IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アルコン インコーポレイティドの特許一覧

特開2024-69301眼内レンズを選択するためのシステム及び方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024069301
(43)【公開日】2024-05-21
(54)【発明の名称】眼内レンズを選択するためのシステム及び方法
(51)【国際特許分類】
   A61F 2/16 20060101AFI20240514BHJP
【FI】
A61F2/16
【審査請求】有
【請求項の数】1
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2024032966
(22)【出願日】2024-03-05
(62)【分割の表示】P 2020531716の分割
【原出願日】2019-01-04
(31)【優先権主張番号】62/613,927
(32)【優先日】2018-01-05
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】319008904
【氏名又は名称】アルコン インコーポレイティド
(74)【代理人】
【識別番号】100099759
【弁理士】
【氏名又は名称】青木 篤
(74)【代理人】
【識別番号】100123582
【弁理士】
【氏名又は名称】三橋 真二
(74)【代理人】
【識別番号】100147555
【弁理士】
【氏名又は名称】伊藤 公一
(74)【代理人】
【識別番号】100160705
【弁理士】
【氏名又は名称】伊藤 健太郎
(72)【発明者】
【氏名】トーマス パドリック
(72)【発明者】
【氏名】エドウィン ジェイ.サーバー
(57)【要約】
【課題】眼内レンズを選択するためのシステム及び方法を提供する。
【解決手段】眼内レンズを選択するためのシステム及び方法は、目の1つ又は複数の術前測定値を取得することと、複数の過去IOL移植記録から、第1の複数の予測モデル候補を評価するために、過去IOL移植記録のサブセットを選択することと、第1の複数の予測モデル候補を評価することと、評価に基づいて第1の複数の予測モデル候補から第1の予測モデルを選択することと、選択された第1の予測モデルを使用して1組のIOL度数及び目の1つ又は複数の術前測定値に基づいて、複数の推定術後MRSE値を計算することと、所定の術後MRSE値に一致する、第1の推定術後MRSE値に対応する第1のIOL度数を特定することと、目に移植するIOLの選択を支援するために、特定された第1のIOL度数をユーザに提供することとを含む。
【選択図】図3
【特許請求の範囲】
【請求項1】
予測エンジンであって、
1つ又は複数のプロセッサ
を備え、前記予測エンジンは、
眼内への眼内レンズ(IOL)移植を実行するためにユーザを支援する、目の1つ又は複数の術前測定値を取得することと、
少なくとも前記目の前記1つ又は複数の術前測定値に基づいて第1の複数の予測モデル候補を評価するために、複数の過去IOL移植記録から過去IOL移植記録のサブセットを選択することであって、前記第1の複数の予測モデル候補のそれぞれは、1組の術前目測定値及びIOL度数に基づいて、術後全屈折等価球面度数値(MRSE)を推定する、選択することと、
前記選択された過去IOL移植記録のサブセット内の目測定データを使用して前記第1の複数の予測モデル候補のそれぞれにより生成される推定術後MRSEと、前記選択された過去IOL移植記録のサブセットにおいて示される実際の術後MRSEとの間の偏差に基づいて前記第1の複数の予測モデルを評価することと、
前記評価に基づいて前記第1の複数の予測モデル候補から第1の予測モデルを選択することと、
前記選択された第1の予測モデルを使用して、1組の利用可能IOL度数及び前記目の前記1つ又は複数の術前測定値に基づいて複数の推定術後MRSE値を計算することと、
前記1組の利用可能IOL度数から、前記複数の推定術後MRSE値から、所定の術後MRSE値に一致する第1の推定術後MRSE値に対応する第1のIOL度数を特定することと、
前記目に移植するIOLの選択を支援するために、前記予測エンジンにより前記特定された第1のIOL度数を前記ユーザに提供することと、
を行うように構成される予測エンジン。
【請求項2】
前記IOL移植記録のサブセットは、第2の複数の予測モデル候補を評価するために選択され、前記第2の複数の予測モデル候補のそれぞれは、1組の術前目測定値及び所望の術後MRSEに基づいてIOL度数を推定し、前記予測エンジンは更に、
前記選択された過去IOL移植記録のサブセット内の目測定データを使用して前記第2の複数の予測モデル候補のそれぞれにより生成される推定IOL度数と、前記選択された過去IOL移植記録のサブセットにおいて示される実際のIOL度数との間の偏差に基づいて、前記第2の複数の予測モデル候補を評価することと、
前記評価に基づいて前記第2の複数の予測モデル候補から第2の予測モデルを選択することと、
前記所定の術後MRSE値及び前記目の前記1つ又は複数の測定値に基づいて、前記第2の予測モデルを使用して第1のIOL度数を計算することと、
を行うように構成される、請求項1に記載の予測エンジン。
【請求項3】
前記予測エンジンは更に、前記第1のIOL度数に基づいて複数のIOL度数から前記1組のIOL度数を特定するように構成され、前記1組のIOL度数は、前記第1のIOL度数から所定の閾値内にある、請求項2に記載の予測エンジン。
【請求項4】
前記過去IOL移植記録のサブセットは、特定数の記録に制限され、前記予測エンジンは更に、前記複数の過去IOL移植記録のオフライン分析に基づいて前記特定数を決定するように構成される、請求項1に記載の予測エンジン。
【請求項5】
前記過去IOL移植記録のサブセットは、K最近傍(KNN)アルゴリズムを使用して前記複数の過去IOL移植記録から選択され、前記KNNアルゴリズムにおけるパラメータは前記特定数に対応する、請求項4に記載の予測エンジン。
【請求項6】
複数の機械可読命令を含む非一時的機械可読媒体であって、前記複数の機械可読命令は、1つ又は複数のプロセッサにより実行されると、前記1つ又は複数のプロセッサに方法を実行させるように構成され、前記方法は、
眼内への眼内レンズ(IOL)移植を実行するためにユーザを支援する、目の1つ又は複数の術前測定値を取得することと、
少なくとも前記目の前記1つ又は複数の術前測定値に基づいて第1の複数の予測モデル候補を評価するために、複数の過去IOL移植記録から過去IOL移植記録のサブセットを選択することであって、前記第1の複数の予測モデル候補のそれぞれは、1組の術前目測定値及びIOL度数に基づいて、術後全屈折等価球面度数値(MRSE)を推定する、選択することと、
前記選択された過去IOL移植記録のサブセット内の目測定データを使用して前記第1の複数の予測モデル候補のそれぞれにより生成される推定術後MRSEと、前記選択された過去IOL移植記録のサブセットにおいて示される実際の術後MRSEとの間の偏差に基づいて前記第1の複数の予測モデル候補を評価することと、
前記評価に基づいて前記第1の複数の予測モデル候補から第1の予測モデルを選択することと、
前記選択された第1の予測モデルを使用して、1組の利用可能IOL度数及び前記目の前記1つ又は複数の術前測定値に基づいて複数の推定術後MRSE値を計算することと、
前記1組の利用可能IOL度数から、前記複数の推定術後MRSE値から、所定の術後MRSE値に一致する第1の推定術後MRSE値に対応する第1のIOL度数を特定することと、
前記目に移植するIOLの選択を支援するために、前記特定された第1のIOL度数を前記ユーザに提供することと、
を含む、非一時的機械可読媒体。
【請求項7】
前記IOL移植記録のサブセットは、第2の複数の予測モデル候補を評価するために選択され、前記第2の複数の予測モデル候補のそれぞれは、1組の術前目測定値及び所望の術後MRSEに基づいてIOL度数を推定し、前記方法は、
前記選択された過去IOL移植記録のサブセット内の目測定データを使用して前記第2の複数の予測モデル候補のそれぞれにより生成される推定IOL度数と、前記選択された過去IOL移植記録のサブセットにおいて示される実際のIOL度数との間の偏差に基づいて、前記第2の複数の予測モデル候補を評価することと、
前記評価に基づいて前記第2の複数の予測モデル候補から第2の予測モデルを選択することと、
前記所定の術後MRSE値及び前記目の前記1つ又は複数の測定値に基づいて、前記第2の予測モデルを使用して第1のIOL度数を計算することと、
を更に含む、請求項6に記載の非一時的機械可読媒体。
【請求項8】
前記第1のIOL度数に基づいて複数のIOL度数から前記1組のIOL度数を特定することを更に含み、前記1組のIOL度数は、前記第1のIOL度数から所定の閾値内にある、請求項7に記載の非一時的機械可読媒体。
【請求項9】
前記目の前記1つ又は複数の術前測定値は、角膜度数、眼軸長、角膜厚、前房深度、角膜横径、又は全屈折等価球面度数値の少なくとも1つを含む、請求項6に記載の非一時的機械可読媒体。
【請求項10】
前記方法は、
前記第1の予測モデルについて、前記選択された過去IOL移植記録のサブセット内の目測定データを使用して前記第1の予測モデルにより生成された推定術後MRSEと、前記選択された過去IOL移植記録のサブセットにおいて示される実際の術後MRSEとの間の偏差に基づいて偏差値を特定することと、
推定された術後MRSE値のそれぞれについて、前記偏差値に基づいて予測MRSE範囲を特定することであって、前記第1のIOL度数は前記予測MRSE範囲に更に基づいて特定される、特定することと、
を更に含む、請求項6に記載の非一時的機械可読媒体。
【請求項11】
予測エンジンを実施する1つ又は複数の計算デバイスにより、眼内への眼内レンズ(IOL)移植を実行するためにユーザを支援する、目の1つ又は複数の術前測定値を取得することと、
少なくとも前記目の前記1つ又は複数の術前測定値に基づいて第1の複数の予測モデル候補を評価するために、前記予測エンジンにより、複数の過去IOL移植記録から過去IOL移植記録のサブセットを選択することであって、前記第1の複数の予測モデル候補のそれぞれは、1組の術前目測定値及びIOL度数に基づいて、術後全屈折等価球面度数値(MRSE)を推定する、選択することと、
前記予測エンジンにより、前記選択された過去IOL移植記録のサブセット内の目測定データを使用して前記第1の複数の予測モデル候補のそれぞれにより生成される推定術後MRSEと、前記選択された過去IOL移植記録のサブセットにおいて示される実際の術後MRSEとの間の偏差に基づいて前記第1の複数の予測モデルを評価することと、
前記予測エンジンにより、前記評価に基づいて前記第1の複数の予測モデル候補から第1の予測モデルを選択することと、
前記予測エンジンにより、前記選択された第1の予測モデルを使用して、1組の利用可能IOL度数及び前記目の前記1つ又は複数の術前測定値に基づいて複数の推定術後MRSE値を計算することと、
前記予測エンジンにより、前記1組の利用可能IOL度数から、前記複数の推定術後MRSE値から、所定の術後MRSE値に一致する第1の推定術後MRSE値に対応する第1のIOL度数を特定することと、
前記予測エンジンにより、前記目に移植するIOLの選択を支援するために、前記予測エンジンにより前記特定された第1のIOL度数を前記ユーザに提供することと、
を含む方法。
【請求項12】
前記IOL移植記録のサブセットは、第2の複数の予測モデル候補を評価するために選択され、前記第2の複数の予測モデル候補のそれぞれは、1組の術前目測定値及び所望の術後MRSEに基づいてIOL度数を推定し、前記方法は、
前記選択された過去IOL移植記録のサブセット内の目測定データを使用して前記第2の複数の予測モデル候補のそれぞれにより生成される推定IOL度数と、前記選択された過去IOL移植記録のサブセットにおいて示される実際のIOL度数との間の偏差に基づいて、前記第2の複数の予測モデル候補を評価することと、
前記評価に基づいて前記第2の複数の予測モデル候補から第2の予測モデルを選択することと、
前記所定の術後MRSE値及び前記目の前記1つ又は複数の測定値に基づいて、前記第2の予測モデルを使用して第1のIOL度数を計算することと、
を更に含む、請求項11に記載の方法。
【請求項13】
前記過去IOL移植記録のサブセットは、特定数の記録に制限され、前記方法は、前記複数の過去IOL移植記録のオフライン分析に基づいて前記特定数を決定することを更に含み、前記過去IOL移植記録のサブセットは、K最近傍(KNN)アルゴリズムを使用して前記複数の過去IOL移植記録から選択され、前記KNNアルゴリズムにおけるパラメータは前記特定数に対応する、請求項11に記載の方法。
【請求項14】
前記目の前記1つ又は複数の術前測定値は、角膜度数、眼軸長、角膜厚、前房深度、角膜横径、又は全屈折等価球面度数値の少なくとも1つを含む、請求項11に記載の方法。
【請求項15】
前記第1の予測モデルについて、前記選択された過去IOL移植記録のサブセット内の目測定データを使用して前記第1の予測モデルにより生成された推定術後MRSEと、前記選択された過去IOL移植記録のサブセットにおいて示される実際の術後MRSEとの間の偏差に基づいて偏差値を特定することと、
推定された術後MRSE値のそれぞれについて、前記偏差値に基づいて予測MRSE範囲を特定することであって、前記第1のIOL度数は前記予測MRSE範囲に更に基づいて特定される、特定することと、
を更に含む、請求項11に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本願は、2018年1月5日付けで出願された「SYSTEMS AND METHODS FOR VECTOR IOL POWER CALCULATION」と題する米国仮特許出願第62/613,927号明細書の優先権及び利益を主張する。
【0002】
本開示は、移植する眼内レンズの選択を支援するシステム及び方法に関する。
【背景技術】
【0003】
白内障手術は、目の天然の水晶体を除去し、大半の場合、天然の水晶体を人工眼内レンズ(IOL)で置換することを含む。最適な術後視覚結果を達成するためには、良好な術前手術計画が極めて重要である。重要な術前計画決定の幾つかは、IOL移植後に所望の術後全屈折等価球面度数値(MRSE)を達成するために適切なIOLのタイプ及び度数の選択である。
【0004】
通常、1つ又は複数の予測モデルを使用して、例えば、患者の術前目測定値に基づいて所望のMRSEを達成するのに適切なIOLのタイプ及び度数を特定し得る。しかしながら、予測モデルは全状況下で正確な結果を生成することができるわけではない。例えば、第1の予測モデルは、1組の状況下で第2の予測モデルよりも正確な結果を生成し得、一方、第2の予測モデルは、異なる組の状況下で第1の予測モデルよりも正確な結果を生成し得る。したがって、固定された予測モデルを使用して、全状況で適切なIOLタイプ及び度数を特定することにより、患者の少なくとも幾人かの視覚結果が最適未満になる恐れがある。
【発明の概要】
【発明が解決しようとする課題】
【0005】
したがって、当技術分野では、患者に最適化された視覚結果に繋がる、移植する眼内レンズをよりよく選択するための技法が必要とされている。
【課題を解決するための手段】
【0006】
幾つかの実施形態によれば、方法は、予測エンジンを実施する1つ又は複数の計算デバイスにより、眼内への眼内レンズ(IOL)移植を実行するために、目の1つ又は複数の術前測定値を取得することと、少なくとも目の1つ又は複数の術前測定値に基づいて第1の複数の予測モデル候補を評価するために、予測エンジンにより、複数の過去IOL移植記録から過去IOL移植記録のサブセットを選択することであって、第1の複数の予測モデル候補のそれぞれは、1組の術前目測定値及びIOL度数に基づいて、術後全屈折等価球面度数値(MRSE)を推定する、選択することと、予測エンジンにより、選択された過去IOL移植記録のサブセット内の目測定データを使用して第1の複数の予測モデル候補のそれぞれにより生成される推定術後MRSEと、選択された過去IOL移植記録のサブセットにおいて示される実際の術後MRSEとの間の偏差に基づいて第1の複数の予測モデル候補を評価することと、予測エンジンにより、評価に基づいて第1の複数の予測モデル候補から第1の予測モデルを選択することと、予測エンジンにより、選択された第1の予測モデルを使用して、1組の利用可能IOL度数及び目の1つ又は複数の術前測定値に基づいて複数の推定術後MRSE値を計算することと、予測エンジンにより、1組の利用可能IOL度数から、複数の推定術後MRSE値から、所定の術後MRSE値に一致する第1の推定術後MRSE値に対応する第1のIOL度数を特定することと、予測エンジンにより、目に移植するIOLの選択を支援するために、予測エンジンにより、特定された第1のIOL度数をユーザに提供することとを含む。
【0007】
幾つかの実施形態によれば、予測エンジンは1つ又は複数のプロセッサを含む。予測エンジンは、眼内への眼内レンズ(IOL)移植を実行するために、目の1つ又は複数の術前測定値を取得することと、少なくとも目の1つ又は複数の術前測定値に基づいて第1の複数の予測モデル候補を評価するために、複数の過去IOL移植記録から過去IOL移植記録のサブセットを選択することであって、第1の複数の予測モデル候補のそれぞれは、1組の術前目測定値及びIOL度数に基づいて、術後全屈折等価球面度数値(MRSE)を推定する、選択することと、選択された過去IOL移植記録のサブセット内の目測定データを使用して第1の複数の予測モデル候補のそれぞれにより生成される推定術後MRSEと、選択された過去IOL移植記録のサブセットにおいて示される実際の術後MRSEとの間の偏差に基づいて第1の複数の予測モデル候補を評価することと、評価に基づいて第1の複数の予測モデル候補から第1の予測モデルを選択することと、選択された第1の予測モデルを使用して、1組の利用可能IOL度数及び目の1つ又は複数の術前測定値に基づいて複数の推定術後MRSE値を計算することと、1組の利用可能IOL度数から、複数の推定術後MRSE値から、所定の術後MRSE値に一致する第1の推定術後MRSE値に対応する第1のIOL度数を特定することと、目に移植するIOLの選択を支援するために、予測エンジンにより、特定された第1のIOL度数をユーザに提供することとを行うように構成される。
【0008】
幾つかの実施形態によれば、複数の機械可読命令を含む非一時的機械可読媒体であって、複数の機械可読命令は、1つ又は複数のプロセッサにより実行されると、1つ又は複数のプロセッサに方法を実行させるように構成される。方法は、眼内への眼内レンズ(IOL)移植を実行するために、目の1つ又は複数の術前測定値を取得することと、少なくとも目の1つ又は複数の術前測定値に基づいて第1の複数の予測モデル候補を評価するために、複数の過去IOL移植記録から過去IOL移植記録のサブセットを選択することであって、第1の複数の予測モデル候補のそれぞれは、1組の術前目測定値及びIOL度数に基づいて、術後全屈折等価球面度数値(MRSE)を推定する、選択することと、選択された過去IOL移植記録のサブセット内の目測定データを使用して第1の複数の予測モデル候補のそれぞれにより生成される推定術後MRSEと、選択された過去IOL移植記録のサブセットにおいて示される実際の術後MRSEとの間の偏差に基づいて第1の複数の予測モデル候補を評価することと、評価に基づいて第1の複数の予測モデル候補から第1の予測モデルを選択することと、選択された第1の予測モデルを使用して、1組の利用可能IOL度数及び目の1つ又は複数の術前測定値に基づいて複数の推定術後MRSE値を計算することと、1組の利用可能IOL度数から、複数の推定術後MRSE値から、所定の術後MRSE値に一致する第1の推定術後MRSE値に対応する第1のIOL度数を特定することと、目に移植するIOLの選択を支援するために、特定された第1のIOL度数をユーザに提供することとを含む。
【0009】
本技術、本技術の特徴、及び本技術の利点をより完全に理解するために、添付図面と併せて解釈される以下の説明を参照する。
【図面の簡単な説明】
【0010】
図1】幾つかの実施形態によるIOL選択システムの図である。
図2A】幾つかの実施形態によるIOLを実施するに当たり使用されるデータベースを作成する方法の図である。
図2B】幾つかの実施形態によるIOLを移植する2段階プロセスを実行する方法の図である。
図3】幾つかの実施形態による目及び目の特徴の図である。
図4A-4B】幾つかの実施形態による処理システムの図である。
図5】幾つかの実施形態による多層ニューラルネットワークの図である。
【発明を実施するための形態】
【0011】
図中、同じ名称を有する要素は同じ又は同様の機能を有する。
【0012】
本発明の態様、実施形態、実施態様、又はモジュールを示すこの説明及び添付図面は、限定として解釈されるべきではない-特許請求の範囲が、提案される発明を規定する。この説明及び特許請求の範囲の趣旨及び範囲から逸脱せずに、種々の機械的変更、組成的変更、構造的変更、電気的変更、及び動作的変更を行うことが可能である。幾つかの場合、本発明を曖昧にしないために、周知の回路、構造、又は技法については詳細に示されず、又は説明されない。2つ以上の図における同様の符号は同じ又は同様の要素を表す。
【0013】
この説明では、本開示による幾つかの実施形態を説明する具体的な詳細が記載される。多くの具体的な詳細は、実施形態の完全な理解を提供するために記載される。しかしながら、幾つかの実施形態は、これらの具体的な詳細の幾つか又は全てがなくとも実施可能なことが当業者には明らかである。本明細書に開示される具体的な実施形態は、限定ではなく例示であることが意図される。本明細書に特に記載されていないが、本開示の範囲及び趣旨内にある他の要素を当業者は認識し得る。加えて、不必要な繰り返しを避けるために、一実施形態に関連して示され説明される1つ又は複数の実施形態は、特に別段のことが記載されない限り又は1つ又は複数の特徴が実施形態を機能不能にする場合、他の実施形態に組み込むことが可能である。
【0014】
以下に説明する本技術は、標的(例えば、所望の)術後全屈折等価球面度数値(MRSE)に基づいて患者の目に移植するのに適切な、眼内レンズの眼内レンズ(IOL)度数を特定することにより、患者の移植後視覚を改善するシステム及び方法を含む。システム及び方法は、患者に適切なIOL度数を特定する2段階プロセスを使用する。第1の段階中、患者の目の1つ又は複数の術前測定値等の現在IOL移植に関連するデータを取得し得る。前に実行されたIOL移植(過去IOL移植とも呼ばれる)に関連する複数の過去IOL移植記録を記憶したデータベースから、現在IOL移植に最も類似する過去IOL移植記録のサブセットを選択し得る。第2の段階中、術後MRSEを推定する複数の予測モデルを評価して、選択された過去IOL移植記録のサブセットに基づいて、偏差が最も小さい予測モデルを識別し得る。識別された予測モデルを使用して、1組の利用可能なIOL度数に基づいて推定術後MRSE値を生成し得る。標的とする術後MRSEに一致する推定術後MRSE値に対応する、利用可能なIOL度数を選択し得る。次に、選択されたIOL度数に対応する眼内レンズを患者の目への移植に使用し得る。
【0015】
図1は、幾つかの実施形態によるIOL選択のシステム100を示す。システム100は、ネットワーク115を介して1つ又は複数の診断トレーニングデータソース110と結合されたIOL選択プラットフォーム105を含む。幾つかの例では、ネットワーク115は、1つ又は複数の切り替えデバイス、ルータ、ローカルエリアネットワーク(例えば、Ethernet)、及び/又は広域ネットワーク(例えば、インターネット)等を含み得る。各診断トレーニングデータソース110は、眼科手術診療所、眼科医院、医科大学、及び/又は電子医療記録(EMR)リポジトリ等により提供されるデータベース及び/又はデータリポジトリ等であり得る。各診断トレーニングデータソース110は、多次元像及び/又は患者の術前及び術後の目の測定値、手術計画データ、手術コンソールパラメータログ、外科医識別データ、診断デバイスデータ、患者人口統計学的データ、手術合併症ログ、患者医療履歴、患者人口統計データ、及び/又は移植されたIOLについての情報等の1つ又は複数の形態のトレーニングデータをIOL選択プラットフォーム105に提供し得る。IOL選択プラットフォーム105は、トレーニングデータを匿名化、暗号化、且つ/又は他の方法で保護するように構成し得る1つ又は複数のデータベース155にトレーニングデータを記憶し得る。
【0016】
IOL選択プラットフォーム105は予測エンジン120を含み、予測エンジン120は、受信したトレーニングデータを処理し、目の測定値を抽出し、トレーニングデータに対して生データ分析を実行し、術前測定値に基づいて術後MRSEを推定するように機械学習アルゴリズム及び/又はモデルをトレーニングし、機械学習を繰り返し改良して、術後MRSEの予測に使用される種々のモデルを最適化し、将来の患者での使用を改善して、術後視覚結果を改善し(例えば、IOLが移植された状態の目のよりよい光学特性)得る(更に詳細に後述するように)。幾つかの例では、予測エンジン120は、患者に適切なIOL度数を特定する1つのモデルを選択するようにトレーニングされた複数のモデル(例えば、1つ又は複数のニューラルネットワーク)を評価し得る。
【0017】
IOL選択プラットフォーム105は、ネットワーク115を介して眼科診療所125の1つ又は複数のデバイスに更に結合される。1つ又は複数のデバイスは診断デバイス130を含む。診断デバイス130は、患者135の目の1つ又は複数の多次元像及び/又は他の測定値を取得するのに使用される。診断デバイス130は、光干渉断層法(OCT)デバイス、回転カメラ(例えば、シャインプルーフカメラ)、磁気共鳴造影(MRI)デバイス、角膜曲率測定器、角膜曲率計、及び/又は光学バイオメータ等の眼科解剖学的構造の多次元像及び/又は測定値を取得する幾つかのデバイスの何れかであり得る。
【0018】
眼科診療所125は、現在IOL移植に関連するデータを取得する1つ又は複数の計算デバイス140を含むこともできる。例えば、1つ又は複数の計算デバイス140は、診断デバイス130から、患者135の多次元像及び/又は測定値を取得し得る。幾つかの実施形態では、1つ又は複数の計算デバイス140は、診断デバイス130に関連するデバイス構成データを取得することもできる。例えば、1つ又は複数の計算デバイス140は、診断デバイス130の型番及び診断デバイス130にインストールされたソフトウェアのソフトウェアリリース番号を取得し得る。幾つかの実施形態では、1つ又は複数の計算デバイス140は、例えば1つ又は複数の計算デバイス140のユーザインターフェースを通して、患者135のIOL移植の実行に割り当てられた外科医の識別情報、患者135の民族性、患者135の性別、患者135の身長、及び患者135の年齢等の他の情報を取得することもできる。1つ又は複数の計算デバイス140は、取得された患者の135の1つ又は複数の多次元像及び/又は測定値、診断デバイス130に関連するデバイス構成データ、外科医識別情報データ、及び患者135の人口統計データをIOL選択プラットフォーム105に送信し得る。1つ又は複数の計算デバイス140は、スタンドアロンコンピュータ、タブレット及び/又は他のスマートデバイス、手術コンソール、及び/又は診断デバイス130に統合された計算デバイス等の1つ又は複数であり得る。
【0019】
IOL選択プラットフォーム105は、患者135のバイオメトリックデータ(例えば、患者135の測定値及び/又は測定値からの計算値)を受信し、予測エンジン120を使用して種々のIOLタイプ及びIOL度数の術後MRSEの推定を生成し得る。次に、予測エンジンを使用して、眼科診療所125及び/又は外科医又は他のユーザに種々のIOLタイプ及びIOL度数の推定術後MRSEを提供することにより、患者135のIOLタイプ及びIOL度数の選択を助け得る。
【0020】
診断デバイス130は、患者135が白内障除去及び選択されたIOLを使用したIOL移植を受けた後、患者135の術後測定値を取得するのに更に使用し得る。次に、1つ又は複数の計算デバイス140は、患者135の術後多次元像及び/又は測定値及び選択されたIOLをIOL選択プラットフォーム105に送信し得、それにより、予測エンジン120により使用されるモデルの反復トレーニング及び/又は更新で使用されて、将来の患者と使用するために患者135からの情報を組み込む。
【0021】
推定された術後MRSE、選択されたIOL、及び/又は選択されたIOL度数は、計算デバイス140及び/又は別の計算デバイス、ディスプレイ、及び/又は手術コンソール等に表示し得る。更に、IOL選択プラットフォーム105及び/又は1つ又は複数の計算デバイス140は、より詳細に後述するように、患者135の解剖学的構造の種々の特徴を測定値において識別し得る。更に、IOL選択プラットフォーム105及び/又は1つ又は複数の計算デバイス140は、患者の解剖学的構造及び/又は測定された特徴を識別、強調表示、且つ/又は他の方法で示すグラフィカル要素を作成し得る。IOL選択プラットフォーム105及び/又は1つ又は複数の計算デバイス140は、グラフィカル要素で測定値を補足し得る。
【0022】
幾つかの実施形態では、IOL選択プラットフォーム105は、推定された術後MRSE、選択されたIOL、及び/又は選択されたIOL度数を使用する眼科診療所125に1つ又は複数の手術計画を提供するのに使用し得る手術プランナー150を更に含み得る。
【0023】
幾つかの実施形態では、システム100はスタンドアロン手術プランナー160を更に含み得、且つ/又は眼科診療所125は、1つ又は複数の計算デバイス140に手術プランナーモジュール170を更に含み得る。
【0024】
上述し、ここで更に強調するように、図1は、特許請求の範囲を不当に限定すべきではない単なる一例である。当業者は多くの変形、代替、及び改変を認識する。幾つかの実施形態によれば、IOL選択プラットフォーム105並びに/或いはデータベース155、予測エンジン120、及び/又は手術プランナー150等のIOL選択プラットフォーム150の1つ又は複数の構成要素は、眼科診療所125の1つ又は複数のデバイスに統合し得る。幾つかの例では、計算デバイス140は、IOL選択プラットフォーム105、データベース155、予測エンジン120、及び/又は手術プランナー150をホストし得る。幾つかの例では、手術プランナー150は手術プランナー170と組み合わせ得る。
【0025】
図2Aは、幾つかの実施形態によりIOL度数を選択し、IOLを実施するに当たり使用されるデータベースを作成する方法200の図である。方法200のプロセス202~208の1つ又は複数は少なくとも部分的に、1つ又は複数のプロセッサ(例えば、予測エンジン120のプロセッサ、IOL予測プラットフォーム、診断デバイス130、1つ又は複数の計算デバイス140、並びに/或いは手術プランナー150、160、及び/又は170の1つ又は複数)により実行されると、1つ又は複数のプロセッサにプロセス202~208の1つ又は複数を実行させ得る非一時的有形機械可読媒体に記憶された実行可能コードの形態で実施し得る。幾つかの実施形態によれば、プロセス208は任意選択的であり、省略が可能である。
【0026】
プロセス202において、過去IOL移植記録のデータベースが構築される。例えば、予測エンジン120は、診断トレーニングデータソース110からトレーニングデータを取得し、トレーニングデータをデータベース155に記憶し得る。トレーニングデータは、前に実行されたIOL移植事例(「過去IOL移植」とも呼ばれる)に対応し得る。幾つかの実施形態では、予測エンジン120は、データベース155内の各記録が特定の過去IOL移植に関連するトレーニングデータを含むように、過去IOL移植事例に基づいてデータベース155を編成し得る。各記録内のトレーニングデータは、分類データ及び数値データの両方を含み得る。各記録内の分類データは、IOL型番、IOL移植を実行した外科医の識別情報、患者の性別、患者の民族性、患者の目測定データの取得に使用されたバイオメトリック機器に関連するデバイス構成データ(例えば、型番及びソフトウェアリリース番号等)等の情報を含み得る。各記録内の数値データは、術前目測定値(例えば、角膜度数、眼軸長、角膜厚、前房深度、角膜横径、術前MRSE等)、患者の年齢、及び患者の身長を含み得る。更に、各過去IOL移植記録は、事例に選択された実際のIOL度数及びその結果としての実際の術後MRSEを含み得る。IOL度数及び術後MRSEは両方とも、量子化された数値データを含み得、予測エンジン120により数値データ又は分類データとして扱うことができる。幾つかの例では、IOL度数は通常、0.25ジオプトリ(d)又は0.5dステップ(nearest 0.25 or 0.5 diopters(d))であることが知られており、術後MRSEは一般に0.125dステップ(nearest 0.125 d)であることが知られている。
【0027】
プロセス204において、数値特徴ベクトル正規化のために、主成分分析(PCA)行列及び平均ベクトルを計算して記憶する。例えば、予測エンジン120は、過去IOL移植記録が互いに又は現在IOL移植と比較される際、異なる数値特徴が、比例した重み(例えば、互いと同じ重み)を有し得るように、過去IOL移植記録内の数値データを正規化し得る。異なる実施形態は、数値データの正規化に異なる技法を使用する。幾つかの実施形態では、予測エンジン120は、各記録の数値特徴ベクトルを生成し、PCAを使用して線形変換を計算し、数値特徴ベクトルを脱相関させ正規化する。過去IOL移植記録の数値特徴ベクトルは、記録に含まれる数値の幾つか又は全てを含み得る。記録の数値特徴ベクトル例は、式1を使用して表し得る。
【数1】
式中、xは、データベース内のn番目の記録の数値特徴ベクトル(「入力特徴ベクトル」とも呼ばれる)を表す。
【0028】
先に示した式は3つのみの数値特徴を含むが、幾つかの実施形態では、より多くの特徴又は他の組合せの特徴が数値特徴ベクトルに含まれ得る。
【0029】
PCAを実行するために、式2を使用して数値特徴ベクトル成分の平均を計算し得る。
【数2】
式中、iは過去IOL移植記録インデックスであり、jは数値特徴インデックスであり、mは数値特徴ベクトルからの要素jの平均であり、Mはデータベース155内の過去IOL移植記録の数であり、Nは数値特徴ベクトル内の次元数(例えば各ベクトル内の数値特徴の数であり、式1の場合、これは3である)であり、xi,jは、記録インデックスiにより示される過去IOL移植記録の数値特徴インデックスjにより示される数値特徴の特徴値である。
【0030】
次に、予測エンジン120により式3を使用して数値特徴ベクトルの各平均に、要素Cj,kを有する共分散行列Cを計算し得る。
【数3】
式中、iはデータベース155内の過去IOL移植記録インデックスであり、j,kは共分散行列要素インデックスであり、両方とも0,1,…,N-1の範囲であり、mは数値特徴ベクトルからの要素jの平均であり、Mはデータベース155内の過去IOL移植記録の数であり、Nは数値特徴ベクトル内の次元数(例えば、各ベクトル内の数値特徴の数)であり、xi,jは、記録インデックスiにより示される過去IOL移植記録の数値特徴インデックスjにより示される数値特徴の特徴値である。
【0031】
次に、LL=Cであるように、予測エンジン120により下三角行列Lを計算し得る。行列平方根は、例えば、コレスキー分解を使用して計算し得る。最後に、予測エンジン120により数値線形代数法を使用して、共分散平方根行列の下三角逆数(lower triangular inverse)M=L-1を計算し得る。PCA変換を数値特徴ベクトルに適用するために、幾つかの実施形態の予測エンジン120は、式4に示されるように、計算された平均ベクトル(例えば、m)を入力数値特徴ベクトルから差し引き、その結果をMで乗算し得る。
y=M(x-m) (4)
式中、yは出力正規化特徴ベクトルであり、Mは共分散平方根行列の下三角逆数であり、xは入力非正規化特徴ベクトルであり、mは平均ベクトルである。
【0032】
プロセス206において、患者に適切なIOL度数を特定する2段階プロセスの1つ又は複数のハイパーパラメータを特定し得る。上述したように、2段階プロセスの第1の段階中、現在IOL移植に最も近い過去IOL移植記録のサブセットがデータベースから選択される。したがって、予測エンジン120は、過去IOL移植記録のサブセットが決定された数Kに制限されるように、選択される記録数(例えば、70、100、400等)(「ハイパーパラメータK」とも呼ばれる)を決定し得る。更に、ディープニューラルネットワークを使用して実施される予測モデルの場合、予測エンジン120はまた、それらの予測モデルの隠れ層の数を決定し得る。ハイパーパラメータは、オフラインで、予測モデルのトレーニング(例えば、学習)前に特定し得る。幾つかの実施形態では、予測エンジン120は、総当たり手法を使用して所定の範囲のハイパーパラメータにわたりテストしてハイパーパラメータを特定(例えば、最適化)し得る。例えば、2段階プロセスの第1の段階中に選択する記録数(ハイパーパラメータK)を決定するために、予測エンジン120は範囲(例えば、50~100、20~200等)内の各数をテストし得る。ニューラルネットワーク内の隠れ層の数を決定するために、予測エンジン120は範囲(例えば、1~5、2~10等)内の隠れ層の各数をテストし得る。
【0033】
幾つかの実施形態では、予測エンジン120は3つのデータセットを利用して、そのような最適化を実行し得る。例えば、データベース155内の過去IOL移植記録は、予測エンジン120により3つのセット-トレーニングセット、検証セット、及びテストセット-に分割し得る。3つのセットの分布は様々であり得るが、トレーニングセットは、検証セット及びテストセットよりも大きな割合を含み得る。分布例は、過去IOL移植記録の60%をトレーニングセットとして含み、残りの過去IOL移植記録の20%を検証セットとして含み、過去IOL移植記録の残りの20%をテストセットとして含み得る。一例として、20,000記録の過去IOL移植データベースは、予測エンジン120により12,000のトレーニング事例、4,000の検証事例、及び4,000のテスト事例に分割することができる。その20,000記録の集まりでは、予測エンジン120は、先に開示した技法を使用して、2段階プロセスの第1の段階中に選択する最適な記録数(ハイパーパラメータK)が約100であると決定し得る。しかしながら、異なる過去IOL移植記録及び/又は異なる数の過去IOL移植記録を含む別のデータベースでは、予測エンジン120は選択する記録の別の最適数(別のハイパーパラメータK)を決定し得る。
【0034】
幾つかの実施形態では、予測エンジン120は、決定された範囲内のハイパーパラメータにわたり全数検索を実行し得る。例えば、各ハイパーパラメータ値について(例えば、範囲内で選択する記録の各数について、範囲内の隠れ層の各数について等)、予測エンジン120はハイパーパラメータ値を使用し、トレーニングセットを使用して予測モデルをトレーニングし得る。次に、トレーニングされた予測モデルは、予測エンジン120により検証セットを使用して評価され、その間、ハイパーパラメータ値の検証結果が記録される。範囲内の全てのハイパーパラメータ値を評価した後、予測エンジン120の実施形態は、テストセットを使用して汎化能力の最終的な推定を実行し得る。この総当たり手法下では、特に検索するハイパーパラメータ値の数が多い場合、ハイパーパラメータの最適化には長い時間がかかり得る。したがって、予測エンジン120は、2段階プロセスを実行する前、ハイパーパラメータ最適化をオフラインで実行し得る。
【0035】
プロセス208において、任意選択的にデータベース内の記録に基づいて予測モデルをトレーニングし得る。幾つかの実施形態では、2段階プロセスの第2の段階中、予測エンジン120による使用に複数の予測モデルが利用可能であり得る。異なる予測モデルは異なる予測技法(例えば、回帰技法)を使用し得る。例えば、予測エンジン120による使用に利用可能な予測モデルは、以下の再帰技法:多重線形回帰、多重多項回帰、動径基底関数を用いるK最近傍、ニューラルネットワーク、及び他の適した回帰技法の少なくとも1つを使用するモデルを含み得る。
【0036】
幾つかの実施形態では、予測エンジン120が利用可能な予測モデルは2つのタイプの予測モデルを含む。第1のタイプの予測モデル(F(.)モデルとも呼ばれる)は、1組の数値特徴データ(例えば、数値特徴ベクトル)及び標的術後MRSEに基づいて理論的IOL度数値を生成する。F(.)モデルは式5に従って表し得る。
IOL=F(x,T) (5)
式中、xは数値特徴の入力ベクトルであり、Tは標的術後MRSEであり、IOLは、入力ベクトルxに含まれる患者のバイオメトリックデータに基づいて標的術後標的屈折率Tをもたらす理論的IOL度数値である。
【0037】
第2のタイプのモデル(G(.)モデルとも呼ばれる)は、患者に関連する1組の数値特徴(例えば、数値特徴ベクトル)及び選択されたIOL度数に基づいて患者の術後MRSEを推定(例えば、予測)する。G(.)モデルは式6に従って表し得る。
=G(x,SIOL) (6)
式中、xは数値特徴の入力ベクトルであり、SIOLは選択されたIOL度数であり、Rは推定された術後MRSEである。
【0038】
幾つかの実施形態では、予測エンジン120は、2段階プロセスを実行する前、データベース155に記憶された過去IOL移植記録を使用して2段階プロセスの第2の段階中での使用に利用可能な予測モデルをオフラインでトレーニングし得る。例えば、予測エンジン120は、データベース155に記憶された過去IOL移植記録を使用して両タイプ(F(.)モデル及びG(.)モデル)の予測モデルをトレーニングし得る。
【0039】
図2Bは、幾つかの実施形態による患者にIOLを移植する2段階プロセスを実行する方法210の図である。方法210のプロセス212~230の1つ又は複数は、少なくとも部分的に、1つ又は複数のプロセッサ(例えば、予測エンジン120のプロセッサ、IOL予測プラットフォーム、診断デバイス130、1つ又は複数の計算デバイス140、並びに/或いは手術プランナー150、160、及び/又は170の1つ又は複数)により実行されると、1つ又は複数のプロセッサにプロセス212~230の1つ又は複数を実行させ得る非一時的有形機械可読媒体に記憶された実行可能コードの形態で実施し得る。幾つかの実施形態によれば、プロセス228及び/又は230は任意選択的であり、省略が可能である。
【0040】
プロセス212において、現在IOL移植事例に関連するデータを受信し得る。例えば、予測エンジン120は、診断デバイス130から患者の目の1つ又は複数の術前測定値を取得し得る。幾つかの実施形態では、術前目測定値の1つ又は複数は、診断デバイス130等の診断デバイス、OCTデバイス、回転(例えば、シャインプルーフ)カメラ、及び/又はMRIデバイス等を使用して取得された患者135の目の1つ又は複数の術前像から抽出し得る。幾つかの例では、術前測定値の1つ又は複数は、診断デバイス130、角膜曲率測定器、角膜曲率計、及び/又は光学バイオメータ等の1つ又は複数の測定デバイスを使用して特定し得る。プロセス210については図3の文脈で説明し、図3は幾つかの実施形態による目300及び目の特徴の図である。図3に示されるように、目300は角膜310、前眼房320、及び水晶体330を含む。
【0041】
幾つかの実施形態では、目300の関心のある1つの測定値は、角膜310の横径である。幾つかの例では、角膜310の横径は光学バイオメータを使用して測定し得る。幾つかの例では、角膜310の横径は、目300の1つ又は複数の像を分析することにより、例えば目の強膜間の距離を測定することにより特定し得る。
【0042】
幾つかの実施形態では、目300の関心のある1つの測定値は、角膜310の前面の平均曲率又は丸さである。幾つかの例では、角膜310の平均曲率は、目300の1つ又は複数の像及び/又は角膜曲率測定器等を使用して測定し得る。幾つかの例では、角膜310の平均曲率は角膜310の急な角膜曲率測定値と浅い角膜曲率測定値の平均に基基づき得る。幾つかの例では、角膜310の平均曲率は、337.5を平均角膜曲率で除算したものである角膜310の曲率半径(rc)として表し得る。
【0043】
幾つかの実施形態では、目300の関心のある1つの測定値は、角膜310の前面から目300の中心軸380に沿って網膜まで測定される目300の眼軸長370である。幾つかの例では、眼軸長370は目300の1つ又は複数の像及び/又は目のバイオメトリを使用して特定し得る。
【0044】
幾つかの実施形態では、目300の関心のある1つの測定値は、角膜310の後面と術前水晶体330の前面との間の距離に対応する目の術前前房深度(ACD)390である。幾つかの例では、眼軸長370は目300の1つ又は複数の像及び/又は目のバイオメトリを使用して特定し得る。
【0045】
幾つかの実施形態では、目300の関心のある1つの測定値は、角膜310の後面から目300の中心軸380に沿って角膜310の前面まで測定される目300の角膜厚315である。幾つかの例では、角膜厚315は目300の1つ又は複数の像及び/又は目のバイオメトリを使用して特定し得る。
【0046】
幾つかの実施形態では、患者135の目の測定値を取得することに加えて、現在IOL移植に関連する他の状況データを取得することもできる。例えば、1つ又は複数の計算デバイス140は、診断デバイス130から、患者135の目の測定値を提供した診断デバイス130に関連するデバイス構成データを取得し得る。デバイス構成データは、診断デバイス130の型番及び診断デバイス130にインストールされたソフトウェアのソフトウェアリリース番号を含み得る。幾つかの例では、1つ又は複数の計算デバイス140は、診断デバイス130のアプリケーションプログラミングインターフェース(API)を使用して診断デバイス130と通信することにより構成データを取得し得る。更に、1つ又は複数の計算デバイス140はまた、患者135のIOL移植の実行に割り当てられた外科医の識別情報、患者135の民族性、患者の性別、患者135の身長、及び患者135の年齢等の患者135の現在IOL移植に関連する他の情報を取得することもできる。幾つかの実施形態では、1つ又は複数の計算デバイス140は、ユーザが外科医識別情報及び患者人口統計データを提供できるようにするユーザインターフェースを提供し得る。次に、1つ又は複数の計算デバイス140は、バイオメトリックデータ及び環境データをIOL選択プラットフォーム105に送信し得る。
【0047】
再び図2を参照すると、プロセス214において、取得されたデータに基づいて過去IOL移植記録のサブセット(例えば、K最近傍記録)を選択し得る。上述したように、IOL選択プラットフォーム105のデータベース155は、診断トレーニングデータソース110から取得されたトレーニングデータを記憶し得る。トレーニングデータは、他の患者に対して前に実行されたIOL移植(例えば、過去IOL移植)に関連するデータを含み得る。特に、データベース155内の各記録は、特定の過去IOL移植に関連する数値データ及び分類データを含み得る。各記録内の数値データは、角膜度数、眼軸長、角膜厚、前房深度、角膜横径、術前MRSE等)の術前目測定値、患者の年齢、及び/又は患者の身長等を含み得る。幾つかの実施形態では、各記録に記憶される数値データは、プロセス204に関して上述した技法を使用して正規化し得、数値特徴ベクトルyとして記憶し得る。各記録内の分類データは、IOL型番、IOL移植を実行した外科医の識別情報、患者の性別、患者の民族性、及び/又は患者の目測定データの取得に使用されたバイオメトリック機器に関連するデバイス構成データ(例えば、型番及びソフトウェアリリース番号等)等の情報を含み得る。更に、各過去IOL移植記録は、事例に選択された実際のIOL度数及びその結果としての実際の術後MRSEを含み得る。
【0048】
幾つかの実施形態では、予測エンジン120は、取得されたバイオメトリックデータ及び/又は環境データに基づいて、データベース155から、患者135の現在IOL移植に最も類似する過去IOL移植記録のサブセットを選択し得る。過去IOL移植記録の選択されたサブセットは、所定のハイパーパラメータK(例えば、プロセス206において特定される)に対応する数の記録を含み得る(且つ所定のハイパーパラメータKに対応する数の記録に制限し得る)。幾つかの実施形態では、予測エンジン120はK最近傍(KNN)アルゴリズムを使用し、所定のハイパーパラメータKをKNNアルゴリズムのKパラメータとして使用して、データベース155から現在IOL移植に最も近い記録のサブセットを選択し得る。例えば、予測エンジン120はまず、数値データ(例えば、患者135の術前目測定値、患者135の年齢、患者135の身長等)の幾つか又は全てに基づいて現在IOL移植の数値特徴ベクトルを生成し得る。現在IOL移植に生成された数値特徴ベクトルに含まれる数値特徴は、データベース155に記憶された過去IOL移植記録に関連する、予め生成された数値特徴ベクトルに含まれる特徴に対応し得る。幾つかの例では、数値特徴ベクトルは、式1に示される等、患者135の目の術前角膜度数、患者135の目の軸長、及び患者135の目の角膜厚を含み得る。次に、予測エンジン120は、例えば式4を使用して、上述した技法を使用して現在IOL移植に生成された数値特徴ベクトル内の成分を正規化し得る。
【0049】
正規化されたベクトルを使用して、現在IOL移植とデータベース155内の各過去IOL移植記録との間のユークリッド距離を計算し得る。要素a及びbをそれぞれ有するベクトルaとbとの間のユークリッド距離は、式7を使用して予測エンジン120により計算し得る。
【数4】
【0050】
次に、計算されたユークリッド距離に基づいて、予測エンジン120は、2段階プロセスの第2の段階で使用するものとして、最小の距離値を有する所定数の過去IOL移植記録(例えば、K個の記録)を選択し得る。
【0051】
過去IOL移植記録のサブセットを選択した後、プロセス216において、選択された過去IOL移植記録のサブセットに基づいて、複数の予測モデル候補を評価し得る。上述したように、複数の予測モデル(F(.)モデル及びG(.)モデルを含む)が、2段階プロセスの第2の段階中での予測エンジン120による使用に利用可能であり得る。予測エンジン120は、性能に基づいて2段階プロセスの第2の段階中に使用する1つ又は複数のモデルを選択するためのモデル候補としてこれらの予測モデルを使用し得る。仮に予測モデルがオフラインでトレーニングされなかった場合(例えば、仮にプロセス208が実行されなかった場合)、予測エンジン120は、この時点でのデータベース155内の過去IOL移植記録を使用して、利用可能な予測モデルをトレーニングし得る。幾つかの実施形態では、予測エンジン120は、選択された過去IOL移植記録のサブセットのみを使用して、予測モデルをトレーニングし得る。
【0052】
幾つかの実施形態では、予測エンジン120は、各F(.)モデルを使用して、選択された過去IOL移植記録のサブセットに関連する数値特徴データ(例えば、数値特徴ベクトル)に基づいて理論的IOL度数を生成することにより、F(.)モデルを評価し得る。次に、予測エンジン120は、F(.)モデルにより生成された理論的IOL度数と、過去IOL移植記録のサブセットにおいて示される使用された実際のIOL度数との間の偏差に基づいてF(.)モデルのそれぞれの性能スコアを生成し得る。例えば、各F(.)モデルの性能スコアは、平均誤差、標準偏差誤差、平均絶対誤差(MAE)、絶対誤差の標準偏差、所定の値(例えば、0.5、1.0等)未満のMAEを有する割合、及び所定の信頼(例えば、95%)を有する範囲の推定値の割合の少なくとも1つに基づいて生成し得る。
【0053】
幾つかの実施形態では、予測エンジン120はまた、各G(.)モデルを使用して、数値特徴データ(例えば、数値特徴ベクトル)及び選択された過去IOL移植記録のサブセットにおける使用された実際のIOL度数に基づいて術後MRSE値を推定(例えば、予測)することにより、G(.)モデルを評価することもできる。次に、予測エンジン120は、G(.)モデルにより生成される推定術後MRSE値と、過去IOL移植記録のサブセットにおいて示された実際の術後MRSE値との間の偏差に基づいて各G(.)モデルの性能スコアを生成し得る。例えば、G(.)モデルにより生成される推定術後MRSEと、所与の過去IOL移植記録nにおいて示された実際の術後MRSEとの間の推定誤差(例えば、偏差)は、式8に従って表し得る。
e[n]=ARx[n]-Rx[n] (8)
式中、nは、選択された過去IOL移植記録のサブセットからの過去IOL移植記録の記録インデックスであり、ARx[n]は、記録インデックスnを有する過去IOL移植記録において示された実際の術後MRSEであり、Rx[n]はG(.)モデルにより推定された術後MRSEであり、e[n]は記録nの推定誤差である。
【0054】
幾つかの実施形態では、各G(.)モデルの性能スコアは、平均誤差、標準偏差誤差、平均絶対誤差(MAE)、絶対誤差の標準偏差、所定の値(例えば、0.5、1.0等)未満のMAEを有する割合、及び所定の信頼(例えば、95%)を有する範囲の推定値の割合の少なくとも1つに基づいて生成し得る。例えば、上記式8に基づいて、推定誤差標準偏差に基づく所与のG(.)モデルの性能スコアは、式9に従って表し得る。
【数5】
式中、nは、選択された過去IOL移植記録のサブセットからの過去IOL移植記録の記録インデックスであり、Kは、選択された過去IOL移植記録のサブセットに含まれる記録の数であり、e[n]は、式8を使用して計算された記録nの推定誤差であり、SDはG(.)モデルの推定誤差標準偏差である。
【0055】
プロセス218において、F(.)モデル及びG(.)モデルはモデル候補から選択し得る。例えば、予測エンジン120は、モデル候補に生成された性能スコアに基づいてモデル候補からF(.)モデル及びG(.)モデルを選択し得る。幾つかの実施形態では、予測エンジン120は、F(.)モデル候補の中から最良の性能スコアを有する(例えば、最低の標準偏差を示す)F(.)モデルを選択し得、G(.)モデル候補の中から最良の性能スコアを有する(例えば、最低の標準偏差を示す)G(.)モデルを選択し得る。
【0056】
プロセス220において、任意選択的に、現在IOL移植における患者135の標的(例えば、所望の)術後MRSEの理論的IOL度数を計算し得る。例えば、予測エンジンは、患者135に関連する数値特徴データ及び患者135の所定の標的術後MRSEに基づいて、プロセス218において選択されたF(.)モデルを使用して理論的IOL度数を生成し得る。標的術後MRSEは、患者135の現在IOL移植の実行に割り当てられた外科医により決定し得る。生成されたIOL度数は、患者135が移植後に術後MRSEを達成するために、患者135の目に移植された眼内レンズに必要なIOL度数を表す。
【0057】
プロセス222において、理論的IOL度数に近い1組の利用可能なIOL度数に基づいて、選択されたG(.)モデルを使用し、選択表を計算する。1組のIOL度数は、患者135の現在IOL移植を実行する外科医又はユーザに提供し得る。例えば、眼内レンズは様々であるが、限られたIOL度数で製造し得る。一例では、眼内レンズの製造業者は、限られた数のIOL度数に従ってのみレンズを製造し得る。現在IOL移植の理論的IOL度数が生成されない(例えば、プロセス220が実行されなかった)場合、予測エンジン120は、現在IOL移植に利用可能な全てのIOL度数で患者135に関連する数値特徴データに基づいて、選択されたG(.)モデル(プロセス218において選択される)を使用して、推定術後MRSE値を計算し得る。結果は、利用可能なIOL度数と、患者135に選択されたG(.)モデルにより計算された対応する推定術後MRSE値とを含む表を含み得る。
【0058】
現在IOL移植に利用可能なIOL度数の数が大きいことがあるため、幾つかの実施形態では、予測エンジン120は、利用可能なIOL度数のサブセットのみの術後MRSEを推定することにより計算を低減し得る(それにより、この2段階プロセスの実行速度を改善する)。例えば、プロセス220を実行することにより、患者135の理論的IOL度数は、選択されたF(.)モデルを使用して生成される。しかしながら、F(.)モデルにより生成された理論的度数は、所与のIOLモデルの製造業者により提供される1組の度数では利用可能ではないことがあり、したがって、外科医又はユーザは1組の利用可能なIOL度数から選択しなければならない。したがって、予測エンジン120は、プロセス222における選択表を計算するためにF(.)モデルにより生成された理論的IOL度数から所定の閾値内にある利用可能なIOL度数のサブセットを選択し得る。
【0059】
幾つかの例では、生成された理論的IOL度数が20dである場合、予測エンジン120は、18d及び22dの範囲内にある利用可能なIOL度数を選択し得る。次に、予測エンジン120は選択されたG(.)モデル(プロセス218において選択される)を使用して、F(.)モデルにより生成された理論的IOL度数に基づいて予測エンジン120により選択された利用可能なIOL度数のサブセットのみで、患者135に関連する数値特徴データに基づいて推定術後MRSE値を計算し得る。結果は、利用可能なIOL度数のサブセットと、患者135に選択されたG(.)モデルにより計算された対応する推定術後MRSE値とを含む表を含み得る。
【0060】
幾つかの実施形態では、利用可能なIOL度数のサブセットの推定術後MRSE値を計算することに加えて、予測エンジン120はまた、各推定MRSE値の所定の信頼(例えば、90%信頼、95%信頼、98%信頼等)を有する予測MRSE範囲(例えば、限度)を生成することもできる。予測MRSE範囲は、上記式9を使用して、選択されたG(.)モデルに計算された標準偏差に基づいて生成し得る。例えば、特定の推定術後MRSE Rxの95%信頼を有する予測MRSE範囲は式10に従って表し得る。
予測MRSE範囲=Rx±1.96SD (10)
【0061】
予測MRSE範囲は表に含めることもできる。予測エンジン120及び/又は手術プランナー150は、1つ又は複数の計算デバイス140に表示して、患者135のIOL移植において外科医又はユーザを支援するために、ネットワーク115を介して眼科診療所125の1つ又は複数の計算デバイス140に表を送信し得る。
【0062】
プロセス224において、標的術後MRSEに対応する利用可能なIOL度数を特定し得る。例えば、利用可能なIOL度数及び推定術後MRSE値を含む表を1つ又は複数の計算デバイス140に送信することに加えて、予測エンジン120はまた、術後MRSE値及び/又は予測MRSE範囲に基づいて患者135の現在IOL移植で使用する特定の利用可能なIOL度数を特定することもできる。幾つかの実施形態では、予測エンジン120は、患者135の標的術後MRSEに最も近い対応する推定術後MRSE値を有する特定の利用可能なIOL度数を特定(例えば、選択)し得る。幾つかの実施形態では、予測エンジン120は、患者135の標的術後MRSEに最も近い(例えば、標的術後MRSE値から最小の偏差、ここで、偏差は最大MRSE値と標的術後MRSE値との間の差と、最小MRSE値と標的術後MRSE値との間の差との和である)予測MRSE範囲のうちの対応する最大MRSE値及び最小MRSE値を有する特定の利用可能なIOL度数を特定(例えば、選択)し得る。予測エンジン120及び/又は手術プランナー150は、1つ又は複数の計算デバイス140に表示して、患者135のIOL移植において外科医又はユーザを支援するために、ネットワーク115を介して眼科診療所125の1つ又は複数の計算デバイス140に特定された特定の利用可能なIOL度数を送信し得る。
【0063】
プロセス226において、特定された利用可能なIOL度数を有する眼内レンズは患者135に移植される。幾つかの例では、プロセス224中に特定されたIOL度数を有する眼内レンズは、外科医により患者135の目に移植される。
【0064】
プロセス228において、患者135の目の1つ又は複数の術後測定値が取得される。幾つかの例では、1つ又は複数の術後測定値は、IOL移植後のIOLの実際の術後ACD、IOL移植後の実際の術後MRSE、及び/又は実際の術後正常視ゾーン測定等を含み得る。幾つかの例では、実際の術後ACD及び/又は実際の術後MRSEは、術後の目の1つ又は複数の像、並びに/或いは術後の目の1つ又は複数の生理学的測定値及び/又は光学的測定値等に基づいて特定し得る。
【0065】
プロセス230において、予測エンジン120が利用可能な予測モデルは更新される。幾つかの例では、プロセス212中に特定された1つ又は複数の術前測定値、実際の術後ACD、及び/又はプロセス228中に特定された実際の術後MRSE等は、新しい過去IOL移植記録としてデータベース155に追加し得、任意の予測モデルの後続トレーニングに追加のトレーニングデータとして使用し得る。幾つかの例では、更新は、最小二乗近似及び/又はニューラルネットワークへのフィードバック(例えば、逆伝搬を使用する)等の1つ又は複数を含み得る。幾つかの例では、G(.)モデルの1つ又は複数は、種々のIOL候補の術後MRSEを正確に予測する能力に基づいて1つ又は複数の損失関数を使用してトレーニングし得る。
【0066】
図4A及び図4Bは、幾つかの実施形態による処理システムの図である。2つの実施形態が図4A及び図4Bに示されるが、当業者はまた、他のシステム実施形態も可能なことを容易に理解する。幾つかの実施形態によれば、図4A及び/又は図4Bの処理システムは、IOL選択プラットフォーム105、眼科診療所125、予測エンジン120、診断デバイス130、1つ又は複数の計算デバイス140、並びに/或いは手術プランナー150、160、及び/又は170の何れか等の1つ又は複数に含め得る計算システムの代表である。
【0067】
図4Aは、システム400の構成要素がバス405を使用して互いと電気通信する計算システム400を示す。システム400は、プロセッサ410と、読み取り専用メモリ(ROM)420及び/又はランダムアクセスメモリ(RAM)425等(例えば、PROM、EPROM、フラッシュEPROM、及び/又は任意の他のメモリチップ又はカートリッジ)の形態のメモリを含む種々のシステム構成要素をプロセッサ410に結合するシステムバス405とを含む。システム400は、プロセッサ410と直結され、近傍にあり、又は一部として統合される高速メモリのキャッシュ412を更に含み得る。システム400は、プロセッサ410による高速アクセスのために、キャッシュ412を通してROM420、RAM425、及び/又は1つ又は複数の記憶装置430に記憶されたデータにアクセスし得る。幾つかの例では、キャッシュ412は、前にキャッシュ412に記憶された、メモリ415、ROM420、RAM425、及び/又は1つ又は複数の記憶装置430からのデータにアクセスするに当たりプロセッサ410による遅延を回避する性能ブーストを提供し得る。幾つかの例では、1つ又は複数の記憶装置430は1つ又は複数のソフトウェアモジュール(例えば、ソフトウェアモジュール432、434、436等)を記憶する。ソフトウェアモジュール432、434、及び/又は436は、方法200及び/又は210のプロセス等の種々の動作を実行するようにプロセッサ410を制御し、且つ/又は制御するように構成し得る。そして、システム400は1つのみのプロセッサ410を有して示されているが、プロセッサ410が1つ又は複数の中央演算処理装置(CPU)、マルチコアプロセッサ、マイクロプロセッサ、マイクロコントローラ、デジタル信号プロセッサ(DSP)、フィールドプログラマブルゲートアレイ(FPGA)、特定用途向け集積回路(ASIC)、グラフィックス処理ユニット(GPU)、及び/又はテンソルプロセッシングユニット(TPU)等の代表であり得ることを理解される。幾つかの例では、システム400は、スタンドアロンサブシステムとして、及び/又は計算デバイスに追加される基板として、又は仮想マシンとして実施し得る。
【0068】
ユーザがシステム400と対話できるようにするために、システム400は1つ又は複数の通信インターフェース440及び/又は1つ又は複数の入力/出力(I/O)デバイス445を含む。幾つかの例では、1つ又は複数の通信インターフェース440は、1つ又は複数のネットワーク規格及び/又は通信バス規格に従って通信を提供する1つ又は複数のネットワークインターフェース及び/又はネットワークインターフェースカード等を含み得る。幾つかの例では、1つ又は複数の通信インターフェース440は、ネットワーク115等のネットワークを介してシステム400と通信するためのインターフェースを含み得る。幾つかの例では、1つ又は複数のI/Oデバイス445は、1つ又は複数のユーザインターフェースデバイス(例えば、キーボード、ポインティング/選択デバイス(例えば、マウス、タッチパッド、スクロールホィール、トラックボール、及び/又はタッチスクリーン等)、オーディオデバイス(例えば、マイクロホン及び/又はスピーカ)、センサ、アクチュエータ、及び/又は表示装置等)を含み得る。
【0069】
1つ又は複数の記憶装置430のそれぞれは、ハードディスク、光学媒体、及び/又は固体状態ドライブ等により提供される等の非一時的不揮発性記憶装置を含み得る。幾つかの例では、1つ又は複数の記憶装置430のそれぞれは、システム400と同じ場所にあってもよく(例えば、ローカル記憶装置)、且つ/又はシステム400からリモートであってもよい(例えば、クラウド記憶装置)。
【0070】
図4Bは、本明細書に記載される任意の方法(例えば、方法200及び/又は210)の実行に使用し得るチップセットアーキテクチャに基づく計算システム450を示す。システム450は、1つ又は複数のCPU、マルチコアプロセッサ、マイクロプロセッサ、マイクロコントローラ、DSP、FPGA、ASIC、GPU、及び/又はTPU等のソフトウェア、ファームウェア、及び/又は他の計算を実行可能な任意の数の物理的且つ/又は論理的に別個のリソースを表すプロセッサ455を含み得る。示されるように、プロセッサ455は、1つ又は複数のチップセット460により支援され、チップセット460はまた、1つ又は複数のCPU、マルチコアプロセッサ、マイクロプロセッサ、マイクロコントローラ、DSP、FPGA、ASIC、GPU、TPU、コプロセッサ、及び/又はコーダ-デコーダ(CODEC)等を含み得る。示されるように、1つ又は複数のチップセット460は、プロセッサ455を1つ又は複数のI/Oデバイス465、1つ又は複数の記憶装置470、メモリ475、ブリッジ480、及び/又は1つ又は複数の通信インターフェース490の1つ又は複数とインターフェースする。幾つかの例では、1つ又は複数のI/Oデバイス465、1つ又は複数の記憶装置470、メモリ、及び/又は1つ又は複数の通信インターフェース490は、図4A及びシステム400における同様の名称の相手方要素に対応し得る。
【0071】
幾つかの例では、ブリッジ480は、1つ又は複数のキーボード、ポインティング/選択デバイス(例えば、マウス、タッチパッド、スクロールホィール、トラックボール、及び/又はタッチスクリーン等)、オーディオデバイス(例えば、マイクロホン及び/又はスピーカ)、並びに/或いは表示装置等の1つ又は複数のユーザインターフェース(UI)構成要素へのアクセスをシステム450に提供する追加のインターフェースを提供し得る。
【0072】
幾つかの実施形態によれば、システム400及び/又は460は、方法200及び/又は210のプロセスの実行に当たりユーザ(例えば、外科医及び/又は他の医療者)を支援するのに適したグラフィカルユーザインターフェース(GUI)を提供し得る。GUIは、実行すべき次の動作に関する指示、目の術前及び/又は術後の像(例えば、図3に示される等)等の注釈付き及び/又は注釈なしの解剖学的構造の図、及び/又は入力要求等を含み得る。幾つかの例では、GUIは解剖学的構造のトゥルーカラー及び/又はフォールスカラー像等を表示し得る。
【0073】
図5は、幾つかの実施形態による多層ニューラルネットワーク500の図である。幾つかの実施形態では、ニューラルネットワーク500は、予測エンジン120により使用される予測モデル(F(.)モデル及びG(.)モデルを含む)の少なくとも幾つかの実施に使用されるニューラルネットワークを表し得る。ニューラルネットワーク500は入力層520を使用して入力データ510を処理する。幾つかの例では、入力データ510は、1つ又は複数のモデルに提供される入力データ、及び/又は1つ又は複数のモデルのトレーニングに使用される、プロセス208及び230中に1つ又は複数のモデルに提供されるトレーニングデータに対応し得る。入力層520は、スケーリング及び/又は範囲制限等により入力データ510の条件付けに使用される複数のニューロンを含む。入力層520内の各ニューロンは、隠れ層531の入力に供給される出力を生成する。隠れ層531は、入力層520からの出力を処理する複数のニューロンを含む。幾つかの例では、隠れ層531内の各ニューロンは、次に、隠れ層539で終わる1つ又は複数の追加の隠れ層を通して伝搬する出力を生成する。隠れ層539は、前の隠れ層からの出力を処理する複数のニューロンを含む。隠れ層539の出力は出力層540に供給される。出力層540は、スケーリング及び/又は範囲制限等により隠れ層539からの出力の条件付けに使用される1つ又は複数のニューロンを含む。ニューラルネットワーク500のアーキテクチャが単なる代表であり、1つのみの隠れ層を有するニューラルネットワーク、入力層及び/又は出力層がないニューラルネットワーク、及び/又は再帰層を有するニューラルネットワーク等を含め、他のアーキテクチャも可能なことを理解されたい。
【0074】
幾つかの例では、入力層520、隠れ層531~539、及び/又は出力層540のそれぞれは1つ又は複数のニューロンを含む。幾つかの例では、入力層520、隠れ層531~539、及び/又は出力層540のそれぞれは、同じ数又は異なる数のニューロンを含み得る。幾つかの例では、各ニューロンは、式11に示されるように、入力xの結合(例えば、トレーニング可能な加重行列Wを使用した加重和)をとり、任意選択的なトレーニング可能なバイアスbを加算し、活性化関数fを適用して、出力を生成する。幾つかの例では、活性化関数fは、線形活性化関数、上限及び/又は下限を有する活性化関数、対数シグモイド関数、双曲線正接関数、及び/又は正規化線形関数等であり得る。幾つかの例では、各ニューロンは同じ又は異なる活性化関数を有し得る。
a=f(Wx+b) (11)
【0075】
幾つかの例では、ニューラルネットワーク500は教師あり学習を使用してトレーニングし得(例えば、プロセス208及び230中)、入力データとグラウンドトルース(例えば予期される)出力データとの組合せを含むトレーニングデータの組合せ。入力データ510に入力データを使用して生成されたニューラルネットワーク500の出力と、ニューラルネットワーク500により生成された出力データ550をグラウンドトルース出力データと比較した。次に、生成された出力データ550とグラウンドトルース出力データとの差をニューラルネットワーク500にフィードバックして、種々のトレーニング可能な重み及びバイアスを補正し得る。幾つかの例では、差は、確率的勾配降下法等を使用して逆伝搬法を使用してフィードバックし得る。幾つかの例では、全体損失関数(例えば、各トレーニング組合せの差に基づく平均二乗誤差)が許容可能なレベルに収束するまで、大きな組のトレーニングデータ組合せをニューラルネットワーク500に複数回提示し得る。
【0076】
上述した実施形態による方法は、非一時的有形機械可読媒体に記憶される実行可能命令として実施し得る。実行可能命令は、1つ又は複数のプロセッサ(例えば、プロセッサ410及び/又はプロセッサ455)により実行されると、1つ又は複数のプロセッサに方法200及び/又は210のプロセスの1つ又は複数を実行させ得る。方法200及び/又は210のプロセスを含み得る機械可読媒体の幾つかの一般的な形態は、例えば、フロッピーディスク、フレキシブルディスク、ハードディスク、磁気テープ、任意の他の磁気媒体、CD-ROM、任意の他の光学媒体、パンチカード、紙テープ、穴のパターンを有する任意の他の物理的媒体、RAM、PROM、EPROM、フラッシュEPROM、任意の他のメモリチップ又はカートリッジ、及び/又はプロセッサ又はコンピュータが読み取るように構成された任意の他の媒体である。
【0077】
これらの開示による方法を実施するデバイスは、ハードウェア、ファームウェア、及び/又はソフトウェアを含み得、任意の種々のフォームファクタをとり得る。そのようなフォームファクタの典型例には、ラップトップ、スマートフォン、スモールファームファクタパーソナルコンピュータ、及び/又は個人情報端末等がある。本明細書に記載された機能の部分は、周辺機器及び/又はアドインカードで実施することもできる。そのような機能は、更なる例として、異なるチップ間の回路基板又は1つのデバイスで実行中の異なるプロセスで実施することもできる。
【0078】
例示的な実施形態を示し説明したが、上記開示において広範囲の改変、変更、及び置換が意図され、幾つかの場合、実施形態の幾つかの特徴は、他の特徴の対応する使用なしで利用し得る。多くの変形、代替、及び改変を当業者は認識する。したがって、本発明の範囲は以下の特許請求の範囲によってのみ限定されるべきであり、特許請求の範囲が広義且つ本明細書に開示される実施形態の範囲と一貫して解釈されることが適切である。
図1
図2A
図2B
図3
図4A-4B】
図5
【手続補正書】
【提出日】2024-04-01
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
予測エンジンであって、
1つ又は複数のプロセッサ
を備え、前記予測エンジンは、
眼内への眼内レンズ(IOL)移植を実行するためにユーザを支援する、目の1つ又は複数の術前測定値を取得することと、
少なくとも前記目の前記1つ又は複数の術前測定値に基づいて第1の複数の予測モデル候補を評価するために、複数の過去IOL移植記録から過去IOL移植記録のサブセットを選択することであって、前記第1の複数の予測モデル候補のそれぞれは、1組の術前目測定値及びIOL度数に基づいて、術後全屈折等価球面度数値(MRSE)を推定する、選択することと、
前記選択された過去IOL移植記録のサブセット内の目測定データを使用して前記第1の複数の予測モデル候補のそれぞれにより生成される推定術後MRSEと、前記選択された過去IOL移植記録のサブセットにおいて示される実際の術後MRSEとの間の偏差に基づいて前記第1の複数の予測モデルを評価することと、
前記評価に基づいて前記第1の複数の予測モデル候補から第1の予測モデルを選択することと、
前記選択された第1の予測モデルを使用して、1組の利用可能IOL度数及び前記目の前記1つ又は複数の術前測定値に基づいて複数の推定術後MRSE値を計算することと、
前記1組の利用可能IOL度数から、前記複数の推定術後MRSE値から、所定の術後MRSE値に一致する第1の推定術後MRSE値に対応する第1のIOL度数を特定することと、
前記目に移植するIOLの選択を支援するために、前記予測エンジンにより前記特定された第1のIOL度数を前記ユーザに提供することと、
を行うように構成される予測エンジン。
【外国語明細書】