(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024069474
(43)【公開日】2024-05-21
(54)【発明の名称】情報処理システム、情報処理方法、プログラム、及び、情報処理装置
(51)【国際特許分類】
G08G 1/00 20060101AFI20240514BHJP
【FI】
G08G1/00 D
【審査請求】有
【請求項の数】14
【出願形態】OL
(21)【出願番号】P 2024040043
(22)【出願日】2024-03-14
(62)【分割の表示】P 2022069920の分割
【原出願日】2019-06-21
(31)【優先権主張番号】P 2018153365
(32)【優先日】2018-08-17
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000002185
【氏名又は名称】ソニーグループ株式会社
(74)【代理人】
【識別番号】100121131
【弁理士】
【氏名又は名称】西川 孝
(74)【代理人】
【氏名又は名称】稲本 義雄
(74)【代理人】
【識別番号】100168686
【弁理士】
【氏名又は名称】三浦 勇介
(72)【発明者】
【氏名】中田 健人
(57)【要約】
【課題】車両内のモバイル端末の端末取得情報を学習モデルに入力して運転者の運転挙動を推定し、推定結果に基づくスコア算出や通知処理等を実行する構成を実現する。
【解決手段】情報処理システムは、複数の車両内のモバイル端末の取得情報及び複数の車両における観測情報を含む学習データを利用した学習処理により、車両内のモバイル端末からネットワークを介して取得された前記取得情報に基づいて車両の運転者の運転挙動を推定する学習モデルを生成又は更新する学習処理部を備え、前記運転挙動の推定結果に関する情報は、危険運転の発生位置に関する情報を含む危険運転情報が重畳された地図情報の生成に用いられる情報である。
【選択図】
図3
【特許請求の範囲】
【請求項1】
複数の車両内のモバイル端末により取得された取得情報及び複数の車両における観測情報を含む学習データを利用した学習処理により、車両内のモバイル端末からネットワークを介して取得された前記取得情報に基づいて車両の運転者の運転挙動を推定する学習モデルを生成又は更新する学習処理部を
備え、
前記運転挙動の推定結果に関する情報は、危険運転の発生位置に関する情報を含む危険運転情報が重畳された地図情報の生成に用いられる情報である
情報処理システム。
【請求項2】
前記運転挙動の推定結果に関する情報に基づいて、前記地図情報を生成するデータ処理部を
さらに備える請求項1に記載の情報処理システム。
【請求項3】
前記データ処理部は、車両内のモバイル端末からネットワークを介して取得した前記取得情報に基づいて、前記学習モデルを用いて前記運転挙動を推定する
請求項2に記載の情報処理システム。
【請求項4】
前記データ処理部は、複数の車両内のモバイル端末からネットワークを介して取得した複数の前記取得情報に基づいて、前記学習モデルを用いて複数の車両の運転者の前記運転挙動を推定する
請求項3に記載の情報処理システム。
【請求項5】
前記危険運転情報は、危険運転の発生地点及び内容を含む
請求項1~4のいずれかに記載の情報処理システム。
【請求項6】
前記学習処理部は、複数の車両内のモバイル端末からネットワークを介して取得された前記取得情報、及び、複数の車両からネットワークを介して取得された前記観測情報を含む前記学習データを利用した学習処理により、前記学習モデルを生成又は更新する
請求項1~5のいずれかに記載の情報処理システム。
【請求項7】
前記観測情報は、前記運転挙動に関する情報を含む
請求項1~6のいずれかに記載の情報処理システム。
【請求項8】
前記観測情報は、加速度情報を含む
請求項7に記載の情報処理システム。
【請求項9】
前記取得情報は、加速度情報、回転速度情報、位置情報の少なくともいずれかの情報を含む
請求項1~8のいずれかに記載の情報処理システム。
【請求項10】
前記学習モデルは、前記取得情報を入力として、運転挙動推定値を算出し、前記運転挙動を推定する
請求項1~9のいずれかに記載の情報処理システム。
【請求項11】
前記学習モデルは、前記運転挙動の推定結果に対する信頼度を算出する
請求項1~10のいずれかに記載の情報処理システム。
【請求項12】
情報処理システムが、
複数の車両内のモバイル端末の取得情報及び複数の車両における観測情報を含む学習データを利用した学習処理により、車両内のモバイル端末からネットワークを介して取得された前記取得情報に基づいて車両の運転者の運転挙動を推定する学習モデルを生成又は更新し、
前記運転挙動の推定結果に関する情報は、危険運転の発生位置に関する情報を含む危険運転情報が重畳された地図情報の生成に用いられる情報である
情報処理方法。
【請求項13】
コンピュータに、
複数の車両内のモバイル端末の取得情報及び複数の車両における観測情報を含む学習データを利用した学習処理により、車両内のモバイル端末からネットワークを介して取得された前記取得情報に基づいて車両の運転者の運転挙動を推定する学習モデルを生成又は更新し、
前記運転挙動の推定結果に関する情報は、危険運転の発生位置に関する情報を含む危険運転情報が重畳された地図情報の生成に用いられる情報である
処理を実行させるためのプログラム。
【請求項14】
複数の車両内のモバイル端末の取得情報及び複数の車両における観測情報を含む学習データを利用した学習処理により、車両内のモバイル端末からネットワークを介して取得された前記取得情報に基づいて車両の運転者の運転挙動を推定する学習モデルを生成又は更新する学習処理部を
備え、
前記運転挙動の推定結果に関する情報は、危険運転の発生位置に関する情報を含む危険運転情報が重畳された地図情報の生成に用いられる情報である
情報処理装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、情報処理システム、情報処理方法、プログラム、及び、情報処理装置に関する。さらに詳細には、車の運転者や同乗者が所有するモバイル端末が取得する情報を利用して運転挙動を解析する情情報処理システム、情報処理方法、プログラム、及び、情報処理装置に関する。
【背景技術】
【0002】
昨今、様々な分野で機械学習アルゴリズムが利用されている。例えば、自動車の運転者の運転挙動の評価処理に機械学習を用いるシステムがある。
特許文献1(特許6264492号公報)には、運転者の顔の撮影画像に基づいて、運転者の運転集中度合いを評価するシステムが開示されている。
【0003】
しかし、従来の多くの運転挙動評価システムは、カメラによる撮影情報や、車両のハンドル操作情報やアクセル、ブレーキ操作情報等を用いて運転者の挙動を評価する構成が一般的である。
このような評価処理システムは車両と一体化した装置であり、車両にこのようなシステムが装着されていない場合は、利用できないという問題がある。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
本開示は、例えば、上記の問題点に鑑みてなされたものであり、例えばスマホ(スマートホン)等、車両の運転者や同乗者の保持するモバイル端末が取得する情報に基づいて運転挙動の解析や評価を行うことを可能とした情報処理装置、情報処理システム、および情報処理方法、並びにプログラムを提供することを目的とする。
【課題を解決するための手段】
【0006】
本開示の第1の側面は、
複数の車両内のモバイル端末の取得情報及び複数の車両における観測情報を含む学習データを利用した学習処理により、車両内のモバイル端末からネットワークを介して取得された前記取得情報に基づいて車両の運転者の運転挙動を推定する学習モデルを生成又は更新する学習処理部を
備え、
前記運転挙動の推定結果に関する情報は、危険運転の発生位置に関する情報を含む危険運転情報が重畳された地図情報の生成に用いられる情報である
情報処理装置にある。
【0007】
さらに、本開示の第2の側面は、
情報処理システムが、
複数の車両内のモバイル端末の取得情報及び複数の車両における観測情報を含む学習データを利用した学習処理により、車両内のモバイル端末からネットワークを介して取得された前記取得情報に基づいて車両の運転者の運転挙動を推定する学習モデルを生成又は更新し、
前記運転挙動の推定結果に関する情報は、危険運転の発生位置に関する情報を含む危険運転情報が重畳された地図情報の生成に用いられる情報である
情報処理方法にある。
【0008】
さらに、本開示の第3の側面は、
コンピュータに、
複数の車両内のモバイル端末の取得情報及び複数の車両における観測情報を含む学習データを利用した学習処理により、車両内のモバイル端末からネットワークを介して取得された前記取得情報に基づいて車両の運転者の運転挙動を推定する学習モデルを生成又は更新し、
前記運転挙動の推定結果に関する情報は、危険運転の発生位置に関する情報を含む危険運転情報が重畳された地図情報の生成に用いられる情報である
処理を実行させるためのプログラムにある。
【0009】
さらに、本開示の第4の側面は、
複数の車両内のモバイル端末の取得情報及び複数の車両における観測情報を含む学習データを利用した学習処理により、車両内のモバイル端末からネットワークを介して取得された前記取得情報に基づいて車両の運転者の運転挙動を推定する学習モデルを生成又は更新する学習処理部を
備え、
前記運転挙動の推定結果に関する情報は、危険運転の発生位置に関する情報を含む危険運転情報が重畳された地図情報の生成に用いられる情報である
情報処理装置にある。
【0010】
なお、本開示のプログラムは、例えば、様々なプログラム・コードを実行可能な情報処理装置やコンピュータ・システムに対して、コンピュータ可読な形式で提供する記憶媒体、通信媒体によって提供可能なプログラムである。このようなプログラムをコンピュータ可読な形式で提供することにより、情報処理装置やコンピュータ・システム上でプログラムに応じた処理が実現される。
【0011】
本開示のさらに他の目的、特徴や利点は、後述する本開示の実施例や添付する図面に基づくより詳細な説明によって明らかになるであろう。なお、本明細書においてシステムとは、複数の装置の論理的集合構成であり、各構成の装置が同一筐体内にあるものには限らない。
【図面の簡単な説明】
【0012】
【
図1】本開示の処理の概要について説明する図である。
【
図2】モバイル端末の取得する情報の一例について説明する図である。
【
図3】管理サーバによる学習モデルの生成処理を説明する図である。
【
図5】管理サーバの学習処理部の実行する学習モデル生成処理について説明する。運転行動データの例について説明する図である。
【
図6】学習データのデータ例について説明する図である。
【
図7】学習モデルを用いた運転挙動推定処理を実行する管理サーバの処理例について説明する図である。
【
図8】管理サーバが実行する学習モデルを用いた運転挙動推定処理の処理シーケンスについて説明するフローチャートを示す図である。
【
図9】推定信頼度算出処理の具体例について説明する図である。
【
図10】モバイル端末に格納される運転挙動推定アプリについて説明する図である。
【
図11】運転挙動推定アプリが有する主な機能について説明する図である。
【
図12】モバイル端末と管理サーバが実行する学習モデルを用いた運転挙動推定処理の処理シーケンスについて説明するフローチャートを示す図である。
【
図13】運転挙動推定結果を利用したスコア算出処理の処理シーケンスについて説明するフローチャートを示す図である。
【
図14】管理サーバが生成する運転挙動解析結果DB(データベース)の格納データについて説明する図である。
【
図15】管理サーバが生成する運転挙動解析結果DB(データベース)の格納データについて説明する図である。
【
図16】カテゴリ単位のスコア解析データについて説明する図である。
【
図17】カテゴリ単位のスコア解析データに基づく道路区域設定処理の処理シーケンスについて説明するフローチャートを示す図である。
【
図18】モバイル端末において実行される運転挙動推定アプリを利用した走行開始前の処理シーケンスについて説明するフローチャートを示す図である。
【
図19】モバイル端末の表示画面の一例を示す図である。
【
図20】モバイル端末の表示画面の一例を示す図である。
【
図21】モバイル端末において実行される運転挙動推定アプリを利用した走行中の処理シーケンスについて説明するフローチャートを示す図である。
【
図22】モバイル端末の表示画面の一例を示す図である。
【
図23】モバイル端末の表示画面の一例を示す図である。
【
図24】モバイル端末の表示画面の一例を示す図である。
【
図25】モバイル端末において実行される運転挙動推定アプリを利用した走行後の処理シーケンスについて説明するフローチャートを示す図である。
【
図26】モバイル端末の表示画面の一例を示す図である。
【
図27】モバイル端末の表示画面の一例を示す図である。
【
図28】モバイル端末において実行される運転挙動推定アプリを利用した走行後の処理シーケンスについて説明するフローチャートを示す図である。
【
図29】モバイル端末の表示画面の一例を示す図である。
【
図30】モバイル端末や管理サーバとして適用可能な情報処理装置のハードウェア構成例を示す図である。
【発明を実施するための形態】
【0013】
以下、図面を参照しながら本開示の情報処理装置、情報処理システム、および情報処理方法、並びにプログラムの詳細について説明する。なお、説明は以下の項目に従って行なう。
1.本開示の処理の概要について
2.端末取得情報から運転挙動を推定するための学習モデルの生成処理について
3.学習モデルを用いた運転挙動推定処理について
4.モバイル端末の運転挙動推定アプリを利用した処理について
5.運転挙動解析DB構築後の運転挙動推定アプリを利用した処理について
5-(1)運転挙動推定アプリを利用した走行開始前の処理について
5-(2)運転挙動推定アプリを利用した走行中の処理につい
5-(3)運転挙動推定アプリを利用した走行後の処理について
6.情報処理装置の構成例について
7.本開示の構成のまとめ
【0014】
[1.本開示の処理の概要について]
本開示は、例えばスマホ(スマートホン)等、車両の運転者や同乗者の保持するモバイル端末が取得する情報に基づいて運転挙動の解析や評価を行うことを可能とするものである。
【0015】
図1を参照して本開示の処理の概要について説明する。
図1には、車両10を示している。車両10は、運転者(ドライバ)11によって運転されている。
運転者(ドライバ)11、あるいは図示しない同乗者は、スマホ(スマートホン)等のモバイル端末を所有している。
図1に示すモバイル端末20である。
【0016】
車両10には、車両10の制御処理や操作情報取得処理等を行う制御ユニットであるECU(Electrical Control Unit)を有する。ECUは、その1つの構成要素としてOBD(On-Board Diagnostics)を有している。OBDは、ECUの一つの機能であり、主に車両10の診断機能を提供するプログラムである。
車両10のECUのOBDは、車両10の情報、例えば、車両の速度や加速度情報等を、ネットワークを介して管理サーバ30に逐次、送信する。
【0017】
運転者(ドライバ)11、あるいは同乗者の所有するモバイル端末20は、ネットワークを介して管理サーバ30や、複数の情報提供サーバ41,42・・・、サービス提供サーバ43,44・・・との通信可能な構成を持つ。
情報提供サーバ41,42・・・は、例えば交通情報提供サーバ、天気情報提供サーバ等、様々な情報を提供するサーバである。サービス提供サーバ43,44・・・は、たとえば保険会社のサーバ、商品販売等、様々なサービスを提供するサーバ等である。
【0018】
モバイル端末20には、予め情報取得アプリ(アプリケーション)21がインストールされている。
情報取得アプリ(アプリケーション)21は、運転者(ドライバ)11の運転挙動の解析や評価を行うために利用可能な様々な情報を取得する。
モバイル端末20が取得する情報には、例えば以下の情報が含まれる。
(1)モバイル端末自体に備えられた加速度センサやGPSからの取得情報、
(2)情報提供サーバ41,42を介して取得する情報(交通情報等)
モバイル端末20は、これらの様々な情報を取得することができる。
【0019】
モバイル端末20の取得する情報の一例を
図2に示す。
図2に示すようにモバイル端末20は、例えば以下の情報を取得する。
(a1)加速度情報
(a2)回転速度情報
(a3)GPS情報(経度、緯度、速度情報等)
(a4)大気圧情報
(a5)方位情報(進行方向(東西南北等))
(a6)端末操作情報
(a7)交通情報
【0020】
(a1)加速度情報は、例えばモバイル端末20自体の加速度センサから取得する。
(a2)回転速度情報は、例えばモバイル端末20自体のジャイロセンサから取得する。
(a3)GPS情報(経度、緯度、速度情報等)は、例えばモバイル端末20自体のGPSセンサから取得する。
(a4)大気圧情報は、例えばモバイル端末20自体の気圧センサから取得する。
(a5)方位情報(進行方向(東西南北等))は、例えばモバイル端末20自体の地磁気センサから取得する。
(a6)端末操作情報は、例えばモバイル端末20自体の操作情報検出センサから取得する。
(a7)交通情報は、例えば外部のこうつう情報提供サーバ(情報提供サーバ)から取得する。
このように、モバイル端末20は、モバイル端末自身のセンサや外部のサーバから様々な情報を取得することができる。
これらの取得情報は、モバイル端末20から管理サーバ30に、逐次送信される。
【0021】
[2.端末取得情報から運転挙動を推定するための学習モデルの生成処理について] 本開示は、モバイル端末20が取得する情報に基づいて、車両10を運転する運転者11の運転挙動の解析や評価を行うことを可能とするものである。
この処理を可能とするため、まず、学習モデルを生成することが必要となる。
図3以下を参照して、学習モデルの生成処理について説明する。
【0022】
学習モデルの生成処理は、管理サーバ30が実行する。
図3は、管理サーバ30による学習モデル81の生成処理を説明する図である。
すなわち、モバイル端末20の取得情報に基づいて、車両10を運転する運転者11の運転挙動の解析や評価を行うために適用する学習モデル81を生成する処理について説明する図である。
【0023】
図3に示すように、管理サーバ30の学習処理部80は、モバイル端末20から端末取得情報50を取得する。
さらに、管理サーバ30の学習処理部80は、車両10のECUのOBDや、その他の入力情報によって構成される観測情報60を取得する。
【0024】
(a)モバイル端末20から端末取得情報50、
(b)車両10のECUのOBDや、その他の入力情報によって構成される観測情報60、
これらの2種類の情報が、管理サーバ30の学習処理部80において実行する学習処理に適用する学習データとなる。これらの学習データを利用した学習処理によって学習モデル81が生成される。
【0025】
モバイル端末20から取得する端末取得情報50は、例えば、先に
図2を参照して説明した(a1)~(a7)の様々な情報である。
一方の車両10のECUのOBDや、その他の入力情報によって構成される観測情報60について
図4を参照して説明する。
【0026】
図4には観測情報60の一例を示している。
図4に示すように観測情報60は、例えば以下の情報によって構成される。
(b1)車両前後方向加速度情報
(b2)車両左右方向加速度情報
(b3)端末操作情報
なお、これらの観測情報は、運転者11の運転挙動の実際の観測情報であり、実際の運転挙動情報に相当する情報である。
【0027】
(b1)車両前後方向加速度情報は、車両10のECUのOBDから取得される車両10の実際の前後方向加速度情報である。
(b2)車両左右方向加速度情報は、車両10のECUのOBDから取得される車両10の実際の左右方向加速度情報である。
(b3)端末操作情報は、例えば、車両10の運転者以外の同乗者の持つ端末から入力される情報であり、運転者がモバイル端末20を操作しているか否かを示す実際の観察情報である。
なお、これらの情報は、学習モデル81を生成する処理を行う場合に取得され、管理サーバ30に送信される。
【0028】
学習モデル81の生成後は、これらの観測情報の取得処理は不要となる。
学習モデル81の生成後は、生成した学習モデル81を適用して、モバイル端末20の取得情報から、運転者11の運転挙動の推定処理を行うことが可能となる。
【0029】
なお、管理サーバ30の学習処理部80が、学習モデル81を更新する場合には、新たな端末取得情報50と観測情報60を取得し、これらを新たな学習データとして学習処理を行い、学習モデル81を更新することができる。
【0030】
図5を参照して、管理サーバ30の学習処理部80の実行する学習モデル81の生成処理、すなわち学習処理の具体例について説明する。
図5には、管理サーバ30の学習処理部80と、学習処理部80における学習処理の結果として生成される学習モデル81を示している。
まず、管理サーバ30の学習処理部80は、学習処理に適用する学習データ70を収集する。収集する学習データ70は、以下のデータによって構成される。
(A)端末取得情報
(B)観測情報(=運転挙動情報)
【0031】
(A)端末取得情報は、
図3に示すモバイル端末20が取得する端末取得情報50であり、例えば、先に
図2を参照して説明した(a1)~(a7)の様々な情報である。
一方、(B)観測情報は、
図3に示す車両10のECUのOBDや、その他の入力情報によって構成される観測情報60であり、例えば、先に
図4を参照して説明した(b1)~(b3)の様々な観測情報(=運転挙動情報)である。
なお、これらの各情報は、時系列データであり、時間軸に対応したデータとして取得される。
【0032】
管理サーバ30の学習処理部80は、これらの学習データ70に基づいて学習処理を実行する。すなわち収集した学習データ70を用いて、機械学習アルゴリズムを学習させる。機械学習アルゴリズムとしては、例えば、ガウス過程やベイジアンニューラルネットなど、学習モデルを用いた推定結果に対する信頼度(推定信頼度)を算出可能なアルゴリズムが最適である。
【0033】
推定信頼度とは、推定結果がどれだけ正しいかを示す指標である。例えば、機械学習における学習データに含まれているパターンと推定時の挙動パターンの一致度が高いほど信頼度が高くなる。
なお、推定信頼度は例えば1~0の値を利用する。最高の推定信頼度が1であり、最低の推定信頼度が0である。
【0034】
なお、本実施例において、推定信頼度は、端末取得情報に基づいて学習モデルを適用して推定される運転者挙動推定値の推定信頼度である。
推定信頼度を高めるためには、より多くの学習データを利用した学習処理を行うことが有効である。
【0035】
図5には学習処理部80の実行する学習処理一例として、ガウシアンニューラルネットワークを用いた(機械)学習モデルの生成例を示している。学習モデルの設計方法は様々であり、例えば、1つのモデルで、端末取得情報の全種類(例えば
図2に示す(a1)~(a7))を入力し、推定データとして、すべての運転挙動情報(例えば
図4に示す(b1)~(b3))を同時に推定する手法がある。
さらに、例えば、特定の端末取得情報が特定の運転挙動情報と関係が高いといった相関性の解析がなされている場合には、特定の運転挙動を推定する場合に、その挙動と相関性の高い端末取得情報を優先的に選択して推定するといった手法もある。
【0036】
本実施例では、学習のモデルの一例として、端末取得情報中から選択した複数の情報を、学習処理部80に同時入力して、出力情報として1つ以上の運転挙動情報を出力可能とした学習モデルの生成処理を行う例について説明する。
【0037】
学習処理のシーケンスについて簡単に説明する。
(S1)機械学習モデルの設計
まず、ステップS1の処理として、学習処理に利用する(機械)学習モデルの設計を行う。
機械学習モデルは所定の理論モデル(ガウス過程やベイジアンニューラルネットワークなど)に基づき、対応する入力信号、出力信号に合わせて各種パラメータの設計を行う。パラメータは、ガウス過程の場合は平均値関数や共分散関数であり、ベイジアンニューラルネットワークの場合はネットワークの層数や活性化関数などである。
【0038】
(S2)機械学習モデルを適用した学習処理
次に、ステップS2において、機械学習モデルを適用した学習処理を実行する。この学習処理には、上述した学習データ70を利用する。収集する学習データ70は、以下のデータである。
(A)端末取得情報
(B)観測情報(運転挙動情報)
なお、前述したように、これらの各情報は、時系列データであり、時間軸に対応したデータとして取得される。
【0039】
学習データ70のデータ例を
図6に示す。
図6に示すように、学習データは、
(A)端末取得情報
(B)観測情報(運転挙動情報)
これらの対応データによって構成される。
図6には複数のエントリ(e1)~(en)を示している。いずれも、1つ以上の端末取得情報と観測情報(運転挙動情報)との対応データによって構成されている。
【0040】
学習処理に際しては、時系列が同期された学習データ、すなわち
図6に示す各エントリ(e1)~(en)を用いて、機械学習モデルのパラメータ最適化を行う。最適化の方法は使用する理論モデルによる。
【0041】
これらの学習処理の結果として、様々な入力信号(=端末取得情報)に基づいて、出力信号(=運転挙動推定値)を出力することが可能な学習モデル81が生成される。
この学習モデル81を用いることで、学習処理に適用した学習データ(
図6参照)に含まれるエントリの入力信号(=端末取得情報)に一致しない入力信号(=端末取得情報)に対しても、最適な出力信号、すなわち、運転挙動推定値を出力することが可能となる。
【0042】
なお、学習モデル81は、ガウス過程やベイジアンニューラルネットなど、学習モデルを用いた推定結果に対する信頼度(推定信頼度)を算出可能なアルゴリズムを適用したモデルであり、運転挙動推定値に併せて、運転挙動推定値の信頼度を示す推定信頼度を出力する。
【0043】
[3.学習モデルを用いた運転挙動推定処理について]
次に、上述した学習処理によって生成された学習モデルを用いた運転挙動推定処理について説明する。
この処理は、車両10の運転者11、あるいはその同乗者の保持するモバイル端末20が取得した情報を管理サーバ30が取得し、前述の学習処理によって生成した学習モデル81を用いて、運転者11の運転挙動を推定する処理である。
さらに、本実施例においては、前述したように運転挙動推定値の信頼度である推定信頼度も併せて生成して出力する。推定信頼度は例えば1~0の値を利用する。最高の推定信頼度が1であり、最低の推定信頼度が0である。
【0044】
図7に学習モデルを用いた運転挙動推定処理を実行する管理サーバ30の処理例を示す。
管理サーバ30のデータ処理部である運転挙動推定部90は、ネットワークを介して車両に乗車しているユーザのモバイル端末から端末取得情報を受信する。
この端末取得情報は、先に
図2を参照して説明した以下の情報である。
(a1)加速度情報
(a2)回転速度情報
(a3)GPS情報(経度、緯度、速度情報等)
(a4)大気圧情報
(a5)方位情報(進行方向(東西南北等))
(a6)端末操作情報
(a7)交通情報
なお、必ずしも、これらの全てを入力する必要はなく、これらの一部の情報でもよい。
【0045】
管理サーバ30のデータ処理部である運転挙動推定部90は、端末取得情報を入力すると、予め生成済みの学習モデル81を利用して、入力した端末取得情報から運転挙動情報を推定する。
学習モデル81に、入力した端末取得情報と完全に一致するデータセット(エントリ)が存在すれば、学習モデルのそのエントリに対応付けられた運転挙動情報を運転挙動推定値として出力できる。この場合、その出力(運転挙動推定値)の推定信頼度は1に近い値(最高信頼度)となる。
【0046】
しかし、現実的には、学習モデル81に、入力した端末取得情報と完全に一致するデータセット(エントリ)が存在する可能性は低い。
実際の推定処理は、入力した端末取得情報に類似する学習モデルを適宜、組み合わせて、最終的な運転挙動推定値を算出して出力することになる。この場合、例えば、入力した端末取得情報と利用した学習モデルのデータセットとの類似度に応じた推定信頼度が算出される。
【0047】
図8に示すフローチャートを参照して、管理サーバ30が実行する学習モデルを用いた運転挙動推定処理の処理シーケンスについて説明する。
なお、このフローに従った処理は、管理サーバ30内の記憶部に格納されたプログラムに従って、プログラム実行機能を有するCPU等を備えた制御部(データ処理部)の制御下で実行される。
図8に示すフローの各ステップの処理について、順次、説明する。
【0048】
(ステップS101)
まず、管理サーバ30は、ステップS101において、ユーザ端末(モバイル端末)の取得した端末取得情報を入力する。先に
図2を参照して説明した以下の情報である。
(a1)加速度情報
(a2)回転速度情報
(a3)GPS情報(経度、緯度、速度情報等)
(a4)大気圧情報
(a5)方位情報(進行方向(東西南北等))
(a6)端末操作情報
(a7)交通情報
なお、必ずしも、これらの全てを入力する必要はなく、これらの一部の情報でもよい。
【0049】
なお、ユーザ端末(モバイル端末)からは、上記の端末取得情報とともに運転日時、車種、運転者ID、モバイル端末ID等の属性データも併せて送信され、管理サーバは、これらのデータを取得し、次に実行する推定処理によって得られる推定結果とともにDBに記録する。
【0050】
(ステップS102)
次に、管理サーバ30のデータ処理部である運転挙動推定部90は、ステップS102において、学習モデルを適用して、端末取得情報に基づく運転挙動推定値を算出し、併せて算出した運転挙動推定値の信頼度(推定信頼度)を算出する。
【0051】
前述したように、管理サーバ30の運転挙動推定部90は、入力情報、すなわち端末取得情報を、ガウス過程やベイジアンニューラルネットなどのアルゴリズムを実行する学習モデルに入力して、出力値として運転挙動推定値を出力する。さらに、出力値である運転挙動推定値の推定信頼度を算出して出力する。
【0052】
信頼度(推定信頼度)は、各推定運転挙動項目に対応して算出する。前述したように、例えば0(低信頼度)~1(高信頼度)の範囲の値を持つ。
図9を参照して推定信頼度算出処理の具体例について説明する。
図9には、学習モデルの構築に利用された学習データのデータセット(エントリ)の分布データを示している。座標は機械学習モデルのN次元特徴空間に応じたN次元の座標である。
【0053】
黒点は、学習データセット(エントリ)に対応する点である。点線枠は、学習データセット(エントリ)の存在領域を示している。
ここで、例えば入力した端末取得情報((a1)~(a7))を、N次元特徴空間に配置した場合、ある1つの端末取得情報((a1)~(a7))の対応点が点Aの位置であったとする。
また、別の1つの端末取得情報((a1)~(a7))の対応点が点Bの位置であったとする。
【0054】
この場合、点Aは、黒点で示す学習データセット(エントリ)に近いN次元空間に存在する。すなわち、点Aは、学習データセット(エントリ)と距離が近い位置に存在する。この場合、この点Aに近い学習データセット(エントリ)を利用した信頼度の高い出力、すなわち推定信頼度の高い運転挙動推定が可能となる。すなわち、点Aに基づいて推定された運転挙動情報の信頼度(推定信頼度)は高い値(1に近い値)として算出される。
【0055】
一方、点Bは、黒点で示す学習データセット(エントリ)に遠いN次元空間に存在する。すなわち、点Bは、学習データセット(エントリ)と距離が遠い位置に存在する。この場合、この点Bに最も近い学習データセット(エントリ)を利用しても、その学習データセット(エントリ)と点Bとの類似性は低い。この場合、信頼度の低い出力、すなわち推定信頼度の低い運転挙動推定が行われることになる。すなわち、点Bに基づいて推定された運転挙動情報の信頼度(推定信頼度)は低い値(0に近い値)として算出される。
【0056】
(ステップS103)
次に、管理サーバ30の運転挙動推定部90は、ステップS103において、運転挙動推定値と、信頼度をユーザ端末(モバイル端末)、その他、情報利用サーバに送信する。なお、送信データは、暗号化データとして送信することが好ましい。
【0057】
情報利用サーバとは、例えば、自動車の運転挙動データを収集する自動車会社や、交通違反情報の収集を行う警察や、運転挙動に応じて保険料を算出する保険会社等である。
【0058】
(ステップS104)
最後に、管理サーバ30の運転挙動推定部90は、ステップS104において、運転挙動推定値と、信頼度を、運転日時、車種、運転者ID、モバイル端末ID等の属性データに対応付けてDBに記録する。
【0059】
[4.モバイル端末の運転挙動推定アプリを利用した処理について]
次に、車両10に乗車した運転者(ドライバ)、あるいは同乗者の所有するモバイル端末20に運転挙動推定アプリをインストールして、運転挙動推定アプリを起動して実行する処理について説明する。
【0060】
モバイル端末20内の運転挙動推定アプリの主要機能の一つは、端末取得情報に基づく運転挙動推定処理であるが、その他にも様々な機能を有する。以下、これらの処理について説明する。
【0061】
なお、モバイル端末20の運転挙動推定アプリを利用して端末取得情報に基づく運転挙動推定を行う場合には、以下のいずれかの処理を実行することになる。
(1)モバイル端末20の取得情報を管理サーバ30に送信して、管理サーバ30が学習モデルを利用して運転挙動推定を行う。
(2)管理サーバ30が生成した学習モデルをモバイル端末20が取得してモバイル端末20内で端末取得情報に基づく運転挙動推定値を算出する。
なお、(2)の態様で運転挙動推定を行う場合にも、モバイル端末20は、端末取得情報、運転挙動推定値を管理サーバ30に送信する。
【0062】
図10には、先に説明した
図1と同様の図を示している。車両10は、運転者(ドライバ)11によって運転されている。運転者(ドライバ)11、あるいは図示しない同乗者は、スマホ(スマートホン)等のモバイル端末を所有している。
図10に示すモバイル端末20である。
【0063】
モバイル端末20には、運転挙動推定アプリ22がインストールされている。
運転挙動推定アプリ22は、学習モデルを適用して端末取得情報に基づく運転挙動推定のための様々な処理を行う。なお、運転挙動推定アプリ22は、先に
図1を参照して説明した情報取得アプリ21の機能も含むアプリである。
また、運転挙動推定アプリ22は、端末取得情報の管理サーバ30への送信処理、管理サーバ30から受信するデータ(地図やスコア情報等)などの表示処理等も実行する。以下、運転挙動推定アプリ22の実行する処理について詳細に説明する。
【0064】
まず、
図11を参照して運転挙動推定アプリ22が有する主な機能について説明する。
図11に示すように運転挙動推定アプリ22は、例えば以下の機能を有する。
(1)初期設定(車種とモバイル端末機種名を登録)
(2)危険運転区域への接近等の通知(通知態様の設定も可)
(3)地図表示、カーナビ機能
(4)運転危険度スコアや運転信頼度スコアに基づく危険区域等、要注意地点の表示や事前通知処理
(5)運転挙動推定値の推定信頼度に基づく運転スコア採点対象道路区域の表示
(6)運転挙動推定値の推定信頼度に基づく報酬ポイント獲得対象道路区域の表示
(7)運転診断結果の出力、修正
運転挙動推定アプリ22は例えばこれらの機能を有する。これらの機能の詳細については、以下の実施例の説明の中で説明する。
【0065】
なお、上記(1)~(7)の機能には、運転挙動推定値の推定信頼度を利用する機能と利用しない機能が含まれる。例えば、推定信頼度を利用する場合、アプリ内で推定信頼度を利用した処理が行われる。また一部の機能はユーザの利用制限がなされる。
なお、推定信頼度を利用する機能の一部は、後述する運転挙動解析結果DB(データベース)が構築された後、サービス提供者によるアプリ内機能開放処理によって、ユーザが利用可能となる。詳細は後述する。
【0066】
以下、運転挙動推定アプリ22を適用した処理、および運転挙動推定アプリ22による処理結果を利用した解析処理等について説明する。
以下これらの処理について順次、説明する。
【0067】
(処理1)ユーザによるダウンロードと初期設定
まず、モバイル端末20において、運転挙動推定アプリ22を利用する場合、運転挙動推定アプリ22をモバイル端末20にダウンロードして初期設定を行うことが必要となる。
モバイル端末20のユーザは、初期設定画面において、運転者情報(性別、年齢等)や、運転する車種情報、さらに使用するモバイル端末の機種情報を登録する。これらの登録情報は、管理サーバ30のデータベースに記録される。
【0068】
(処理2)車両走行時の端末取得情報に基づく学習モデルを適用した運転挙動推定値、および予測信頼度の算出処理
モバイル端末20に、運転挙動推定アプリ22がダウンロードされ、初期設定が完了すると、運転挙動推定アプリ22を利用した運転挙動推定処理が実行可能となる。
【0069】
すなわち、ユーザがモバイル端末20を携帯し、車両を走行させることで、モバイル端末20の端末取得情報に基づいて、学習モデルを適用した運転挙動推定値の算出と、予測信頼度の算出処理が実行される。
【0070】
図12に示すフローチャートを参照して、モバイル端末20と管理サーバ30が実行する学習モデルを用いた運転挙動推定処理の処理シーケンスについて説明する。
なお、このフローに従った処理は、モバイル端末20の運転挙動推定アプリ22が実行する。
図12に示すフローの各ステップの処理について、順次、説明する。
【0071】
(ステップS201)
まず、モバイル端末20は、ステップS201において、モバイル端末20の取得した端末取得情報を入力する。先に
図2を参照して説明した以下の情報である。
(a1)加速度情報
(a2)回転速度情報
(a3)GPS情報(経度、緯度、速度情報等)
(a4)大気圧情報
(a5)方位情報(進行方向(東西南北等))
(a6)端末操作情報
(a7)交通情報
なお、必ずしも、これらの全てを入力する必要はなく、これらの一部の情報でもよい。
【0072】
なお、ユーザ端末(モバイル端末)からは、上記の端末取得情報とともに運転日時、車種、運転者ID、モバイル端末ID等の属性データも併せて送信され、管理サーバは、これらのデータを取得し、次に実行する推定処理によって得られる推定結果とともにDBに記録する。
【0073】
(ステップS202)
次に、モバイル端末20の運転挙動推定アプリ22は、ステップS202において、学習モデルを適用して、端末取得情報に基づく運転挙動推定値を算出し、併せて算出した運転挙動推定値の信頼度(推定信頼度)を算出する。
【0074】
なお、前述したように、モバイル端末20における学習モデルの利用形態は、以下のいずれかとなる。
(1)管理サーバ30が生成した学習モデルをモバイル端末20が取得してモバイル端末20内のメモリに格納して利用する形態、
(2)モバイル端末20において運転挙動推定を行う場合に管理サーバ30に格納された学習モデルを参照して利用する形態、
モバイル端末20の運転挙動推定アプリ22は、上記いずれかの態様で管理サーバ30が生成した学習モデルを利用して、端末取得情報に基づく運転挙動推定を行う。
【0075】
モバイル端末20の運転挙動推定アプリ22は、運転挙動推定値の算出に併せて、運転挙動推定値の推定信頼度も算出する。
【0076】
(ステップS203)
次に、モバイル端末20の運転挙動推定アプリ22は、ステップS203において、運転挙動推定値と、信頼度を、運転日時、車種、運転者ID、モバイル端末ID等の属性データに対応付けてモバイル端末20のメモリに記録する。
【0077】
(ステップS204)
最後に、モバイル端末20の運転挙動推定アプリ22は、ステップS204において、ステップS203でメモリに格納したデータ、すなわち、運転挙動推定値と、信頼度、さらに、運転日時、走行地点、車種、運転者ID、モバイル端末ID等の属性データを管理サーバに送信する。なお、送信データは、暗号化データとして送信することが好ましい。
【0078】
なお、データ送信処理は、逐次送信する構成としてもよいが、一定期間ごと、まとめて実行する構成としてもよい。
このステップS204のサーバ送信処理については、さらに後述の(処理6)において説明するように、以下の(処理3~5)で算出するスコア情報と併せて送信する構成としてもよい。
【0079】
(処理3)運転挙動推定値を用いた危険度スコアの算出処理
次に、モバイル端末20の運転挙動推定アプリ22の実行する運転挙動推定値を用いた危険度スコアの算出処理について説明する。
【0080】
モバイル端末20の運転挙動推定アプリ22は、上述した(処理2)において算出した運転挙動推定値を用いて、ユーザ(運転者)の運転の運転危険度を示す指標である危険度スコアを算出する。
【0081】
運転挙動推定アプリ22は、時刻tにおける危険度スコアDtを、以下の算出式(式1)に従って算出する。
Dt=f
D(d
1t,d
2t,・・・,d
mt))・・・(式1)
上記(式1)において、
f
Dは、危険度スコア算出関数、
d
1t,d
2t,・・・,d
mtは、学習モデルを適用して算出した運転挙動推定値のセットである。具体的には、ある時点(t)の端末取得情報に基づいて推定された、その時間(t)の運転挙動推定値のデータセットである。データセットに含まれる各値は、例えば、
図4に示す(b1)~(b3)等の様々な運転挙動情報の推定値である。
【0082】
なお、危険度スコア算出関数fDは、運転者が危険な運転挙動を取るほど大きくなるように、サービス運営者が設計する。具体的には、例えば、以下の(式2)に示すように、各運転挙動推定値の重み付き平均などによって危険度スコア算出関数fDが算出される。
Dt=fD(d1t,d2t,・・・,dmt))
=w1d1t+w2d2t+・・・+wmdmt・・・(式2)
ただし、wi(i=1,・・・,m)は重み係数である。
【0083】
(処理4)運転挙動推定値を用いた信頼度スコアの算出処理
次に、モバイル端末20の運転挙動推定アプリ22の実行する運転挙動推定値を用いた信頼度スコアの算出処理について説明する。
【0084】
モバイル端末20の運転挙動推定アプリ22は、上述した(処理2)において算出した運転挙動推定値と推定信頼度を用いて、ある時間(t)に算出された運転挙動推定値の総合的な推定信頼度の指標値である信頼度スコアを算出する。
【0085】
運転挙動推定アプリ22は、時刻tにおける信頼度スコアRtを、以下の算出式(式3)に従って算出する。
Rt=f
R(r
1t,r
2t,・・・,r
mt))・・・(式3)
上記(式3)において、
f
Rは、信頼度スコア算出関数、
r
1t,r
2t,・・・,r
mtは、学習モデルを適用して算出した運転挙動推定値に対応する推定信頼度のセットである。具体的には、ある時点(t)の端末取得情報に基づいて推定されたその時間(t)の運転挙動推定値に対応する推定信頼度のデータセットである。データセットに含まれる各値は、例えば、
図4に示す(b1)~(b3)等の様々な運転挙動情報の推定値各々に対応する推定信頼度である。
【0086】
なお、信頼度スコア算出関数fRは、学習モデルを適用して算出された運転挙動推定値の推定信頼度が高いほど大きくなるように、サービス運営者が設計する。具体的には、例えば、以下の(式4)に示すように、各推定信頼度の重み付き平均などによって信頼度スコア算出関数fRが算出される。
Rt=fR(r1t,r2t,・・・,rmt))
=v1r1t+v2r2t+・・・+vmrmt・・・(式4)
ただし、vi(i=1,・・・,m)は重み係数である。
【0087】
(処理5)危険度スコアと信頼度スコアを用いた総合スコアの算出処理
次に、モバイル端末20の運転挙動推定アプリ22の実行する危険度スコアと信頼度スコアを用いた総合スコアの算出処理について説明する。
【0088】
上述の(処理3)において算出された危険度スコアと、上述の(処理4)において算出された信頼度スコアを用いて、運転者の運転診断結果を示す総合スコアを算出する。
運転挙動推定アプリ22は、時刻tにおける総合スコアStを以下の算出式(式5)に従って算出する。
【0089】
St=fS(Rt,Dt)・・・(式5)
上記(式5)において、
fSは、総合スコア算出関数、
Rtは、時刻tにおける信頼度スコア、
Dtは、時刻tにおける危険度スコア、
である。
【0090】
関数fSはサービス運営者が設計する。例えば、関数fSは、以下の(式6)に示すように、信頼度スコアRtと、危険度スコアDtの積を算出し0から100の間に収まるように正規化する処理を行う関数が適用可能である。
St=fS(Rt,Dt)
=min(0,max(100,(Rt・Dt)/Z))・・・(式6)
ただし、Zは正規化定数である。
この算出式は一例であり、この他、様々な演算処理が可能である。
【0091】
上記(式6)に従って総合スコアStを算出すると、例えばユーザ(運転者)の運転の危険度の高低に応じて0~100点の総合スコアを算出することができる。
ユーザ(運転者)の運転の危険度が低いほど100点に近づき、危険度が高いほど0点に近づく設定である。
【0092】
(処理6)運転挙動推定値と算出スコアの管理サーバへの送信処理
次に、モバイル端末20の運転挙動推定アプリ22の実行する運転挙動推定値と算出スコアの管理サーバへの送信処理について説明する。
【0093】
モバイル端末20の運転挙動推定アプリ22は、上記の(処理2)~(処理5)において、以下のデータを算出し、メモリに格納している。
(1)運転挙動推定値
(2)推定信頼度
(3)危険度スコア
(4)信頼度スコア
(5)総合スコア
以下、これら(1)~(5)のデータをまとめて「運転挙動解析結果」と呼ぶ。
【0094】
上記(1)~(5)のデータから構成される「運転挙動解析結果」は、まずモバイル端末20内のメモリに保存される。
さらに、モバイル端末20の運転挙動推定アプリ22は、メモリに格納したデータ、すなわち、上記(1)~(5)のデータから構成される「運転挙動解析結果」に、さらに、運転日時、走行地点、車種、運転者ID、モバイル端末ID等の属性データを管理サーバに送信する。なお、送信データは、暗号化データとして送信することが好ましい。なお、データ送信処理は、逐次送信する構成としてもよいが、一定期間ごと、まとめて実行する構成としてもよい。
【0095】
上述した(処理3)~(処理6)の処理のシーケンスについて、
図13に示すフローチャートを参照して説明する。
図13に示すフローチャートは、運転挙動推定結果を利用したスコア算出処理の処理シーケンスについて説明するフローチャートである。
以下、
図13に示すフローチャートの各ステップの処理について説明する。
【0096】
(ステップS301)
まず、モバイル端末20の運転挙動推定アプリ22は、ステップS301において、運転挙動推定値に基づいて、運転危険度を示す運転危険度スコアを算出する。
この処理は、上述した(処理3)において説明した危険度スコアDtの算出処理である。
【0097】
(ステップS302)
次に、運転挙動推定アプリ22は、ステップS302において、運転挙動推定値と推定信頼度に基づいて、信頼度スコアを算出する。
この処理は、上述した(処理4)において説明した信頼度スコアRtの算出処理である。
【0098】
(ステップS303)
次に、運転挙動推定アプリ22は、ステップS303において、ステップS301において算出した危険度スコアDtと、ステップS302で算出した信頼度スコアRtを用いて、運転診断の総合スコアStを算出する。
この処理は、上述した(処理5)において説明した総合スコアStの算出処理である。
【0099】
(ステップS304)
次に、運転挙動推定アプリ22は、ステップS304において、運転挙動推定値と、推定信頼度、運転危険度スコア、推定信頼度スコア、総合スコアを、運転日時、走行地点、車種、運転者ID、モバイル端末ID等の属性データに対応付けてメモリに記録する。
【0100】
(ステップS305)
次に、運転挙動推定アプリ22は、ステップS305において、ステップS304でメモリに格納したデータを管理サーバに送信する。
すなわち、運転挙動推定値と、推定信頼度、運転危険度スコア、推定信頼度スコア、総合スコアを、運転日時、走行地点、車種、運転者ID、モバイル端末ID等の属性データを管理サーバ30に送信する。
これらステップS304~S305の処理は、上述した(処理6)において説明した処理である。
【0101】
(処理7)運転挙動解析結果データベースの構築処理
次に、処理7として、管理サーバ30が実行する運転挙動解析結果データベースの構築処理について説明する。
【0102】
管理サーバ30は、複数のユーザから、上記(処理6)において説明した「運転挙動解析結果」と付属の属性データ(運転日時、走行地点、車種、運転者ID、モバイル端末ID等)を受信する。
【0103】
管理サーバ30は、この受信データに基づいて、運転挙動解析結果DB(データベース)を構築する。
図14、
図15を参照して、管理サーバ30が生成する運転挙動解析結果DB(データベース)82の格納データについて説明する。
【0104】
管理サーバ30の運転挙動解析結果DB(データベース)82には、
図14に示す(1)運転者対応車種、端末データ、(2)運転者対応走行データ、さらに、
図15に示す(3)走行データ対応運転者挙動情報解析データが格納される。
【0105】
図14に示す(1)運転者対応車種、端末データには、運転者単位(運転者ID単位)の車種情報と、モバイル端末情報が記録される。これは、各ユーザによる運転挙動推定アプリ22の初期設定時に取得された情報を登録したものである。
【0106】
また、
図14に示す(2)運転者対応走行データには、運転者ID単位の走行情報として、走行番号と、走行テーブルIDが記録される。走行番号、走行テーブルIDは、例えばユーザ(運転者)が、運転挙動推定アプリ22を実行しながら走行処理を行った場合に、運転挙動推定アプリ22が走行単位で自動付与する番号とIDである。
なお、1つの走行単位は、例えばユーザがエンジンを起動して、エンジンを停止するまでの期間である。ユーザが運転挙動推定アプリ22を開始し、停止するまでの期間とすることも可能である。
【0107】
走行テーブルID単位で、
図15に示す(3)走行データ対応運転者挙動解析データが生成されデータベースに格納される。
図15に示す(3)走行データ対応運転者挙動解析データは、2つのテーブルによって構成される。
(3a)走行データ対応運転者挙動解析データaは、端末取得情報に基づいて、学習モデルを適用して算出された複数の運転挙動推定値と推定信頼度との対応データを記録したテーブルである。
【0108】
(3b)走行データ対応運転者挙動解析データbは、(3a)走行データ対応運転者挙動解析データaに記録された運転挙動推定値と推定信頼度に基づいて算出される(1)危険度スコア、(2)信頼度スコア、(3)総合スコアの他、以下の情報を記録したテーブルである。
(4)天気、(5)走行地点:スコア算出対象となった走行時の走行条件(天気、走行地点)
(6)採点対象区間走行地点が、ユーザ(運転者)の運転挙動の採点対象区間であるか否かを示す情報、1=採点対象区間、0=採点非対象区間
(7)報酬獲得区間:走行地点が、ユーザ(運転者)の運転挙動の採点対象区間であるか否かを示す情報、1=報酬獲得区間、0=報酬非獲得区間
【0109】
(処理8)運転挙動解析結果データベースの格納データに対するカテゴリ単位のスコア解析処理
次に、処理8として、管理サーバ30が実行する運転挙動解析結果データベース82の格納データに対するカテゴリ単位のスコア解析処理について説明する。
【0110】
管理サーバ30は、
図14、
図15を参照して説明したデータを格納した運転挙動解析結果データベース82の格納データを用いて、カテゴリ単位のスコア解析処理を実行する。
具体的には、例えば
図16に示すように、以下のようなカテゴリ単位のスコア解析データを生成する。
(1)走行地点単位のスコア(危険度スコア、信頼度スコア、総合スコア)解析データ (2)車種単位のスコア(危険度スコア、信頼度スコア、総合スコア)解析データ
(3)モバイル端末機種単位のスコア(危険度スコア、信頼度スコア、総合スコア)解析データ
なお、これらのスコアデータも運転挙動解析結果データベース82に格納される。
【0111】
図16に示すように、(1)走行地点単位のスコア解析データは、走行地点に対応する危険度スコアと、信頼度スコアと、総合スコアの平均値データ(統計値)を格納したテーブルである。これらのスコア平均値は、複数の車両のモバイル端末から受信したデータの平均値を算出したものである。
【0112】
また、(2)車種単位のスコア解析データは、各車種に対応する危険度スコアと、信頼度スコアと、総合スコアの平均値データ(統計値)を格納したテーブルである。
(3)モバイル端末機種単位のスコア解析データは、各モバイル端末機種に対応する危険度スコアと、信頼度スコアと、総合スコアの平均値データ(統計値)を格納したテーブルである。
【0113】
なお、
図16に示す例ではカテゴリとして、走行地点、車種、モバイル端末機種のみを示しているが、その他、例えば、運転者の性別、年齢等の情報、運転時間、天候等、様々なカテゴリ単位の解析データを生成することが可能である。
また、
図16に示す例ではスコアの統計値として平均値を算出する構成としているが、統計値としてはスコアの中央値、分散等の様々な値を利用可能である。
【0114】
(処理9)カテゴリ単位のスコア解析データに基づく道路区域設定処理
次に、管理サーバ30が実行するカテゴリ単位のスコア解析データに基づく道路区域設定処理について説明する。
【0115】
前述の(処理8)において生成されたカテゴリ単位のスコア解析データから、「(1)走行地点単位のスコア解析データ」を取得し、走行地点の緯度経度座標(x,y)単位の信頼度スコアと総合スコアの統計値(=平均値等)を、それぞれ、
信頼度スコア統計値=Rplace(x,y),
総合スコア統計値=Splace(x,y)
とする。
【0116】
信頼度スコア統計値Rplace(x,y)と、総合スコア統計値Splace(x,y)が、それぞれ、予め規定した閾値:Rthres,Sthresよりも大きい地点群Acheck,Adangerを検索する。
【0117】
具体的には、
信頼度スコア統計値>信頼度スコアしきい値、すなわち、
Rplace(x,y)>Rthres
上記条件を満足する地点を要チェック地点Acheckとして検索する。
この検索処理によって検索された要チェック地点Acheckを、「運転スコア採点対象道路区域」に設定する。
【0118】
また、
総合スコア統計値>総合スコアしきい値、すなわち、
Splace(x,y)>Sthres
上記条件を満足する地点を危険地点Adangerとして検索する。
この検索処理によって検索された危険地点Adangerを、「危険運転発生道路区域」に設定する。
【0119】
さらに、信頼度スコア統計値Rplace(x,y)と、予め規定した報酬ポイントしきい値:R2thresよりも小さい地点群Arewardを検索する。
具体的には、
信頼度スコア統計値<報酬ポイントしきい値、すなわち、
Rplace(x,y)<R2thres
上記条件を満足する地点を、報酬ポイント付与地点Arewardとして検索する。
この検索処理によって検索された報酬ポイント付与地点Arewardを、「報酬ポイント獲得対象道路区域」に設定する。
【0120】
管理サーバ30は、これらの区域情報、すなわち、
(1)運転スコア採点対象道路区域
(2)危険運転発生道路区域
(3)報酬ポイント獲得対象道路区域
これらの区域情報を管理サーバ30の管理する地図情報データベースに格納する。
この地図情報データベースの情報は、管理サーバ 30の判断に基づいてユーザに開放される。
【0121】
なお、
(1)運転スコア採点対象道路区域:Acheck
(2)危険運転発生道路区域:Adanger
(3)報酬ポイント獲得対象道路区域:Areward
これらの区域は、以下の式(式7)によって表現される。
【0122】
Acheck={(x,y)|Rplace(x,y)>Rthres}
Adanger={(x,y)|Splace(x,y)>Sthres}
Areward={(x,y)|Rplace(x,y)<R2thres}
・・・(式7)
【0123】
この(処理9)の手順を示すフローチャートを
図17に示す。
図17に示すフローの各ステップの処理について説明する。
【0124】
(ステップS401)
まず、管理サーバ30は、ステップS401において、走行地点の緯度経度座標(x,y)単位の信頼度スコアと総合スコアの統計値、すなわち、
信頼度スコア統計値=Rplace(x,y),
総合スコア統計値=Splace(x,y)
これらのデータを取得する。
【0125】
(ステップS402)
次に、管理サーバ30は、ステップS402において、予め規定した閾値との比較処理により、
(1)運転スコア採点対象道路区域:Acheck
(2)危険運転発生道路区域:Adanger
(3)報酬ポイント獲得対象道路区域:Areward
これらの区域を設定する。
【0126】
すなわち、前述したように各区域は、以下の式によって定義される。
Acheck={(x,y)|Rplace(x,y)>Rthres}
Adanger={(x,y)|Splace(x,y)>Sthres}
Areward={(x,y)|Rplace(x,y)<R2thres}
【0127】
(ステップS403)
次に、管理サーバ30は、ステップS403において、
(1)運転スコア採点対象道路区域:Acheck
(2)危険運転発生道路区域:Adanger
(3)報酬ポイント獲得対象道路区域:Areward
これらの区域情報を地図情報DBに登録する。
なお、前述したように、この地図情報データベースの情報は、管理サーバ30の判断に基づいてユーザに開放される。
【0128】
このように、管理サーバ30は、複数の走行データに基づいて、様々な車種・機種・地点・天気・日時に対応する危険度スコアや信頼度スコア、総合スコアの統計量を算出し、さらにこの統計量に基づいて、上記の各区域の設定を行う。
区域設定情報は、ユーザがモバイル端末20を介して参照することが可能となる。
【0129】
[5.運転挙動解析DB構築後の運転挙動推定アプリを利用した処理について]
次に、管理サーバ30において運転挙動解析DB82が構築された後、ユーザ(運転者等)が、モバイル端末20にインストールされた運転挙動推定アプリを利用して実行する処理について説明する。
【0130】
以下の項目に従って、順次、説明する。
(1)運転挙動推定アプリを利用した走行開始前の処理
(2)運転挙動推定アプリを利用した走行中の処理
(3)運転挙動推定アプリを利用した走行後の処理
【0131】
[5-(1)運転挙動推定アプリを利用した走行開始前の処理について]
まず、運転挙動推定アプリを利用した走行開始前の処理について説明する。
図18に示すフローチャートを参照して、モバイル端末20において実行される運転挙動推定アプリ22を利用した走行開始前の処理シーケンスについて説明する。
【0132】
(ステップS501)
まず、モバイル端末20のユーザは、ステップS501において、モバイル端末20にインストール済みの運転挙動推定アプリ22を起動して、初期画面を表示し、モバイル端末機種情報、利用車種情報を入力して管理サーバ30に送信する。
【0133】
(ステップS502)
次に、ステップS502において、モバイル端末20は管理サーバ30から、ステップS501で入力したモバイル端末機種情報、利用車種情報の組み合わせに対応する推定信頼度情報()を受信してモバイル端末20に表示する。
【0134】
図19にモバイル端末20の表示画面の一例を示す。
端末機種:abcpohne-x
車種:xyz-czr
これらは、ステップS501でユーザが入力したモバイル端末機種情報、利用車種情報である。
【0135】
推定信頼度:87,(コメント=高精度な運転挙動推定可能)
これは、ステップS502で管理サーバ30から受信した推定信頼度情報であり、ユーザが入力したモバイル端末機種情報、利用車種情報の組み合わせに対応する推定信頼度情報である。
さらに、コメントとして、推定信頼度の値に応じたコメントが、管理サーバ30から送信されてモバイル端末20に表示される。
推定信頼度=87は比較的高い値であり、ユーザの利用するモバイル端末機種と、利用車種との組み合わせは高い信頼度の運転挙動推定が可能な組み合わせであり、このことをユーザに通知するコメントが管理サーバ30から提供される。
【0136】
なお、モバイル端末機種情報、利用車種情報の組み合わせに対応する推定信頼度情報は、管理サーバ30の管理する運転挙動解析DB82に格納されているデータである。
管理サーバ30は、様々なモバイル端末機種と車種に応じた運転挙動推定処理を実行しており、このデータの検証結果に基づいて、このモバイル端末機種情報、利用車種情報の組み合わせに対応する推定信頼度情報を生成して運転挙動解析DB82に格納している。
ステップS502では、このデータが管理サーバ30からモバイル端末20に提供されて、モバイル端末20に表示される。
【0137】
(ステップS503)
次に、ステップS503において、モバイル端末20のユーザは、運転挙動推定処理に基づく採点(スコア)の揺れ幅設定を行い、設定情報を管理サーバ30に送信する。
先に
図13~
図16を参照して説明したように、管理サーバ30は、端末取得情報に基づく運転挙動推定値の算出を行うとともに、運転挙動推定値に基づく様々なスコア算出を行う。すなわち、(1)危険度スコア、(2)信頼度スコア、(3)総合スコア、これらのスコアの算出を行う。
【0138】
ここで、(1)危険度スコアや、(3)総合スコアは、ユーザ(ドライバ)の安全運転レベルを示す指標値として利用可能なスコアであり、このスコアは、例えば保険料算出や、ポイント付与等の様々なサービスに利用可能なる。
【0139】
具体的には、(1)危険度スコアや、(3)総合スコアを保険会社に提供して、ユーザ(ドライバ)が危険な運転ではない安全運転を行っていると推定されれば保険料が安く設定されるといった料金算出に利用される。
【0140】
前述したように、例えば総合スコアは、危険度スコアと信頼度スコアに基づく演算処理によって0~100点の点数として算出される。0点が危険な運転に対応し、100点が安全運転に対応する。
しかし、この点数(総合スコア)は、推定信頼度が高ければ信用度が高いが、推定信頼度が低い場合は、信用度が低い点数となってしまう。
【0141】
ユーザは、この点を考慮してスコア振れ幅の設定を行う。ユーザの設定したスコア振れ幅が小さい場合、危険度スコアと信頼度スコアに基づく演算処理によって算出される点数(総合スコア)の値は平均点、例えば50点近辺にとどまることになる。
一方、ユーザの設定したスコア振れ幅が大きい場合、危険度スコアと信頼度スコアに基づく演算処理によって算出される点数(総合スコア)の値は0~100点の間を大きく動く可能性がある。
【0142】
従って、運転に自信のあるユーザはスコア算出の振れ幅を大きくして、高い採点結果を得られるようにするといった設定ができる。ただし、逆に、運転挙動が悪ければ低い採点結果となるリスクも生じる。
反対に、運転に自信のないユーザは採点結果の振れ幅を小さくすることで、安定的なスコアを期待することができる。
【0143】
(ステップS504)
次に、ステップS504において、モバイル端末20のユーザは、ユーザに対する通知(事前通知、事後通知)の通知頻度設定を行い、設定情報を管理サーバ30に送信する。
【0144】
ユーザに対する通知には、例えば「危険運転発生道路区域」等が近づいていることなどを知らせる事前通知や、運転挙動推定値に基づいて判断されたユーザの危険運転挙動、例えば急ブレーキ等の動作に対する警告等の事後通知がある。
ユーザは、この通知頻度を設定することができる。
図20に通知頻度の設定画面例を示す。
【0145】
図20に示すように、ユーザは事前通知の頻度と、事後通知の頻度を個別に設定することができる。
この設定情報は、管理サーバ30に送信され、管理サーバ30はこの設定情報に基づいて、ユーザへの通知を実行するか否かを判定して判定結果に応じて通知処理を実行する。
【0146】
[5-(2)運転挙動推定アプリを利用した走行中の処理について]
次に、運転挙動推定アプリを利用した走行中の処理について説明する。
図21に示すフローチャートを参照して、モバイル端末20において実行される運転挙動推定アプリ22を利用した走行中の処理シーケンスについて説明する。
図21に示すフローの各ステップの処理について、順次、説明する。
【0147】
(ステップS601)
まず、ステップS601において、現在地情報と現在地周辺地図情報を管理サーバ30からモバイル端末20に送信してモバイル端末20の表示部に表示する。管理サーバ30は、地図情報DB83を有しており、モバイル端末20から受信する現在地情報に基づいて、地図情報DB83から現在地の周辺領域を含む地図を取得してモバイル端末20に送信して表示部に出力する。
【0148】
(ステップS602)
さらに、管理サーバ30は、モバイル端末20に表示した地図情報に以下の各道路区域情報を重畳して表示する。
(1)運転スコア採点対象道路区域:Acheck
(2)危険運転発生道路区域:Adanger
(3)報酬ポイント獲得対象道路区域:Areward
【0149】
なお、前述したように、これらの道路区域情報は、管理サーバ30の管理する地図情報DB83に登録されている。
【0150】
このステップS602の処理後のモバイル端末20の表示部の表示データの一例を
図22に示す。
図22に示すように、モバイル端末20の表示部には、現在地を含む地図が表示され、さらに、地図上の道路には、
(1)運転スコア採点対象道路区域:A
check
(2)危険運転発生道路区域:A
danger
(3)報酬ポイント獲得対象道路区域:A
reward
これらの3種類の道路区域情報が識別可能に表示される。
【0151】
(ステップS603)
次に、ユーザ(ドライバ)は、ステップS603において、走行ルートを設定して走行を開始する。走行開始後、モバイル端末20の端末取得情報に基づく運転挙動推定値の算出処理の実行が開始される。
【0152】
なお、前述したように、この端末取得情報に基づく運転挙動推定値の算出処理は、以下のいずれかの態様で実行される。
(1)モバイル端末20の取得情報を管理サーバ30に送信して、管理サーバ30が学習モデルを利用して運転挙動推定を行う。
(2)管理サーバ30が生成した学習モデルをモバイル端末20が取得してモバイル端末20内で端末取得情報に基づく運転挙動推定値を算出する。
なお、(2)の態様で運転挙動推定を行う場合にも、モバイル端末20は、端末取得情報、運転挙動推定値を管理サーバ30に送信する。
サーバ30は、端末取得情報、および端末取得情報に基づく運転挙動推定値、推定信頼度等の情報からなる取得情報を運転挙動解析結果DB82に記録する。
【0153】
(ステップS604~S605)
走行開始後、ステップS604において、車両が運転スコア採点対象道路区域を走行しているか否かを判定する。
車両が運転スコア採点対象道路区域を走行していると判定すると、ステップS605において、その道路区域の走行距離を運転挙動解析結果DB82に記録する。
【0154】
運転挙動解析結果DB82には、端末取得情報、および端末取得情報に基づく運転挙動推定値、推定信頼度等の情報からなる取得情報の他、運転スコア採点対象道路区域の走行距離が記録される。
運転スコア算出時には、この走行距離を考慮したスコア算出が実行される。
【0155】
(ステップS606~S607)
さらに、ステップS606において、車両が報酬ポイント獲得対象道路区域を走行しているか否かを判定する。
車両が報酬ポイント獲得対象道路区域を走行していると判定すると、ステップS607において、その道路区域の走行距離を運転挙動解析結果DB82に記録する。
【0156】
運転挙動解析結果DB82には、端末取得情報、および端末取得情報に基づく運転挙動推定値、推定信頼度等の情報からなる取得情報の他、報酬ポイント獲得対象道路区域の走行距離が記録される。
報酬ポイント算出時には、この走行距離を考慮した報酬ポイント算出実行される。
【0157】
(ステップS609~S611)
さらに、ステップS609において、車両が危険運転発生道路区域に近づいているか否かを判定する。
【0158】
車両が危険運転発生道路区域に近づいていると判定した場合、ステップS610において、必要に応じて危険な道路に近づいていることの通知を、モバイル端末20を介してユーザに通知する。なお、この通知はユーザの設定レベル(設定頻度)を考慮して実行される。
通知処理例を
図23に示す。
図23に示すように車両が危険運転発生道路区域に近づいていると判定した場合、危険な道路に近づいていることの通知を実行する。
【0159】
車両が危険運転発生道路区域に近づいていないと判定した場合、ステップS611において、必要に応じて事後通知、急ブレーキや急ハンドル等の危険運転が検出されたことなどの事後通知を行う。なお、この通知もユーザの設定レベル(設定頻度)を考慮して実行される。
通知処理例を
図24に示す。
図24に示すように、例えば急ハンドルが検出された場合、急ハンドルが検出されたことをユーザに通知する表示データを出力行する。
【0160】
(ステップS612)
最後のステップS612は走行終了の判定ステップであり、走行終了した場合は、モバイル端末の端末取得情報に基づく運転挙動推定処理を終了する。
走行が終了しない場合は、ステップS601に戻り、地図の更新等を行い、ステップS601以下の処理を継続して実行する。
【0161】
このように、走行中は、継続的にモバイル端末の端末取得情報に基づく運転挙動推定処理を実行し、管理サーバ30は、運転挙動推定値や推定信頼度の算出処理、および各スコアの算出を実行して、算出データを運転挙動解析結果DB82に格納する処理を継続して実行する。
【0162】
[5-(3)運転挙動推定アプリを利用した走行後の処理について]
次に、運転挙動推定アプリを利用した走行後の処理について説明する。
図25に示すフローチャートを参照して、モバイル端末20において実行される運転挙動推定アプリ22を利用した走行後の処理シーケンスについて説明する。
図25に示すフローの各ステップの処理について、順次、説明する。
【0163】
(ステップS701)
まず、ステップS701において、走行済みのルートを含む地図情報を管理サーバ30からモバイル端末20に送信してモバイル端末20の表示部に表示する。前述したように、管理サーバ30は、地図情報DB83を有しており、さらに、モバイル端末20から受信する現在地情報に基づいて車両の走行ルートを記録している。
【0164】
(ステップS702)
さらに、管理サーバ30は、ステップS702において、運転挙動推定値に基づいて危険運転がなされたと判断された地点と危険運転の内容をモバイル端末20に表示した地図情報の上に表示する。
具体例を
図26に示す。
【0165】
例えば
図26(a)表示データ例aに示すように、モバイル端末20に表示した地図情報の上に運転挙動推定値に基づいて危険運転がなされたと判断された地点と危険運転の内容を表示する。
【0166】
(ステップS703)
さらに、管理サーバ30は、ステップS703において、運転挙動推定値の推定信頼度が規定のしきい値以下であり、ユーザによる修正が許容された地点をモバイル端末20に表示する。
具体例を
図26(b)に示す。
【0167】
例えば
図26(b)表示データ例bに示すように、モバイル端末20に表示した地図情報の上に運転挙動推定値の推定信頼度が規定のしきい値以下であり、ユーザによる修正が許容された地点を表示する。
例えば規定しきい値を0.3とした場合、推定信頼度が0.3以下の地点を表示し、さらに、ユーザが修正を依頼するか否かを問い合わせるメッセージを表示する。
【0168】
(ステップS704~S705)
管理サーバ30は、ステップS704において、ユーザからの修正依頼の有無を判定する。
図26(b)表示データ例bに示す[はい]の領域をユーザがタッチした場合、修正依頼が管理サーバ30に送信される。
管理サーバ30は、走行を完了した車両の多数のユーザの所有するモバイル端末から多数の修正依頼を受信することになる。
【0169】
なお、
図25のフローのステップS703、および
図26を参照して説明した例では、推定信頼度がしきい値以下の地点のみについて情報表示を行う構成として説明したが、推定信頼度に関わらず、全ての地点の推定信頼度をユーザの要求に応じて表示する構成としもよい。
【0170】
例えば、
図27(a)表示データ例aに示すように、モバイル端末20に表示した地図情報の上に運転挙動推定値に基づいて危険運転がなされたと判断された地点と危険運転の内容を表示し、その表示部分をユーザがタッチする。
この処理によって、
図27(b)に示すように、運転挙動推定値対応の推定信頼度の値が表示される。この推定信頼度は0.81であり、規定しきい値=0.3より大きいため、修正依頼はできない。この場合、修正依頼不可であることを示すメッセージが表示される。
【0171】
次に、
図28に示すフローチャートを参照して、管理サーバ30がモバイル端末からの修正依頼を受信して実行する処理のシーケンスについて説明する。
図28に示すフローの各ステップの処理について、順次、説明する。
【0172】
(ステップS721)
まず、ステップS721において、管理サーバ30は、各ユーザのモバイル端末20から修正依頼を受信する。
【0173】
(ステップS722)
次に、ステップS722において、管理サーバ30は、モバイル端末20から受信した修正依頼件数が規定しきい値件数以上となったかを判定する。
修正依頼件数が規定しきい値件数以上になっていない場合は、処理を終了する。
一方、修正依頼件数が規定しきい値件数以上となったと判定した場合は、ステップS723に進む。
【0174】
(ステップS723)
ステップS722の判定処理において、修正依頼件数が規定しきい値件数以上となったと判定した場合は、ステップS723に進む。
管理サーバ30は、ステップS723において、運転挙動推定値、および運転挙動推定値に基づくスコア算出結果を修正する。
【0175】
(ステップS724)
さらに、管理サーバ30は、ステップS724において、修正結果と、報酬ポイントを、修正依頼を行ったモバイル端末に送信する。
具体例を
図29に示す。
【0176】
図29に示すように、ユーザの運転挙動が危険であると判定され、ユーザが修正依頼を行った地点の表示と、その地点の運転挙動推定値と、スコアの修正が実行されたことを示すメッセーシバが表示される。さらに、修正が認められたことによってユーザに対して報酬ポイントが付与されたことを示すメッセージも併せて表示される。
なお、報酬ポイントとは、具体的には、商品の割引用のポイントや、保険料の割引に適用されるポイントなどである。
管理サーバ30は、その他の情報提供サーバやサービス提供サーバと連携して、これらのポイントの付与や利用についても管理している。
【0177】
(ステップS725)
さらに、管理サーバ30は、ステップS725において、修正結果を学習データに反映させる処理を行う。例えば、運転挙動解析結果データベース82に格納されている運転挙動推定値、および運転挙動推定値に基づくスコア算出結果を修正し、学習データに反映させる処理を行う。
【0178】
[6.情報処理装置の構成例について]
次に、モバイル端末20や管理サーバ30として適用可能な情報処理装置のハードウェア構成例について、
図30を参照して説明する。
モバイル端末20や管理サーバ30として適用可能な情報処理装置は、例えば
図30に示すハードウェア構成を有する。
【0179】
CPU(Central Processing Unit)301は、ROM(Read Only Memory)302、または記憶部308に記憶されているプログラムに従って各種の処理を実行するデータ処理部として機能する。例えば、上述した実施例において説明したシーケンスに従った処理を実行する。RAM(Random Access Memory)303には、CPU301が実行するプログラムやデータなどが記憶される。これらのCPU301、ROM302、およびRAM303は、バス304により相互に接続されている。
【0180】
CPU301はバス304を介して入出力インタフェース305に接続され、入出力インタフェース305には、各種スイッチ、キーボード、タッチパネル、マウス、マイクロホンなどよりなる入力部306、ディスプレイ、スピーカなどよりなる出力部307が接続されている。
【0181】
なお、モバイル端末20の入力部には、加速度センサ、速度センサ、GPSセンサ、回転速度センサ等、運転挙動の推定に利用する情報を取得する情報取得部が含まれる。
管理サーバ30、あるいはモバイル端末20のCPU301は、端末取得情報に基づいて運転挙動推定を行う。
【0182】
入出力インタフェース305に接続されている記憶部308は、例えばハードディスク等からなり、CPU301が実行するプログラムや各種のデータを記憶する。通信部309は、インターネットやローカルエリアネットワークなどのネットワークを介したデータ通信の送受信部、さらに放送波の送受信部として機能し、外部の装置と通信する。
【0183】
入出力インタフェース305に接続されているドライブ310は、磁気ディスク、光ディスク、光磁気ディスク、あるいはメモリカード等の半導体メモリなどのリムーバブルメディア311を駆動し、データの記録あるいは読み取りを実行する。
【0184】
[7.本開示の構成のまとめ]
以上、特定の実施例を参照しながら、本開示の実施例について詳解してきた。しかしながら、本開示の要旨を逸脱しない範囲で当業者が実施例の修正や代用を成し得ることは自明である。すなわち、例示という形態で本発明を開示してきたのであり、限定的に解釈されるべきではない。本開示の要旨を判断するためには、特許請求の範囲の欄を参酌すべきである。
【0185】
なお、本明細書において開示した技術は、以下のような構成をとることができる。
(1) 車両内のモバイル端末の取得情報である端末取得情報を入力し、前記車両の運転者の運転挙動推定処理を実行するデータ処理部を有し、
前記データ処理部は、
予め生成した学習モデルを適用して、前記端末取得情報に基づいて前記運転者の運転挙動推定値を算出する情報処理装置。
【0186】
(2) 前記学習モデルは、
端末取得情報と、車両の観測情報とを入力して生成される学習モデルであり、様々な端末取得情報を入力として、前記運転挙動推定値とその信頼度である推定信頼度を出力する学習モデルである(1)に記載の情報処理装置。
【0187】
(3) 前記端末取得情報は、
加速度情報、回転速度情報、位置情報の少なくともいずれかの情報を含む(1)または(2)に記載の情報処理装置。
【0188】
(4) 前記データ処理部は、
前記運転挙動推定値と、その信頼度である推定信頼度を適用したスコア算出処理を実行する(1)~(3)いずれかに記載の情報処理装置。
【0189】
(5) 前記データ処理部は、
(1)運転者の運転危険度を示す指標である危険度スコア、
(2)運転挙動推定値の総合的な推定信頼度の指標値である信頼度スコア、
(3)運転者の運転診断結果を示す総合スコア、
上記スコアの少なくともいずれかの算出処理を実行する(4)に記載の情報処理装置。
【0190】
(6) 前記データ処理部は、
前記総合スコアを、前記危険度スコアと前記信頼度スコアとの演算処理によって算出する(5)に記載の情報処理装置。
【0191】
(7) 前記データ処理部は、
車種、またはモバイル端末機種の少なくともいずれかの種別に応じたスコア算出を実行する(5)または(6)に記載の情報処理装置。
【0192】
(8) 前記データ処理部は、
前記スコアに基づいて決定される道路区域情報を地図に重畳した情報を生成して前記モバイル端末に出力する(5)~(7)いずれかに記載の情報処理装置。
【0193】
(9) 前記道路区域情報は、
(1)運転スコア採点対象道路区域情報、
(2)危険運転発生道路区域情報、
(3)報酬ポイント獲得対象道路区域情報、
上記いずれかの道路区域情報である(8)に記載の情報処理装置。
【0194】
(10) 前記データ処理部は、
危険運転発生道路区域が近づいていることを通知する事前通知処理を実行する(9)に記載の情報処理装置。
【0195】
(11) 前記データ処理部は、
危険な運転挙動が実行されたことを通知する事後通知処理を実行する(1)~(9)いずれかに記載の情報処理装置。
【0196】
(12) 前記データ処理部は、
運転挙動推定結果、または運転挙動推定結果に基づくスコア算出結果に対する前記モバイル端末からの修正依頼を受信し、修正処理を実行する(1)~(10)いずれかに記載の情報処理装置。
【0197】
(13) 前記データ処理部は、
前記修正依頼に基づく修正処理を実行した場合、修正依頼を送信したモバイル端末のユーザに対して報酬ポイントを与える(12)に記載の情報処理装置。
【0198】
(14) 管理サーバとモバイル端末を有する情報処理システムであり、
前記モバイル端末は、車両内のモバイル端末であり、
モバイル端末が取得した端末取得情報を前記管理サーバに送信し、
前記管理サーバは、
前記モバイル端末から受信する前記端末取得情報を学習モデルに入力して、前記車両の運転者の運転挙動推定値を出力する情報処理システム。
【0199】
(15) 前記管理サーバは、
前記モバイル端末から受信する前記端末取得情報を学習モデルに入力して、前記運転挙動推定値とその信頼度である推定信頼度を出力する(14)に記載の報処理システム。
【0200】
(16) 前記管理サーバは、
前記運転挙動推定値と、その信頼度である推定信頼度を適用して、
(1)運転者の運転危険度を示す指標である危険度スコア、
(2)運転挙動推定値の総合的な推定信頼度の指標値である信頼度スコア、
(3)運転者の運転診断結果を示す総合スコア、
上記スコアの少なくともいずれかの算出処理を実行する(14)または(15)に記載の情報処理システム。
【0201】
(17) 情報処理装置において実行する情報処理方法であり、
前記情報処理装置は、車両内のモバイル端末の取得情報である端末取得情報を入力し、前記車両の運転者の運転挙動推定処理を実行するデータ処理部を有し、
前記データ処理部が、
予め生成した学習モデルを適用して、前記端末取得情報に基づいて前記運転者の運転挙動推定値を算出する情報処理方法。
【0202】
(18) 管理サーバとモバイル端末を有する情報処理システムにおいて実行する情報処理方法であり、
前記モバイル端末は、車両内のモバイル端末であり、
モバイル端末が取得した端末取得情報を前記管理サーバに送信し、
前記管理サーバが、
前記モバイル端末から受信する前記端末取得情報を学習モデルに入力して、前記車両の運転者の運転挙動推定値を出力する情報処理方法。
【0203】
(19) 情報処理装置において情報処理を実行させるプログラムであり、
前記情報処理装置は、車両内のモバイル端末の取得情報である端末取得情報を入力し、前記車両の運転者の運転挙動推定処理を実行するデータ処理部を有し、
前記プログラムは、前記データ処理部に、
予め生成した学習モデルを適用して、前記端末取得情報に基づいて前記運転者の運転挙動推定値を算出させるプログラム。
【0204】
また、明細書中において説明した一連の処理はハードウェア、またはソフトウェア、あるいは両者の複合構成によって実行することが可能である。ソフトウェアによる処理を実行する場合は、処理シーケンスを記録したプログラムを、専用のハードウェアに組み込まれたコンピュータ内のメモリにインストールして実行させるか、あるいは、各種処理が実行可能な汎用コンピュータにプログラムをインストールして実行させることが可能である。例えば、プログラムは記録媒体に予め記録しておくことができる。記録媒体からコンピュータにインストールする他、LAN(Local Area Network)、インターネットといったネットワークを介してプログラムを受信し、内蔵するハードディスク等の記録媒体にインストールすることができる。
【0205】
なお、明細書に記載された各種の処理は、記載に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されてもよい。また、本明細書においてシステムとは、複数の装置の論理的集合構成であり、各構成の装置が同一筐体内にあるものには限らない。
【産業上の利用可能性】
【0206】
以上、説明したように、本開示の一実施例の構成によれば、車両内のモバイル端末の端末取得情報を学習モデルに入力して運転者の運転挙動を推定し、推定結果に基づくスコア算出や通知処理等を実行する構成が実現される。
具体的には、例えば、車両内のモバイル端末の取得する加速度情報等の端末取得情報を入力し、車両の運転者の運転挙動推定処理を実行する。学習モデルを適用して端末取得情報に基づいて運転者の運転挙動推定値と、その信頼度である推定信頼度を算出する。さらに運転者の運転危険度を示す指標である危険度スコア、運転挙動推定値の総合的な推定信頼度の指標値である信頼度スコア、運転者の運転診断結果を示す総合スコア等の算出処理を実行し、モバイル端末ユーザに対してスコアに基づく通知処理等を実行する。
本構成により、車両内のモバイル端末の端末取得情報を学習モデルに入力して運転者の運転挙動を推定し、推定結果に基づくスコア算出や通知処理等を実行する構成が実現される。
【符号の説明】
【0207】
10 車両
11 運転者(ドライバ)
20 モバイル端末
21 情報取得アプリ
22 運転挙動推定アプリ
30 管理サーバ
41,42 情報提供サーバ
43,44 サービス提供サーバ
50 端末取得情報
60 観測情報
70 学習データ
80 学習処理部
81 学習モデル
90 運転挙動推定部
301 CPU
302 ROM
303 RAM
304 バス
305 入出力インタフェース
306 入力部
307 出力部
308 記憶部
309 通信部
310 ドライブ
311 リムーバブルメディア