IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ パイオニア株式会社の特許一覧

<>
  • 特開-光学装置 図1
  • 特開-光学装置 図2
  • 特開-光学装置 図3
  • 特開-光学装置 図4
  • 特開-光学装置 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024069720
(43)【公開日】2024-05-21
(54)【発明の名称】光学装置
(51)【国際特許分類】
   G01S 7/481 20060101AFI20240514BHJP
   G01S 7/497 20060101ALN20240514BHJP
【FI】
G01S7/481 Z
G01S7/497
【審査請求】有
【請求項の数】1
【出願形態】OL
(21)【出願番号】P 2024058893
(22)【出願日】2024-04-01
(62)【分割の表示】P 2023092444の分割
【原出願日】2016-03-28
(71)【出願人】
【識別番号】000005016
【氏名又は名称】パイオニア株式会社
(74)【代理人】
【識別番号】100107331
【弁理士】
【氏名又は名称】中村 聡延
(72)【発明者】
【氏名】小島 滋
(72)【発明者】
【氏名】野田 知秀
(72)【発明者】
【氏名】滝口 仁史
(72)【発明者】
【氏名】仲村 文彦
(72)【発明者】
【氏名】小林 敏秀
(57)【要約】
【課題】光学素子の角度調整を簡易かつ正確に実行可能な光学装置を提供する。
【解決手段】測距装置100は、回転軸70を中心に回転するプリズム34と、少なくとも一部に球面状の凸球面63が形成された球面台座部43と、球面台座部43の凸球面63上で摺動するように設置される光源支持部44と、光源40及びコリメータレンズ41とを備える。ここで、凸球面63の中心位置Pcは、回転軸70が交わるプリズム34の反射面51上に存在し、光源支持部44は、中心位置Pcを中心として移動する。そして、光源支持部44を球面台座部43の凸球面63上で摺動させた場合であっても、投射光L1の光軸は、回転軸70と交わる反射面51上の点に入射する。
【選択図】図2
【特許請求の範囲】
【請求項1】
光を出射する光源部と、前記光源部を支持する光源支持部と、回転軸を中心に回転し、反射面の少なくとも一部が前記回転軸上となる反射部と、凸球面を有する球面台座部と、
を備え、
前記光源支持部は前記凸球面上に接しており、
前記凸球面の中心が、前記反射面上に存在することを特徴とする光学装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、レーザ光を用いた測距装置の光学素子の角度調整に関する。
【背景技術】
【0002】
従来から、レーザ光を用いた測距装置における光学素子の角度調整方法が開示されている。特許文献1には、基体部と加力部と変形部とが一体に構成された本体部と、基体部に対して加力部側への力を作用させる引き螺子と、基体部に対して押圧力を作用させる押し螺子と、を有し、引き螺子と押し螺子の調整により、基体部と加力部の間の角を調整するように構成されたレーザ測距装置が開示されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2015-203758号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に記載のレーザ測距装置では、微小な角度調整しか行えないといった問題があった。また、反射面を有する回転体を回転させることでレーザ光を走査するレーザ測距装置では、反射面上に存在する回転軸から光軸がずれやすく、角度調整に手間がかかるといった問題があった。
【0005】
本発明の解決しようとする課題としては、上記のものが一例として挙げられる。本発明は、光学素子の角度調整を簡易かつ正確に実行可能な光学装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
請求項1に記載の発明は、光学装置であって、光を出射する光源部と、前記光源部を支持する光源支持部と、回転軸を中心に回転し、反射面の少なくとも一部が前記回転軸上となる反射部と、凸球面を有する球面台座部と、を備え、前記光源支持部は前記凸球面上に接しており、前記凸球面の中心が、前記反射面上に存在する。
【図面の簡単な説明】
【0007】
図1】実施例に係る測距装置の概略構成を示すブロック図である。
図2】実施例に係る測距装置の内部構造を示す。
図3】実施例に係る測距装置の上半分の内部構造を示す。
図4図3の状態から光源支持部を移動させた状態を示す測距装置の内部構造を示す。
図5】光源支持部と球面台座部との締結部分の拡大図である。
【発明を実施するための形態】
【0008】
本発明の好適な実施形態では、光学装置は、回転軸を中心に回転し、反射面の少なくとも一部が前記回転軸上となるように配置された反射部と、少なくとも一部に凸球面を有する球面台座部と、前記球面台座部の前記凸球面上で摺動するように設置される光源支持部と、前記光源支持部に、前記反射部で光が反射するように設置される光源部と、を備え、前記凸球面の中心が前記反射面上に存在することを特徴とする。
【0009】
上記光学装置は、反射部と、球面台座部と、光源支持部と、光源部とを備える。反射部は、回転軸を中心に回転し、反射面の少なくとも一部が回転軸上となるように配置される。即ち、反射面は、回転軸と交わる交点を有する。球面台座部は、少なくとも一部に凸球面を有する。ここで、「凸球面」は、設置面に対して凸となる所定半径の曲面であって、光路上の一部などが欠けていてもよい。光源支持部は、球面台座部の凸球面上で摺動するように設置される。光源部は、光源支持部に、反射部で光が反射するように設置される。そして、凸球面の中心は、反射面上に存在する。ここで、「凸球面の中心」とは、凸球面を球面として含む球の中心を指す。また、「反射面上」とは、厳密に反射面に重なる位置に限らず、製造工程において生じ得る許容可能な誤差の範囲内で反射面から離れた位置も含む。この態様では、回転軸と交わる反射面上に球面台座部の凸球面の中心が存在することから、光の出射方向等の調整のために光源支持部を球面台座部の凸球面上で摺動させた場合であっても、反射面での光の照射位置が変化しにくい。よって、この態様では、製品性能低下を生じさせることなく、光の出射角度の調整等の光学的な調整を容易に実行することができる。
【0010】
上記光学装置の一態様では、前記光の光軸は、前記凸球面の中心を通り、前記凸球面の中心は、前記回転軸と前記反射面との交点に存在する。ここで、「凸球面の中心は、前記回転軸と前記反射面との交点に存在する」とは、凸球面の中心と上述の交点とが厳密に重なる態様に限定されず、製造工程において生じ得る許容可能な誤差の範囲内でこれらが離れていてもよい。この態様では、光源支持部を球面台座部の凸球面上で摺動させた場合であっても、光の光軸は、回転軸と交わる反射面上の点に入射する。よって、この態様によれば、光源支持部を球面台座部の凸球面上で摺動させた場合であっても、反射面での光の光軸の反射点が回転軸上に存在するため、好適に光学的な調整を実行することができる。
【0011】
上記光学装置の他の一態様では、前記光源支持部は、前記凸球面に接する凹面を少なくとも一部に有する。言い換えると、光源支持部の表面のうち、少なくとも凸球面に接する部分に凹面が形成されている。この態様により、光源支持部は、凹面部分により凸球面を滑らかに摺動することが可能となり、球面台座部に対する光源支持部の位置調整を好適に実行することができる。
【0012】
上記光学装置の好適な例では、前記光源部は、光源とコリメータレンズを含む。
【0013】
上記光学装置の他の一態様では、前記球面台座部は、前記光源部が出射する光が通過する光路孔を有し、前記光源部は、前記光路孔に挿入して設置される。この態様により、光源部の出射光を好適に反射部に到達させることができる。
【0014】
上記光学装置の他の一態様では、前記光学装置は、光を用いた測距装置で用いられる。光を用いたライダなどの測距装置では、反射部を回転させて水平面上に光を走査するため、上記の光学装置が好適に適用される。
【実施例0015】
以下、図面を参照して本発明の好適な実施例について説明する。
【0016】
[装置構成]
(概略構成)
図1は、本発明の光学装置が適用された測距装置の概略構成を示す。測距装置100は、測定対象物5に対して赤外線(例えば、波長905nm)の投射光L1を投射し、その反射光L2を受光して測定対象物5までの距離を測定する。図示のように、測距装置100は、モータ14と、受光部16と、制御部18と、回転体30と、光源40とを備える。回転体30は、集光レンズ33と、プリズム34とを備える。
【0017】
光源40は、赤外線の投射光L1をプリズム34へ向けて出射する。プリズム34は、投射光L1を反射し、測距装置100の外部へ出射する。プリズム34は回転体30に設けられており、回転しながら投射光L1を外部へ出射する。これにより、測距装置100の全方位(周囲360度)にある測定対象物5の距離を測定することができる。光源40及びプリズム34は、本発明における「光源部」の一例である。
【0018】
集光レンズ33は、測定対象物5により反射された反射光L2を受光し、プリズム34へ送る。プリズム34は、反射光L2を受光部16の方向へ反射する。受光部16は、例えばアバランシェフォトダイオード(Avalanche PhotoDiode)であり、受光した反射光L2の光量に対応する検出信号を生成して制御部18へ送る。
【0019】
制御部18は、光源40からの投射光L1の出射を制御するとともに、受光部16から供給された検出信号を処理して測定対象物5までの距離を算出する。また、制御部18は、モータ14を制御して回転体30を回転させる。
【0020】
(測距装置の内部構造)
図2は、測距装置100の内部構造を示す断面図である。測距装置100の筐体10は略円筒状であり、大別して底部10aと、カバー10bと、上部10cとにより構成される。測距装置100は、筐体10の内部で回転体30が回転することにより、投射光L1を全方位へ出射するとともに、その反射光L2を受光する。カバー10bは、光源40から出射される赤外線を透過する材料で製作される。
【0021】
底部10a内には、支柱部13とモータ14が設けられている。支柱部13は、回転体30の回転軸70上に位置し、底部10aに固定されている。一方、回転体30は、一体化された底部30aと上部30bを備え、支柱部13を回転軸として回転する。具体的には、回転体の30の底部30aは、複数のベアリング15を介して支柱部13の回りに回転可能に設けられており、モータ14により駆動されて回転する。なお、測距装置100の構成要素のうち、回転体30以外は全て筐体10に対して固定されている。
【0022】
支柱部13には、受光部16と受光部基板22とが配置されている。また、受光部16の上方には、光学部材により構成されるバンドパスフィルタ17が設けられている。バンドパスフィルタ17は、光源40から出射される赤外線の波長(本例では、約905nm)以外の光を除外する波長選択機能を有する。
【0023】
モータ14はモータ基板21に電気的に接続されている。また、モータ基板21の下方には制御部(制御基板)18が設けられている。制御基板18とモータ基板21とは配線24により接続されている。また、制御基板18と受光部基板22とは配線23により接続されている。
【0024】
回転体30の上部30bの上面には、回転軸70上にプリズム34が設けられている。プリズム34は、投射光L1と反射光L2を精度良く反射する。プリズム34は本発明における「反射部」の一例である。また、回転体30の上部30bの側面には、その周方向の一か所に集光レンズ33が設けられている。集光レンズ33の位置は、測定対象物5からの反射光L2が到来する方向、即ち、プリズム34の投射光L1を反射する反射面51及び反射光L2を反射する反射面52が向けられた方向と一致している。
【0025】
筐体10の上部10cには、光源40と、コリメータレンズ41と、光源基板42と、球面台座部43と、光源支持部44と、が設けられている。光源40は、赤外線の投射光L1を出射する。コリメータレンズ41は、光源40からの投射光L1を平行光に変換し、カバー10bの上部に形成された開口11xを通してプリズム34へ導く。なお、光源40は光源基板42と接続されており、光源基板42は配線25により制御基板18と接続されている。
【0026】
球面台座部43は、カバー10bの上部に載置され、光源40及びコリメータレンズ41を支持する光源支持部44を保持する。球面台座部43の中心には、開口11xと連通する円筒状の光路孔47が形成される。また、球面台座部43には、光路孔47の壁面及び光源支持部44と対向する凸球面63を形成する隆起部48が形成されている。凸球面63は、中心がプリズム34の反射面51上に存在し、測距装置100の上方に凸の球面形状を有する。凸球面63の一部は光源支持部44と接触し、光源支持部44を支持する。
【0027】
光源支持部44は、光源40及びコリメータレンズ41を支持する。具体的には、光源支持部44の中心部分に光源40が嵌め込まれると共に、光源40の出射方向に延出するアーム部45により、コリメータレンズ41が挟持されている。そして、光源支持部44は、延出するアーム部45が光路孔47内に挿入されるように、球面台座部43上に載置される。光源支持部44の縁部分は、アーム部45の延出方向と同方向に隆起しており、すり鉢状の凹面64が形成される。凹面64は、光源支持部44が球面台座部43に載置された状態で凸球面63に対して摺動自在に接触する。
【0028】
[角度調整機構]
次に、球面台座部43及び光源支持部44が有する投射光L1の出射角度の調整機構について説明する。概略的には、球面台座部43は、光源支持部44が載置された状態で、プリズム34の反射面51と回転軸70との交点に、凸球面63により特定される球の中心位置が重なるように形成される。これにより、投射光L1の出射角度の調整のために光源支持部44の位置合わせを行う場合であっても、反射面51での投射光L1の反射位置が変動するのを好適に防ぐ。
【0029】
図3は、測距装置100の上半分の内部構造を拡大した図である。図3では、凸球面63により特定される球55の中心位置「Pc」を図示している。
【0030】
図3に示すように、中心位置Pcは、回転軸70上であって、かつ、反射面51上に存在する。また、光源40及びコリメータレンズ41は、光源支持部44が球面台座部43に載置された状態で、投射光L1の光軸が球55の中心位置を通過するように位置調整が行われている。よって、光源40及びコリメータレンズ41から出射された投射光L1の光軸は、中心位置Pcと重なる反射面51上の点を反射点として反射して測距装置100の外部に出射される。
【0031】
ここで、測距装置100の組立時には、まず、カバー10bの上面に球面台座部43が固定された後、位置調整が行われた光源40及びコリメータレンズ41を保持する光源支持部44が球面台座部43上に載置される。その後、投射光L1の光軸がプリズム34から水平方向に測距装置100外に出射されるように、球面台座部43上での光源支持部44の位置調整が行われる。この光源支持部44の位置調整では、球面台座部43の凸球面63上で光源支持部44の凹面64を摺動させることで、光源40及びコリメータレンズ41を保持する光源支持部44の傾きを調整する。これにより、プリズム34で反射された投射光L1の光軸の出射角度(即ち仰俯角)の調整を行う。そして、図3に示す構成によれば、光源支持部44の位置調整において、投射光L1の光軸の反射面51上での反射点が変位しない。これについて、図4を参照してさらに詳しく説明する。
【0032】
図4(A)は、図3の状態から光源支持部44を所定角度だけ反時計回りに摺動させた場合の測距装置100を示す。図4(B)は、図3の状態から光源支持部44を所定角度だけ時計周りに摺動させた場合の測距装置100を示す。なお、図4(A)、(B)において、破線L1cは、投射光L1の光軸を示す。
【0033】
図4(A)及び図4(B)のいずれの場合においても、光源支持部44は、中心位置Pcの球面形状を有する凸球面63上で摺動するため、光源40及びコリメータレンズ41から出射される投射光L1の光軸L1cは、光源支持部44を摺動させる前の状態と同様、中心位置Pcと重なる反射面51上の点を反射点として反射している。このように、光源支持部44は、中心位置Pcの球面形状を有する凸球面63上で摺動するため、光軸L1cの反射面51上での反射点は、光源支持部44の移動の前後で変化せず、常に回転軸70上に存在する。
【0034】
一方、光源支持部44を所定角度だけ摺動させた場合、反射面51に対する光源40及びコリメータレンズ41の相対位置が変化することから、反射面51での反射後の投射光L1の出射角度(即ち仰俯角)は、光源支持部44を回転させた方向及び角度に応じて変化する。具体的には、図3の状態から光源支持部44を所定角度だけ反時計回りに回転させた図4(A)の例では、反射面51での反射後の投射光L1の出射角度は、上述の所定角度に応じた角度だけ上方向に変化し、図3の状態から光源支持部44を所定角度だけ時計回りに回転させた図4(B)の例では、反射面51での反射後の投射光L1の出射角度は、上述の所定角度に応じた角度だけ下方向に変化する。
【0035】
このように、投射光L1の出射角度の調整時に光源支持部44の位置調整を行う場合であっても、投射光L1の光軸の反射点は、回転軸70上の中心位置Pcから変化しない。これにより、測距装置100の組み立てを容易かつ高精度に実行することができる。一方、仮に球面台座部43が下に凸の球面を有し、当該球面上を光源支持部44が摺動する構造の場合、光源支持部44の移動中心が反射面51と離れた光源40の上方に位置することになるため、光源支持部44を移動させたときに反射面51上での投射光L1の光軸の反射点が大きく変位し、結果として反射点が回転軸70からずれやすくなり、製品の性能低下要因となる。以上を勘案し、本実施例に係る測距装置100の球面台座部43は、プリズム34と反対側に凸の凸球面63を有し、光源支持部44の移動中心が反射面51上となるように設計されている。これにより、投射光L1の出射角度の調整時での投射光L1の光軸の反射点が回転軸70からずれるのを防ぎ、製品の性能低下を好適に抑制することができる。
【0036】
球面台座部43に対する光源支持部44の位置調整が完了した後では、ねじ止めや接着剤等の固定手段により光源支持部44が球面台座部43に対して固定される。ねじ止めでの固定を行う際には、球面台座部43の水平面と光源支持部44の水平面とがなす角度は、図4で説明した投射光L1の出射角度の調整によって変化するため、ねじ止めの角度も調整に伴って変化する。以上を勘案し、測距装置100は、球面台座部43の水平面と光源支持部44の水平面とがなす角度が所定範囲の角度をとり得る構造であっても、上述の所定範囲内の任意の角度において球面台座部43に対して光源支持部44を固定可能なねじ止め機構を備える。
【0037】
図5は、球面台座部43と光源支持部44とのねじ止め部分の拡大図である。図5の例では、球面台座部43及び光源支持部44には、ねじ穴68、69が設けられており、ワッシャー71、72が取り付けられたボルト70がナット73により締め付けられて球面台座部43及び光源支持部44を締結している。
【0038】
この例では、ワッシャー71は、光源支持部44と対向する面が曲面形状を有し、ワッシャー72は、球面台座部43と対向する面が曲面形状を有する。そして、球面台座部43のねじ穴68には、ワッシャー72の曲面と当接するすり鉢型の斜面が形成され、光源支持部44のねじ穴69には、ワッシャー71の曲面と当接するすり鉢型の斜面が形成される。また、ねじ穴68、69の円筒部分は、ボルト70が傾いた状態でもボルト70の円筒部がねじ穴68、69を挿通可能なように、ボルト70の円筒部よりも大きい幅を有する。
【0039】
図5の構成によれば、ボルト70が球面台座部43及び光源支持部44の少なくとも一方に対して傾いた状態でナット73により締め付けられた場合であっても、ワッシャー71、72とねじ穴69、68のすり鉢型の斜面とが一ヶ所に偏ることなくボルト70の周りに沿って接触する。よって、この構成により、球面台座部43の水平面と光源支持部44の水平面とがなす角度によらず、好適に球面台座部43と光源支持部44とをボルト70により締結させることができる。なお、図5の例において、ナット73とねじ穴68との間に曲面形状のワッシャー72を設ける代わりに、ワッシャー72と同様の形状(ねじ穴68の方向に凸の曲面)を有するナットを用いてもよい。この場合には、ワッシャー72を用いる必要がない。
【0040】
以上説明したように、本実施例に係る測距装置100は、回転軸70を中心に回転するプリズム34と、少なくとも一部に凸球面の凸球面63が形成された球面台座部43と、球面台座部43の凸球面63上で摺動するように設置される光源支持部44と、光源40及びコリメータレンズ41とを備える。ここで、凸球面63の中心位置Pcは、回転軸70が交わるプリズム34の反射面51上に存在し、光源支持部44は、中心位置Pcを中心として移動する。そして、光源支持部44を球面台座部43の凸球面63上で摺動させた場合であっても、投射光L1の光軸は、回転軸70と交わる反射面51上の点に入射する。よって、この態様によれば、投射光L1の出射角度の調整に起因した製品の性能低下を好適に抑制することができる。
【符号の説明】
【0041】
10 筐体
13 支柱部
16 受光部
18 制御部
30 回転体
33 集光レンズ
34 プリズム
40 光源部
41 コリメータレンズ
43 球面台座部
44 光源支持部
100 測距装置
図1
図2
図3
図4
図5