範囲を持つことになる。この正常範囲は、健康な代謝と正常な身体機能を反映している。この濃度は、活動量の多い時や少ない時、食事の前後で変化する。尿素濃度は、測定が容易で、健康状態の異常を示す異化マーカーの一例である。尿素濃度が高いのに、患者が運動をしていない時や食事を終えていない時は、別の理由で体の代謝活動が活発になっていることになる。一般的な理由は、免疫システムまたは他の保護または体の再生システムが通常よりも活性化していることである。本明細書では、高い尿素濃度は、外来病原体が働いているか、または身体にストレスを与える内部損傷があることを示す指標として使用されている。異化マーカーは、発熱と傷付いた脾臓とを区別できない可能性があるが、両方の事象を原因不明の身体活動の増加として検出する。
【0024】
204では、測定した尿素濃度または他のマーカー値をタイムスタンプとともにログ106または他のストレージデバイスに送る。ログには、時間をかけて蓄積された測定の履歴が残るように、測定とロギングが繰り返される。206では、ログが測定量をそれぞれのタイムスタンプとともに記憶する。これにより、測定履歴を分析のために利用可能な状態になる。ログの値は208で分析され、アラート状態があるか否かが判定される。様々なアラート状態をサポートすることができる。患者が正常であるか、健康であるか、または一貫している場合にアラートがあってもよい。正常からの変動に対するアラートがあってもよく、正常からの様々な変動量についてのアラートがあってもよい。分析は、ローカルコントローラまたはプロセッサ108で行うようにしても、リモートで行うようにしても、あるいはローカルリソースとリモートリソースの組合せを使用して行うようにしてもよい。データを分析するためのプロセスは、以下でさらに詳細に説明する。
【0025】
様々な異なるアラート条件を単独でまたは様々な組合せで使用することもできる。最も単純なレベルでは、このアラートは、患者が健康であるか病気であるかを示し、病気である場合には、どの程度病気であるかを示すこともできる。この病気の量を疾患値(illness value)と呼ぶことができる。病気のレベルまたは疾患値は、医療がどの程度迅速に提供されるかを決定するために使用することができる。そのようなアラートが機能するために、システムは、何が正常であるかを判定することができ、また、異化率に影響を与えるが病気ではない他の要因を分離または補正することができる。一実施例では、患者が健康であることが分かっているときに、患者は最初に複数回測定される。それらの測定量は、その特定の患者の健康な範囲を確立するために使用することができる。その範囲外の変動は、患者が健康ではない可能性があることを示している。アラートおよび診断の後、患者が実際に健康であると診断された場合、疾患値または病気のアラートを判定するために使用される健康範囲を調整するようにしてもよい。他の要因を分離するために、患者は毎日同じ時間に測定量を提供するようにしてもよく、運動時間および食事時間に近くない時間を選択するようにしてもよい。代替的には、異なる健康範囲が一日の異なる時間帯に決定されるようにしてもよい。このような場合のアラートは、単に尿素濃度が正常範囲外である場合に生成されるようにしてもよい。
【0026】
ベースラインまたは正常なパターンは、保存された複数の測定量を使用して決定することができる。各測定のログエントリにより、測定されたマーカー値を経時的に比較することが可能になる。ベースラインレベルまたは正常なパターンは、ログエントリを使用して確立することができる。その後、ベースラインまたはパターンは、例えば食事、運動および投薬を含むマーカーの日中または周期的な変動を補正するために使用することができる。より最近の測定量と、ベースライン、パターン、または以前の測定量との間の差を、閾値と比較することができる。閾値よりも大きい差があるログエントリは、アラート状態に対応する。パターンを使用したより複雑なアプローチは、ログエントリを比較して正常なパターンを見付けることである。ログエントリが正常なパターンに適合しない場合、アラートまたは病気の状態が判定される。
【0027】
更なる代替として、アラート状態は、ベースラインレベルまたは正常なパターンに対する最近の測定量の差を求めるために、測定量の1次、2次またはより高次の導関数を経時的に分析することによって判定するようにしてもよい。日中変動または他の周期的変動を排除するための別のアプローチは、保存された測定量にフーリエ変換を適用して、周期的変動を取り除くものである。別の方法として、保存されたログエントリを画像としてレンダリングすることができる。画像認識技術を画像に使用して、画像中の特徴的な病気のパターンを検出することができる。
【0028】
上述したように、時間をかけてログに記憶された値を使用して、病気の状態または疾病値を決定するために、様々なアプローチを使用するようにしてもよい。生化学的センサおよびセンサ信号に適用される信号処理を使用して、尿素濃度のようなマーカーの信号を強調する、ノイズが除去された正規化されたスペクトルを提供することができる。病気を検出するために、単純なレベルで、マーカーの信号または濃度の相対的な変化を経時的に監視することができる。これは、1時間当たりの増加率または減少率のような時間変化率を評価することによって行うことができる。1次の時間変化率は、信号中の多くの単純なノイズ源を排除する。感度および特異性を向上させるために、2次(およびさらに高次)の導関数を経時的に評価するようにしてもよい。これにより、通常のバラツキよりも識別が改善される可能性がある。
【0029】
精度は、例えばフーリエ変換を用いて、規則的な周期的変動を除去することにより、さらに向上させることができる。周期的変動は、患者の日中のパターンを評価し、それらを補正することによっても除去することができる。
【0030】
ログ値を画像としてレンダリングすることによって、人工知能システム(例えば、Resnet、convnet、GANなど)で普及しているような画像分類技術を使用することができる。乳酸濃度の測定量から作成された信号など、他の信号を含めることで、画像がより詳細になる。ある種の画像は、波数によってX軸を定義し、時間によってY軸を定義する。画像分類システムは、真の信号を区別し、スプリアスな生物学的およびシステム収集ノイズを除去するように調整することができる。
【0031】
210において、アラート状態または病気の状態が判定された場合、例えば尿素濃度が正常範囲外である場合、その状態に対するアラートが生成される。212では、アラートが、関係者、例えば、患者、友人、介護者、医師、診療所、病院またはこれらの関係者および他の関係者のうちの1または複数などに送信される。アラート状態にない場合、プロセスは202に戻って、モニタからの更なる測定を待つ。214では、アラート状態の患者を診断して、病気を判断する。216で病気が発見された場合、218で、判断された病気のための治療が投与される。その後、STARTからこの処理を繰り返すことができる。病気がない場合は、同様にSTARTからプロセスを繰り返すことができる。システムが頻繁に誤ったアラートを発生させる場合、202での測定に誤りがあるか否か、208での測定の評価に誤りがあるか否か、またはシステムの他の部分に障害があるか否かを判定するために、評価が必要になる場合がある。
【0032】
記載のシステムおよび方法は、多くの場合、診断されるべき疾患の検出において、患者よりも感度が高い可能性がある。このため、このシステムにより、患者は、それがない場合よりも早く診断を提出したり、予約をスケジュールしたりする可能性がある。一例として、患者が感染症に罹患している場合、患者は感染症にすぐに気付かないことがある。同時に、免疫システムが感染症と闘うために活性化され、異化レベルが上昇することとなる。これは、生化学的マーカー測定ツールによって検出することができ、患者または医師に注意喚起することができる。その結果、感染症のレベルが重篤な状態に達して、患者がより深刻に具合が悪いのを懸念した後に治療されるのではなく、通常の診察時間中に数日早く治療することができる。
【0033】
感染症は一般的な例の一つであるが、患者が疾病に気付く前に、同じまたは異なる異化マーカーが他の多くの疾患を示すことがある。場合によっては、患者が自覚できる症状がなくても、異化マーカーが不健康な状態を示すこともある。病気の中には、強い症状がないものもあれば、何の症状もないものもあり、他の一般的な疾病と似たような症状が出る病気もある。また、病気の症状に特に敏感ではなく、症状が出ていても気付かない患者もいる。異化マーカーは、これらの状況の各々を克服するであろう。
【0034】
上述した再入院の状況では、図2のように患者を監視して、患者の状態が悪化したり、改善しない場合には、患者と病院の両方にアラートを与えることができる。典型的には、退院時には、患者の異化率は高い。しかしながら、退院後に患者の状態が改善されると、異化率は低下するはずである。異化マーカーの濃度が低下しない場合、または上昇した場合には、患者の状態を調査するために人を患者に派遣することができる。治療は調整される場合がある。患者は、疾病を治療するために他の診療所に送られるか、または患者は病院に再入院する可能性がある。場合によっては、誤ったアラートを防ぐために、予想される異化率を調整することもある。これにより、再入院が少なくなる可能性があり、再入院がある場合には、再入院が早くなるため、患者の状態が改善され、より効果的かつより少ない費用で治療を受けることができる。
【0035】
上記の例では尿素の濃度が使用されているが、体内で自然に発生し、マーカーとして使用できる生化学物質は他にも多く存在する。尿素濃度は、上述したように、異化作用の窒素循環の生成物であり、よってその指標となる。この循環の他の生成物としては、尿酸、乳酸、アンモニアなどがある。また、異化に付随して放出されるタンパク質や酵素、例えばLDH、CK、AST、ALTなどもある。
【0036】
異化作用の代わりに、または異化作用に加えて、他の自然な身体のプロセスまたは循環のマーカーを測定するようにしてもよい。身体は、炎症マーカーとして使用することができるいくつかの異なる化合物、例えば、WBC、急性期反応物、例えばCRP、補体、フィブリノーゲン、a2-マクログロブリン、フェリチンなどを生成する。これらのマーカーは、体が炎症を起こしていることを示しているが、どこでどのように炎症が起きているのかを示すものではない。炎症の代わりに、総タンパク質、アルブミン、オスムスなどの水和状態のマーカーを用いて、水和反応を測定するようにしてもよい。異化マーカーの代わりに、または異化マーカーに加えて、アラニン、a-ケトグルタル酸、b-ヒドロキシ酪酸などのアラニン循環マーカーを使用するようにしてもよい。アラニン循環は、アミノ基転移反応中に発生する体内のタンパク質の加水分解である。
【0037】
他の潜在的なマーカーとしては、グリシンやバリンなどのアミノ酸が挙げられる。グリシン値の上昇は栄養不足と関連しており、それは病気が原因の場合もある。バリンは、インスリン抵抗性および糖尿病と関連している。また、これらのマーカーや他のマーカーは、運動や他の原因による筋肉や組織の破壊を示すこともある。
【0038】
それらの様々な生化学的指標は、体内の様々な場所に存在しており、検出される場所によって様々な方法で検出および測定することができる。尿素、尿酸、アンモニアおよび他の多くの異化マーカーは、体の至る所で見出される。測定デバイスは、経皮スキャンまたはプローブを用いて、または強膜、網膜または他の眼領域に向けられたスキャンまたはプローブを用いて、または他の任意の適切な場所に向けられたスキャンまたはプローブを用いて、唾液、汗、尿、呼気、血液または他の体液を対象とすることができる。
【0039】
測定は、収集されて特別なチャンバ内に入れられた体液を分析することによって行うことができる。このチャンバは、尿素および他の化合物を分析するためのセンサを含む、唾壺または特別に適合されたトイレのようなものであってもよい。場合によっては、体液は、特別なチャンバなしで分析されるものであってもよい。デバイスは、スマート衣服、スマート靴またはウェアラブルを使用して、手首、額または他の身体領域と接触するように配置および装着されるものであってもよい。デバイスは、皮下センサをサポートするために、または電気泳動測定、交流電流またはパルスを用いた電気抵抗の差動測定、または他の測定のような経皮測定のために、微小なプローブを使用することができる。いくつかの実施形態では、生化学的マーカーを測定するために、センサを患者の皮下または硬膜下に埋め込むようにしてもよい。いくつかの実施形態では、服用されて体内を通過するスマートピルを使用することができる。スマートピルは、上述したような異化マーカーまたは他の生化学的マーカーを測定するように構成することができる。
【0040】
体液を収集する代わりに、またはそれに加えて、患者は、自立型または別個の測定デバイスを使用して測定することができる。上述したように、デバイスは、患者の指をチャンバ内に受け入れるように構成することができる。その後、デバイスは、光学システムを用いた経皮分光器など、指の経皮測定を実行することができる。同時に、そのようなデバイスは、指から汗を採取し、脈拍数、酸素レベル、および他の生理学的データを測定することができる。また、別のタイプの光学式眼球スキャナは、強膜反射率の測定、血管の分析などのために眼で使用することができる。また、眼球スキャナは、患者の脈拍、血圧および他の生理学的パラメータも測定することができる。それらデバイスは、自立型の独立したデバイスであってもよいし、患者のコンピュータ、スマートフォン、医療端末または別のタイプのデバイスに接続して動作可能なものであってもよい。
【0041】
患者の体内における生化学的マーカーの存在または濃度を測定するための様々な方法がある。いくつかの実施形態では、ラマン分光法が使用される。これは、生体内で尿素濃度を測定するために使用することができる。これは、皮膚との接触により皮膚を介してマーカーを測定するために使用されるものであってもよく(接触経皮分光法)、また、上述した唾壺または特別に構成されたトイレのような容器内の収集された体液に適用することもできる。
【0042】
ラマン分光法は、光がサンプルによって吸収され、吸収された周波数から上下にシフトした異なる周波数で再放出されるラマン効果に依存している。ラマン分光法は、通常は近赤外範囲または可視範囲の単色吸収光を使用するため、再放出されるすべての光が、吸収光の単一周波数から上下にシフトする。再放出光が捕捉され、再放出光の周波数および振幅が分析されて、サンプル中の様々な化合物の存在が特定される。周波数の振幅は濃度レベルを示す。ラマン分光法は、サンプルを照射するための単色プローブレーザと、再放出された周波数とそれに関連する振幅を記録するためのイメージセンサと、記録された周波数を分析するためのプロセッサとを用いて実行することができる。光学システムおよびコンテナシステムは、吸収光を導き、放出された光を収集するために使用される。本明細書のいくつかの実施例では、患者の指、耳たぶなどがサンプルのコンテナとして使用され、光学システムは、皮膚を通してレーザを導き、皮膚を通して再放出光を収集する。
【0043】
ラマン信号の大きさは、適切な表面の近くで増大する。これは表面増強ラマンと呼ばれている。適切な材料の皮下インプラントを使用して、ラマン信号をさらに増大させることができる。
【0044】
ラマン分光法または他の測定における検出器からの信号は、所望の信号に加えて干渉を含み得る。この干渉は、周囲光、検出器内のノイズまたは他のソースから生じ得る。ラマンプローブレーザは、そこから生じる信号を干渉と区別できるように変調することができる。
【0045】
ラマン分光法は、一般的に入手可能なコンポーネントを使用する経皮適用に適している場合もあるが、一部では、他の測定技術も使用することができる。同様のハードウェアを、遠赤外線および中赤外線分光法に使用することができる。プラズモン共鳴は、化合物を検知するための別の光学技術である。蛍光ベースのナノチューブ技術も、化合物を検出するために使用することができる。他の例では、選択的イオンプローブを使用して、埋め込まれたウレアーゼのようないくつかの小分子を検出することができる。核磁気共鳴(NMR)は、プロトン、14N化合物および15N化合物のような複雑または重い標的を検出するために使用することができる検知技術である。四重極NMRは、14Nを含む化合物の検出に使用することができる。NMRは、生体内で化合物を検知するために使用することができる。電気泳動効果を測定するために磁石を使用することができ、呼気または他の体液中の揮発性有機化合物を検出するために質量分析を使用することができる。より大きな測定デバイスとして、細菌サイトメータまたは任意のタイプの湿式化学を使用して、様々な生化学的マーカーの濃度を分析することができる。
【0046】
図1および図2に示すように、本発明の操作は、3つの基本的な側面を有するものと見ることができる。第一に、モニタを使用して測定を行う。本明細書には、様々な異なるモニタデバイスおよび様々な可能性のある生化学的マーカーが記載されている。記載されている生化学的マーカーの殆どは、患者の体内での異化作用の量に応じて濃度が変化する。すなわち、多くの実施形態では、第1の側面は、患者の異化率を測定することである。
【0047】
第2の側面は、測定された異化率に基づいて(または別の生化学的測定値に基づいて)病気または健康のレベルを判定することである。この判定は、モニタデバイスまたは接続されたコンピュータによってローカルで実行することができる。代替的には、中央のサーバおよび処理システムで判定を行うことができる。これにより、複数の患者からデータを収集することができるため、様々な人工知能、データ分析、傾向分析および他の手法を適用することができる。第3の側面は、分析をローカルで集中的に実行することである。
【0048】
第3の側面は、分析結果に基づいて行われるアクションである。単純な分析であれば、その結果をさらに検討することになる。異化マーカーは、全体的な健康を示す指標であり、特定の病気を示す指標ではない。高いまたは過度に低い異化作用であっても、患者に何をすべきかは決定されないため、次のステップで、患者をより詳細に調べて、治療が必要な場合には、適切な治療の種類が決定されることとなる。上述したように、主治医または担当診療所は、患者に診察のために来院するように通知することができる。監視が手術後の状況で行われている場合、患者は病院または外来施設に再入院する場合もある。監視が診療所で行われている場合は、診療所の適切なスタッフが来て患者を検査するように知らせるだけとなることもある。
【0049】
記載されたシステムおよび方法は、以前よりも遙かに高い精度とより優れた分析を可能にする。これは、部分的には、測定の頻度、測定に関連付けられた時間および日付のスタンプ、および中央サーバで多くの異なる患者からの測定量を受信する機能に起因する。さらに強化された点は、スケジュールされた診察の結果を中央サーバシステムに提供することである。このような情報があれば、傾向やパターンが特定され、1日を通しての患者の典型的な異化作用の変化に基づいて、ある患者が健康であると判断することができる。また、別の患者は、異化パターンが健康の範囲内であっても、検査中に不健康と診断された患者の異化パターンと一致している場合には、不健康と判断されることもある。
【0050】
図3は、本発明の実施形態に係るメッセージおよびアクションのシーケンスを示すメッセージング図である。この構成における端末またはメッセージングノードは、図1に示されたものと同様である。この例では、異化マーカーなどの生化学的マーカーの量を測定するために患者に対して検査を実行するモニタ302がある。このモニタは、ローカル端末304に接続され、このローカル端末が、検査結果を受信して、その結果を接続された中央サーバ306に結果を転送し、中央サーバが、この患者および他の多くの潜在的な患者の検査結果のすべてを蓄積する。診療所308は、中央サーバに接続されて、検査結果を受信し、患者を診察する。
【0051】
プロセスは、モニタによって患者に対して新しい検査を実行して生化学的マーカーの量を測定することから始まる。310において、検査要求メッセージが生成される。この例では、検査要求はサーバシステムによって生成され、ローカル端末を介してモニタに送信される。検査要求は、代わりにモニタまたはローカル端末によって生成されるものであってもよい。検査要求は、時刻などのスケジュールに基づくものであっても、中央サーバや診療所からの他の情報に基づくものであってもよい。検査要求に応答して、312において、モニタで検査が実行されてマーカーの量が測定される。検査結果314は、ローカル端末を介して中央サーバに送信される。
【0052】
中央サーバは、316で、結果を分析し、検査結果によってアラート状態が提示されているか否かを判定する。アラート状態が提示されている場合には、アラート318がローカル端末、モニタ、診療所およびシステム内の他の関連端末に送信される。アラートの送信条件およびアラートの受信者は、様々な実施形態および状況に合うように適合させることができる。この例では、ローカル端末は、検査要求および予約をローカル端末を介して行うことができるように、患者のための通信およびメッセージングノードとして機能している。他の例では、これらの目的のために別のメッセージングノードが使用される。
【0053】
診療所は、アラートを受信すると、320でスケジューラを起動して、患者を診察するための適切な時間を判定する。診療所によって行われる特定のアクションおよびアクションの緊急性は、アラートの性質によって決定され得る。一部のアラートは、後で参照するために保存されるもので、他のアラートは、即時の注意を必要とする場合がある。スケジューラは、この例では、診察をスケジュールし、診察要求322をローカル端末に送信する。患者は、要求を検討し、応答することができる。ローカル端末は、応答324を診療所に送信し、その後、患者は、診察が行われる診療所の予約に出席する。場合によっては、アラートがより緊急または深刻であり、患者が病院で診察を受けることもある。診療所は、病院での診察をスケジュールするために利用することができ、あるいは、診察要求は、患者が病院で診察をスケジュールすべきであることを示すことができる。同様の方法で、他の種類の診察を診療所以外でスケジュールすることができる。手術後のモニタリングなど、他のケースでは、診療所が病院である場合もある。
【0054】
診察の結果、326で、診断が中央サーバに送信される。中央サーバは、328で、診察結果および対応する診断をログに記録する。このログは、他の診察結果に応じて、この患者および他の患者の分析に使用することができる。診断は、患者が健康であること、または患者が特定の病気を持っていることである可能性がある。また、診断は、状態の重症度および緊急度の表示も含むことができる。この情報はすべて、後の診察結果の分析方法および送信するアラートの種類をより適切に判定するために、サーバシステムでこの診察結果および他の診察結果と比較されるものであってもよい。
【0055】
図4は、本発明の異なる実施形態に係るメッセージおよびアクションのシーケンスを示す代替的なメッセージング図である。この例では、患者に検査を実行するモニタ402がローカル端末404に接続され、このローカル端末が、検査結果を受信して、その結果を診療所408に転送する。診療所は、記録リポジトリとして機能する中央サーバ406に接続されている。この例では、分析および検査のスケジューリングがローカル端末によって実行され、このローカル端末は、モニタと統合されていても、統合されていなくてもよい。診療所は、同じ操作を実行するが、中央サーバの代わりにローカル端末に接続されている。
【0056】
プロセスは、検査要求メッセージ410を生成して、モニタに送信することにより開始される。図3のように、この例では、検査要求は任意である。検査は、患者または技師によってなど、様々な異なる方法の何れかで開始することができる。412では、マーカーの量を測定するための検査要求に応答して、モニタにおいて検査が実行される。検査結果414は、ローカル端末に送信され、416において、そこで分析される。
【0057】
ローカル端末は、外部ソースから受信したデータ、時間をかけて集めたデータ、またはより詳細に説明した他の任意のデータを使用して、416で検査結果を分析して、検査結果によってアラート状態が提示されているか否かを判定することができる。アラート状態が提示されている場合には、アラート418が診療所に送信される。また、アラートは、場合によっては、患者に注意を喚起するためにモニタに送信することもできる。この例では、ローカル端末は、プロセスの制御端末としてだけでなく、患者とのインターフェースとしても機能する。アラートおよび予約は、それに応じてローカル端末を通じて手配される。
【0058】
診療所408は、アラートを受信すると、420で、スケジューラを作動させて、患者を診察する適切な時間を決定する。予約時間は、アラートの性質に依存するものであってもよい。診療所のスケジューラは、診察をスケジュールし、診察要求422をローカル端末に送信する。患者は、要求を検討し、応答することができる。ローカル端末は、応答424を診療所に送信し、患者は、診察が行われる診療所での予約に出席する。
【0059】
診察の結果、426で診断がローカル端末に送信される。また、結果は、診察結果および対応する診断を428でログに記録する中央サーバ406に送信することもできる。ログは、記録保持、データ分析、または本明細書に記載の他の様々な目的のために使用することができる。図3および図4の例では、結果が診察と診断であることが示されているが、検査結果に応答して他のアクションを実行することもできる。一つのアクションは、データをログに記録して、次の検査測定を待つことである。別のアクションは、別の検査を要求することである。検査結果は、正常の境界から十分に外れている可能性があるため、繰り返して確認する必要がある。代替的には、他の検査を実施して、患者の疑わしい状態を確認することができる。診療所は、患者が任意の症状または徴候を診療所に提供することができるように、診察要求の代わりに、ローカル端末を介して患者に問診票を送ることができる。その後、この問診票は、予約の要否を判断するために使用することができる。
【0060】
図5は、別の実施形態に係る、データセンタまたはサーバシステムと、ケアセンタ、診療所または病院とに接続された卓上NMR尿素測定システムの図である。卓上ユニット502は、迅速かつ容易に患者510の健康監視を提供する。それは、任意選択的には、結果を分析するためのデータセンタ504と、測定に基づいて適切であると考えられる任意のケアを提供するためのケアセンタ506とによって、補完されるようにしてもよい。代替的または追加的には、測定ユニットは、患者510により直接作動し、測定に基づいて行動を取るべきときに患者にアラートを発することができる。
【0061】
この実施形態では、測定器が卓上ユニットである。ここで、テーブル508は、NMR測定のためのセンサ522を有するNMR測定器520を支持する。センサは、測定を実施して結果を判定するマイクロプロセッサまたはコントローラ524によって制御される。マイクロプロセッサは、測定量をメモリ532に保存し、そこでは、測定量をすぐに、有線または無線の入力/出力(I/O)インターフェース526を介して送信することができる。測定器は、主電源512に接続された電源530から電力の供給を受ける。これは、ユニット内のバッテリシステムによってバックアップされるものであってもよい。より大きなバッテリを使用して、ユニットを患者に搬送し、テーブルから一時的に離れて操作することができるようにしてもよい。
【0062】
測定器は、ユーザインターフェース528を有し、このユーザインターフェースを、測定を実行するように患者に注意を促し、患者が測定を実行することを可能にし、患者に結果を提供するために使用することができる。ユーザインターフェースは、起動スイッチと、LED、複数色のLEDまたは他の任意の適切なディスプレイなどのステータスインジケータと、ボタンとを有することができ、それには、タッチスクリーンディスプレイおよび可聴アラートが含まれる。一例では、測定は一定の間隔で行われる。測定ユニットは、ユーザインターフェースを介して、測定の時間であることを示すアラートを提供する。プロセッサは、内部カレンダまたはタイマに基づいて、またはI/Oインターフェースを介して外部からコマンドを受信することによって、アラートを生成することができる。アラートは、ブザー、ランプ、またはユーザインターフェース上の表示の形態であってもよい。I/Oインターフェースは、Wi-Fi(登録商標)、Bluetooth(登録商標)、SMS、またはコンピュータ、タブレット、電話、ウェアラブルまたは他の適切なデバイスへの他のインターフェースを使用して、患者にアラートを送信することができる。
【0063】
アラートを受信すると、患者は測定器に来て検査を実行する。この例では、NMR測定器は、一端に開口部を有するセンサチューブ534を含み、患者が測定ユニットのそのチューブまたは円筒状スリーブに指を挿入することが可能となっている。特定の実施形態に応じて、患者は、指、耳たぶ、つま先、または身体の他の適切な部分を分光器内に挿入し、UIの起動ボタンを押すか、検出されるのを待つことができる。分光器は、代替的には、手首、額または他の身体部分を測定するために皮膚の傍に配置されるように構成されるものであってもよい。指は自動的に検出されるようにしてもよいし、患者がボタンを押すなどの指示をユーザインターフェースに提供するようにしてもよい。
【0064】
その後、測定ユニットは、適当な徴候の適当な測定を行う。一実施形態では、シリンダ内の電磁パルスが患者の原子の核スピンを摂動させ、結果として患者から放出されるエコーが、ピックアップコイルまたは同様のデバイスによって検出される。磁石は、このプロセス中に一定の磁場を発生させる。その後、検出された信号を分析して、1または複数の生化学的マーカーの存在および量を測定する。測定が完了すると、ユーザインターフェースは、患者が指を外すことができるという可聴または可視の表示を患者に提供する。
【0065】
本実施例では、測定方法として核磁気共鳴分光法が使用される。指筒の周囲の永久磁石は、指に印加される磁場を発生させる。指筒の周囲の測定ユニットのプローブコイルは、指に電磁波を加えて、指の電磁気応答を測定して測定結果を提供する。このようにして、窒素、酸素、ナトリウムの同位体など、種々の同位体を検出することができる。この場合、窒素同位体15Nを用いて、尿素に特徴的な化学シフトを測定する。指の磁気応答は、15Nの濃度を測定するために、内部マイクロプロセッサによって分析される。これは、全般的な健康状態の徴候として使用することができる尿素の濃度を推測するために使用される。
【0066】
標準NMRは奇数の原子番号を持つ核同位体のみを検出する。天然窒素は99.6%の14Nと0.4%の15Nである。尿素は2つの窒素原子を持ち、他の化合物よりも検出が容易であるが、殆どの場合、両方の原子が14Nであり、検出することができない。2つの窒素原子の存在は、そのうちの一方が15Nになる2つのチャンスを与えるため、役に立つ。また、尿素は、かなりの炭素も含んでいる。天然炭素は98.9%の12Cと1.1%の13Cである。このため、どちらの場合も奇数の原子番号の同位体は全体数の約1%である。
【0067】
代替的には、核四重極共鳴(NQR)分光法を卓上ユニットセンサに使用することができる。NQRは、必ずしも外部磁場を印加しなくても、14Nを検出する。上述したものに加えて、またはその代わりに、他の種類のセンサを用いることもできる。
【0068】
健康状態データは、測定ユニット502のメモリ532に記憶した後、I/Oインターフェース526を介してデータセンタ504に時々送信することができる。分光器は、通信モジュール526に結合または統合されている。このモジュールは、測定量を格納するためのバッファと、バッファされた測定量を有線または無線インターフェースを介して送信するための有線または無線の送信機とを含む。通信モジュールは、測定量のログをローカルに保存し、ローカルインターフェースを介してローカル端末へのローカルアクセスを提供することができる。測定量および/または患者識別子は、保存および/または送信のために暗号化することができる。インターフェースは、シリアルバスコネクタ、ネットワークコネクタまたはユーザインターフェースコネクタであってもよい。ローカルインターフェースは、患者または臨床医または他の利害関係者に直接データを提供するために使用することができ、かつ患者または他の利害関係者にアラートを伝えるために使用することができる。
【0069】
通信インターフェースは、データセンタに接続されており、データセンタは、測定量を受信して大容量ストレージデバイスに保存する。大容量ストレージは、数日、数ヶ月または数年にわたって複数の患者のためのログを記憶するために使用することができる。データセンタのプロセッサユニットは、ログに接続されて、ログのデータを分析する。サーバは、複数の患者からの測定量を受信してログに保存するように構成することができる。複数の患者のデータへのアクセスを提供することにより、パターンをより適切に検出することができ、より高度な技術を使用して生化学的マーカーを分析することができる。
【0070】
データセンタは、追加の処理機能および記憶機能を有し、多くの異なる患者からの結果を比較して、より正確な結果に到達することができる。データセンタは、患者をより適切に治療するために、それらのより正確な結果をケアセンタ506に送ることができる。また、データセンタは、測定ユニットを介して、またはコンピュータ、タブレット、電話またはウェアラブルを介して、患者と遣り取りすることができる。測定ユニットおよびデータセンタは、例えば、セルラデータモデムを使用して、検出された尿素に有意な変化があるとき、または尿素が高リスクレベルに達したときに、患者にSMSアラートを送信することもできる。
【0071】
図6は、卓上測定ユニットの動作のプロセスフロー図である。起動後、ユニット502は、604において、測定を行う時間であるか否かを判断する。これは、内部クロックおよびカレンダに基づくものであっても、ケアセンタ506、データセンタ504、診療所または他の外部エージェントなどの外部デバイスから受信した指示またはコマンドに基づくものであってもよい。測定の時間である場合、ユニットは、606で患者510に注意を促す。ユニットは、そのユーザインターフェース526を介して可聴信号または可視信号を操作することができる。さらにまたは代替的に、無線または有線接続を使用して他のデバイスにアラートを送信することもできる。ユニットは、電子メール、テキスト、通知または他の表示を送信することができる。
【0072】
患者は、ユニットに来て、適切な指を検査用開口部534に挿入することにより、アラートに応答する。患者が予め定められた時間内に応答しない場合、ユニットは、患者に更なるアラートを提供することができ、また、患者が応答していないことをケアセンタまたは他の外部モニタに警告することができる。その後、技師または他の医療提供者が、患者の状態を判断するために派遣されるようにしてもよい。608において患者が測定NMRユニットに指を挿入したとユニットが判断すると、610で、その指が測定される。
【0073】
一例では、ユニットは、NMRを使用して15Nについて指を測定する。明確な生の結果が得られると、ユニットは612で、患者に測定が完了したことを示す。生の測定量は、尿素濃度を推定するために、614で、ユニットのプロセッサによって分析される。その後、尿素濃度値は、616でユニットによって記憶される。また、測定量は、追加の分析のために、かつユニットのメモリをバックアップするために、データセンタ504に送信することができる。また、ユニットは、特定の実施形態に応じて、生の測定量を保存して、外部分析のために送信することができる。
【0074】
ユニットは、618で、尿素濃度をさらに分析して、結果が尿素濃度の予想される安全境界外にあるか否かを判断する。正常または範囲内の結果については、ユニットは、患者にSAFEまたはGOODの表示を提供するようにしてもよい。測定タイマーが再起動され、プロセスが604で繰り返される。結果が範囲外である場合、ユニットは、620において異なるタイプのアラートを提供するようにしてもよい。
【0075】
プロセッサユニットは、アラートのタイプと詳細、およびアラートの送信先を決定するように構成することができる。ユニットは、ローカル端末またはユニットのユーザインターフェースを介して患者に通知することができる。ユニットは、患者への通知の代わりに、またはそれに加えて、診療所、病院または他の場所に通知を行うことができる。診療所は、インターネットまたはプロプライエタリまたは仮想ネットワークなどの有線または無線インターフェースを介してデータセンタに接続することができ、また、患者のローカル端末およびケアセンタにも接続することができる。場合によっては、データセンタ504は、病院または診療所506内にあってもよい。上述したように、アラートにより、患者が治療を必要とする状態にあるか否かを判定するための更なる分析のために、診療所が患者の予約をスケジュールするようにしてもよい。
【0076】
範囲外または他の病気のアラートは、上述したように、様々な異なる関係者のうちの1または複数に提供するようにしてもよい。患者が更なる診察を受けるためにケアセンタに行くことができるように、患者に警告するようにしてもよい。ケアセンタは、任意選択的には、患者がより詳細な分析または診察のためにスケジュールされるように、622で、アラートを受けるようにしてもよい。データセンタは、他の情報と一緒に情報を使用することができる。範囲外のアラートが生成および送信された後、診察がスケジュールされるものであってもよい。
【0077】
患者がさらに診断された後、診療所は診断結果をデータセンタに送ることができる。これにより、データセンタは、患者のログを補足することができる。その後、データセンタに記憶されたログ測定量は、診断結果に関連付けることができる。これにより、システムは、より正確な個人向けのアラートを提供することができる。さらに、ある患者の測定量または測定パターンは、他の患者のパターンと比較することにより、他の患者の結果を改善することができる。ログ内の患者識別子は、患者の医療プライバシを保護するために暗号化するようにしてもよい。
【0078】
図7は、ウェアラブルとして使用するのに適した代替的な測定ユニットの一例である。ウェアラブル測定ユニット702は、他の患者の活動を妨げることなく、非常に頻繁な測定を可能にする。この例では、測定器は、手首706または腕704に装着することができる。測定器702は、バッテリまたはコンデンサなどの電源726と、システムオンチップ(SOC)720と、メモリ722を有するパッケージ内のシステム(SiP)または他の処理リソースとを含む。通信インターフェース724は、SOCとは別個のものであってもよいし、SOCに統合されていてもよい。センサ718は、リストウォッチのようにストラップ708で手首706または腕に取り付けることができるケース内の他のコンポーネントとともに収容されている。測定器は、電子式または機械式のウォッチ714を含むようにしてもよい。代替的または追加的には、フィットネスストラップ機能などの機能を提供するために追加の測定器を含むことができる。ディスプレイ712およびユーザコントロール716、例えば、ボタンまたはタッチスクリーンは、通知、アラート、通信などのスマートウォッチ機能を提供するために使用することができ、ユーザが測定ユニットを操作することを可能にするために使用することもできる。
【0079】
センサ718は、測定方法として、経皮ラマン分光法を着用者の手首に適用することができる。また、上述したように、ラマン分光法を用いて尿素を測定することができる。また、尿素測定量を濃度に換算するために水分濃度を測定することもできる。体の組織や体液にはかなりの割合で水分が含まれているが、この量は体の部位、時刻によって異なることがある。尿素スペクトル線に加えて水のスペクトル線を測定することにより、それらの測定量の比を用いて、尿素測定の濃度を提供することができる。また、水に対する比率は、カップリングの変動を補正するためにも使用することができる。このアプローチは、本明細書に記載の他の任意の実施形態においても使用することができる。
【0080】
測定量は、メモリ722に記憶された後、通信インターフェース724を使用して外部に送信することができる。また、測定量は、ディスプレイ712上でユーザに直接表示することもできる。測定器は、以下に説明するように、有線または無線の様々なインターフェースの何れかを使用して、測定結果を外部デバイスに送信することができる。
【0081】
ウェアラブルデバイスとしての測定器は、着用されているときはいつでも患者の状態を監視することができる。測定は、測定器のプログラミングによって決定されるように、一定の間隔で行われるものであってもよい。測定器は、特定の間隔、例えば5分毎、30分毎、120分毎、300分毎などに尿素濃度または水分濃度、またはその両方を測定するようにプログラムすることもできる。それらの測定量およびタイムスタンプ730は、ローカル716に記憶され、メモリ722に記憶され、かつ送信される(724)ようにしてもよい。測定器は、特定の時間帯に測定するようにプログラムすることもできる。また、測定器は、患者が測定器に測定するように命令できるように構成することもできる。また、測定器は、通信インターフェースを介して外部デバイスから受信した測定コマンドに応答するように構成することもできる。測定器は、加速度計を使用して、患者が静止しているときを識別し、その時点で測定を実行するように構成することもできる。可能性のある外部デバイスとしては、スマートフォン、コンピュータまたはリモートサーバを含むことができる。測定器は、スマートフォンまたはコンピュータ上のアプリまたは他の適切なインターフェースを使用して制御されるものであってもよい。スマートフォンまたはコンピュータは、より広範なユーザインターフェースを提供し、より複雑なスケジューリングおよび分析システムを提供し、別の人が患者に、例えばSMS、チャット、通知または電子メールなどで、メッセージを送信して、測定を要求するために、使用することができる。
【0082】
測定器は手首にあるため、必要に応じて、監視を頻繁に、あるいは連続的に行うこともできる。頻繁で自律的な監視を行うことにより、患者が毎日1回または2回の測定を忘れないように確認する必要がなくなる。測定器は、そのような測定を行うことを可能にするように構成することができる。患者は、通常、患者の活動の変動に伴って、マーカーレベル、すなわち尿素濃度の変動を示すこととなる。日中のサイクル、食事、運動および他の患者の活動により、尿素濃度が変化し得る。患者の活動、食事および睡眠パターンが変化する場合、一日を通してマーカー濃度を正確に測定することが困難な場合がある。頻繁にまたは連続的に監視を行うことにより、日中のサイクル、食事、運動および他のあらゆる活動によるマーカー濃度の変動を検出することができ、よって変動を補正することができる。一例として、手首ベースのセンサは、睡眠および運動を含む活動レベルを検出し、それに応じて測定サイクルを調整するための加速度計を含むことができる。
【0083】
本実施例のセンサは、ラマン分光法を使用して尿素と水の濃度を測定する。ラマン分光法は、安価で高性能な近赤外線または可視光源、検出器および光学系を使用して、中赤外(ミッドレンジ赤外)スペクトル特徴を検出することを可能にする。レーザは手首の分子を励起した後、分子振動に対応するスペクトル線を生成する。これらは、分子を検出および識別する方法として、既知の分子のスペクトル線と比較することができる。
【0084】
上述したように、尿素は体内の多くの部位で発生しており、尿素濃度は病気を検出するための有用な指標となる。リストウォッチ型のデバイスでは、センサの位置が変化すると、センサと測定対象の組織または体液との間のカップリングが変化する。また、リストウォッチ型センサの裏面と手首との間の物理的なカップリングは、距離、水分および他の要因によっても変化し得る。これは、複数回の測定を行うことにより、各測定における多くのバラツキに対して結果を正規化することで、容易に補正することができる。
【0085】
手首に装着されるセンサは、サイズ、出力、および手首との光学的カップリングにおいて複雑さを提示するが、便利な頻繁な測定を可能にする。また、長時間の測定も可能である。ラマン分光法は、通常、適度に高出力のレーザを使用する。これにより、より強い戻り信号を得ることができる。一般的な物体は、室温において中赤外光スペクトルでかなりの量を放出し、このバックグラウンドノイズがセンサの中赤外検出器に到達し、それによって中赤外測定の感度を制限する場合がある。高出力レーザは、小型の手首に装着した電源からかなりの電力を消費し、冷却される中赤外検出器はさらに多くの電力を消費することになる。また、それらのコンポーネントは、リストウォッチと比較して物理的にも大きくなる。ノイズの問題は、測定時間を長くすることで補正することもできる。
【0086】
低出力のレーザは、バックグラウンドノイズと比較して、戻り光信号の振幅を減少させる。これにより、信号対雑音比のパフォーマンスが低下する。測定時間を長くすることで、より多くのバックグラウンドノイズを光戻り信号検出器で収集する可能性がある。検出器のバックグラウンドノイズは時間に比例する。これにより、信号対雑音比のパフォーマンスがさらに低下する。
【0087】
一方、戻り光信号も、レーザ出力に時間を乗じたものに比例する。増加したノイズを補償するために、ノイズの変動を分析することができる。信号もノイズも時間に直接関係して増加するが、ノイズの変動は時間の平方根(sqrt(時間))に比例して増加する。
【0088】
この平方根の関係により、有用な測定量を取得しながらも、目の安全性、省電力、サイズ縮小のために、レーザ出力を低減することができる。追加の安全機能として、センサが手首の近くにあるときを判定するインターロックを提供することができる。センサが取り外されるか、または手首から離れ過ぎている場合、レーザはオフになる。近接センサは、ラマン分光器の光学センサであってもよく、別個の近接センサをデバイス上で使用するようにしてもよい。近接センサは、例えばユーザの手首に向けて、ケースの背面に取り付けることができる。
【0089】
使用時には、測定ユニットのコントローラは、ソフトウェアタイマ、ユーザコマンドまたは外部デバイスから測定コマンドを受信する。コントローラは、測定器が手首の隣にあるか否かを判定するためにセンサを駆動する。ある場合には、センサを駆動して励起信号を発生させ、患者の手首からの放出光を測定する。測定量はプロセッサによって分析された後、メモリに格納される。その後、測定器は、プロセスを終了して、プロセスの開始に戻る。別のプロセスでは、測定器は、格納されたデータを、スマートフォン、コンピュータまたはサーバなどの外部デバイスに転送する。このプロセスは、従来のプロトコルを使用して実行することができ、その後、転送されたデータを使用して、病気を判定したり、治療をスケジュールしたり、または他の方法で使用したりすることができる。
【0090】
リストウォッチのフォームファクタに代わるものとして、ウェアラブル測定ユニットは、他の従来の衣服または付属品の形態であってもよい。一例として、ユニットは、患者の腰の周りにベルトで支持されるものであってもよい。センサは、ベルトによって身体に取り付けられた小型センサヘッドに光ファイバーで接続することができる。代替的には、センサは、ある種のバンド、例えば弾性バンド、または粘着テープのような別の方法で、腹部、背中、脚、腕または手首に取り付けるようにしてもよい。
【0091】
図8Aは、ポータブルハンドヘルド測定器として使用するのに適した代替的な測定ユニットの図である。このポータブルハンドヘルド測定器は、技師による使い易さを可能にし、他のタイプの測定を行うことを可能にする。この変形例では、ポータブルハンドヘルドユニット802は、バッテリまたはコンデンサなどの電源824と、SOC、SiPまたはディスクリートコントローラなどのプロセッサ820と、SOCの一部であっても一部でなくてもよいメモリ822と、通信インターフェース826と、センサ806とを含む。これらはすべて、ケースのハンドル810を使用して手で簡単に保持することができるケース内に収容されているため、尿素濃度のような適切な健康マーカーの測定のためにラマン分光測定器806を患者に向けることができる。この測定器は、血中酸素、温度および他の測定量を提供するための追加の測定器も含むことができる。ディスプレイ812およびユーザコントロール814、例えば、ボタンまたはタッチスクリーンなどは、通知、アラートおよび通信などの追加の制御および通信機能を提供するために使用することができる。
【0092】
センサは、測定方法として、患者の耳たぶ、額、または他の適切な場所に経皮ラマン分光法を適用することができる。図8Bは、耳たぶ840に適したハンドヘルド測定器のセンサ部分の拡大側面図であり、オペレータがセンサを耳たぶに対して固定した状態で保持することを可能にするクリップ842が設けられている。これにより、レーザを耳たぶの一方の側に配置し、近赤外(NIR)センサを耳たぶの反対側、例えばクリップ842内に配置して、透過率測定を使用することができる。透過率測定により、ポンプ減衰を測定し、その後、これを使用して尿素測定を正規化することが可能になる。代替として、測定器は、レーザとセンサを同じ側に配置して接触測定を行うように構成することもできる。これは、額、手首、他の測定場所にも適している。
【0093】
いくつかの実施例では、センサは、上述したようにラマン分光法を用いて尿素を測定する。また、尿素測定量を濃度に変換するために水分濃度を測定することもできる。体組織および体液にはかなりの割合で水分が含まれているが、この量は、体の様々な部位で異なる時間に変化することがある。尿素スペクトル線に加えて水スペクトル線を測定することにより、それらの測定量の比を用いて、尿素測定の濃度を提供することができる。また、水に対する比は、カップリングの変動を補正するために使用することもできる。他の例では、異なるセンサを使用することができる。
【0094】
測定量は、後で外部デバイスに転送するために保存することができる。この例では、測定器は、ドック804に接続されるドッキングコネクタ828を有するハンドル810のベースを含む。ドックは、ハンドヘルドユニットのベースを受け入れる嵌合コネクタ830を含むことができる。ドックは、測定器を充電するための電力を供給し、測定器と接続された端末(図示省略)との間でデータを転送するために、USB、イーサネットまたは他の適切なデータコネクタ832を含むことができる。代替的には、ハンドヘルドユニットに主電源を供給するために、別個の電源または電圧レギュレータ838を使用することができる。コネクタとケーブルとの間のデータインターフェース834を使用して、ドックを介してハンドヘルドユニットを接続された端末に接続することができる。代替的には、無線インターフェースをデータ転送に使用することもできる。
【0095】
その後、ドックを使用して、測定量を、接続された端末に転送することができ、任意の更新を、測定器に転送することができる。例として、ドックを使用して、ソフトウェアの更新、患者情報および分光較正データを測定器に転送することができる。ドックが示されているが、単純なUSBコネクタまたは他のタイプの電源およびデータコネクタを使用して、同様の機能を達成することもできる。ドック接続は、電気的、誘導的またはその他の方法で行うことができる。
【0096】
このハンドヘルドユニットは、大きなバッテリ、強力なレーザおよびラマン分光器の戻り光学センサ用の冷却システムを容易に収容することができる。このセンサは、病院、診療所または他のケア施設の技師によって携帯され、再充電される前に数多くの異なる患者を測定することができる。一例として、技師は、介護施設で測定器を使用して、技師が毎日各患者を訪問して健康状態を監視することができる。別の例として、技師は、病院、手術後の回復施設または自宅にいる手術後の患者を毎日訪問して、合併症の回復を監視することができる。
【0097】
一日の終わりまたはラウンドの実行の終わりに、測定器をドックに接続して、USBコネクタを介してコンピュータに測定量をすべてダウンロードすることができる。サービスやソフトウェアの更新も測定器にアップロードすることができ、測定器のバッテリを充電することができる。代替的には、他の適切な有線または無線接続を使用することもできる。
【0098】
図9は、採取したサンプルに使用するためのポータブル卓上型測定器としての使用に適した代替的な測定ユニットの図である。この卓上測定器は、患者を所定の場所に連れて行くことによって、または測定器を患者のところに持ってくることによって、サンプルを収集して測定することを可能にする。他の実施例と同様に、家庭、診療所、病院または他の任意の場所で使用するのに適している。サンプルの適切な収集は、技師によってより容易に実行することができるが、患者は、自宅で測定することを好むかもしれない。
【0099】
卓上測定器902は、固定デバイスであってもよいし、ポータブルデバイスであってもよい。この例では、測定器を異なる場所に持ち運ぶためのハンドル906を有するハウジング904を含む。ユーザインターフェースは、ディスプレイ910とボタンまたはスイッチ912を含む。タッチスクリーンまたは他の適切なインターフェースを使用することもできる。スピーカ913は、可聴アラートまたは他の通知のために使用することができる。また、ハウジングは、分析用のサンプルを受け入れるためのチューブまたは円筒状スリーブ914と、電源およびデータ転送のためのUSBポートなどのポート908とを含む。
【0100】
ハウジング904内の機能的コンポーネントは、他の実施例のものと類似していてもよく、SOC920、メモリ922、バッテリ924および通信インターフェース926を含む。
【0101】
ラマン分光センサなどのセンサ918を使用して、サンプルチューブ914内に配置されたサンプルの尿素濃度を分析することができる。サンプル容器916は、唾液サンプルまたは他の任意のタイプのサンプルを保持するために使用することができる。サンプルは、使い捨てまたは再利用可能なサンプル容器916内に収集されて分析され、分析のためにセンサチューブ内に置かれるようにしてもよい。サンプル容器は、測定を妨げる可能性のある気泡を減らすために、湿潤剤を予め充填することができる。気泡は、光を強く散乱するため、光学的測定において問題となる可能性がある。湿潤剤を使用することで、唾液中の水の表面張力を低下させ、気泡を表面に浮かせることができる。センサは、データをSOCに提供して、データを分析し、内蔵ディスプレイにアラートを表示するようにしてもよい。
【0102】
内部コンポーネントおよび機能は、ハンドヘルドユニットまたは卓上指センサと同様であってもよいが、このデバイスは、より大きくて重いフォームファクタ内に収まるように構成することができる。より大きなフォームファクタは、より強力なプロセッサ、より長く持続するバッテリ、およびデータおよび音声インターフェースなどのより完全な通信インターフェースの一式を可能にすることができる。
【0103】
卓上ユニットは、介護施設や自宅訪問中に使用することができ、より大きな電力、通信、およびバッテリ寿命を持つより大きなフォームファクタは、より離れた場所への巡回に特に適している。卓上ユニットは、チューブに挿入された指を測定するように適合させることができる。また、尿との使用に適合させることもできる。唾液や尿などの体液は、強い信号を提供し、上述した経皮測定よりも測定し易い。他の体液と比較して、唾液は入手と取り扱いが容易である。他の体液のように、唾液の尿素レベルは、体の尿素レベルに追従する。
【0104】
使用時には、技師または患者が唾液で満たされたサンプル容器を提示する。容器は測定チューブ内に挿入され、測定器が作動する。ユーザインターフェースは、患者に関する情報または他の適切なデータを入力するために使用することができる。その後、測定器は、尿素濃度または他の適切なマーカーについてサンプルを測定し、その結果を分析する。結果は、代替的には、USBインターフェースまたは無線インターフェースを介して、分析用に外部デバイスに送信するようにしてもよい。その後、アラートなどの分析結果を画面上に表示することができる。否定的な結果の場合、患者は、別個の電話またはコンピュータ端末を介して、またはいくつかの構成では、測定器を直接使用して、診察を予約することができる。
【0105】
図10は、尿素を検出する測定ユニットに適した代替的な固定式液体サンプル収集デバイスの図である。固定式のサンプル収集は、他の機能が十分に自動化されていることを条件に、患者に使い易さを提供する。測定器1020は、トイレ1002と一体化され、便器1004に取り付けられているか、または組み込まれている。トイレが洗い流される前に尿を分析するために、赤外線分光法または他の任意の適切な技術を使用することができる。精度を高めるために、濃度計算に使用するために尿の量を測定することができる。Wi-Fiまたは有線接続を使用して、分析のために測定量をリモートサーバに報告するようにしてもよい。代替的には、上述した分析機能を、同様の方法で測定器1020に組み込むことができる。
【0106】
測定器1020は、主電源への接続部などの電源接続部1014を含み、またはバッテリまたはコンデンサを使用することができる。測定器はさらに、SOC、SiPまたはディスクリートコントローラなどのプロセッサ1010と、SOCの一部であってもよいし、そうでなくてもよいメモリ1012と、通信インターフェース1008と、センサ1006とを含む。それらは、ケース内に収容されていてもよいし、トイレのコンポーネントに統合されていてもよい。
【0107】
測定器は、患者が放尿したときを判定し、その後、便器が洗い流される前にセンサを作動させるように構成することができる。また、同様の尿検出を用いて、便器にどれだけの量の尿が加えられたかを判定することができる。これは、便器内の水に対する尿の相対量を測定するために使用することができる。尿素濃度が求められている場合には、存在する水の量から、追加された尿を比較することが有用である。適切な液面検知技術には、便器内の液体の上面の位置を測定するための、圧力センサ、静電容量センサ、光学センサおよび超音波距離測定器が含まれる。これらのセンサは、便器に一体化することも、あるいは付属品として便器に取り付けることもできる。
【0108】
また、センサは定位置に設置されるため、主電源を使用することができる。その結果、より正確で効果的な高消費電力コンポーネントを使用することができる。センサは、中赤外分光法のための中赤外光源と冷却検出器を使用することができる。これは、上述したいくつかのバリエーションよりも多くの電力を必要とするであろう。中赤外光源は適切なレーザであってもよく、検出器は適切な光フィルタを有するシリコン光検出器センサであってもよい。
【0109】
使用時には、「スマートトイレ」は、様々な人々によって共有される可能性がある。「スマートトイレ」が診療所、病院または介護施設に設置されている場合、測定ユニットのコストおよびメンテナンスを、多くの異なるユーザ間で共有するようにしてもよい。そのような利用においては、一日に収集される複数のサンプルが存在し、その結果、ウェアラブル測定器の利点の一部を実現することができる。異なるユーザを区別するために、ユーザはアクセスコードを入力するか、または何らかの他の識別方法を提供することができる。これは、ブレスレットまたは衣服からのRFIDコード、個人のドアキーの無線インターフェース、スマートフォンの認証信号、または顔認識などの何らかのタイプの自律的な識別を含むことができる。図10において、IDユニット1016は、人を識別するためのRFIDタグリーダ、カメラまたは他の信号受信機であってもよい。
【0110】
図11は、様々な例示した実施形態における、図1のコンピューティングシステム、モニタ、測定器、ローカル端末、サーバ、データセンタまたは診療所など、記載した実施形態の特徴を実装し得るシステムの一例を表すコンピュータシステム10のブロック図である。これらのシステムは、実施形態および関連する機器に応じて、そのようなコンピュータシステムを含むか、またはそのようなコンピュータシステムとして実施され得る。コンピュータシステムは、情報を遣り取りするためのバスまたは他の通信手段1と、情報を処理するための、バスに結合された1つまたは複数のマイクロプロセッサ2などの処理手段とを含む。コンピュータシステムはさらに、情報およびプロセッサによって実行される命令を記憶するための、バスに接続されたランダムアクセスメモリ(RAM)または他の動的データストレージデバイスのようなキャッシュメモリ4を含む。また、メインメモリは、プロセッサによる命令の実行中に一時的な変数または他の中間情報を格納するために使用することもできる。また、コンピュータシステムは、静的情報やプロセッサの命令を格納するための、バスに接続されたリードオンリーメモリ(ROM)または他の静的データストレージデバイスのような不揮発性のメインメモリ6を含むことができる。
【0111】
ソリッドステートディスク、磁気ディスク、ディスクアレイまたは光ディスクなどの大容量メモリ8およびそれに対応するドライブもまた、情報および命令を格納するためにコンピュータシステムのバスに接続することができる。また、コンピュータシステムは、ユーザに情報を表示するためのディスプレイデバイスまたはモニタ4にバスを介して接続することができる。例えば、設置状態、操作状態および他の情報のグラフィカルおよびテキスト表示は、ディスプレイデバイス上でユーザに提示することができる。ユーザ入力デバイス16、例えば、英数字キー、ファンクションキーおよび他のキーを有するキーボード、マウス、トラックボール、トラックパッドまたはカーソル方向キーなどのカーソル制御入力デバイス、ボタン、スライダ、ホイールおよびタッチスクリーンなどのユーザ入力デバイス16は、ユーザからプロセッサに方向情報および命令選択を伝達するためにバスに接続することができる。いくつかの実施形態では、異化または他のマーカーを測定するための1または複数のセンサ18がバス1に取り付けられ、自律的にまたはプロセッサの制御下で動作することができる。
【0112】
通信インターフェース12も、バスに接続されている。通信デバイスは、有線または無線モデム、ネットワークインターフェースカード、または、他の周知のインターフェースデバイス、例えば、ローカルまたはワイドエリアネットワーク(LANまたはWAN)をサポートするための通信リンクを提供する目的で、イーサネット、トークンリング、または他のタイプの物理的なアタッチメントに接続するために使用されるインターフェースデバイスを含むことができる。このようにして、コンピュータシステムは、例えばイントラネットまたはインターネットを含む1または複数の従来のネットワークインフラストラクチャを介して、多数のクライアントまたはサーバにも接続することができる。追加的または代替的には、通信インターフェースは、上述したように、無線リンクを組み込むことができる。
【0113】
大容量メモリ8は、上述したように、複数の患者のデータを記憶するために使用することができる。データは、テーブルまたは他の任意の構造形式を採ることができる。この例では、患者測定テーブル22は、時間をかけて収集された、または外部ソースから共有された1または複数の患者の測定量を含む。尿素、乳酸、タンパク質、アラニン循環マーカーなどの様々なタイプの測定量またはマーカーのための様々なテーブル、または指、額、手首、体液などの異なるタイプのモニタのための異なるテーブルがあってもよい。また、運動、脈拍、血中酸素などの他の測定量のためのテーブルがあってもよい。患者記録テーブル24は、診療所、サーバ、医師またはシステムの他の参加者によって必要とされる可能性のあるテーブルに関する他の医療データまたは個人データを含む。繰り返しになるが、患者毎に異なるテーブルが存在してもよい。患者選好テーブル26は、システムの使用に応じた様々な操作上または治療上の選好を含む。これは、表示構成、監視の時間、連絡先の設定、好ましい予約時間、または他の適切な設定を含むことができる。
【0114】
記載されたテーブルは、二次元テーブルとして、メタデータを含むテキストファイルとして、または他の任意の望ましい方法で保存することができる。患者測定テーブルからのデータは、選好テーブル26によって示されるように、ユーザインターフェース16からのコマンドに応答してプロセッサによって収集および分析される。また、システムは、通信インターフェース12を介して遠隔操作またはアクセスされるものであってもよい。
【0115】
図11のシステムは、任意選択的に、AI(人工知能)エンジン30をさらに含む。これは、並列処理を使用する専用のハードウェアで、またはプロセッサ2で、またはリソースのいくつかの組合せを使用して、実装することができる。また、AIエンジンは、サーバシステム10の外部にあって、ネットワークノードまたは何らかの他の手段を介して接続されるものであってもよい。AIエンジンは、サーバシステムによって蓄積された履歴データを使用して、分析プロセスに適用するための重み付けおよび基準を含むモデルを構築するように構成することができる。蓄積されたデータを使用してモデルを繰り返し再構築し、精度を向上させることができる。図示のシステムの代わりに、またはそれに加えて、他のタイプの分析システムを使用することができる。
【0116】
コンピュータシステムは、バスに接続されたディスクリートコンポーネントとして示されているが、コンポーネントのうちの1または複数を組み合わせたり、他のコンポーネントを追加したりすることもできる。一例として、コンポーネントの一部またはすべてを、1または複数のSiP、またはSoC、またはそれらのいくつかの組合せに組み合わせることができる。同じ基本的なタイプのコンポーネントの多くが使用されているが、自律型リストモニタ、充電式ハンドヘルドモニタおよびサーバセンタは、全く異なるハードウェア実装を使用して、構築することもできる。
【0117】
図12は、いくつかの実施形態に係るSOC720およびセンサ718のコンポーネントの図である。他のコンポーネントの中で、SOCは、任意選択的には、3軸加速度計などのモーションセンサ732と、リアルタイムクロック734とを含む。これは、患者が活動状態にあるか弛緩状態にあるかを判定し、測定のためにセンサを作動させるのに適切な条件および時間を評価するために使用することができる。マイクロプロセッサは、電源726と、Bluetooth、GSM/GPRS、Wi-FiまたはLTEモデムなどの1または複数の通信モデム724と、上述したような他のコンポーネントとに接続されている。上述したように、図7および図8の基本構成は、ウェアラブルデバイスおよび独立したデバイスのための他のフォームファクタに適合させることができる。
【0118】
マイクロプロセッサは、SOC内の他のコンポーネント、または任意選択的にはSOCの外部にあるコンポーネントを駆動して、センサを動作させることができる。レーザドライバ740は、マイクロプロセッサの制御の下でパワーを生成して、センサのレーザダイオード(LD)750に、測定および較正のための適切な光を発生させる。熱電冷却器(TEC)ドライバ742は、パワーを生成して、センサ上の1または複数のTEC752を駆動する。冷却器は、LD750、フォトダイオード(PD)光センサ756およびセンサの他のコンポーネントに関連付けることができる。TECは、センサコンポーネントの正確な制御を可能にするために、互いに独立して制御することができる。熱センサインターフェース744は、センサの温度センサ754からの読み取り値を受け取り、それらをマイクロプロセッサに与える。マイクロプロセッサは、このデータを使用して、冷却器、LDおよびPDを制御するように構成することができる。フォトダイオードインターフェース746は、PD756のタイミング、スキャンレートおよび他の動作を制御することを可能にする。それはまた、PDデータをマイクロプロセッサに提供して分析し、ログに記録する。マイクロプロセッサは、ディスプレイ712およびユーザ制御716に接続するためのユーザインターフェースモジュール748も有する。
【0119】
図7および図12のシステムは、特定のタイプのセンサ、生化学的マーカーおよび患者組織に適合するように、様々な異なる方法の何れかで操作することができる。図示のコンポーネントよりも多い又は少ないコンポーネントを、操作を実施するために使用することができる。一例では、システムは、3軸加速度計などの慣性センサ732を使用して、患者が静止しているときを識別するように構成することができる。その後、マイクロプロセッサのリアルタイムクロックを使用して、測定量をいつ取得するのかを特定することができる。測定は、タイマ、時刻または別のスケジュールに基づいて行うことができる。
【0120】
その後、光検出器熱電冷却器(TEC)752を作動させ、第1ステージおよび第2ステージの温度センサ754を読み取って、冷却器の駆動電流を調整する。冷却器およびセンサは、光検出器756を最適または予め設定された動作温度に維持するために一緒に使用される。様々な異なる制御技術を使用することができる。一実施例では、比例-積分-微分制御技術が適用される。ほぼ同時に、レーザダイオード熱電冷却器752が作動し、レーザダイオード温度センサが読み取られ、同じまたは同様の制御手法を使用して、レーザダイオードの温度が最適または予め設定された温度に調節される。
【0121】
その後、センサのレーザダイオード750は、マイクロプロセッサによって作動される。マイクロプロセッサは、正確な動作を保証するために、レーザダイオード温度および駆動電流の設定値を有するものであってもよい。それらは、初期または予め設定された設定値に開始される。レーザおよび冷却器は、初期値が達成されて安定化するまで操作される。PDインターフェース746は、PD756を作動させて組織から初期スペクトルを取得する。このデータは、メモリ722または一時キャッシュに保存される。
【0122】
任意選択的には、より高い精度を達成するために、レーザダイオードの温度および駆動電流を第2の温度設定値および駆動電流設定値に変更して、レーザ光周波数をシフトさせることができる。その後、マイクロプロセッサは、電流および温度が第2の設定点で安定するのを待つ。次いで、PDインターフェースは、光検出器を使用してPDにスペクトルを取得させて、この追加データを保存させる。
【0123】
2回の取得後、スペクトルデータを分析して、データ品質が閾値または標準的な期待値を満たしているか否かを判定することができる。温度および駆動電流を設定し、スペクトルを取得するプロセスは、完全な測定サイクルが完了するまで繰り返される。その後、マイクロプロセッサは、レーザ、レーザ熱電冷却器および光検出器熱電冷却器の作動を停止させる。次いで、得られたデータを分析することができる。ペルチェ冷却器のような冷却器が記載されているが、より単純な加熱器または他の熱システムを使用することができる。また、温度の代わりに、または温度に加えて、レーザの他の動作パラメータを変更することによって、レーザの出力光周波数を調整することもできる。
【0124】
例えば、初期値スイープが一緒に平均化され、シフトされたスイープが一緒に平均化され、より正確な値が、シフトされた平均から初期値の平均を減算することによって得られる。2つの異なるLD光周波数を使用し、組織のスキャンを複数回行うことで、多くの誤差や干渉の原因を排除することができる。追加のスイープは、追加の周波数で取るようにしてもよい。信号品質を改善するために、他のより単純またはより複雑な技術を使用することができる。
【0125】
このラマン分光器では、ラマン分光線強度を、最終的なスイープ値に基づいて決定することができる。一例では、部分最小二乗分析を使用して、ライン強度に到達することができる。その後、上述したように、結果をログに記録し、タッチスクリーンを含む外部コンポーネントに伝達することができる。さらに、またはその代わりに、統合されたGSM/GPRSモデムを使用して、測定結果をクラウドサーバにアップロードすることもできる。その後、次のサイクルのために測定量をリセットするようにしてもよく、このプロセスを、患者が十分に静止しているときに繰り返すようにしてもよい。また、測定間隔は、リスクアルゴリズムと測定結果に基づいて調整することもできる。
【0126】
図13は、図12のラマンセンサの光学系をより詳細に示す図である。図示よりも多くの又は少ない光学素子を使用することができる。レーザダイオード750は、ペルチェ冷却器のようなLD熱電冷却器752-1に熱的に結合されている。冷却器は、その温度を制御することによってLDを安定化させて調整する。代替的には、LDを冷却するためではなく、LDを加熱するために、より単純な抵抗加熱器を使用することができる。温度の代わりに、または温度に加えて、他のレーザパラメータを変更するために、他のデバイスを使用することができる。レーザは、適切なタイプの組織のラマン分光法に適した周波数のレーザダイオードであってもよい。他の種類のコンパクトLDのうち、適切な赤外線、赤色または緑色のLDを使用することができる。卓上型ユニットの場合は、ガスおよび他のタイプのレーザを代わりに使用することができる。
【0127】
レーザ照明は、コリメートレンズ760に結合され、任意選択的には光学アイソレータ761を通過する。アイソレータは、組織または他の光学素子からレーザに戻る反射LD光を減衰させる。反射光がLDに到達すると、LDのエネルギーが変化し、LD出力の振幅または周波数が変化し得る。任意選択的には、増幅自然放出(ASE)フィルタ762のような第2のフィルタは、それがなければラマン信号にノイズを加えるであろうLDから放出される他の光を遮断または吸収する。
【0128】
ダイクロイックビームスプリッタ763は、ラマンポンプ信号をLDから組織767に渡す。組織からのエネルギーは、光検出器756の方向に反射される。フィルタ761、762およびビームスプリッタ763の後、コリメート760されたLD750の照明は、別のレンズまたはレンズシステム764によって患者組織767に向けられ、集束される。このレンズは、ポンプ信号を小さな組織領域まで集束して、小さな領域内でのラマン散乱を増加させる。
【0129】
集束されたビームは、センサの内部コンポーネントを塵、湿気および他の汚染物質から保護するセンサの窓765を通過する。この窓は、光学系の露点を下げるために、周囲の湿気に対する気密シールを提供するように構成することができる。それは光学的にパワーが供給されるように構成することができる。窓765と組織767との間には、窓を組織から保護するためのスペーサ766が設けられている。スペーサは、焦点レンズ764と組織との間の距離も制御する。この距離は、組織内のポンプ信号の焦点位置を決定する。図7の例では、組織は腕または手首である。しかしながら、組織は、他の任意の組織であってもよく、上述したように、尿、汗または唾液のような抽出されたサンプルであってもよい。
【0130】
ラマン分光法の原理によれば、ポンプ信号によって照らされた組織は、ポンプ信号のエネルギーを吸収し、組織の状態および組成によって決定される異なる周波数または波長の光子を放出する。この放出された光は、一部は、スペーサ766を横切って、窓765を通り、ポンプ信号の方向に戻って放出され、集光レンズ764によってビームスプリッタにコリメートされる。組織から放出される光の異なる波長により、光は、ビームスプリッタを透過することなく、ビームスプリッタによってPD756に向けて反射される。
【0131】
放出された光は、任意選択的なフィルタ768を通過して、光路内の追加のポンプ信号光を遮断または吸収する。これに続いて、放出された光をPD756に向ける光学システムがあり、これは、ペルチェ熱電冷却器752-2またはより単純な加熱器などの熱制御システムも有する。この例では、光学系は、コンパクトに構成され、最小の減衰でPDの表面を横切ってコリメートされた光を導くように構成されている。このシステムは、ビームスプリッタからの反射に光学的に結合された集光レンズ769と、光学スリット770と、放出光を、ビームスプリッタの光軸から外れてPDに向けて反射させる湾曲回折格子(DOE)とを有する。他の物理的構成の代わりに、様々な他の光学系を使用することができる。
【0132】
図14は、PDがLDから組織の反対側にある図8Bに示すようなラマンセンサの代替的な光学系の図である。このシステムは、ビームスプリッタが取り除かれていることを除いて、図13と同じ光学素子を有する。その代わりに、組織からの放出光は、別の方向から受光される。第2のスペーサ780は、組織から放出された光をレンズ782に伝達するための窓781を位置決めし、レンズは、図13の例と同様に、放出光をポンプ信号フィルタ768にコリメートする。その後、放出光は、図13に示すように、PD756に送信される。
【0133】
本明細書を通して、様々なプロセッサ、コントローラ、SOC、SiPおよび他の演算コンポーネントが参照される。電力要求、処理要求およびコスト制約に基づいて、適切なコンポーネントを選択することができる。このため、コントローラ、プロセッサなどのうちの何れか1つは、FPGA(フィールドプログラマブルゲートアレイ)、特定の目的のために設計されたASIC(特定用途向け集積回路)、マイクロコントローラであってもよく、それは、適切なプログラミングを有する単純な組み込みプロセッサであってもよく、内部プログラムメモリおよび複数の処理コアを有する完全なマイクロプロセッサであってもよく、または他の任意の適切なタイプのプロセッサであってもよい。コントローラまたはプロセッサは、メモリ、通信、ディスプレイコントローラ、グラフィックス、ユーザ入力および他のコンポーネントを含むか、またはそれらとともにパッケージ化されるものであってもよい。それらコンポーネントの各々の例示は、特定のハードウェア構成を必要とすることを意図したものではなく、記載された実施形態に特に関心のある機能を示すことを意図したものである。
【0134】
本明細書に記載の実施形態は、通信インターフェースを含む。いくつかの実施形態では、測定器は、単にディスプレイ上に情報を提供するために使用することができる。その後、人間は、測定結果または測定器によって直接実行された分析を適切な人に通知することができる。他のケースでは、結果はデータセンタ、診療所または様々な個人に送られる。様々な異なるインターフェースの何れかを使用することができる。有線インターフェースは、USB、イーサネットまたは他の適切な有線インターフェースを含むことができる。無線インターフェースは、外部コンポーネントにデータを送信するために、Bluetooth、ZigBee、Wi-Fi、セルラ、例えば、LTE、GSM、GPRSなど、または他の様々な無線インターフェースの何れかを含むことができる。
【0135】
いくつかの実施形態では、バッテリ電力を保持するために、電力節約が重要である。ハンドヘルドまたは手首ベースの機器の場合、データは、保存した後に、有線インターフェースに送信することができる。これは、消費電力が低いという利点があるが、データの送信が遅れる。他の例では、データは、Bluetoothなどの適切な短距離低電力システムを使用して、スマートフォンまたはコンピュータなどの別のデバイスに送信され、それらデバイスは、データを遠隔地にある外部データセンタまたは診療所に転送することができる。スマートフォンまたはコンピュータは、この例では中継器として機能する。IoT(Internet of Things)の最近の発展に伴い、Wi-Fi HaLowおよび5G LTEのための追加の低電力伝送プロトコルが開発されており、低コストのコンポーネントが利用可能になると、それらの何れかを代替的に使用することができる。
【0136】
上述したように、場合によっては、スマートフォンまたはコンピュータは、測定器とリモートノードとの間の中継器として機能する。しかしながら、スマートフォンまたはコンピュータは、データプロセッサとしても機能し、データを分析して適切なアラートを判定することができる。スマートフォンまたはコンピュータは、時間をかけて結果を収集し、適切なデータを受信するために使用することができ、それにより、正確な分析をユーザに対してローカルに提供することができる。また、スマートフォンまたはコンピュータは、ユーザインターフェースの一部として使用することもできる。スマートフォンまたはコンピュータのアプリにより、より詳細な測定情報または測定器のより詳細な制御が可能になる。スマートフォンまたはタブレットは、測定器を操作するためのポータブル補助制御インターフェースとして使用することができる。
【0137】
特定の実施形態では、上述した実施例よりも少ない又は多くの、装備されたセンサ、モニタ、端末、診療所またはサーバシステムを使用することが可能である。このため、システムの構成は、価格制約、性能要件、技術的改善および/または他の状況などの多くの要因に応じて、実施形態毎に異なるものとなる。
【0138】
本明細書に記載の操作の多くは、中央処理装置、マイクロコントローラなどのプログラムされたプロセッサの制御下で実行することができ、または、例えば、フィールドプログラマブルゲートアレイ(FPGA)、TTLロジック、または特定用途向け集積回路(ASIC)などの任意のプログラム可能なまたはハードコード化されたロジックによって実行することができる。さらに、本発明の方法は、プログラムされた汎用コンピュータコンポーネントおよび/またはカスタムハードウェアコンポーネントの任意の組合せによって実行することもできる。したがって、本明細書に開示されるものは、本発明をハードウェアコンポーネントの特定の組合せに限定するものとして解釈されるべきではない。
【0139】
本明細書では、モニタ、マーカー、診療所、患者、医師、健康、病気、徴候、症状などの具体的な用語を使用して実施例を示している。これらの用語は、一貫した明確な実施例を提供するために使用しているが、本発明は、特定の用語の何れにも限定されるものではない。同様のアイデア、原理、方法、装置およびシステムは、全体または部分的に異なる用語を使用して展開することができる。さらに、本発明は、様々な使用モデルおよびハードウェア構成を中心に展開される、アイデア、原理、方法、装置およびシステムに適用することができる。
【0140】
本明細書では、説明を目的として、本発明の完全な理解を提供するために、多数の具体的な詳細が記載されている。しかしながら、本発明は、それらの具体的な詳細の一部がなくても実施することができる。他の実施例では、周知の構造およびデバイスがブロック図の形態で示されている。具体的な詳細は、特定の実施のため、当業者によって適切に提供することが可能である。
【0141】
本発明の実施形態は、様々なステップを含み、それらステップを、ハードウェアコンポーネントによって実行することができるか、またはソフトウェア命令またはファームウェア命令などの機械実行可能命令で具現化することができる。機械実行可能命令は、命令でプログラムされた汎用プロセッサまたは専用プロセッサにステップを実行させるために、使用することができる。代替的には、それらステップは、ハードウェアとソフトウェアの組合せによって実行することができる。
【0142】
本発明の実施形態およびその一部は、機械可読媒体を含むことができるコンピュータプログラム製品であって、その機械可読媒体に、本発明に係るプロセスを実行するようにコンピュータ(または他の機械)をプログラムするために使用される命令が格納されたコンピュータプログラム製品として提供することができる。機械可読媒体は、フロッピーディスク、光ディスク、CD-ROM、磁気光学ディスク、ROM、RAM、EPROM、EEPROM、磁石カードまたは光学カード、フラッシュメモリ、または電子命令を格納するのに適した他の任意のタイプの媒体を含むことができるが、これらに限定されるものではない。
【0143】
本開示は、本発明の例示的な実施形態を詳細に説明したが、本発明は、記載されたままの実施形態に限定されないことを理解されたい。すなわち、本明細書および図面は、限定的な意味ではなく例示的な意味で捉えられるべきである。添付の特許請求の範囲によって規定される本発明の範囲内で、様々な適合、修正および変更を加えることができる。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
【手続補正書】
【提出日】2024-03-06
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
患者の全身健康状態を評価するための装置を作動する方法であって、
モニタが、患者の生化学的異化マーカーの量を異なる時間に繰り返し測定して、複数の測定量を取得するステップと、
コントローラが、複数の測定量を患者に関連付けられたログに保存するステップであって、各測定量が、それぞれの測定量に関連付けられたタイムスタンプを有する、ステップと、
前記コントローラが、患者の生化学的異化マーカーの複数の測定量の変化に基づいて、患者の生化学的マーカー値を求めるステップと、
求めた生化学的マーカー値が閾値を超えている場合に、前記コントローラが患者に関する異常を判断するステップと、
前記コントローラが、前記異常を示すアラートであって特定の病気又は疾患を示さないアラートを生成するステップと、
アラート送信機が、アラートの原因を特定するように患者に助言するために、患者にアラートを送信するステップとを備えることを特徴とする方法。
【請求項2】
請求項1に記載の方法において、
測定が、経皮測定を含むことを特徴とする方法。
【請求項3】
請求項1または2に記載の方法において、
測定が、ラマン分光器、中赤外線または遠赤外線分光器、核磁気共鳴分光器、質量分析計、ガスクロマトグラフまたは選択的イオンプローブのうちの少なくとも1つによる測定を含むことを特徴とする方法。
【請求項4】
請求項1乃至3の何れか一項に記載の方法において、
送信手段がアラートを遠隔地にある診療所に送信するステップと、前記診療所での、アラートに関する患者の診察をスケジューリングするステップとをさらに含むことを特徴とする方法。
【請求項5】
患者の全身健康状態を評価するための装置を作動する方法であって、
モニタが、患者の生化学的異化マーカーの量を異なる時間に繰り返し測定するステップと、
コントローラが、測定量を患者に関連付けられたエントリとしてログに保存するステップであって、各測定量が、それぞれの測定量に関連付けられたタイムスタンプを有する、ステップと、
前記コントローラが、複数のログエントリ間で生化学的異化マーカーの量を比較することにより、保存された測定量を分析するステップと、
前記コントローラが、最近のエントリが以前のログエントリと異なる場合に、異常を判定するステップと、
前記コントローラが、患者に関するアラート状態を判定するステップとを含むことを特徴とする方法。
【請求項6】
請求項5に記載の方法において、
異常を判定することは、前記最近のエントリを、複数の保存された測定値から確立されたベースラインレベルと比較することを含むことを特徴とする方法。
【請求項7】
請求項6に記載の方法において、
前記ベースラインレベルが、経時的に生化学的異化マーカーの周期的変動を補正することを特徴とする方法。
【請求項8】
請求項5に記載の方法において、
保存された測定量を分析することは、保存された測定量にフーリエ変換を適用することを含むことを特徴とする方法。
【請求項9】
請求項5に記載の方法において、
保存された測定量を分析することは、最近のエントリの1次、2次またはそれより高次の導関数を経時的に分析して、前記ベースラインレベルに対する最近のエントリの差を求めることが含まれることを特徴とする方法。
【請求項10】
請求項5に記載の方法において、
保存された測定量を分析することは、保存された測定量を画像としてレンダリングして、検出のために画像認識技術を利用することが含まれることを特徴とする方法。
【請求項11】
請求項1乃至10の何れか一項に記載の方法において、
生化学的マーカーが、筋肉または組織の破壊、炎症または水分補給の状態を示すことを特徴とする方法。
【請求項12】
請求項1乃至11の何れか一項に記載の方法において、
スケジューラが、アラート状態が判定された場合に、アラート状態をリモートコンポーネントに送信して、患者の診察を要求するステップをさらに含むことを特徴とする方法。
【請求項13】
請求項1乃至12の何れか一項に記載の方法において、
スケジューラが、スケジュールに基づいて測定時間の発生を判定するステップと、
前記スケジューラが、測定時間の通知を生成するステップと、
サーバが、通知に応答して測定量を受信するステップとをさらに含むことを特徴とする方法。
【請求項14】
コンピュータ可読媒体であって、
コンピュータによって実行されたときに、
患者の生化学的異化マーカーの量を異なる時間に繰り返し測定して、複数の測定量を取得するステップと、
複数の量を患者に関連付けられたログに保存するステップであって、各測定量が、それぞれの測定量に関連付けられたタイムスタンプを有する、ステップと、
患者の生化学的異化マーカーの複数の測定量の変化に基づいて、患者の生化学マーカー値を求めるステップと、
求めた生化学マーカー値が閾値を超えている場合に、患者に関する異常を判断するステップと、
異常を示すアラートであって特定の病気又は疾患を示さないアラートを生成するステップと、
アラートの原因を特定するように患者に助言するために、患者にアラートを送信するステップと、
を具える動作を前記コンピュータに実行させる命令を含むことを特徴とするコンピュータ可読媒体。
【請求項15】
患者の生化学的異化マーカーの量を異なる時間に繰り返し測定して、複数の測定量を取得する手段と、
複数の数量を患者に関連付けられたログに保存する手段であって、各測定値が、それぞれの測定量に関連付けられたタイムスタンプを有する、手段と、
患者の生化学的異化マーカーの複数の測定量の変化に基づいて、患者の生化学マーカー値を求める手段と、
求めた生化学的マーカー値が閾値を超えている場合に、患者に関する異常を判断する手段と、
異常を示すアラートであって特定の病気又は疾患を示すものではないアラートを生成する手段と、
アラートの原因を特定するように患者に助言するために、患者にアラートを送信する手段と、
を含むことを特徴とする装置。
【請求項16】
複数の測定量を取得するために、患者の生化学的異化マーカーの存在を繰り返し測定するセンサと、
繰り返し測定された測定量および各測定量に関連付けられたタイムスタンプを格納するログと、
測定量を互いに比較することによりログ内の複数の測定量を分析して、患者に関する異常が存在するか否かを判定するプロセッサと、
患者に関する異常が判定されたときに、アラートを送信する送信機とを備えることを特徴とする装置。
【請求項17】
請求項16に記載の装置において、
センサが、患者に導かれるレーザを有するラマン分光器と、レーザ光を患者組織に結合するための集光レンズと、患者組織からの集光レンズまでの距離を決定するためのスペーサと、レーザ光が結合された患者組織から放出されるエネルギーを検出するための光検出器とを含むことを特徴とする装置。
【請求項18】
請求項17に記載の装置において、
プロセッサがさらに、複数の異なる温度または他の動作パラメータでレーザを駆動して、患者の組織に結合するための複数の異なるレーザ光の周波数を生成することを特徴とする装置。
【請求項19】
患者の全身健康状態を評価するための装置の作動方法であって、
退院時に患者の生化学的異化マーカーの初期量を測定して、初期異化速度を決定するステップと、
モニターが、退院後の異なる時点で患者の生化学的異化マーカーの量を繰り返し測定し、複数の測定された異化速度を取得するステップと、
コントローラが患者に関連する複数の量をログに保存するステップであって、各測定値は、それぞれの測定値に関連するタイムスタンプを有する、ステップと、
複数の測定された異化速度を初期異化速度と比較するステップと、
異化速度が時間の経過とともに増加する場合、コントローラがアラートを生成するステップであって、当該アラートは特定の病気又は疾患を示さない、ステップと、
アラート送信機が患者に前記アラートを送信し、患者に前記アラートの原因を特定するようアドバイスするステップと、
を具えることを特徴とする方法。
【外国語明細書】