IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東洋ゴム工業株式会社の特許一覧

特開2024-69897センサ故障判定装置およびセンサ故障判定方法
<>
  • 特開-センサ故障判定装置およびセンサ故障判定方法 図1
  • 特開-センサ故障判定装置およびセンサ故障判定方法 図2
  • 特開-センサ故障判定装置およびセンサ故障判定方法 図3
  • 特開-センサ故障判定装置およびセンサ故障判定方法 図4
  • 特開-センサ故障判定装置およびセンサ故障判定方法 図5
  • 特開-センサ故障判定装置およびセンサ故障判定方法 図6
  • 特開-センサ故障判定装置およびセンサ故障判定方法 図7
  • 特開-センサ故障判定装置およびセンサ故障判定方法 図8
  • 特開-センサ故障判定装置およびセンサ故障判定方法 図9
  • 特開-センサ故障判定装置およびセンサ故障判定方法 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024069897
(43)【公開日】2024-05-22
(54)【発明の名称】センサ故障判定装置およびセンサ故障判定方法
(51)【国際特許分類】
   B60C 19/00 20060101AFI20240515BHJP
【FI】
B60C19/00 Z
B60C19/00 B
【審査請求】未請求
【請求項の数】5
【出願形態】OL
(21)【出願番号】P 2022180179
(22)【出願日】2022-11-10
(71)【出願人】
【識別番号】000003148
【氏名又は名称】TOYO TIRE株式会社
(74)【代理人】
【識別番号】100105924
【弁理士】
【氏名又は名称】森下 賢樹
(72)【発明者】
【氏名】長谷川 寛篤
【テーマコード(参考)】
3D131
【Fターム(参考)】
3D131LA02
3D131LA06
3D131LA20
3D131LA31
(57)【要約】
【課題】タイヤに設けられたセンサの故障を判定することができるセンサ故障判定装置およびセンサ故障判定方法を提供する。
【解決手段】センサ故障判定装置40は、データ取得部41、演算処理部42および判定部43を備える。データ取得部41は、タイヤ10に取り付けられたセンサ20によって計測される物理量のデータを取得する。演算処理部42は、データ取得部41で取得したデータに対して畳み込み演算を用いて特徴量データを生成する符号化部、および特徴量データに対して逆演算を用いてデータを再生する復号化部を有する。判定部43は、データ取得部41により取得したデータ、および演算処理部42により再生したデータに基づいて、センサ20が故障しているか否かを判定する。
【選択図】図4
【特許請求の範囲】
【請求項1】
タイヤに取り付けられたセンサによって計測される物理量のデータを取得するデータ取得部と、
前記データ取得部で取得したデータに対して畳み込み演算を用いて特徴量データを生成する符号化部、および前記特徴量データに対して逆演算を用いてデータを再生する復号化部を有する演算処理部と、
前記データ取得部により取得したデータ、および前記演算処理部により再生したデータに基づいて、前記センサが故障しているか否かを判定する判定部と、
を備えることを特徴とするセンサ故障判定装置。
【請求項2】
前記演算処理部は、前記データ取得部で取得したデータを正規化する前処理部を備えることを特徴とする請求項1に記載のセンサ故障判定装置。
【請求項3】
前記センサは、タイヤにおける3軸方向のうち少なくとも2軸方向の物理量を計測しており、
前記判定部は、軸方向ごとに判定することを特徴とする請求項1または2に記載のセンサ故障判定装置。
【請求項4】
前記センサは、タイヤにおける3軸方向のうち少なくとも2軸方向の物理量を計測しており、
前記判定部は、各軸方向のデータに対して総合的に判定することを特徴とする請求項1または2に記載のセンサ故障判定装置。
【請求項5】
タイヤに取り付けられたセンサによって計測される物理量のデータを取得するデータ取得ステップと、
前記データ取得ステップで取得したデータに対して畳み込み演算を用いて特徴量データを生成する符号化処理、および前記特徴量データに対して逆演算を用いてデータを再生する復号化処理を行う演算処理ステップと、
前記データ取得ステップにより取得したデータ、および前記演算処理ステップにより再生したデータに基づいて、前記センサが故障しているか否かを判定する判定ステップと、
を備えることを特徴とするセンサ故障判定方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、センサ故障判定装置およびセンサ故障判定方法に関する。
【背景技術】
【0002】
昨今、タイヤおよび車両等において計測される情報を学習型の演算モデルに入力し、タイヤ力等のタイヤ物理情報を推定するシステムの研究が行われている。
【0003】
特許文献1には従来のタイヤ物理情報推定システムが記載されている。タイヤ物理情報推定システムは、物理情報推定部およびデータ取得部を備える。物理情報推定部は、タイヤの運動によって生じるタイヤに関する物理情報を推定すべく入力層から出力層に至る学習型の演算モデルを有する。データ取得部は、入力層への入力データを取得する。演算モデルは、入力層から出力層へ向けての途中演算において畳み込み演算を実行して特徴量を抽出する特徴抽出部を有する。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2021-46080号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1に記載のタイヤ物理情報推定システムでは、タイヤに設けられたセンサによって計測された物理量に基づいてタイヤ物理情報が推定される。本発明者は、センサが故障した場合、タイヤ物理情報推定システムが誤ったタイヤ物理情報を推定し続けることになるため、センサが故障しているか否かを判定する必要があると考えた。
【0006】
本発明は、斯かる事情に鑑みてなされたものであり、その目的とするところは、タイヤに設けられたセンサの故障を判定することができるセンサ故障判定装置およびセンサ故障判定方法を提供することにある。
【課題を解決するための手段】
【0007】
本発明のある態様はセンサ故障判定装置である。センサ故障判定装置は、タイヤに取り付けられたセンサによって計測される物理量のデータを取得するデータ取得部と、前記データ取得部で取得したデータに対して畳み込み演算を用いて特徴量データを生成する符号化部、および前記特徴量データに対して逆演算を用いてデータを再生する復号化部を有する演算処理部と、前記データ取得部により取得したデータ、および前記演算処理部により再生したデータに基づいて、前記センサが故障しているか否かを判定する判定部と、を備える。
【0008】
本発明の別の態様はセンサ故障判定方法である。センサ故障判定方法は、タイヤに取り付けられたセンサによって計測される物理量のデータを取得するデータ取得ステップと、前記データ取得ステップで取得したデータに対して畳み込み演算を用いて特徴量データを生成する符号化処理、および前記特徴量データに対して逆演算を用いてデータを再生する復号化処理を行う演算処理ステップと、前記データ取得ステップにより取得したデータ、および前記演算処理ステップにより再生したデータに基づいて、前記センサが故障しているか否かを判定する判定ステップと、を備える
【発明の効果】
【0009】
本発明によれば、タイヤに設けられたセンサの故障を判定することができる。
【図面の簡単な説明】
【0010】
図1】実施形態に係るセンサ故障判定装置を含むタイヤ物理情報推定システムの概要を説明するための模式図である。
図2】タイヤ物理情報推定装置の機能構成を示すブロック図である。
図3】演算モデルの構成を示す模式図である。
図4】センサ故障判定装置の機能構成を示すブロック図である。
図5】演算モデルの構成を示す模式図である。
図6】センサ故障判定装置によるセンサ故障の判定処理の手順を示すフローチャートである。
図7】正常動作時のセンサで計測された加速度の入力データを表すグラフである。
図8図7の入力データに対して演算モデルが算出した再生データを表すグラフである。
図9】故障したセンサ20で計測された加速度の入力データを表すグラフである。
図10図9の入力データに対して演算モデルが算出した再生データを表すグラフである。
【発明を実施するための形態】
【0011】
以下、本発明を好適な実施の形態をもとに図1から図10を参照しながら説明する。各図面に示される同一または同等の構成要素、部材には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図面における部材の寸法は、理解を容易にするために適宜拡大、縮小して示される。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。
【0012】
(実施形態)
図1は、実施形態に係るセンサ故障判定装置40を含むタイヤ物理情報推定システム100の概要を説明するための模式図である。タイヤ物理情報推定システム100は、タイヤ10に配設されたセンサ20、タイヤ物理情報推定装置30およびセンサ故障判定装置40を備える。また、タイヤ物理情報推定システム100は、タイヤ物理情報推定装置30で推定したタイヤ力Fやタイヤ10に働く3軸まわりのモーメント等のタイヤ物理情報を、通信ネットワーク91を介して取得して蓄積し、タイヤ物理情報を監視するためのサーバ装置80などを含んでもよい。
【0013】
センサ20は、タイヤ10における加速度および歪、タイヤ空気圧、並びにタイヤ温度などタイヤ10の物理量を計測しており、計測したデータをタイヤ物理情報推定装置30およびセンサ故障判定装置40へ出力する。
【0014】
タイヤ物理情報推定装置30は、センサ20で計測されたデータに基づいてタイヤ物理情報を推定する。タイヤ物理情報推定装置30は、タイヤ物理情報を推定する演算においてセンサ20で計測されるデータを用いるが、車両加速度等の車両側からの情報を車両制御装置90等から取得し、タイヤ物理情報を推定する演算に用いてもよい。
【0015】
タイヤ物理情報推定装置30は、推定したタイヤ力F、およびタイヤ10に働く3軸まわりのモーメント等のタイヤ物理情報を例えば車両制御装置90へ出力する。車両制御装置90は、タイヤ物理情報推定装置30から入力されたタイヤ物理情報を、例えば制動距離の推定、車両制御への適用、更には車両の安全走行に関する情報の運転者への報知などに用いる。また車両制御装置90は、地図情報や気象情報などを用いて、将来における車両の安全走行に関する情報を提供することもできる。また、タイヤ物理情報推定システム100は、車両制御装置90が車両を自動運転する機能を有する場合には、自動運転における車速制御等に用いるデータとして、推定したタイヤ物理情報を車両制御装置90へ提供する。
【0016】
センサ故障判定装置40は、センサ20で計測されたデータに基づいてセンサ20が故障しているか否かを判定し、判定結果をタイヤ物理情報推定装置30およびサーバ装置80等へ通知する。センサ故障判定装置40は、センサ20で計測されたデータに対して、畳み込み演算を用いた符号化および復号化を行う演算モデルによってセンサ20が故障しているか否かを判定している。
【0017】
図2は、タイヤ物理情報推定装置30の機能構成を示すブロック図である。センサ20は、加速度センサ21、歪ゲージ22、圧力ゲージ23および温度センサ24等を有し、タイヤ10における物理量を計測する。これらのセンサは、タイヤ10の物理量として、タイヤ10の変形や動きに関わる物理量を計測している。
【0018】
加速度センサ21および歪ゲージ22は、タイヤ10とともに機械的に運動しつつ、それぞれタイヤ10に生じる加速度および歪量を計測する。加速度センサ21は、例えばタイヤ10のトレッド、サイド、ビードおよびホイール等に配設されており、タイヤ10の周方向、軸方向および径方向の3軸における加速度を計測する。
【0019】
歪ゲージ22は、タイヤ10のトレッド、サイドおよびビード等に配設されており、配設箇所での歪を計測する。また、圧力ゲージ23および温度センサ24は、例えばタイヤ10のエアバルブに配設されており、それぞれタイヤ空気圧およびタイヤ温度を計測する。温度センサ24は、タイヤ10の温度を正確に計測するために、タイヤ10に直接、配設されていてもよい。タイヤ10は、各タイヤを識別するために、例えば固有の識別情報が付与されたRFID11等が取り付けられていてもよい。
【0020】
タイヤ物理情報推定装置30は、データ取得部31、物理情報推定部32および通信部33を有する。タイヤ物理情報推定装置30は、例えばPC(パーソナルコンピュータ)等の情報処理装置である。タイヤ物理情報推定装置30における各部は、ハードウェア的には、コンピュータのCPUをはじめとする電子素子や機械部品などで実現でき、ソフトウェア的にはコンピュータプログラムなどによって実現されるが、ここでは、それらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックはハードウェア、ソフトウェアの組合せによっていろいろな形態で実現できることは、当業者には理解されるところである。
【0021】
データ取得部31は、無線通信等によりセンサ20で計測された加速度、歪、空気圧および温度の情報を取得する。通信部33は、車両制御装置90およびサーバ装置80等の外部装置との間で有線または無線通信等によって通信する。通信部33は、センサ20で計測されたタイヤ10の物理量、およびタイヤ10について推定したタイヤ物理情報等を通信回線、例えばCAN(コントロールエリアネットワーク)、インターネット等を介して外部装置へ送信する。
【0022】
物理情報推定部32は、演算モデル32aを有し、データ取得部31からの情報を演算モデル32aに入力し、タイヤ力Fおよびタイヤ10に働く3軸まわりのモーメント等のタイヤ物理情報を推定する。図2に示すように、タイヤ力Fは、タイヤ10の前後方向の前後力Fx、横方向の横力Fy、および鉛直方向の荷重Fzの3軸方向成分を有する。物理情報推定部32は、これら3軸方向成分のすべてを算出してもよいし、少なくともいずれか1成分の算出または任意の組合せによる2成分の算出を行うようにしてもよい。
【0023】
演算モデル32aは、ニューラルネットワーク等の学習型モデルを用いる。図3は、演算モデル32aの構成を示す模式図である。演算モデル32aは、CNN(Convolutional Neural Network)型であり、その原型であるいわゆるLeNetで使用された畳み込み演算およびプーリング演算を備える学習型モデルである。図3では演算モデル32aへの入力データとして3軸方向の加速度データを用い、3軸方向のタイヤ力を出力する例を示している。
【0024】
演算モデル32aは、入力層50、特徴抽出部51、中間層52、全結合部53および出力層54を備える。入力層50には、データ取得部31で取得した3軸方向の加速度の時系列データが入力される。加速度データはセンサ20において時系列的に計測されており、一定の時間区間のデータを窓関数によって切り出して入力データとする。
【0025】
タイヤ10で計測される加速度はタイヤ10の1回転ごとに周期性がある。窓関数によって切り出す入力データの時間区間は、例えばタイヤ10の回転周期に相当する時間とし、入力データ自体に周期性を持たせるとよい。尚、窓関数は、タイヤ10の1回転分よりも短い時間区間または長い時間区間における入力データを切り出すようにしてもよく、少なくとも切り出した入力データに周期的な情報が含まれていれば演算モデル32aの学習が可能である。
【0026】
特徴抽出部51は、畳み込み演算およびプーリング演算等を用いて特徴量を抽出し、中間層52の各ノードへ伝達する。特徴抽出部51は、入力されたデータについて複数のフィルタを用いて畳み込み演算を実行する。畳み込み演算は、加速度データなどの時系列の入力データに対してフィルタを移動させながら、畳み込み演算を実行する。プーリング演算は、畳み込み演算後のデータに対して、例えば時系列的に並んだ2つの値のうち大きい値を選択する最大値プーリング演算を実行する。特徴抽出部51は、畳み込み演算およびプーリング演算等を繰り返し、特徴量を抽出する。
【0027】
全結合部53は、中間層52の各ノードからのデータを1または複数の階層で全結合し、タイヤ力Fx、FyおよびFzを出力層54の各ノードへ出力する。全結合部53は、重みづけを用いた線形演算等を実行する全結合のパスによる演算を実行するが、線形演算に加えて、活性化関数などを用いて非線形演算を実行するようにしてもよい。
【0028】
出力層54の各ノードには、3軸方向のタイヤ力のほか、タイヤ10に働く3軸まわりのモーメント等のタイヤ物理情報を出力してもよい。出力層54は、3軸方向のタイヤ力、およびタイヤ10に働く3軸まわりのモーメント等のタイヤ物理情報のうち、1種類または任意の組み合わせによる複数の種類のタイヤ物理情報を出力するようにしてもよい。
【0029】
演算モデル32aは、実際の車両にその車両に応じた仕様のタイヤ10を装着し、該車両を試験走行させて演算モデル32aの学習を実行することができる。タイヤ10の仕様には、例えばタイヤサイズ、タイヤ幅、扁平率、タイヤ強度、タイヤ外径、ロードインデックス、製造年月日など、タイヤの性能に関する情報が含まれる。
【0030】
サーバ装置80は、タイヤ物理情報推定装置30から、センサ20で計測されたタイヤ10の物理量、並びにタイヤ10について推定したタイヤ力Fおよびタイヤ10に働く3軸まわりのモーメント等のタイヤ物理情報を取得する。サーバ装置80は、複数の車両から、タイヤ10で計測された物理量、およびタイヤ物理情報推定装置30で推定されたタイヤ物理情報等を蓄積するようにしてもよい。
【0031】
図4は、センサ故障判定装置40の機能構成を示すブロック図である。上述のように、センサ20は、加速度センサ21、歪ゲージ22、圧力ゲージ23および温度センサ24等を有し、タイヤ10における物理量を計測する。
【0032】
センサ故障判定装置40は、データ取得部41、演算処理部42、判定部43および通信部44を有する。センサ故障判定装置40は、例えばPC(パーソナルコンピュータ)等の情報処理装置である。センサ故障判定装置40における各部は、ハードウェア的には、コンピュータのCPUをはじめとする電子素子や機械部品などで実現でき、ソフトウェア的にはコンピュータプログラムなどによって実現されるが、ここでは、それらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックはハードウェア、ソフトウェアの組合せによっていろいろな形態で実現できることは、当業者には理解されるところである。
【0033】
データ取得部41は、無線通信等によりセンサ20で計測された加速度、歪、空気圧および温度のデータを取得し、演算処理部42の前処理部42aへ出力する。通信部44は、タイヤ物理情報推定装置30およびサーバ装置80等の外部装置との間で有線または無線通信等によって通信する。通信部44は、センサ20が故障しているか否かの判定結果を外部装置へ送信する。
【0034】
演算処理部42は、前処理部42aおよび演算モデル42bを有する。前処理部42aは、データ取得部41から入力されたデータに対して正規化を行い、演算モデル42bへ出力する。前処理部42aにおける正規化について、入力されるデータが3軸方向の加速度データTx、TyおよびTzである場合を例に説明する。尚、加速度データTx、TyおよびTzは、それぞれタイヤ10の周方向、軸方向(車軸方向)および径方向の加速度である。
【0035】
例えば、車両走行時に発生する加速度データTxが-0.2G以上、0.2G以下である場合、前処理部42aは、加速度データTxを一定値0.2で除算し、正規化された加速度データTxnを出力する。車両走行時に発生する加速度データTyが-0.1G以上、0.1G以下である場合、前処理部42aは、加速度データTyを一定値0.1で除算し、正規化された加速度データTynを出力する。
【0036】
また車両走行時に発生する加速度データTzが、-0.8G以上、1G以下である場合、前処理部42aは、加速度データTzを中央値0.1で減算し、一定値0.9で除算し、正規化された加速度データTznを出力する。これらの処理により、前処理部42aは、正規化された加速度データTxn、TynおよびTznを、-1以上、1以下の範囲の値として出力する。
【0037】
3軸方向の加速度および歪等のタイヤ10で計測される物理量に関する正規化は、上述の例に限られず、タイヤ10で計測される物理量の性質、取り得る値の範囲などに応じて、適宜設定することができる。
【0038】
前処理部42aは、例えば3軸のうち1軸分の加速度データのみが演算モデル42bの入力データとする場合には、正規化処理を行わなくてもよい。前処理部42aは、タイヤ10において、タイヤ10の3軸方向のうち少なくとも2軸方向における物理量が計測され、演算モデル42bに入力される場合に正規化処理を行う。
【0039】
演算モデル42bは、畳み込み演算等を用いたオートエンコーダ型の学習型モデルを用いる。図5は、演算モデル42bの構成を示す模式図である。演算モデル42bは、例えば3軸方向の正規化された加速度データが入力され、畳み込み演算を用いて特徴量データを生成し、逆演算によって入力データを復元している。
【0040】
演算モデル42bは、入力層60、符号化部61、復号化部62および出力層63を備える。入力層60には、前処理部42aから出力された3軸方向の正規化された加速度の時系列データが入力される。加速度データはセンサ20において時系列的に計測されており、一定の時間区間のデータを窓関数によって切り出して入力データとする。
【0041】
タイヤ10で計測される加速度はタイヤ10の1回転ごとに周期性がある。窓関数によって切り出す入力データの時間区間は、例えばタイヤ10の回転周期に相当する時間とし、入力データ自体に周期性を持たせるとよい。尚、窓関数は、タイヤ10の1回転分よりも短い時間区間または長い時間区間における入力データを切り出すようにしてもよく、少なくとも切り出した入力データに周期的な情報が含まれていればよい。
【0042】
符号化部61は、畳み込み演算およびプーリング演算等を用いて特徴量データを生成する。符号化部61は、入力されたデータについて複数のフィルタを用いて畳み込み演算を実行する。畳み込み演算は、加速度データなどの時系列の入力データに対してフィルタを移動させながら、畳み込み演算を実行する。プーリング演算は、畳み込み演算後のデータに対して、例えば時系列的に並んだ2つの値のうち大きい値を選択する最大値プーリング演算を実行する。符号化部61は、畳み込み演算およびプーリング演算等を繰り返し、特徴量データを生成する。
【0043】
復号化部62は、符号化部61によって生成された特徴量データに対して、符号化部61の逆演算を用いてデータを再生し、出力層63へ出力する。復号化部62で実行する逆演算は、転置畳み込み演算(Transpose Convolution)や逆畳み込み演算(Deconvolution)などと呼ばれている。
【0044】
符号化部61において入力データがダウンサンプリングされて特徴量データが生成されるのに対して、復号化部62では、特徴量データをアップサンプリングして入力データを再生する逆の操作を実行する。復号化部62は、転置畳み込み演算と等価な演算として、上昇畳み込み演算(Up Convolution)による手法を用いてもよい。
【0045】
演算モデル42bは、入力層60に入力されたデータと、出力層63から出力されるデータが近似するように学習させることによって、いわゆる教師なし学習が可能である。演算モデル42bは、加速度センサ21等のセンサ20が正常に動作している状態で学習させておく。センサ20に過度の振動が加わるなどしてセンサ20が故障した場合、入力層60に入力されたデータは正常動作時のデータと異なるものとなり、学習済みの演算モデル42bは、入力データに対して誤差が増大したデータを再生し出力することになる。
【0046】
図4に戻り、判定部43は、演算モデル42bの入力層60への入力データと、出力層63から出力される再生データとに基づいて、センサ20が故障しているか否かを判定する。判定部43は、入力層60への入力データと、出力層63から出力される再生データとの誤差の絶対値の総和が所定閾値未満である場合にセンサ20が正常に動作していると判定する。判定部43は、入力層60への入力データと、出力層63から出力される再生データとの誤差の絶対値の総和が所定閾値以上である場合にセンサ20が故障していると判定する。
【0047】
例えば、入力データがタイヤ10の3軸方向の加速度データである場合に、判定部43は、各軸方向に対して、入力層60への入力データと、出力層63から出力される再生データとの誤差の絶対値の総和を算出し、軸ごとに判定してもよい。また判定部43は、各軸方向に対して、入力層60への入力データと、出力層63から出力される再生データとの誤差の絶対値の総和を算出し、算出した軸ごとの総和を更に全て加算し、総合的に1つの判定をしてもよい。判定部43は、入力データがタイヤ10における3軸方向のうち2軸方向の加速度データである場合にも、同様に軸ごとに判定してもよいし、総合的に1つの判定をしてもよい。
【0048】
サーバ装置80は、センサ故障判定装置40から、センサ20が故障しているか否かの判定結果を取得し蓄積するようにしてもよい。またタイヤ物理情報推定装置30は、センサ20が故障しているか否かの判定結果を取得し、センサ20が故障している場合には、タイヤ物理情報の推定処理を停止し、または代替えの推定処理があれば当該推定処理への切り替えを行う。タイヤ物理情報推定装置30は、車両制御装置90へセンサ20の故障を出力し、車両制御装置90において運転者へセンサ20の故障を報知するようにしてもよい。
【0049】
次にセンサ故障判定装置40の動作を説明する。図6は、センサ故障判定装置40によるセンサ故障の判定処理の手順を示すフローチャートである。センサ故障判定装置40は、センサ20で計測されたタイヤ10における加速度、歪、タイヤ空気圧およびタイヤ温度などの物理量のデータを、データ取得部41によって取得する(S1)。
【0050】
演算処理部42は、データ取得部41において取得されたデータから一定の時間区間の入力データの抽出処理を実行する(S2)。前処理部42aは、入力データに対して正規化処理を実行する(S3)。正規化処理された入力データは演算モデル42bの入力層60に入力される。
【0051】
演算モデル42bの符号化部61は、入力データに対する畳み込み演算およびプーリング演算によって、特徴量データを生成する処理を実行する(S4)。演算モデル42bの復号化部62は、符号化部61において生成された特徴量データに対して、符号化の逆演算を実行しデータを再生する(S5)。
【0052】
判定部43は、演算モデル42bへの入力データ、および復号化部62が出力する再生データに基づいて、センサ20の故障について判定し(S6)、処理を終了する。
【0053】
図7は正常動作時のセンサ20で計測された加速度の入力データを表すグラフであり、図8図7の入力データに対して演算モデル42bが算出した再生データを表すグラフである。図7に示す入力データは、3軸方向の正規化された加速度データTx、TyおよびTzである。演算モデル42bでは、符号化部61での畳み込み演算によって特徴量データを生成し、逆演算によりデータを再生する。このため、図8に示すように、入力データが正常である場合には、各入力データにおける波形変動の特徴が再生データに反映される。
【0054】
図9は故障したセンサ20で計測された加速度の入力データを表すグラフであり、図10図9の入力データに対して演算モデル42bが算出した再生データを表すグラフである。図9に示す入力データは、3軸方向の正規化された加速度データTx、TyおよびTzである。故障したセンサ20からの入力データに対して、演算モデル42bが出力する再生データは、入力データの特徴と異なる波形変動が表れて入力データに対して誤差が増大したものとになる。
【0055】
正常動作時のセンサ20からの入力データ、および演算モデル42bが算出した再生データの誤差の絶対値を加算した値の正常範囲をRcとする。故障したセンサ20からの入力データ、および演算モデル42bが算出した再生データの誤差の絶対値を加算した値の異常範囲をReとする。判定部43は、正常範囲Rcと異常範囲Reとの間に、閾値Dを設定してセンサ20が故障しているか否かを判定する。正常範囲Rcの上限側と異常範囲Reの下限側とが一部重なっている場合でも、正常範囲Rcおよび異常範囲Reの分布を考慮して閾値Dを設定することができる。
【0056】
センサ故障判定装置40は、演算モデル42bにおいて入力データを畳み込み演算を用いて符号化し、逆演算を用いてデータ再生しており、入力データおよび再生データに基づく判定によって、センサ20が故障しているか否かを判定することができる。
【0057】
演算処理部42は、前処理部42aにおいてデータ取得部41で取得したデータを正規化することによって、判定部43による故障判定における各軸方向のデータの影響を同程度にすることができる。
【0058】
センサ20においてタイヤ10における3軸方向のうち少なくとも2軸方向の物理量を計測し、判定部43は、軸方向ごとに故障判定してもよい。センサ故障判定装置40は、センサ20が一部において故障状態にあるとの情報を提供することができる。タイヤ物理情報推定装置30は、例えば、センサ20が一部において故障状態にあるとしても、正常動作しているセンサ20から取得したデータに基づいてタイヤ物理情報の推定を継続することができる。
【0059】
またセンサ20においてタイヤ10における3軸方向のうち少なくとも2軸方向の物理量を計測し、判定部43は、各軸方向のデータに対して総合的に1つの判定をするようにしてもよい。センサ故障判定装置40は、演算モデル42bへの各軸方向の入力データが、総合的に特徴量抽出に適した状態であるか否かを判定することできる。
【0060】
次に実施形態に係るセンサ故障判定装置40およびセンサ故障判定方法の特徴について説明する。
実施形態に係るセンサ故障判定装置40は、データ取得部41、演算処理部42および判定部43を備える。データ取得部41は、タイヤ10に取り付けられたセンサ20によって計測される物理量のデータを取得する。演算処理部42は、データ取得部41で取得したデータに対して畳み込み演算を用いて特徴量データを生成する符号化部61、および特徴量データに対して逆演算を用いてデータを再生する復号化部62を有する。判定部43は、データ取得部41により取得したデータ、および演算処理部42により再生したデータに基づいて、センサ20が故障しているか否かを判定する。これにより、センサ故障判定装置40は、タイヤ10に設けられたセンサ20の故障を判定することができる。
【0061】
また演算処理部42は、データ取得部41で取得したデータを正規化する前処理部42aを備える。これにより、センサ故障判定装置40は、判定部43による故障判定における各軸方向のデータの影響を同程度にすることができる。
【0062】
またセンサ20は、タイヤ10における3軸方向のうち少なくとも2軸方向の物理量を計測している。判定部43は、センサ20が故障しているか否かを軸方向ごとに判定する。これにより、センサ故障判定装置40は、センサ20が一部において故障状態にあるとの情報を提供することができる。
【0063】
また判定部43は、センサ20が故障しているか否かを各軸方向のデータに対して総合的に判定する。これにより、センサ故障判定装置40は、演算モデル42bへの各軸方向の入力データが、総合的に特徴量抽出に適した状態であるか否かを判定することできる。
【0064】
センサ故障判定方法は、データ取得ステップ、演算処理ステップおよび判定ステップを備える。データ取得ステップは、タイヤ10に取り付けられたセンサ20によって計測される物理量のデータを取得する。演算処理ステップは、データ取得ステップで取得したデータに対して畳み込み演算を用いて特徴量データを生成する符号化処理、および特徴量データに対して逆演算を用いてデータを再生する復号化処理を行う。判定ステップは、データ取得ステップにより取得したデータ、および演算処理ステップにより再生したデータに基づいて、センサ20が故障しているか否かを判定する。このセンサ故障判定方法によれば、タイヤ10に設けられたセンサ20の故障を判定することができる。
【0065】
以上、本発明の実施の形態をもとに説明した。これらの実施の形態は例示であり、いろいろな変形および変更が本発明の特許請求範囲内で可能なこと、またそうした変形例および変更も本発明の特許請求の範囲にあることは当業者に理解されるところである。従って、本明細書での記述および図面は限定的ではなく例証的に扱われるべきものである。
【符号の説明】
【0066】
10 タイヤ、 20 センサ、 40 センサ故障判定装置、
41 データ取得部、 42 演算処理部、
42a 前処理部、 42b 演算モデル、 43 判定部、
61 符号化部、 62 復号化部。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10