IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ シャープディスプレイテクノロジー株式会社の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024070562
(43)【公開日】2024-05-23
(54)【発明の名称】液晶パネル及び液晶表示装置
(51)【国際特許分類】
   G02F 1/13 20060101AFI20240516BHJP
   G02F 1/1334 20060101ALI20240516BHJP
   G02F 1/1333 20060101ALI20240516BHJP
   H10K 59/10 20230101ALI20240516BHJP
   H10K 50/10 20230101ALI20240516BHJP
   H05B 33/12 20060101ALI20240516BHJP
   G09F 9/30 20060101ALI20240516BHJP
   G09F 9/00 20060101ALI20240516BHJP
【FI】
G02F1/13 505
G02F1/1334
G02F1/1333
H01L27/32
H05B33/14 A
H05B33/12 B
G09F9/30 365
G09F9/00 313
G09F9/00 362
G09F9/00 324
【審査請求】未請求
【請求項の数】17
【出願形態】OL
(21)【出願番号】P 2022181134
(22)【出願日】2022-11-11
(71)【出願人】
【識別番号】520487808
【氏名又は名称】シャープディスプレイテクノロジー株式会社
(74)【代理人】
【識別番号】110000914
【氏名又は名称】弁理士法人WisePlus
(72)【発明者】
【氏名】吉田 壮寿
(72)【発明者】
【氏名】下敷領 文一
【テーマコード(参考)】
2H088
2H189
3K107
5C094
5G435
【Fターム(参考)】
2H088EA32
2H088GA10
2H088HA14
2H088HA21
2H088MA01
2H088MA20
2H189AA04
2H189AA22
2H189HA11
2H189HA16
2H189LA15
2H189LA19
2H189MA08
2H189MA15
3K107AA01
3K107BB01
3K107CC41
3K107EE27
3K107EE65
3K107FF15
5C094AA12
5C094AA15
5C094BA27
5C094BA43
5C094CA19
5C094DA12
5C094ED11
5C094ED15
5C094FA01
5C094FA02
5C094HA05
5C094JA01
5G435AA01
5G435AA18
5G435BB05
5G435BB12
5G435CC09
5G435EE25
5G435FF03
5G435FF13
5G435GG11
5G435GG43
5G435HH02
5G435LL17
(57)【要約】
【課題】厚さを抑えつつ視野角を制御することができる液晶パネル、及び、当該液晶パネルを備える液晶表示装置を提供する。
【解決手段】高分子分散液晶層と、互いに平行に延設された複数の第一の遮光部と、上記複数の第一の遮光部と同一の方向に互いに平行に延設され、かつ、上記複数の第一の遮光部よりも観察面側に位置する複数の第二の遮光部と、を備える液晶パネル。
【選択図】 図1

【特許請求の範囲】
【請求項1】
高分子分散液晶層と、互いに平行に延設された複数の第一の遮光部と、前記複数の第一の遮光部と同一の方向に互いに平行に延設され、かつ、前記複数の第一の遮光部よりも観察面側に位置する複数の第二の遮光部と、を備えることを特徴とする液晶パネル。
【請求項2】
前記複数の第一の遮光部は、背面側の表面に反射面を備えることを特徴とする請求項1に記載の液晶パネル。
【請求項3】
平面視において、
パネル中央では、前記複数の第一の遮光部は、前記複数の第二の遮光部と同一の位置に配置され、
パネル端では、前記複数の第一の遮光部は、前記複数の第二の遮光部に対してずれて配置されることを特徴とする請求項1に記載の液晶パネル。
【請求項4】
更に、前記複数の第一の遮光部と同一の方向に互いに平行に延設され、前記複数の第一の遮光部よりも観察面側に位置し、かつ、前記複数の第二の遮光部よりも背面側に位置する複数の第三の遮光部を備えることを特徴とする請求項1に記載の液晶パネル。
【請求項5】
平面視において、前記複数の第一の遮光部及び前記複数の第三の遮光部が配置されていない複数の第一の隙間と、前記複数の第二の遮光部及び前記複数の第三の遮光部が配置されていない複数の第二の隙間と、を有することを特徴とする請求項4に記載の液晶パネル。
【請求項6】
更に、前記複数の第一の遮光部と同一の方向に互いに平行に延設され、前記複数の第一の遮光部よりも観察面側に位置し、かつ、前記複数の第三の遮光部よりも背面側に位置する複数の第四の遮光部を備えることを特徴とする請求項4に記載の液晶パネル。
【請求項7】
平面視において、前記複数の第四の遮光部は、前記複数の第一の遮光部と同一の位置に配置されることを特徴とする請求項6に記載の液晶パネル。
【請求項8】
前記液晶パネルは、ドライバー席及び助手席の車両前方側に配置される車載用の液晶パネルであって、
平面視において、前記複数の第一の遮光部及び前記複数の第二の遮光部が配置されていない複数の第三の隙間と、前記複数の第三の遮光部及び前記複数の第二の遮光部が配置されていない複数の第四の隙間と、を有し、
前記複数の第三の隙間の各々は、前記複数の第一の遮光部の各々の前記ドライバー席側に隣接し、
前記複数の第四の隙間の各々は、前記複数の第三の遮光部の各々の前記ドライバー席側に隣接することを特徴とする請求項4に記載の液晶パネル。
【請求項9】
前記複数の第二の遮光部は、前記高分子分散液晶層を介して、前記複数の第一の遮光部の観察面側に配置されることを特徴とする請求項1に記載の液晶パネル。
【請求項10】
更に、前記複数の第一の遮光部と前記複数の第二の遮光部との間に絶縁層を備えることを特徴とする請求項1に記載の液晶パネル。
【請求項11】
前記絶縁層は、観察面側の表面に複数のホールが設けられており、
前記複数の第二の遮光部は、それぞれ、前記複数のホールのうち対応するホールを覆うように設けられていることを特徴とする請求項10に記載の液晶パネル。
【請求項12】
請求項1~11のいずれかに記載の液晶パネルと、画像を表示する表示パネルと、を備えることを特徴とする液晶表示装置。
【請求項13】
前記表示パネルは、マトリクス状に配置された複数の画素を備え、
前記複数の第一の遮光部のうち、互いに隣接する第一の遮光部間の距離を第一の遮光部のスリット幅とし、前記複数の第一の遮光部の各々の短手方向の幅を第一の遮光部の遮光幅とし、前記第一の遮光部のスリット幅及び前記第一の遮光部の遮光幅の合計を第一の遮光部のスリットピッチとするとき、
前記画素の画素ピッチは、前記第一の遮光部のスリットピッチの整数倍であることを特徴とする請求項12に記載の液晶表示装置。
【請求項14】
更に、バックライトを備え、
前記表示パネルは、液晶表示パネルであることを特徴とする請求項12に記載の液晶表示装置。
【請求項15】
観察面側から背面側に向かって順に、
前記液晶表示パネルと、前記液晶パネルと、前記バックライトと、を備えることを特徴とする請求項14に記載の液晶表示装置。
【請求項16】
観察面側から背面側に向かって順に、
前記液晶パネルと、前記液晶表示パネルと、前記バックライトと、を備えることを特徴とする請求項14に記載の液晶表示装置。
【請求項17】
前記表示パネルは、有機エレクトロルミネッセンス表示パネルであり、
観察面側から背面側に向かって順に、
前記液晶パネルと、前記有機エレクトロルミネッセンス表示パネルと、を備えることを特徴とする請求項12に記載の液晶表示装置。
【発明の詳細な説明】
【技術分野】
【0001】
以下の開示は、液晶パネル及び液晶表示装置に関する。
【背景技術】
【0002】
液晶パネルは、一対の基板間に封入された液晶組成物に対して電圧を印加し、印加した電圧に応じて液晶組成物中の液晶分子の配向状態を変化させることにより、光の透過量を制御する光学素子である。このような液晶パネルは、薄型、軽量及び低消費電力といった特長を活かし、幅広い分野で用いられている。
【0003】
ところで、従来、表示装置は、狭い視野角の範囲から観察しても、広い角度の範囲から観察しても同様の画像が観察できるように視野角特性を向上させることが検討されている。一方で、プライバシー保持の観点からは、狭い視野角の範囲からは画像を観察できるが、広い視野角の範囲からは上記画像を観察し難くする表示方法が検討されている。このように、狭い視野角の範囲においても広い角度の範囲においても同様の画像が観察できるパブリックモード(広視野角モード)と、狭い視野角の範囲からは画像を観察できるが、広い視野角の範囲からは画像を観察し難いパブリックモード(狭視野角モード)とを切り替え可能な表示装置が求められている。
【0004】
パブリックモードとプライバシーモードとを切り替え可能な表示装置に用いられる液晶パネル等の光学素子に関する技術として、例えば、特許文献1には、液晶表示素子と、コリメートされた光を該液晶表示素子に対して照射する照明手段と、該液晶表示素子から出射する光線あるいは該液晶表示素子に入射する光線の進行方向を電気的に制御する手段と、を備え、そのことにより、視角特性を変更できる、液晶表示装置が開示されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平9-197405号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
図35は、比較形態の液晶表示装置の広視野角モードについて説明する断面模式図である。図36は、比較形態の液晶表示装置の狭視野角モードについて説明する断面模式図である。図35及び図36に示す比較形態の液晶表示装置1Rは、上記特許文献1に開示された液晶表示装置に対応する構成を有する。具体的には、液晶表示装置1Rは、観察面側から背面側に向かって順に、表示パネル10と、高分子分散液晶(PDLC:Polymer Dispersed Liquid Crystal)を備える液晶パネル20Rと、ルーバー層30Rと、バックライト40と、を備える。
【0007】
表示パネル10は、観察面側から背面側に向かって順に、カラーフィルタ(CF:Color Filter)層を備えるCF基板110と、薄膜トランジスタ(TFT:Thin Film Transistor)を備えるTFT基板120とを有する。
【0008】
液晶パネル20Rは、観察面側から背面側に向かって順に、第一の基板210としての対向基板と、PDLCと、第二の基板220としてのTFT基板とを有する。PDLCは、ポリマーネットワーク中に液晶成分が分散された構成を有する。図35及び図36に示すように、PDLCを備える液晶パネル20Rは、電圧の印加によって液晶成分の配向状態を変化させることにより液晶成分とポリマーネットワークとの屈折率差を利用して、透過状態と散乱状態とを切り替えることができる。液晶パネル20Rは、電圧無印加時に散乱状態となり、電圧印加時に透過状態となる。
【0009】
ルーバー層30Rは、遮光層31と透明層32とが交互に並行配列された構成を有し、正面方向の光1LAを透過し、斜め方向の光1LBを遮る機能を有する。すなわち、ルーバー層30Rは、低い極角の光を透過し、高い極角の光を遮る機能を有する。ここで、極角とは、対象となる方向(例えば測定方向)と、液晶パネルのパネル面の法線方向とのなす角度を意味する。
【0010】
比較形態の液晶表示装置1Rでは、バックライト40からの斜め方向の光1LBはルーバー層30Rにより遮られ、正面方向の光1LAのみがルーバー層30Rを透過する。ルーバー層30Rを透過した正面方向の光1LAは、液晶パネル20Rが電圧無印加状態である場合、図35に示すように液晶パネル20Rにより散乱されて正面方向の光1LA及び斜め方向の光1LBとなり、表示パネル10へと入射する。このように、電圧無印加状態では、低い極角側から高い極角側にかけてバックライト光を透過させることが可能となり、広視野角モード(パブリックモード)を実現することができる。
【0011】
また、液晶パネル20Rが電圧印加状態である場合、ルーバー層30Rを透過した正面方向の光1LAは、図36に示すように散乱されずに液晶パネル20Rを透過し、表示パネル10へと入射する。すなわち、表示パネル10へ入射する光は正面方向の光1LAのみであり、斜め方向の光1LBは表示パネル10へは入射しない。このように、電圧印加状態では、高い極角側ではバックライト光を透過させず、低極角側でのみバックライト光を透過させることが可能となり、狭視野角モード(プライバシーモード)を実現することができる。
【0012】
このように、比較形態の液晶表示装置1Rでは、広視野角モードと狭視野角モードとを切り替えるために、表示パネル10対して、液晶パネル20R及びルーバー層30Rが個別に追加される。そのため、比較形態の液晶表示装置1Rは厚さが厚くなってしまうという課題がある。
【0013】
本発明は、上記現状に鑑みてなされたものであり、厚さを抑えつつ視野角を制御することができる液晶パネル、及び、当該液晶パネルを備える液晶表示装置を提供することを目的とするものである。
【課題を解決するための手段】
【0014】
(1)本発明の一実施形態は、高分子分散液晶層と、互いに平行に延設された複数の第一の遮光部と、上記複数の第一の遮光部と同一の方向に互いに平行に延設され、かつ、上記複数の第一の遮光部よりも観察面側に位置する複数の第二の遮光部と、を備える液晶パネル。
【0015】
(2)また、本発明のある実施形態は、上記(1)の構成に加え、上記複数の第一の遮光部は、背面側の表面に反射面を備える、液晶パネル。
【0016】
(3)また、本発明のある実施形態は、上記(1)又は上記(2)の構成に加え、平面視において、パネル中央では、上記複数の第一の遮光部は、上記複数の第二の遮光部と同一の位置に配置され、パネル端では、上記複数の第一の遮光部は、上記複数の第二の遮光部に対してずれて配置される、液晶パネル。
【0017】
(4)また、本発明のある実施形態は、上記(1)、上記(2)又は上記(3)の構成に加え、更に、上記複数の第一の遮光部と同一の方向に互いに平行に延設され、上記複数の第一の遮光部よりも観察面側に位置し、かつ、上記複数の第二の遮光部よりも背面側に位置する複数の第三の遮光部を備える、液晶パネル。
【0018】
(5)また、本発明のある実施形態は、上記(4)の構成に加え、平面視において、上記複数の第一の遮光部及び上記複数の第三の遮光部が配置されていない複数の第一の隙間と、上記複数の第二の遮光部及び上記複数の第三の遮光部が配置されていない複数の第二の隙間と、を有する、液晶パネル。
【0019】
(6)また、本発明のある実施形態は、上記(4)又は上記(5)の構成に加え、更に、上記複数の第一の遮光部と同一の方向に互いに平行に延設され、上記複数の第一の遮光部よりも観察面側に位置し、かつ、上記複数の第三の遮光部よりも背面側に位置する複数の第四の遮光部を備える、液晶パネル。
【0020】
(7)また、本発明のある実施形態は、上記(6)の構成に加え、平面視において、上記複数の第四の遮光部は、上記複数の第一の遮光部と同一の位置に配置される、液晶パネル。
【0021】
(8)また、本発明のある実施形態は、上記(4)、上記(5)、上記(6)又は上記(7)の構成に加え、上記液晶パネルは、ドライバー席及び助手席の車両前方側に配置される車載用の液晶パネルであって、平面視において、上記複数の第一の遮光部及び上記複数の第二の遮光部が配置されていない複数の第三の隙間と、上記複数の第三の遮光部及び上記複数の第二の遮光部が配置されていない複数の第四の隙間と、を有し、上記複数の第三の隙間の各々は、上記複数の第一の遮光部の各々の上記ドライバー席側に隣接し、上記複数の第四の隙間の各々は、上記複数の第三の遮光部の各々の上記ドライバー席側に隣接する、液晶パネル。
【0022】
(9)また、本発明のある実施形態は、上記(1)、上記(2)、上記(3)、上記(4)、上記(5)、上記(6)、上記(7)又は上記(8)の構成に加え、上記複数の第二の遮光部は、上記高分子分散液晶層を介して、上記複数の第一の遮光部の観察面側に配置される、液晶パネル。
【0023】
(10)また、本発明のある実施形態は、上記(1)、上記(2)、上記(3)、上記(4)、上記(5)、上記(6)、上記(7)、上記(8)又は上記(9)の構成に加え、更に、上記複数の第一の遮光部と上記複数の第二の遮光部との間に絶縁層を備える、液晶パネル。
【0024】
(11)また、本発明のある実施形態は、上記(10)の構成に加え、上記絶縁層は、観察面側の表面に複数のホールが設けられており、上記複数の第二の遮光部は、それぞれ、上記複数のホールのうち対応するホールを覆うように設けられている、液晶パネル。
【0025】
(12)また、本発明の他の一実施形態は、上記(1)、上記(2)、上記(3)、上記(4)、上記(5)、上記(6)、上記(7)、上記(8)、上記(9)、上記(10)又は上記(11)に記載の液晶パネルと、画像を表示する表示パネルと、を備える液晶表示装置。
【0026】
(13)また、本発明のある実施形態は、上記(12)の構成に加え、上記表示パネルは、マトリクス状に配置された複数の画素を備え、上記複数の第一の遮光部のうち、互いに隣接する第一の遮光部間の距離を第一の遮光部のスリット幅とし、上記複数の第一の遮光部の各々の短手方向の幅を第一の遮光部の遮光幅とし、上記第一の遮光部のスリット幅及び上記第一の遮光部の遮光幅の合計を第一の遮光部のスリットピッチとするとき、上記画素の画素ピッチは、上記第一の遮光部のスリットピッチの整数倍である、液晶表示装置。
【0027】
(14)また、本発明のある実施形態は、上記(12)又は上記(13)の構成に加え、更に、バックライトを備え、上記表示パネルは、液晶表示パネルである、液晶表示装置。
【0028】
(15)また、本発明のある実施形態は、上記(14)の構成に加え、観察面側から背面側に向かって順に、上記液晶表示パネルと、上記液晶パネルと、上記バックライトと、を備える、液晶表示装置。
【0029】
(16)また、本発明のある実施形態は、上記(14)の構成に加え、観察面側から背面側に向かって順に、上記液晶パネルと、上記液晶表示パネルと、上記バックライトと、を備える、液晶表示装置。
【0030】
(17)また、本発明のある実施形態は、上記(12)又は上記(13)の構成に加え、上記表示パネルは、有機エレクトロルミネッセンス表示パネルであり、観察面側から背面側に向かって順に、上記液晶パネルと、上記有機エレクトロルミネッセンス表示パネルと、を備える、液晶表示装置。
【発明の効果】
【0031】
本発明によれば、厚さを抑えつつ視野角を制御することができる液晶パネル、及び、当該液晶パネルを備える液晶表示装置を提供することができる。
【図面の簡単な説明】
【0032】
図1】実施形態1の液晶パネルの断面模式図である。
図2】実施形態1の液晶表示装置の広視野角モードについて説明する断面模式図である。
図3】実施形態1の液晶表示装置の広視野角モードについて説明する、拡大断面模式図である。
図4】実施形態1の液晶表示装置の狭視野角モードについて説明する断面模式図である。
図5】実施形態1の液晶表示装置の狭視野角モードについて説明する、拡大断面模式図である。
図6】実施形態1の液晶表示装置のバックライトから出射する光について説明する断面模式図である。
図7】実施形態1の液晶パネルの配向特性について説明する断面模式図の一例である。
図8図7の構成とすることにより得られる視野角特性について説明する模式図である。
図9】実施形態1の液晶パネルの配向特性について説明する断面模式図の一例である。
図10図9の構成とすることにより得られる視野角特性について説明する模式図である。
図11】比較形態の液晶表示装置の配向特性について説明する断面模式図の一例である。
図12】比較形態の液晶表示装置が備えるルーバー層のピッチについて説明する断面模式図である。
図13】実施形態1の液晶パネルが備える遮光部全体が光吸収層により構成される場合について説明する断面模式図である。
図14】実施形態1の液晶パネルが備えるルーバー層の構成について説明する断面模式図である。
図15】実施形態1の液晶表示装置が備える表示パネル及びルーバー層を重ね合わせた平面模式図である。
図16】実施形態2の液晶パネルの断面模式図である。
図17】実施形態3の液晶パネルに入射する光について説明する断面模式図である。
図18】実施形態1の液晶パネルに入射する光について説明する断面模式図である。
図19】実施形態3の変形例2の液晶パネルの断面模式図である。
図20】実施形態4の液晶パネルに入射する光について説明する断面模式図である。
図21】実施形態5の液晶表示装置の断面模式図である。
図22】実施形態6の液晶表示装置の断面模式図である。
図23A】実施例1の液晶表示装置が備えるルーバー層の断面模式図である。
図23B】実施例1の液晶表示装置のバックライトから出射する光について説明する断面模式図である。
図24】視野角のシミュレーションの際に用いた幾何学計算について説明する図である。
図25】実施例2の液晶表示装置が備えるルーバー層の断面模式図である。
図26】実施例1及び実施例2の液晶表示装置の、極角に対する透過率を表すシミュレーション結果である。
図27】実施例3の液晶表示装置が備えるルーバー層の断面模式図である。
図28】実施例4の液晶表示装置が備えるルーバー層の断面模式図である。
図29】実施例1、実施例2及び実施例4の液晶表示装置の、極角に対する透過率を表すシミュレーション結果である。
図30】実施例5の液晶表示装置が備えるルーバー層の断面模式図である。
図31】実施例6の液晶表示装置が備えるルーバー層の断面模式図である。
図32】実施例1、実施例2及び実施例6の液晶表示装置の、極角に対する透過率を表すシミュレーション結果である。
図33】実施例7の液晶表示装置が備えるルーバー層の断面模式図である。
図34】実施例1、実施例4及び実施例7の液晶表示装置の、極角に対する透過率を表すシミュレーション結果である。
図35】比較形態の液晶表示装置の広視野角モードについて説明する断面模式図である。
図36】比較形態の液晶表示装置の狭視野角モードについて説明する断面模式図である。
【発明を実施するための形態】
【0033】
以下に実施形態を掲げ、本発明について図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。
【0034】
[用語の定義]
【0035】
本明細書中、極角とは、対象となる方向(例えば測定方向)と、液晶パネルのパネル面の法線方向とのなす角度を意味する。方位とは、対象となる方向を液晶パネルのパネル面上に射影したときの方向を意味し、基準となる方位との間のなす角度(方位角)で表現される。ここで、基準となる方位(0°)は、液晶パネルのパネル面の水平右方向に設定される。角度及び方位角は、基準となる方位から反時計回りを正の角度、基準となる方位から時計回りを負の角度とする。反時計回り及び時計回りは、いずれも液晶パネルのパネル面を観察面側(正面)から見たときの回転方向を表す。また、角度は、液晶パネルを平面視した状態で測定された値を表す。
【0036】
本明細書中、互いに平行であるとは、両者のなす角度(絶対値)が0±3°の範囲内であることを指し、好ましくは0±1°の範囲内であり、より好ましくは0±0.5°の範囲内であり、特に好ましくは0°(完全に平行)である。
【0037】
以下、本発明の実施形態について説明する。本発明は、以下の実施形態に記載された内容に限定されるものではなく、本発明の構成を充足する範囲内で、適宜設計変更を行うことが可能である。
【0038】
(実施形態1)
図1は、実施形態1の液晶パネルの断面模式図である。図1に示すように、本実施形態の液晶パネル20は、互いに平行に延設された複数の第一の遮光部20L1と、複数の第一の遮光部20L1と同一の方向に互いに平行に延設され、かつ、複数の第一の遮光部20L1よりも観察面側に位置する複数の第二の遮光部20L2と、を備える。このような態様とすることにより、複数の第一の遮光部20L1及び複数の第二の遮光部20L2が、正面方向の光を透過し、斜め方向の光を遮るルーバー層20Lとして機能する。
【0039】
互いに平行に延設された複数の遮光部(例えば、複数の第一の遮光部20L1)とは、複数の遮光部に含まれる異なる2本の遮光部のなす角度(絶対値)が0±3°の範囲内であることを指し、好ましくは0±1°の範囲内であり、より好ましくは0±0.5°の範囲内であり、特に好ましくは0°(完全に平行)である。
【0040】
複数の遮光部(例えば、複数の第二の遮光部20L2)が、複数の他の遮光部(例えば、複数の第一の遮光部20L1)と同一の方向に延設されるとは、複数の遮光部に含まれる1本の遮光部と、複数の他の遮光部に含まれる1本の他の遮光部とのなす角度(絶対値)が0±3°の範囲内であることを指し、好ましくは0±1°の範囲内であり、より好ましくは0±0.5°の範囲内であり、特に好ましくは0°(完全に平行)である。
【0041】
また、液晶パネル20は、高分子分散液晶(PDLC:Polymer Dispersed Liquid Crystal)230を備える。このような態様とすることにより、高分子分散液晶230に印加される電圧を調整して、液晶パネル20に入射する光を散乱させる散乱状態と、液晶パネル20に入射する光を透過させる透過状態とを切り替えることが可能となる。
【0042】
ここで、上記比較形態では、高分子分散液晶を備える液晶パネル20Rとルーバー層30Rとが個別に配置され、これら2つの部材により視野角を制御することができる。一方、本実施形態では、液晶パネル20が高分子分散液晶230に加えてルーバー層20Lも備えるため、液晶パネル20により、すなわち、1つの部材により視野角を制御することができる。その結果、本実施形態の液晶パネル20により、比較形態に比べて厚さを抑えつつ視野角を制御することができる。ルーバー層20L及び高分子分散液晶230を備える液晶パネル20は、視野角制御用セルともいう。以下、本実施形態の液晶パネル20を備える液晶表示装置を例に挙げて説明する。
【0043】
図2は、実施形態1の液晶表示装置の広視野角モードについて説明する断面模式図である。図3は、実施形態1の液晶表示装置の広視野角モードについて説明する、拡大断面模式図である。図4は、実施形態1の液晶表示装置の狭視野角モードについて説明する断面模式図である。図5は、実施形態1の液晶表示装置の狭視野角モードについて説明する、拡大断面模式図である。図6は、実施形態1の液晶表示装置のバックライトから出射する光について説明する断面模式図である。
【0044】
図2図6に示すように、本実施形態の液晶表示装置1は、液晶パネル20と、画像を表示する表示パネル10と、を備える。このような態様とすることにより、厚さを抑えつつ視野角を制御することができる液晶表示装置1を実現することができる。
【0045】
より具体的には、本実施形態の液晶表示装置1は、更に、バックライト40を備え、表示パネル10は、液晶表示パネル10LCである。このような態様とすることにより、バックライト40からの光を用いて液晶表示パネル10LCの画像を表示することができ、かつ、厚さを抑えつつ視野角を制御することができる液晶表示装置1を実現することができる。
【0046】
液晶パネル20は、ルーバー層20L及び高分子分散液晶230を備える。そのため、図6に示すように、背面側(具体的にはバックライト40)からの斜め方向の光1LBはルーバー層20Lによって遮られ、正面方向の光1LAのみが高分子分散液晶230へと入射する。高分子分散液晶230に電圧が印加されていない散乱状態では、高分子分散液晶230へ入射した正面方向の光1LAは、図2及び図3に示すように高分子分散液晶230で散乱される。その結果、低い極角側から高い極角側にかけて背面側(具体的にはバックライト40)からの光を透過させることが可能となるため、広視野角モード(パブリックモード)を実現することができる。高分子分散液晶230に電圧が印加されている透過状態では、高分子分散液晶230へ入射した正面方向の光1LAは、図4及び図5に示すように高分子分散液晶230をそのまま透過する。その結果、高い極角側において背面側(具体的にはバックライト40)からの光は透過せず、低極角側においてのみ背面側からの光を透過させることが可能となり、狭視野角モード(プライバシーモード)を実現することができる。このように、本実施形態の液晶パネル20を用いることにより、視野角を制御することが可能となる。
【0047】
また、上述の通り、本実施形態の液晶パネル20は、透過状態と散乱状態とを切り替える機能に加えて、ルーバー機能も併せ持つ。そのため、透過状態と散乱状態とを切り替えることができる液晶パネル20Rとルーバー層30Rとを個別に備える比較形態の液晶表示装置1Rに比べて、本実施形態では液晶表示装置1の厚さ、重さ及び製造コストを抑えることができる。以下、本実施形態の各構成についてより詳細に説明する。
【0048】
図2及び図4に示すように、本実施形態の液晶表示装置1は、具体的には、観察面側から背面側に向かって順に、表示パネル10としての液晶表示パネル10LCと、液晶パネル20と、バックライト40と、を備える。このような態様とすることにより、バックライト40からの光は液晶パネル20を通過した後に液晶表示パネル10LCに入射するため、広視野角モードではバックライト40からの光を低い極角側から高い極角側にかけて液晶表示パネル10LCに入射させることが可能となり、狭視野角モードではバックライト40からの光を低極角側でのみ液晶表示パネル10LCに入射させることが可能となる。
【0049】
図1図6に示すように、液晶パネル20は、観察面側から背面側に向かって順に、第一の基板210と高分子分散液晶230と第二の基板220とを備える。第一の基板210は、観察面側から背面側に向かって順に、第一の支持基板211と第一の電極212とを備える。第二の基板220は、背面側から観察面側に向かって順に、第二の支持基板221と、第一の遮光部20L1と、絶縁層222と、第二の遮光部20L2と、第二の電極223と、を備える。複数の第一の遮光部20L1及び複数の第二の遮光部20L2は、ルーバー層20Lとして機能する。複数の第一の遮光部20L1が設けられる層を第一の遮光層ともいい、複数の第二の遮光部20L2が設けられる層を第二の遮光層ともいう。高分子分散液晶230は、ポリマーネットワーク231と、ポリマーネットワーク231中に分散された液晶成分232と、を有する。
【0050】
このように、液晶パネル20は、2枚の支持基板(第一の支持基板211及び第二の支持基板221)の間に光の散乱と透過を制御できる高分子分散液晶230と、バックライト40からの光を狭視野角に絞ることができるルーバー層20Lと、を備える。
【0051】
図7及び図9は、実施形態1の液晶パネルの配向特性について説明する断面模式図の一例である。図8及び図10は、それぞれ、図7及び図9の構成とすることにより得られる視野角特性について説明する模式図である。本実施形態の液晶パネル20では、図7に示すように、パネル端においてパネル中央方向の輝度が低下し、図8に示すようにパネル中央方向から見た際に左右が暗くなる輝度ムラが発生する場合がある。しかしながら、図9の破線で囲んだ領域に示すように、第一の遮光部20L1及び第二の遮光部20L2の配置を調節し、パネル中央へ傾いた配向特性にすることにより、図10に示すようにパネル中央方向の輝度を向上させて輝度ムラを改善し、例えば、パネル中央方向から見た際に左右が暗くならないようにすることができる。このように、本実施形態の液晶パネル20は、ルーバー層20Lが備える第一の遮光部20L1及び第二の遮光部20L2の配置を調整し、面内で配光方向を変えることにより輝度ムラを改善することが可能な、面内配光方向可変構造を有している。
【0052】
例えば、平面視において、複数の第一の遮光部20L1は、複数の第二の遮光部20L2と同一の位置に配置される。このような態様とすることにより、ルーバー層20Lにおいて、背面側からの光(具体的にはバックライト40からの光)をより効果的に狭視野角に絞ることができる。ここで、複数の遮光部(例えば、複数の第一の遮光部20L1)が、複数の他の遮光部(例えば、複数の第二の遮光部20L2)と同一の位置に配置されるとは、各遮光部(例えば、各第一の遮光部20L1)が、対応する他の遮光部(例えば、対応する第二の遮光部20L2)の少なくとも一部と重畳することをいい、完全に重畳することが好ましい。
【0053】
例えば、平面視において、複数の第一の遮光部20L1に対する複数の第二の遮光部20L2の配置は、パネル中央とパネル端とで互いに異なっている。このような態様とすることにより、パネル中央から視認した場合におけるパネル端での輝度ムラを改善することができる。
【0054】
平面視において、パネル中央では、複数の第一の遮光部20L1は、複数の第二の遮光部20L2と同一の位置に配置され、パネル端では、複数の第一の遮光部20L1は、複数の第二の遮光部20L2に対してずれて配置されることが好ましい。このような態様とすることにより、パネル中央から視認した場合におけるパネル端での輝度ムラを効果的に改善することができる。
【0055】
このように、本実施形態の液晶パネル20は、狭視野角モード時においても、任意の位置から見た際に、輝度ムラが発生しないよう、第一の遮光部20L1と第二の遮光部20L2との配置を調整し、面内で配光方向を変更可能な構造を有している。例えば、図9及び図10に示すように、パネル左右端の配光方向を中央寄りにするような、遮光部の配置にすることで、プライバシー性能を落とすことなく(パネル外の方向からは見えないようにしたまま)、狭視野角モード時においてもパネル中央から見た際に左右が暗くならずに、輝度ムラを抑制することができる。
【0056】
図11は、比較形態の液晶表示装置の配向特性について説明する断面模式図の一例である。比較形態の液晶表示装置は、図11に示すように、遮光層31としての吸収体と透明層32としての透明基板とを備えるルーバー層30Rを備える。比較形態の液晶表示装置では、バックライトから出射される光のうちルーバー層30Rの吸収体へ入射する光は当該吸収体で吸収されてしまうため、液晶表示装置の輝度が低くなってしまう。
【0057】
また、図11に示すように、ルーバー層30Rを備える比較形態の液晶表示装置では、狭視野角モードにおいて、配光方向が一様に表示面に対して垂直方向となるため、例えば画面中央から見た際に、左右方向が暗くなり輝度ムラが発生してしまう。しかしながら、比較形態の液晶表示装置について開示された特許文献1には、輝度ムラの課題や対策については記載されていない。特許文献1に開示された液晶表示装置の構造により面内で配光方向を変えるのは困難であると考えられる。
【0058】
図12は、比較形態の液晶表示装置が備えるルーバー層のピッチについて説明する断面模式図である。ここで、図12に示すように、画面左右端において、遮光層31のピッチを広げることで輝度ムラを抑制することはできるが、その場合画面外方向へも視野角が広がりプライバシー性能が低下してしまうという課題がある。
【0059】
ルーバー層20Lは絶縁層222(例えば有機絶縁膜)を挟んで2層以上の遮光部(本実施形態では第一の遮光部20L1及び第二の遮光部20L2)を有することが好ましい。すなわち、本実施形態の液晶パネル20は、複数の第一の遮光部20L1と複数の第二の遮光部20L2との間に絶縁層222を備えることが好ましい。ここで、遮光部は、例えば、黒化処理したメタルで形成されるが、通常プロセスで形成可能なメタルの厚みは0.5μm程度であり、ルーバー機能として必要な厚み(数μm~数十μm)を形成することが困難である。そこで、本実施形態では、ルーバー層20Lを、絶縁層222を挟んで2層以上の遮光部を備える構成とすることにより、通常プロセスの範囲内でルーバー機能を実現することができる。本実施形態では、高分子分散液晶230とルーバー層20Lとを一体化した視野角制御セルにより、高分子分散液晶を備える液晶パネルとルーバー層とを別々の構成とする場合に比べて、厚み、重さ及び製造コストを抑えることができる。
【0060】
複数の第一の遮光部20L1は、各々、第一の光吸収層20A1を備えることが好ましい。このような態様とすることにより、第一の遮光部20L1で光を吸収して遮光することができる。複数の第二の遮光部20L2は、各々、第二の光吸収層20A2を備えることが好ましい。このような態様とすることにより、第二の遮光部20L2で光を吸収して遮光することができる。
【0061】
第一の光吸収層20A1及び第二の光吸収層20A2(以下、単に光吸収層ともいう)としては、背面側から入射した光(例えば、バックライト光)に対して、反射率よりも吸収率が高い材料で形成されたものであることが好ましく、例えば、バックライト光に対する吸収率が80%以上であることが好ましい。光吸収層としては、酸化金属膜、樹脂膜等が挙げられる。酸化金属膜としては、例えば、クロム(Cr)と酸化クロム(CrOx)との2層膜等が挙げられる。樹脂膜としては、例えば、ブラックレジストが挙げられる。ブラックレジストとしては、黒色の感光性樹脂が好ましく、例えば、黒色の感光性アクリル樹脂が挙げられる。
【0062】
図6に示すように、複数の第一の遮光部20L1は、各々、背面側(具体的にはバックライト40側)の表面に反射面20Mを備えることが好ましい。このような態様とすることにより、背面側からの光(具体的にはバックライト40からの光)を反射面20Mにより背面側へと反射させることができる。更に、バックライト40が反射シート42を備える場合に、反射面20Mからの反射光を反射シート42により再び観察面側へと反射させることが可能となり、バックライト40からの光をリサイクルすることができる。その結果、輝度の低下を抑制することができる。
【0063】
図13は、実施形態1の液晶パネルが備える遮光部全体が光吸収層により構成される場合について説明する断面模式図である。図13に示すように、第一の遮光部20L1の全体を第一の光吸収層20A1により形成すると、第二の支持基板221側の膜面において、背面側から入射してくる光(具体的には、バックライト40から入射してくる光)のうち、表示面に対して斜め方向の光も、表示面に対して法線方向の本来カットする必要のない光も、第一の光吸収層20A1に当たった光は全てカットしてしまうため輝度が低下する。そのため、複数の第一の遮光部20L1は、各々、背面側(具体的にはバックライト40側)の表面に光を反射させる反射面20Mを備えることにより、バックライト40に設けられた反射シート42との間で光をリサイクルし、輝度の低下を抑制することができる。
【0064】
反射面20Mは、バックライト40と対向するように設けられることが好ましい。反射面20Mを有することで、液晶パネル20に入射したバックライト光のうち、第一の遮光部20L1等の遮光領域に入射した光は、反射面20Mで反射し、バックライト40側に戻される。反射面20Mで反射された光は、バックライト40が備える反射シート42で反射し、再度、液晶パネル20に向かって射出されるため、バックライト光の利用効率を向上させることができる。
【0065】
反射面20Mは、第二の支持基板221の直上に形成されることが好ましいが、第二の支持基板221と反射面20Mとの間に、層間絶縁層を介してもよい。平面視において、反射面20Mは、第一の遮光部20L1と重なる領域に形成されることが好ましい。
【0066】
反射面20Mの材料としては、例えば、アルミニウム(Al)、銀(Ag)、銀とパラジウム(Pd)と銅(Cu)との合金(APC)等の高反射金属を用いることができる。また、Ta等の高屈折率層とMgF等の低屈折率層とを積層した誘電体多層膜(増反射膜)や、上記高反射金属と増反射膜とを積層したものも用いることができる。反射面20Mは、例えば、蒸着法、スパッタリング法等によって金属膜を形成した後、パターニングすることにより形成することができる。反射面20Mの反射率は、例えば、90%以上、100%以下である。
【0067】
複数の第一の遮光部20L1と同様に、複数の第二の遮光部20L2は、各々、背面側(具体的にはバックライト40側)の表面に反射面を備えてもよい。このような態様とすることにより、背面側からの光(具体的にはバックライト40からの光)を当該反射面により背面側へと反射させることができる。更に、バックライト40が反射シート42を備える場合に、反射面からの反射光を反射シート42により再び観察面側へと反射させることが可能となり、バックライト40からの光をリサイクルすることができる。その結果、輝度の低下を抑制することができる。
【0068】
複数の第一の遮光部20L1は、各々、第一の光吸収層20A1と、第一の光吸収層20A1に重畳し、かつ、第一の光吸収層20A1の背面側(具体的にはバックライト40側)の表面に設けられた反射面20Mと、を備えることが更に好ましい。このような態様とすることにより、第一の光吸収層20A1により吸収される背面側からの光(具体的にはバックライト40からの光)を反射面20Mにより背面側へと反射させることができる。更に、バックライト40が反射シート42を備える場合に、反射面20Mからの反射光を反射シート42により再び観察面側へと反射させることが可能となり、バックライト40からの光をリサイクルすることができる。その結果、輝度の低下を抑制することができる。
【0069】
同様に、複数の第二の遮光部20L2は、各々、第二の光吸収層20A2と、第二の光吸収層20A2に重畳し、かつ、第二の光吸収層20A2の背面側(具体的にはバックライト40側)の表面に設けられた反射面と、を備えていてもよい。このような態様とすることにより、第二の光吸収層20A2により吸収される背面側からの光(具体的にはバックライト40からの光)を当該反射面により背面側へと反射させることができる。更に、バックライト40が反射シート42を備える場合に、反射面からの反射光を反射シート42により再び観察面側へと反射させることが可能となり、バックライト40からの光をリサイクルすることができる。その結果、輝度の低下を抑制することができる。
【0070】
図14は、実施形態1の液晶パネルが備えるルーバー層の構成について説明する断面模式図である。ルーバー層20Lの視野角性能は主にスリット幅20Lswとスリット間距離20Lsdにて決まる。スリット幅20Lswは、互いに隣接する第一の遮光部20L1間の距離、及び、互いに隣接する第二の遮光部20L2間の距離を表す。また、スリット間距離20Lsdは、第一の遮光部20L1と第二の遮光部20L2との距離を表す。
【0071】
スリット幅20Lswは小さい方が好ましい。スリット幅20Lswは、例えば、1μm以上、10μm以下であることが好ましい。このような態様とすることにより視野角を絞ることができる。
【0072】
スリット間距離20Lsdは、1μm以上、30μm以下であることが好ましく、3μm以上、10μm以下であることが更に好ましい。このような態様とすることにより通常の液晶パネルの製造プロセス(一般的には10μm以内)に対応可能であり、かつ視野角を絞ることができる。
【0073】
第一の遮光部20L1及び第二の遮光部20L2の幅(遮光幅20Lw)は小さいほうが好ましい。第一の遮光部20L1及び第二の遮光部20L2の幅は、例えば、1μm以上、5μm以下であることが好ましい。このような態様とすることによりルーバー層20Lでの透過率を高めることができる。
【0074】
スリット幅20Lsw及び遮光幅20Lwは同じであっても互いに異なっていてもよい。例えば、スリット幅20Lsw及び遮光幅20Lwはそれぞれ4μmであってもよいし、スリット幅20Lswが4μmであり、遮光幅20Lwが8μmであってもよい。
【0075】
図15は、実施形態1の液晶表示装置が備える表示パネル及びルーバー層を重ね合わせた平面模式図である。本実施形態の表示パネル10は、互いに平行に延設された複数のゲート線10Gと、絶縁膜を介して各ゲート線10Gと交差する方向に互いに平行に延設され複数のソース線10Sと、を備える。また、表示パネル10は、ゲート線10Gと重畳する領域及びソース線10Sと重畳する領域にBM層10Bを備える。ゲート線10Gと重畳する領域のBM層10Bの幅は、例えば、50μmである。ソース線10Sと重畳する領域のBM層10Bの幅は、例えば、10μmである。
【0076】
複数のゲート線10Gは、画面左右方向(方位角0°-180°方向)及び画面上下方向(方位角90°-270°方向)の一方の方向に延設され、複数のソース線10Sは、画面左右方向及び画面上下方向の他方の方向に延設される。ここで、複数のゲート線10G及び複数のソース線10Sは、ミクロ的には(画素単位レベルでは)部分的に曲がっていたり、ジグザグ状(例えば、方位角90°-270°方向に対して±10°の角度をなすようなジグザグ状)に配置されていたりする場合もあるが、マクロ的には、画面上下方向又は画面左右方向に延設される。
【0077】
複数の遮光部(例えば、複数の第一の遮光部20L1)は、複数のゲート線10G又は複数のソース線10Sと同一の方向に延設されてもよい。ここで、複数のゲート線10G又は複数のソース線10Sと同一の方向に延設されるとは、マクロ的に同一方向に延設されることをいう。すなわち、複数のゲート線10G又は複数のソース線10Sがミクロ的に曲がっていたりジグザグ状であったりしても、複数の遮光部は、画面左右方向又は画面上下方向に直線状に設けられることをいう。
【0078】
複数の遮光部が、画面左右方向に延設される場合、画面上下方向の視野角を制御する(絞る)ことができる。複数の遮光部が、画面上下方向に延設される場合、画面左右方向の視野角を制御する(絞る)ことができる。
【0079】
遮光幅20Lw及びスリット幅20Lswの合計であるスリットピッチ20Lpが大きいとルーバー層20Lが縦縞状に視認されたり、表示パネル10の画素ピッチ10PIと干渉してモアレが発生したりする原因となる。そのため、表示パネル10は、マトリクス状に配置された複数の画素10Pを備え、複数の第一の遮光部20L1のうち、互いに隣接する第一の遮光部20L1間の距離を第一の遮光部20L1のスリット幅20Lswとし、複数の第一の遮光部20L1の各々の短手方向の幅を第一の遮光部20L1の遮光幅20Lwとし、第一の遮光部20L1のスリット幅20Lsw及び第一の遮光部20L1の遮光幅20Lwの合計を第一の遮光部20L1のスリットピッチ20Lpとするとき、画素10Pの画素ピッチ10PIは、第一の遮光部20L1のスリットピッチ20Lpの整数倍であることが好ましい。このような態様とすることにより、ルーバー層20Lが縦縞上に視認されたり、モアレが発生したりすることを抑制することができる。第二の遮光部20L2についても同様であり、画素10Pの画素ピッチ10PIは、第二の遮光部20L2のスリットピッチ20Lpの整数倍であることが好ましい。
【0080】
ここで、第一の遮光部20L1及び第二の遮光部20L2は延設されているため、当該延設方向が長手方向であり、当該長手方向に直交する方向が短手方向である。具体的には、図15に示すように、第一の遮光部20L1及び第二の遮光部20L2は、ソース線10Sと同一の方向に延設されるため、第一の遮光部20L1及び第二の遮光部20L2の長手方向はソース線10Sの延設方向と同じであり、第一の遮光部20L1及び第二の遮光部20L2の短手方向はゲート線10Gの延設方向と同じである。また、画素10Pとは、互いに隣接する2本のゲート線10G及び互いに隣接する2本のソース線10Sにより囲まれた領域である。画素ピッチ10PIとは、遮光幅20Lw方向(第一の遮光部20L1及び第二の遮光部20L2の短手方向)と同一の方向における画素10Pの幅である。
【0081】
図15のように、ゲート線10Gの延設方向における画素10Pの幅(画素ピッチ10PI)が48μmであり、ソース線10Sの延設方向における画素10Pの幅が144μmである場合、スリットピッチ20Lpは、8μm、9.6μm、12μm、16μm、24μm又は48μmであることが好ましい。また、遮光幅20Lwは、3μm以上、40μm以下であることが好ましく、3μm以上、10μm以下であることがより好ましい。スリット幅20Lswは3μm以上、40μm以下であることが好ましく、3μm以上、10μm以下であることがより好ましい。スリットピッチ20Lpが8μmである場合、例えば、遮光幅20Lwは4μm、スリット幅20Lswは4μmに設定することができる。
【0082】
第一の遮光部20L1のスリット幅20Lswは、第二の遮光部20L2のスリット幅20Lswと同一であっても互いに異なっていてもよいが、本実施形態では、同一である場合について説明する。
【0083】
第一の遮光部20L1の遮光幅20Lwは、第二の遮光部20L2の遮光幅20Lwと同一であっても互いに異なっていてもよいが、本実施形態では、同一である場合について説明する。
【0084】
第一の遮光部20L1のスリットピッチ20Lpは、第二の遮光部20L2のスリットピッチ20Lpと同一であっても互いに異なっていてもよいが、本実施形態では、同一である場合について説明する。
【0085】
第一の支持基板211及び第二の支持基板221は、透明基板であることが好ましく、例えば、ガラス基板、プラスチック基板等が挙げられる。
【0086】
第一の電極212及び第二の電極223は、画面全面を覆うようなベタ電極である。このような態様とすることにより、画面全体でパブリックモードとプライバシーモードとの切り替えを行うことができる。第一の電極212及び第二の電極223は、透明電極であってもよく、例えば、酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)、酸化亜鉛(ZnO)、酸化スズ(SnO)等の透明導電材料、又は、それらの合金で形成することができる。
【0087】
絶縁層222は、有機絶縁膜、無機絶縁膜、又は、上記有機絶縁膜と無機絶縁膜との積層体を用いることができる。有機絶縁膜としては、例えば、アクリル樹脂、ポリイミド樹脂、ノボラック樹脂等の有機膜(比誘電率ε=2~5)や、それらの積層体を用いることができる。有機絶縁膜の膜厚は特に限定されないが、例えば、2μm以上、4μm以下である。無機絶縁膜としては、例えば、窒化珪素(SiNx)、酸化珪素(SiO2)等の無機膜(比誘電率ε=5~7)や、それらの積層膜を用いることができる。無機絶縁膜の膜厚は、例えば、1500Å以上、3500Å以下である。
【0088】
絶縁層222の膜厚は、1μm以上、30μm以下であることが好ましい。このような態様とすることにより、通常プロセスの範囲内でルーバー層20Lに対してルーバー機能を付与することができる。絶縁層222の膜厚は、2μm以上、20μm以下であることがより好ましく、3μm以上、10μm以下であることが更に好ましい。
【0089】
高分子分散液晶230は、ポリマーネットワーク231及び液晶成分232を有し、第一の基板210及び第二の基板220に挟持されている。高分子分散液晶230では、光重合性液晶化合物の硬化物の繊維状マトリクスが凝集して三次元的に連続したポリマーネットワークが形成されており、該ポリマーネットワーク中に液晶成分が相分離した状態となっている。
【0090】
高分子分散液晶230は、光重合性液晶化合物の硬化物で構成されたポリマーネットワーク231、及び、液晶成分232を含み、電圧無印加時に散乱状態であり、電圧印加時に透過状態である。ここで、電圧無印加時とは、高分子分散液晶230への印加電圧が閾値電圧未満(電圧無印加を含む)である時を意味し、電圧印加時とは、高分子分散液晶230への印加電圧が閾値電圧以上である時を意味する。本明細書において、電圧無印加時は電圧無印加状態ともいい、電圧印加時は電圧印加状態ともいう。
【0091】
図3に示すように、電圧無印加時において、ポリマーネットワーク231と液晶成分232の配向方位は互いに異なることが好ましい。このような態様とすることにより、電圧無印加時には、高分子分散液晶230の厚み方向を含むあらゆる方向において、ポリマーネットワーク231と液晶成分232との異常光屈折率neの屈折率差、及び、ポリマーネットワーク231と液晶成分232との常光屈折率noの屈折率差が大きくなる。そのため、液晶パネル20へ入射した光は高分子分散液晶230において散乱し、散乱状態を実現することができる。なお、高分子分散液晶230の厚み方向を含むあらゆる方向において、ポリマーネットワーク231と液晶成分232との異常光屈折率neの屈折率差、及び、ポリマーネットワーク231と液晶成分232との常光屈折率noの屈折率差が大きい状態は、ポリマーネットワーク231と液晶成分232との屈折率のミスマッチングがとれている状態とも言える。
【0092】
散乱状態とは、光を散乱する状態である。例えば、散乱状態にある高分子分散液晶230の光透過率は10%以下であってよく、8%以下であってよい。また、散乱状態にある高分子分散液晶230の光透過率は0%以上であってよい。また、散乱状態にある高分子分散液晶230の光散乱率を示すヘイズは、印加された電圧に応じて変化するが、例えば、80%以上であってよく、90%以上であってよい。また、散乱状態にある高分子分散液晶230の光散乱率を示すヘイズは、100%以下であってよい。本実施形態では、散乱状態にある高分子分散液晶230は、可視光を散乱する。そのため、散乱状態にある高分子分散液晶230は、曇りガラスと同様の状態である。本明細書中、ヘイズは、JIS K 7136に準拠した方法で測定される。上記ヘイズは、例えば、日本電色工業社製の濁度計「HazeMeter NDH2000」等により、光源としてハロゲンランプを用いることができる。
【0093】
図5に示すように、電圧印加時において、ポリマーネットワーク231と液晶成分232の配向方位が略等しいことが好ましい。このような態様とすることにより、電圧印加時には、高分子分散液晶230の厚み方向を含むあらゆる方向において、ポリマーネットワーク231と液晶成分232との異常光屈折率neの屈折率差、及び、ポリマーネットワーク231と液晶成分232との常光屈折率noの屈折率差がほとんどない。そのため、液晶パネル20へ入射した光は高分子分散液晶230を透過し、透過状態を実現することができる。なお、高分子分散液晶230の厚み方向を含むあらゆる方向において、ポリマーネットワーク231と液晶成分232との異常光屈折率neの屈折率差、及び、ポリマーネットワーク231と液晶成分232との常光屈折率noの屈折率差がほとんどない状態は、ポリマーネットワーク231と液晶成分232との屈折率のマッチングがとれている状態とも言える。
【0094】
透過状態とは、光に対して透明性を有する状態である。例えば、透過状態にある高分子分散液晶230の光透過率は80%以上であってよく、90%以上であってよい。また、透過状態にある高分子分散液晶230の光透過率は100%以下であってよい。本実施形態では、透過状態にある高分子分散液晶230は、可視光に対して透明である。
【0095】
ポリマーネットワーク231を形成するための光重合性液晶化合物としては、例えば、室温で液晶相を示して液晶成分232と相溶し、紫外線照射により硬化してポリマーが形成される場合に液晶成分232と相分離するものである。
【0096】
光重合性液晶化合物としては、例えば、ビフェニル基、ターフェニル基、ナフタレン基、フェニルベンゾエート基、アゾベンゼン基、及び、これらの誘導体などの置換基(以下、メソゲン基ともいう)、シンナモイル基、カルコン基、シンナミリデン基、β-(2-フェニル)アクリロイル基、桂皮酸基、及び、これらの誘導体などの光反応性基、並びに、アクリレート、メタクリレート、マレイミド、N-フェニルマレイミド、シロキサンなどの重合性基、を有するモノマーを挙げることができる。重合性基はアクリレートが好ましい。また、光重合性液晶化合物が有する1分子あたりの重合性基の数は特に限定されないが、1つ又は2つであることが好ましい。
【0097】
液晶成分232は、アクリレート、メタクリレート、マレイミド、N-フェニルマレイミド、シロキサンなどの重合性基を有していなくてよい。
【0098】
本実施形態において、液晶成分232は、下記式(L)で定義される誘電率異方性(Δε)が正の値を有するものであってもよく、負の値を有するものであってもよい。正の誘電率異方性を有する液晶成分(液晶分子)は電界方向と平行方向に配向し、負の誘電率異方性を有する液晶成分(液晶分子)は電界方向と垂直方向に配向する。なお、正の誘電率異方性を有する液晶成分(液晶分子)はポジ型液晶ともいい、負の誘電率異方性を有する液晶成分(液晶分子)はネガ型液晶ともいう。また、液晶成分(液晶分子)の長軸方向が遅相軸の方向となる。また、電圧無印加時における液晶成分(液晶分子)の長軸の方向は、液晶成分(液晶分子)の初期配向の方向ともいう。
Δε=(液晶成分(液晶分子)の長軸方向の誘電率)-(液晶成分(液晶分子)の短軸方向の誘電率) (L)
【0099】
液晶成分232としては、例えば、トラン系の液晶材料(-C≡C-(炭素炭素三重結合)を連結基として有する液晶材料)を用いることができる。
【0100】
液晶成分232の屈折率異方性Δnは、0.18以上、0.24以下であり、液晶成分232の誘電率異方性Δεは、15以上、25以下であり、液晶成分232の回転粘性γ1は、100mPa・s以上、300mPa・s以下であることが好ましい。このような態様とすることにより、強散乱及び低電圧駆動の両立可能とし、かつ、ポリマーネットワークを含有しない通常の液晶表示装置と同等の応答速度を実現することができる。液晶成分232の屈折率異方性Δn、誘電率異方性Δε及び回転粘性γ1が全て上記の範囲内となることにより、このような効果を効果的に実現することができる。
【0101】
トラン系の液晶材料の具体例としては、下記一般式(L1)で表される構造を有する液晶材料が挙げられる。
【0102】
【化1】
(上記式中、Q及びQは、それぞれ独立に芳香環基を表し、Xは、フッ素基又はシアノ基を表し、n及びnは、それぞれ独立に0又は1を表す。)
【0103】
上記一般式(L1)におけるn及びnは、同時に0となることはない。すなわち、n及びnの和は1又は2である。
【0104】
上記一般式(L1)における芳香環基は置換基を有していてもよい。
【0105】
上記一般式(L1)中、Q及びQは、それぞれ独立に、下記一般式(L2-1)~(L2-7)のいずれかの構造であることが好ましい。
【0106】
【化2】
【0107】
上記一般式(L1)で表される構造を有する液晶材料の具体的構造としては、例えば以下の化学式(L1-1)~(L1-21)で表される構造が挙げられる。
【0108】
【化3】
【0109】
液晶成分232とポリマーネットワーク231との重量比は、液晶成分:ポリマーネットワーク=90:10~97:3であることが好ましい。すなわち、液晶成分232の重量比が90以上、97以下であり、液晶成分232の重量比が90以上であるとき、ポリマーネットワーク231の重量比は10以下であり、液晶成分232の重量比が97以下であるとき、ポリマーネットワーク231の重量比は3以上であることが好ましい。このような態様とすることにより、強散乱及び低電圧駆動を効果的に両立させることが可能となる。ポリマーネットワーク231の重量比が10を超えると強散乱は得られるが駆動電圧が高くなり、ポリマーネットワーク231の重量比が3未満であると駆動電圧は抑えられるが強散乱が得られない場合がある。
【0110】
表示パネル10は、画像を表示する機能を有するものであればよい。表示パネル10は、画像表示のオン・オフが可能である。本実施形態では、表示パネル10として液晶表示パネル10LCを例に挙げて説明する。
【0111】
図15に示すように、表示パネル10は、マトリクス状に複数の画素10Pが配列され、画像を表示可能な表示領域(アクティブエリア)10A1と、表示領域10A1を取り囲むとともに画像を表示不能な非表示領域(ノンアクティブエリア)10A2と、に区分されている。ゲート線10G、ソース線10S及びBM層10Bは、非表示領域10A2に設けられる。第一の遮光部20L1及び第二の遮光部20L2は、表示領域10A1と重畳する領域に設けられる。このような態様とすることにより、プライバシーモードにおいて、表示パネル10に表示される画像をより効果的に斜め方向から視認されにくくすることができる。第一の遮光部20L1及び第二の遮光部20L2は、表示領域10A1に加えて、非表示領域10A2に設けられていてもよい。
【0112】
図2及び図4に示すように、表示パネル10は、観察面側から背面側に向かって順に、カラーフィルタ(CF:Color Filter)層を備えるCF基板110と、液晶層130と、薄膜トランジスタ(TFT:Thin Film Transistor)を備えるTFT基板120と、を有する。
【0113】
TFT基板120は、絶縁基板を有し、表示領域において、絶縁基板上に、互いに平行に延設された複数のゲート線と、絶縁膜を介して各ゲート線と交差する方向に互いに平行に延設され複数のソース線と、を備える。複数のゲート線及び複数のソース線は、各画素を区画するように全体として格子状に形成されている。各ソース線と各ゲート線との交点にはスイッチング素子としての薄膜トランジスタが配置されている。
【0114】
TFT基板120は、絶縁基板の液晶層130側の表面上に配置される面状の共通電極と、共通電極を覆う絶縁膜と、絶縁膜の液晶層側の表面上に配置され、かつスリットが設けられた画素電極と、を有している。画素電極は、互いに隣接する2本のソース線と互いに隣接する2本のゲート線とに囲まれた各領域に配置され、画素電極は、薄膜トランジスタが備える半導体層を介して対応するソース線と電気的に接続されている。すなわち、本実施形態の表示パネル10は、FFS(Fringe Field Switching)モードの液晶表示パネルである。なお、共通電極及び画素電極の配置は入れ替わっていてもよい。その場合、各画素領域を占めるように形成された面状の画素電極上に、絶縁膜を介して、スリットが設けられた共通電極が配置される。
【0115】
本実施形態では、画素電極及び共通電極が一方の基板に設けられた水平配向モードの表示パネル10について説明するが、表示パネル10の表示モードはこれに限定されず、画素電極がTFT基板120に設けられ、共通電極がCF基板110に設けられる垂直配向モードであってもよい。水平配向モードとは、液晶分子を、液晶層への電圧無印加時に一対の基板の各々の主面に対して略水平な方向に配向させるモードをいい、上述のFFSモードの他に、例えば、IPS(In-Plane Switching)モードが挙げられる。また、垂直配向モードとは、液晶分子を、液晶層への電圧無印加時に一対の基板の各々の主面に対して略垂直な方向に配向させるモードをいい、例えば、VA(Vertical Alignment)モード、TN(Twisted Nematic)モード等が挙げられる。
【0116】
TFT基板120と液晶層130との間、及び、CF基板110と液晶層130との間には、それぞれ、液晶層130に含まれる液晶分子の配向を制御する機能を有する配向膜が配置されており、画素電極及び共通電極間に電圧が印加されていない電圧無印加状態において、液晶層130に含まれる液晶分子は、一対の基板の各々の主面に対して略水平に配向している。
【0117】
表示パネル10は、ソース線に電気的に接続されたソースドライバ、ゲート線に電気的に接続されたゲートドライバ、及び、コントローラを更に備えている。ゲートドライバは、コントローラによる制御に基づいて、ゲート線に走査信号を順次供給する。ソースドライバは、TFTが走査信号によって電圧印加状態となるタイミングで、コントローラによる制御に基づいてソース線にデータ信号を供給する。画素電極は各々、対応するTFTを介して供給されるデータ信号に応じた電位に設定され、画素電極と共通電極との間でフリンジ電界が発生し、液晶層の液晶分子が回転する。このようにして画素電極と共通電極との間に印加する電圧の大きさを制御し、液晶層のリタデーションを変化させ、光の透過、不透過を制御する。
【0118】
CF基板110としては、液晶パネルの分野で一般的に用いられるものを使用可能であり、例えば、ガラス基板等の透明基板の表面上に、カラーフィルタ、ブラックマトリクス(BM:Black Matrix)層等の部材が配置される構成であってもよい。より具体的には、CF基板110は、絶縁基板上に、ゲート線及びソース線に対応するように格子状に設けられたブラックマトリクスと、ブラックマトリクスの格子間に周期的に配列するよう設けられた赤色層、緑色層及び青色層を含む複数色のカラーフィルタと、それらブラックマトリクス及び各カラーフィルタを覆うように設けられた透明絶縁樹脂からなるオーバーコート層と、該オーバーコート層上に柱状に設けられたフォトスペーサとを備えている。
【0119】
図2図6に示すように、バックライト40は、光源41と反射シート42とを有する。本実施形態に用いられるバックライト40は、液晶パネル20に対して光を照射するものであれば特に限定されず、直下型でもよいし、エッジライト型でもよい。バックライト40の光源としては、一般的なバックライト光源、例えば、冷陰極管(CCFL)、発光ダイオード(LED)等の光源を使用することができる。
【0120】
エッジライト型の場合を例に挙げると、図6に示すように、光源41、反射シート42及び導光板43、を有する構成が挙げられる。光源41は、導光板43の端面に配置され、反射シート42は、導光板43の背面に配置される。導光板43は、液晶表示装置の分野において通常使用されるものを用いることができる。反射シート42としては、例えば、アルミ板、白色ポリエチレンテレフタレート(PET)フィルム、反射フィルム(例えば、3M社製、ESR(Enhanced Specular Reflector)フィルム))等が挙げられる。
【0121】
本実施形態の液晶表示装置1は、上述の部材の他、TCP(テープ・キャリア・パッケージ)、PCB(プリント配線基板)等の外部回路;視野角拡大フィルム、輝度向上フィルム等の光学フィルム;ベゼル(フレーム)等の複数の部材により構成されるものであり、部材によっては、他の部材に組み込まれていてもよい。既に説明した部材以外の部材については特に限定されず、液晶表示装置の分野において通常使用されるものを用いることができるので、説明を省略する。
【0122】
(実施形態2)
本実施形態では、本実施形態に特有の特徴について主に説明し、上記実施形態1と重複する内容については説明を省略する。本実施形態は、第二の遮光部20L2の配置が異なり、絶縁層222を備えないことを除いて、実施形態1と実質的に同じである。
【0123】
図16は、実施形態2の液晶パネルの断面模式図である。上記実施形態1では、第二の遮光部20L2を第二の基板220側に配置したが、本実施形態では、図16に示すように、第一の基板210が第二の遮光部20L2を備える。このような態様によっても、複数の第一の遮光部20L1及び複数の第二の遮光部20L2が、正面方向の光1LAを透過し、斜め方向の光1LBを遮るルーバー層20Lとして機能する。また、液晶パネル20は高分子分散液晶230を備えるため、高分子分散液晶230に印加される電圧を調整して、液晶パネル20に入射する光を散乱させる散乱状態と、液晶パネル20に入射する光を透過させる透過状態とを切り替えることが可能となる。
【0124】
本実施形態においても、液晶パネル20が高分子分散液晶230に加えてルーバー層20Lも備えるため、液晶パネル20により、すなわち、1つの部材により視野角を制御することができる。したがって、本実施形態の液晶パネル20により、比較形態に比べて厚さを抑えつつ視野角を制御することができる。
【0125】
また、本実施形態では、複数の第二の遮光部20L2は、高分子分散液晶230を介して、複数の第一の遮光部20L1の観察面側に配置される。上述の通り、遮光部は、例えば、黒化処理したメタルで形成されるが、通常プロセスで形成可能なメタルの厚みは0.5μm程度であり、ルーバー機能として必要な厚み(数μm~数十μm)を形成することが困難である。しかしながら、本実施形態のように、ルーバー層20Lを、高分子分散液晶230を挟んで2層以上の遮光部を備える構成とすることにより、通常プロセスの範囲内でルーバー機能を実現することができる。本実施形態の液晶パネル20は絶縁層222を備えないため、上記実施形態1の液晶パネル20に比べて製造プロセスを短縮することができる。
【0126】
(実施形態3)
本実施形態では、本実施形態に特有の特徴について主に説明し、上記実施形態1と重複する内容については説明を省略する。本実施形態は、ルーバー層20Lが第一の遮光部20L1及び第二の遮光部20L2の他に、追加の遮光部を備えることを除いて、実施形態1と実質的に同じである。
【0127】
図17は、実施形態3の液晶パネルに入射する光について説明する断面模式図である。図17に示すように、本実施形態の液晶パネル20は、互いに平行に延設された複数の第一の遮光部20L1と、複数の第一の遮光部20L1と同一の方向に互いに平行に延設され、かつ、複数の第一の遮光部20L1よりも観察面側に位置する複数の第二の遮光部20L2と、複数の第一の遮光部20L1と同一の方向に互いに平行に延設され、複数の第一の遮光部20L1よりも観察面側に位置し、かつ、複数の第二の遮光部20L2よりも背面側に位置する複数の第三の遮光部20L3と、を備える。このような態様によっても、複数の第一の遮光部20L1、複数の第二の遮光部20L2及び複数の第三の遮光部20L3が、正面方向の光1LAを透過し、斜め方向の光1LBを遮るルーバー層20Lとして機能する。複数の第三の遮光部20L3が設けられる層を第三の遮光層ともいう。また、液晶パネル20は高分子分散液晶230を備えるため、高分子分散液晶230に印加される電圧を調整して、液晶パネル20に入射する光を散乱させる散乱状態と、液晶パネル20に入射する光を透過させる透過状態とを切り替えることが可能となる。
【0128】
本実施形態においても、液晶パネル20が高分子分散液晶230に加えてルーバー層20Lも備えるため、液晶パネル20により、すなわち、1つの部材により視野角を制御することができる。したがって、本実施形態の液晶パネル20により、比較形態に比べて厚さを抑えつつ視野角を制御することができる。
【0129】
図18は、実施形態1の液晶パネルに入射する光について説明する断面模式図である。本実施形態のルーバー層20Lは、図17に示すように、複数の第一の遮光部20L1、複数の第二の遮光部20L2及び複数の第三の遮光部20L3を備える三層構造を有する。一方、上記実施形態1のルーバー層20Lは、図18に示すように、複数の第一の遮光部20L1及び複数の第二の遮光部20L2を備える二層構造を有する。ここで、背面側からの光(具体的にはバックライト40から出射される光)のうち、複数の第一の遮光部20L1間のスリットから、当該スリットの真上のスリットへと抜ける光を一次光、上記真上のスリットの一つ隣のスリットへ抜ける光を二次光、更に隣のスリットへ抜ける光を三次光とすると、図18に示すように、上記実施形態1のような二層構造では遮光できない二次光以上の光を、本実施形態ではルーバー層20Lを三層構造とすることにより、図17に示すように、カットすることが可能となる。その結果、ルーバー層20Lから狭指向角の光を出射することができる。
【0130】
第三の遮光部20L3は、第二の遮光部20L2と同様である。複数の第三の遮光部20L3は、各々、第三の光吸収層20A3を備えることが好ましい。第三の光吸収層20A3は、第一の光吸収層20A1及び第二の光吸収層20A2と同様である。
【0131】
複数の第三の遮光部20L3は、各々、背面側(具体的にはバックライト40側)の表面に反射面を備えてもよい。このような態様とすることにより、背面側からの光(具体的にはバックライト40からの光)を当該反射面により背面側へと反射させることができる。更に、バックライト40が反射シート42を備える場合に、反射面からの反射光を反射シート42により再び観察面側へと反射させることが可能となり、バックライト40からの光をリサイクルすることができる。その結果、輝度の低下を抑制することができる。
【0132】
複数の第三の遮光部20L3は、各々、第三の光吸収層20A3と、第三の光吸収層20A3に重畳し、かつ、第三の光吸収層20A3の背面側(具体的にはバックライト40側)の表面に設けられた反射面と、を備えていてもよい。このような態様とすることにより、第三の光吸収層20A3により吸収される背面側からの光(具体的にはバックライト40からの光)を当該反射面により背面側へと反射させることができる。更に、バックライト40が反射シート42を備える場合に、反射面からの反射光を反射シート42により再び観察面側へと反射させることが可能となり、バックライト40からの光をリサイクルすることができる。その結果、輝度の低下を抑制することができる。
【0133】
第三の遮光部20L3のスリット幅20Lswは、第一の遮光部20L1のスリット幅20Lswと同一であっても互いに異なっていてもよい。第三の遮光部20L3のスリット幅20Lswは、第二の遮光部20L2のスリット幅20Lswと同一であっても互いに異なっていてもよい。本実施形態では、第三の遮光部20L3のスリット幅20Lswが、第一の遮光部20L1及び第二の遮光部20L2のスリット幅20Lswと同じである場合について説明する。
【0134】
第三の遮光部20L3の遮光幅20Lwは、第一の遮光部20L1の遮光幅20Lwと同一であっても互いに異なっていてもよい。第三の遮光部20L3の遮光幅20Lwは、第二の遮光部20L2の遮光幅20Lwと同一であっても互いに異なっていてもよい。本実施形態では、第三の遮光部20L3の遮光幅20Lwが、第一の遮光部20L1及び第二の遮光部20L2の遮光幅20Lwと同じである場合について説明する。
【0135】
第三の遮光部20L3のスリットピッチ20Lpは、第一の遮光部20L1のスリットピッチ20Lpと同一であっても互いに異なっていてもよい。第三の遮光部20L3のスリットピッチ20Lpは、第二の遮光部20L2のスリットピッチ20Lpと同一であっても互いに異なっていてもよい。本実施形態では、第三の遮光部20L3のスリットピッチ20Lpが、第一の遮光部20L1及び第二の遮光部20L2のスリットピッチ20Lpと同じである場合について説明する。
【0136】
平面視において、複数の第一の遮光部20L1及び複数の第三の遮光部20L3が配置されていない複数の第一の隙間B1と、複数の第二の遮光部20L2及び複数の第三の遮光部20L3が配置されていない複数の第二の隙間B2と、を有することが好ましい。このような態様とすることにより、二次光以上の光をカットし、狭視野角モードにおける視野角の広がりを抑えることができる。
【0137】
複数の第一の隙間B1は、各々、1μm以上、10μm以下であることが好ましい。複数の第二の隙間B2は、各々、1μm以上、10μm以下であることが好ましい。
【0138】
(実施形態3の変形例1)
上記実施形態3では、ルーバー層20Lが三層構造である場合について説明したが、ルーバー層20Lは、複数の第一の遮光部20L1、複数の第二の遮光部20L2及び複数の第三の遮光部20L3に加えて、複数の第一の遮光部20L1と同一の方向に互いに平行に延設され、複数の第一の遮光部20L1よりも観察面側に位置し、かつ、複数の第三の遮光部20L3よりも背面側に位置する複数の第四の遮光部20L4を備える四層構造を有していてもよい。このような態様とすることにより、二次光を効果的にカットすることが可能となり、プライバシー性能を高めることができる。複数の第四の遮光部20L4が設けられる層を第四の遮光層ともいう。
【0139】
第四の遮光部20L4は、第二の遮光部20L2と同様である。複数の第四の遮光部20L4は、各々、第四の光吸収層20A4を備えることが好ましい。第四の光吸収層20A4は、第一の光吸収層20A1、第二の光吸収層20A2及び第三の光吸収層20A3と同様である。
【0140】
複数の第四の遮光部20L4は、各々、背面側(具体的にはバックライト40側)の表面に反射面を備えてもよい。このような態様とすることにより、背面側からの光(具体的にはバックライト40からの光)を当該反射面により背面側へと反射させることができる。更に、バックライト40が反射シート42を備える場合に、反射面からの反射光を反射シート42により再び観察面側へと反射させることが可能となり、バックライト40からの光をリサイクルすることができる。その結果、輝度の低下を抑制することができる。
【0141】
複数の第四の遮光部20L4は、各々、第四の光吸収層20A4と、第四の光吸収層20A4に重畳し、かつ、第四の光吸収層20A4の背面側(具体的にはバックライト40側)の表面に設けられた反射面と、を備えていてもよい。このような態様とすることにより、第四の光吸収層20A4により吸収される背面側からの光(具体的にはバックライト40からの光)を当該反射面により背面側へと反射させることができる。更に、バックライト40が反射シート42を備える場合に、反射面からの反射光を反射シート42により再び観察面側へと反射させることが可能となり、バックライト40からの光をリサイクルすることができる。その結果、輝度の低下を抑制することができる。
【0142】
第四の遮光部20L4のスリット幅20Lswは、第一の遮光部20L1のスリット幅20Lswと同一であっても互いに異なっていてもよい。第四の遮光部20L4のスリット幅20Lswは、第二の遮光部20L2のスリット幅20Lswと同一であっても互いに異なっていてもよい。第四の遮光部20L4のスリット幅20Lswは、第三の遮光部20L3のスリット幅20Lswと同一であっても互いに異なっていてもよい。本実施形態では、第四の遮光部20L4のスリット幅20Lswが、第一の遮光部20L1、第二の遮光部20L2及び第三の遮光部20L3のスリット幅20Lswと同じである場合について説明する。
【0143】
第四の遮光部20L4の遮光幅20Lwは、第一の遮光部20L1の遮光幅20Lwと同一であっても互いに異なっていてもよい。第四の遮光部20L4の遮光幅20Lwは、第二の遮光部20L2の遮光幅20Lwと同一であっても互いに異なっていてもよい。第四の遮光部20L4の遮光幅20Lwは、第三の遮光部20L3の遮光幅20Lwと同一であっても互いに異なっていてもよい。本実施形態では、第四の遮光部20L4の遮光幅20Lwが、第一の遮光部20L1、第二の遮光部20L2及び第三の遮光部20L3の遮光幅20Lwと同じである場合について説明する。
【0144】
第四の遮光部20L4のスリットピッチ20Lpは、第一の遮光部20L1のスリットピッチ20Lpと同一であっても互いに異なっていてもよい。第四の遮光部20L4のスリットピッチ20Lpは、第二の遮光部20L2のスリットピッチ20Lpと同一であっても互いに異なっていてもよい。第四の遮光部20L4のスリットピッチ20Lpは、第三の遮光部20L3のスリットピッチ20Lpと同一であっても互いに異なっていてもよい。本実施形態では、第四の遮光部20L4のスリットピッチ20Lpが、第一の遮光部20L1、第二の遮光部20L2及び第三の遮光部20L3のスリットピッチ20Lpと同じである場合について説明する。
【0145】
平面視において、複数の第四の遮光部20L4は、複数の第一の遮光部20L1と同一の位置に配置されることが好ましい。このような態様とすることにより、二次光をより効果的にカットすることが可能となり、プライバシー性能をより高めることができる。同様に、平面視において、第四の遮光部20L4は、複数の第二の遮光部20L2と同一の位置に配置されることが好ましい。このような態様とすることにより、二次光をより効果的にカットすることが可能となり、プライバシー性能をより高めることができる。
【0146】
(実施形態3の変形例2)
上記実施形態3では、平面視において、第一の遮光部20L1は、第二の遮光部20L2と同一の位置に配置される態様について説明したが、第一の遮光部20L1は、第二の遮光部20L2と同一の位置に配置されていなくてもよい。
【0147】
図19は、実施形態3の変形例2の液晶パネルの断面模式図である。本変形例の液晶パネル20は、図19に示すように、ドライバー席及び助手席の車両前方側に配置される車載用の液晶パネルであって、平面視において、複数の第一の遮光部20L1及び複数の第二の遮光部20L2が配置されていない複数の第三の隙間B3と、複数の第三の遮光部20L3及び複数の第二の遮光部20L2が配置されていない複数の第四の隙間B4と、を有し、複数の第三の隙間B3の各々は、複数の第一の遮光部20L1の各々の上記ドライバー席側に隣接し、複数の第四の隙間B4の各々は、複数の第三の遮光部20L3の各々の上記ドライバー席側に隣接する。このような態様とすることにより、プライバシーモードにおいて、ドライバー席側だけで狭視野角を実現し、かつ、助手席側において輝度を向上させることができる。第三の隙間B3は、例えば、0.4μm以上、0.6μm以下であり、第四の隙間B4は、例えば、2.0μm以上、2.5μm以下である。
【0148】
(実施形態4)
本実施形態では、本実施形態に特有の特徴について主に説明し、上記実施形態1と重複する内容については説明を省略する。本実施形態は、第二の遮光部20L2の形状が異なることを除いて、実施形態1と実質的に同じである。
【0149】
図20は、実施形態4の液晶パネルに入射する光について説明する断面模式図である。図20に示すように、本実施形態の液晶パネル20は、互いに平行に延設された複数の第一の遮光部20L1と、複数の第一の遮光部20L1と同一の方向に互いに平行に延設され、かつ、複数の第一の遮光部20L1よりも観察面側に位置する複数の第二の遮光部20L2と、を備える。このような態様により、複数の第一の遮光部20L1及び複数の第二の遮光部20L2が、正面方向の光1LAを透過し、斜め方向の光1LBを遮るルーバー層20Lとして機能する。また、液晶パネル20は、高分子分散液晶230を備えるため、高分子分散液晶230に印加される電圧を調整して、液晶パネル20に入射する光を散乱させる散乱状態と、液晶パネル20に入射する光を透過させる透過状態とを切り替えることが可能となる。
【0150】
本実施形態においても、液晶パネル20が高分子分散液晶230に加えてルーバー層20Lも備えるため、液晶パネル20により、すなわち、1つの部材により視野角を制御することができる。したがって、本実施形態の液晶パネル20により、比較形態に比べて厚さを抑えつつ視野角を制御することができる。
【0151】
本実施形態において、絶縁層222は、観察面側の表面に複数のホール222Aが設けられており、複数の第二の遮光部20L2は、それぞれ、複数のホール222Aのうち対応するホール222Aを覆うように設けられている。このような態様によっても、上記実施形態3のように、ルーバー層20Lが三層構造を有する場合と同様の効果が得られる。ホール222Aは凹部を有していればよく、貫通孔でなくてもよい。上記実施形態1~3では、第二の遮光部20L2は平面状に設けられるが、本実施形態の第二の遮光部20L2は、絶縁層222に設けられたホール222Aを覆うように配置される。
【0152】
(実施形態5)
本実施形態では、本実施形態に特有の特徴について主に説明し、上記実施形態1と重複する内容については説明を省略する。本実施形態は、表示パネル10及び液晶パネル20の配置が異なることを除いて、上記実施形態1と同様である。
【0153】
図21は、実施形態5の液晶表示装置の断面模式図である。図21に示すように、本実施形態の液晶表示装置1は、観察面側から背面側に向かって順に、液晶パネル20と、表示パネル10としての液晶表示パネル10LCと、バックライト40と、を備える。このような態様によっても、複数の第一の遮光部20L1及び複数の第二の遮光部20L2が、正面方向の光1LAを透過し、斜め方向の光1LBを遮るルーバー層20Lとして機能する。また、液晶パネル20は高分子分散液晶230を備えるため、高分子分散液晶230に印加される電圧を調整して、液晶パネル20に入射する光を散乱させる散乱状態と、液晶パネル20に入射する光を透過させる透過状態とを切り替えることが可能となる。
【0154】
本実施形態においても、液晶パネル20が高分子分散液晶230に加えてルーバー層20Lも備えるため、液晶パネル20により、すなわち、1つの部材により視野角を制御することができる。したがって、本実施形態の液晶パネル20により、比較形態に比べて厚さを抑えつつ視野角を制御することができる。
【0155】
また、バックライト40からの光は液晶表示パネル10LCを通過した後に液晶パネル20に入射し、広視野角モードでは低い極角側から高い極角側の光が液晶パネル20から出射され、狭視野角モードでは低極角側の光のみが液晶パネル20から出射される。このように、液晶パネル20に対する、表示パネル10の配置は制限されること無く、適宜配置が可能である。
【0156】
(実施形態6)
本実施形態では、本実施形態に特有の特徴について主に説明し、上記実施形態1と重複する内容については説明を省略する。本実施形態は、表示パネル10の構成が異なり、バックライトを備えないことを除いて、上記実施形態1と同様である。
【0157】
図22は、実施形態6の液晶表示装置の断面模式図である。図22に示すように、表示パネル10は、有機エレクトロルミネッセンス表示パネル10ELであり、観察面側から背面側に向かって順に、液晶パネル20と、有機エレクトロルミネッセンス表示パネル10ELと、を備える。このような態様によっても、複数の第一の遮光部20L1及び複数の第二の遮光部20L2が、正面方向の光1LAを透過し、斜め方向の光1LBを遮るルーバー層20Lとして機能する。また、液晶パネル20は高分子分散液晶230を備えるため、高分子分散液晶230に印加される電圧を調整して、液晶パネル20に入射する光を散乱させる散乱状態と、液晶パネル20に入射する光を透過させる透過状態とを切り替えることが可能となる。
【0158】
本実施形態においても、液晶パネル20が高分子分散液晶230に加えてルーバー層20Lも備えるため、液晶パネル20により、すなわち、1つの部材により視野角を制御することができる。したがって、本実施形態の液晶パネル20により、比較形態に比べて厚さを抑えつつ視野角を制御することができる。
【0159】
また、このような態様とすることにより、バックライトを配置することなく画像を表示することが可能となる。その結果、本実施形態では、比較形態に比べて、厚み、重さ及び製造コストを抑えることができる。
【0160】
以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。
【0161】
(実施例1)
図23Aは、実施例1の液晶表示装置が備えるルーバー層の断面模式図である。図23Bは、実施例1の液晶表示装置のバックライトから出射する光について説明する断面模式図である。実施例1の液晶表示装置は、二層構造のルーバー層20Lを備える上記実施形態1の液晶表示装置1に対応する。実施例1の液晶表示装置の、狭視野角モードにおける視野角をシミュレーションにより計算した。シミュレーションは以下に示す幾何学計算によって行った。実施例における視野角とは、極角を意味する。表示パネル10のサイズは12.4型、解像度はFHD、ゲート線10Gの延設方向における画素10Pの幅(画素ピッチ10PI)は48μmであり、ソース線10Sの延設方向における画素10Pの幅は144μmに設定した。
【0162】
また、図23Aに示すように、ルーバー層20Lは、複数の第一の遮光部20L1(第一の遮光層)及び複数の第二の遮光部20L2(第二の遮光層)を有する二層構造とした。第一の遮光部20L1及び第二の遮光部20L2のスリット幅20Lswは4.00μm、遮光幅20Lwは4.00μm、スリットピッチ20Lpは8.00μmに設定した。平面視において、複数の第一の遮光部20L1は、複数の第二の遮光部20L2と同一の位置に配置した。
【0163】
絶縁層222は有機絶縁膜とした。第一の遮光部20L1と第二の遮光部20L2との間のスリット間距離20Lsd、すなわち、第一の遮光部20L1と第二の遮光部20L2との間に設けられる絶縁層222の膜厚は、20μmとした。
【0164】
図24は、視野角のシミュレーションの際に用いた幾何学計算について説明する図である。図24に示すように、液晶パネル20内のスリット幅をLsw、スリット間距離をLsdとし、スリット幅Lswの透過領域へθの入射角にて入射した光の透過率をT、スリット幅Lswのうち、遮光部で遮光される光の幅をLsw0とする。幅Lsw0における光の透過率は0%とする。θ=0°で光がスリット幅Lswを透過するときの透過率を100%とする。このとき、幅Lsw0は下記式(A1)で表される。
Lsw0=Lsd×tanθ ・・・式(A1)
【0165】
更に、透過率Tは下記式(A2)で表される。
透過率T=(Lsw-Lsw0)/Lsw
=(Lsw-Lsd×tanθ)/Lsw ・・・式(A2)
【0166】
ガラスの屈折率をn、空気の屈折率をn、ガラスと空気の界面にて屈折して出射する光の角度をθとすると、スネルの法則より、θは下記式(A3)となる。
θ=sin-1(n/n×sinθ ・・・式(A3)
【0167】
本実施例では、-80°≦θ≦80°の範囲で式(A2)及び式(A3)を計算し、透過率Tを縦軸、θを横軸として、シミュレーション結果を示した。例えば、後述する図26等における透過率は、透過率Tに対応し、図26における極角は、θに対応する。
【0168】
シミュレーションの結果より、実施例1の液晶表示装置では、図23Aに示すように、極角±17°の狭視野角を実現することができることが分かった。ここで、実際は図23Bに示すようにガラス/空気界面にて屈折が起こるが、図の簡略化のため、図23Aでは高分子分散液晶230、並びに、第一の支持基板211及び第二の支持基板221としてのガラス基板を省略し、ガラス/空気界面での屈折を考慮した値、及び、斜め方向の光1LBを記載した。以下、図中における角度は、ガラス/空気界面での屈折を考慮した値を示す。
【0169】
(実施例2)
図25は、実施例2の液晶表示装置が備えるルーバー層の断面模式図である。図26は、実施例1及び実施例2の液晶表示装置の、極角に対する透過率を表すシミュレーション結果である。実施例2の液晶表示装置は、上記実施形態3の三層構造のルーバー層20Lを備える液晶表示装置に対応する。実施例2の液晶表示装置の、狭視野角モードにおける視野角をシミュレーションにより計算した。表示パネル10のサイズは12.4型、解像度はFHD、ゲート線10Gの延設方向における画素10Pの幅(画素ピッチ10PI)は48μmであり、ソース線10Sの延設方向における画素10Pの幅は144μmに設定した。
【0170】
また、図25に示すように、ルーバー層20Lは、複数の第一の遮光部20L1(第一の遮光層)、複数の第二の遮光部20L2(第二の遮光層)及び複数の第三の遮光部20L3(第三の遮光層)を有する三層構造とした。第一の遮光部20L1、第二の遮光部20L2及び第三の遮光部20L3のスリット幅20Lswは4.00μm、遮光幅20Lwは4.00μm、スリットピッチ20Lpは8.00μmに設定した。平面視において、複数の第一の遮光部20L1は、複数の第二の遮光部20L2と同一の位置に配置した。また、平面視において、互いに隣接する第一の遮光部20L1と第三の遮光部20L3との間(第一の隙間B1)、及び、互いに隣接する第二の遮光部20L2と第三の遮光部20L3との間(第二の隙間B2)は、それぞれ、0.5μmであった。
【0171】
絶縁層222は有機絶縁膜とした。第一の遮光部20L1と第三の遮光部20L3との間のスリット間距離20Lsd、すなわち、第一の遮光部20L1と第三の遮光部20L3との間に設けられる絶縁層222の膜厚は、2.50μmとした。第三の遮光部20L3と第二の遮光部20L2との間のスリット間距離20Lsd、すなわち、第三の遮光部20L3と第二の遮光部20L2との間に設けられる絶縁層222の膜厚は、2.50μmとした。
【0172】
シミュレーションの結果より、実施例2の液晶表示装置においても、図25に示すように実施例1と同様に極角±17°の狭視野角を実現することができることが分かった。
【0173】
ここで、狭視野角にするためには、スリット間距離20Lsdを広げる、又は、スリット幅20Lswを狭くする必要があるが、プロセス上の制限や限界がある。例えば、実施例1より、極角±17°の狭視野角を実現するためには、スリット幅20Lswを4.00μmに設定した場合、スリット間距離20Lsdを20μmとする必要があった。すなわち、有機絶縁膜から構成される絶縁層222の厚みを20μmにする必要があることが分かった。
【0174】
通常の製造プロセスで形成される有機絶縁膜の厚みは3μm程度以下である。そのため、20μmの厚膜の有機絶縁膜を形成する場合、タクト時間が増大する等、製造プロセスに大きな負荷がかかる。
【0175】
一方、実施例2のように、ルーバー層20Lを三層構造とすることにより、通常の製造プロセスの範囲内で狭視野角性能を得ることができることが分かった。ルーバー層20Lを上層(複数の第二の遮光部20L2(第二の遮光層))、中間層(複数の第三の遮光部20L3(第三の遮光層))及び下層(複数の第一の遮光部20L1(第一の遮光層))の三層構造とし、中間層の位置をずらし、上層-中間層間、中間層-下層間の隙間を例えば0.5μmとすることで、絶縁層222(具体的には有機絶縁膜)の厚みを通常の製造プロセス範囲内である2.5μmとしつつ、図26に示すように、実施例2においても実施例1と同様の極角±17°の狭視野角を得ることができることが分かった。図26は、実施例1及び実施例2の液晶表示装置の、極角に対する透過率を表すシミュレーション結果である。なお、図26に示す視野角特性のシミュレーションでは、隣接スリットへ抜ける二次光以上の光は考慮していない。
【0176】
(実施例3)
図27は、実施例3の液晶表示装置が備えるルーバー層の断面模式図である。実施例3の液晶表示装置は、上記実施形態3の変形例1の四層構造のルーバー層20Lを備える液晶表示装置に対応する。実施例3の液晶表示装置の、狭視野角モードにおける視野角をシミュレーションにより計算した。表示パネル10のサイズは12.4型、解像度はFHD、ゲート線10Gの延設方向における画素10Pの幅(画素ピッチ10PI)は48μmであり、ソース線10Sの延設方向における画素10Pの幅は144μmに設定した。
【0177】
また、図27に示すように、ルーバー層20Lは、複数の第一の遮光部20L1(第一の遮光層)、複数の第二の遮光部20L2(第二の遮光層)、第三の遮光部20L3(第三の遮光層)及び第四の遮光部20L4(第四の遮光層)を有する四層構造とした。第一の遮光部20L1、第二の遮光部20L2、第三の遮光部20L3及び第四の遮光部20L4のスリット幅20Lswは4.00μm、遮光幅20Lwは4.00μm、スリットピッチ20Lpは8.00μmに設定した。平面視において、複数の第一の遮光部20L1は、複数の第二の遮光部20L2及び複数の第四の遮光部20L4と同一の位置に配置した。また、平面視において、互いに隣接する第一の遮光部20L1と第三の遮光部20L3との間(第一の隙間B1)、互いに隣接する第二の遮光部20L2と第三の遮光部20L3との間(第二の隙間B2)、及び、互いに隣接する第四の遮光部20L4と第三の遮光部20L3との間は、それぞれ、0.5μmであった。
【0178】
絶縁層222は有機絶縁膜とした。第一の遮光部20L1と第四の遮光部20L4との間のスリット間距離20Lsd、すなわち、第一の遮光部20L1と第四の遮光部20L4との間に設けられる絶縁層222の膜厚は、1.25μmとした。第四の遮光部20L4と第三の遮光部20L3との間のスリット間距離20Lsd、すなわち、第四の遮光部20L4と第三の遮光部20L3との間に設けられる絶縁層222の膜厚は、1.25μmとした。第三の遮光部20L3と第二の遮光部20L2との間のスリット間距離20Lsd、すなわち、第三の遮光部20L3と第二の遮光部20L2との間に設けられる絶縁層222の膜厚は、2.50μmとした。
【0179】
シミュレーションの結果より、実施例3の液晶表示装置においても、図27に示すように実施例1と同様に極角±17°の狭視野角を実現することができることが分かった。
【0180】
また、上記実施例2では、バックライト40から出射される光のうち、極角71°以上の光が二次光としてルーバー層20Lを抜けて観察面側へ出射してしまった。しかしながら、実施例3のようにルーバー層20Lを四層構造とすることにより、図27に示すように二次光をカットし、プライバシー性能を高めることが可能であることが分かった。
【0181】
(実施例4)
図28は、実施例4の液晶表示装置が備えるルーバー層の断面模式図である。図29は、実施例1、実施例2及び実施例4の液晶表示装置の、極角に対する透過率を表すシミュレーション結果である。実施例4の液晶表示装置は、上記実施形態3の変形例2の三層構造のルーバー層20Lを備える液晶表示装置に対応する。実施例4の液晶表示装置の、狭視野角モードにおける視野角をシミュレーションにより計算した。ここで、車載用の視野角制御ディスプレイに求められる機能の1つとして、助手席用モニターがドライバー側から見えないようにする機能が挙げられる。そのため、実施例4では、図28に示すように、ドライバー席及び助手席の前に配置される車載用の液晶表示装置について検討した。
【0182】
表示パネル10のサイズは12.4型、解像度はFHD、ゲート線10Gの延設方向における画素10Pの幅(画素ピッチ10PI)は48μmであり、ソース線10Sの延設方向における画素10Pの幅は144μmに設定した。
【0183】
また、図28に示すように、ルーバー層20Lは、複数の第一の遮光部20L1(第一の遮光層)、複数の第二の遮光部20L2(第二の遮光層)及び複数の第三の遮光部20L3(第三の遮光層)を有する三層構造とした。第一の遮光部20L1、第二の遮光部20L2及び第三の遮光部20L3のスリット幅20Lswは4.00μm、遮光幅20Lwは4.00μm、スリットピッチ20Lpは8.00μmに設定した。平面視において、互いに隣接する第一の遮光部20L1と第二の遮光部20L2との間(第三の隙間B3)は、0.5μmであり、第一の遮光部20L1のドライバー側に隣接して配置されていた。平面視において、互いに隣接する第三の遮光部20L3と第二の遮光部20L2との間(第四の隙間B4)は、2.25μmであり、第三の遮光部20L3のドライバー側に隣接して配置されていた。
【0184】
絶縁層222は有機絶縁膜とした。第一の遮光部20L1と第三の遮光部20L3との間のスリット間距離20Lsd、すなわち、第一の遮光部20L1と第三の遮光部20L3との間に設けられる絶縁層222の膜厚は、1.25μmとした。第三の遮光部20L3と第二の遮光部20L2との間のスリット間距離20Lsd、すなわち、第三の遮光部20L3と第二の遮光部20L2との間に設けられる絶縁層222の膜厚は、1.25μmとした。
【0185】
シミュレーションの結果より、実施例4の液晶表示装置においても、図28に示すように、ドライバー席側において実施例1と同様に極角17°の狭視野角を実現することができることが分かった。また、助手席側では90°の視野角を実現することができた。
【0186】
ここで、上記実施例2の場合、狭視野角にするために、バックライト40から入射し、観察面側へ抜けてくる透過光が減少してしまう。図29のシミュレーション結果より、実施例1の全方位の輝度を合計した全方位輝度を100%とした時、実施例2の全方位輝度は13%となり、輝度が大きく低下することが分かった。また、実施例1及び実施例2では、狭視野角としているため、画面中央から見た際に、左右が暗くなるなどの輝度ムラが発生してしまうことが分かった。一方、実施例4では、ドライバー席側だけを狭視野角にするような配光特性にすることにより、助手席側の透過光が増え、全方位輝度は実施例1比で143%に改善された。
【0187】
(実施例5)
図30は、実施例5の液晶表示装置が備えるルーバー層の断面模式図である。実施例5の液晶表示装置は、ルーバー層20Lが図30に示す構造を有することを除いて、実施例4と同様の構成を有する。実施例5の液晶表示装置の、狭視野角モードにおける視野角をシミュレーションにより計算した。その結果、実施例1~4と同様に、プライバシーモードにおいて狭視野角を実現できることが分かった。上記実施例1~実施例4では、スリット幅20Lswと遮光幅20Lwを同じ4.00μmに設定したが、両者が同じ幅に限定されるわけではなく、本実施例のように、スリット幅20Lswと遮光幅20Lwとは異なっていてもよいことが分かった。また、スリットピッチ20Lpに関しても、全ての遮光層(第一の遮光層、第二の遮光層及び第三の遮光層)で必ずしも同じピッチである必要はなく、必要に応じて異なるピッチにしてもよいことが分かった。
【0188】
(実施例6)
図31は、実施例6の液晶表示装置が備えるルーバー層の断面模式図である。図32は、実施例1、実施例2及び実施例6の液晶表示装置の、極角に対する透過率を表すシミュレーション結果である。実施例6の液晶表示装置は、ルーバー層20Lが図31に示す構造を有することを除いて、実施例2と同様の構成を有する。より具体的には、実施例6のルーバー層20Lは、複数の第三の遮光部20L3が、各々、第三の光吸収層20A3と、第三の光吸収層20A3に重畳し、かつ、バックライト40側の表面に設けられた反射面20Mとを備えることを除いて、実施例2のルーバー層20Lと同様の構成を有する。実施例6の液晶表示装置の、狭視野角モードにおける視野角をシミュレーションにより計算した。
【0189】
図32に示す通り、実施例2の全方位輝度は実施例1に対して13%であったのに対し、実施例6の全方位輝度は実施例1に対して164%と大幅に改善した。実施例2では複数の第一の遮光部20L1のみバックライト40側の表面に反射面20Mを備えおり、液晶パネル20内に高い極角にて入射した光は第三の遮光部20L3の第三の光吸収層20A3にて吸収されてしまっていたが、実施例6では、複数の第一の遮光部20L1に加えて、複数の第三の遮光部20L3もバックライト40側の表面に反射面20Mを備えていたため、液晶パネル20内に高い極角にて入射した光は反射面20Mで反射し、光をリサイクルすることが可能となり、全方位輝度が高められ、輝度向上効果が得られたと考えられる。なお、実施例において、光のリサイクル効率は80%とした。
【0190】
(実施例7)
図33は、実施例7の液晶表示装置が備えるルーバー層の断面模式図である。図34は、実施例1、実施例4及び実施例7の液晶表示装置の、極角に対する透過率を表すシミュレーション結果である。実施例7の液晶表示装置は、ルーバー層20Lが図33に示す構造を有することを除いて、実施例4と同様の構成を有する。より具体的には、実施例7のルーバー層20Lは、複数の第三の遮光部20L3が、各々、第三の光吸収層20A3と、第三の光吸収層20A3に重畳し、かつ、バックライト40側の表面に設けられた反射面20Mとを備えることを除いて、実施例4のルーバー層20Lと同様の構成を有する。実施例7の液晶表示装置の、狭視野角モードにおける視野角をシミュレーションにより計算した。
【0191】
図34に示す通り、実施例4の全方位輝度は実施例1に対して143%であったのに対し、実施例7の全方位輝度は実施例1に対して400%と大幅に改善した。実施例4では、複数の第一の遮光部20L1のみバックライト40側の表面に反射面20Mを備えていたが、実施例7では、複数の第一の遮光部20L1に加えて、複数の第三の遮光部20L3もバックライト40側の表面に反射面20Mを備えていたため、光をリサイクルすることが可能となり、全方位輝度が高められ、輝度向上効果が得られたと考えられる。
【符号の説明】
【0192】
1、1R:液晶表示装置
1LA:正面方向の光
1LB:斜め方向の光
10:表示パネル
10A1:表示領域
10A2:非表示領域
10B:BM(ブラックマトリクス)層
10EL:有機エレクトロルミネッセンス表示パネル
10G:ゲート線
10LC:液晶表示パネル
10P:画素
10PI:画素ピッチ
10S:ソース線
20、20R:液晶パネル
20L、30R:ルーバー層
20A1:第一の光吸収層
20A2:第二の光吸収層
20A3:第三の光吸収層
20A4:第四の光吸収層
20L1:第一の遮光部
20L2:第二の遮光部
20L3:第三の遮光部
20L4:第四の遮光部
20Lp:スリットピッチ
20Lsd、Lsd:スリット間距離
20Lsw、Lsw:スリット幅
20Lw:遮光幅
20M:反射面
31:遮光層
32:透明層
40:バックライト
41:光源
42:反射シート
43:導光板
110:カラーフィルタ(CF)基板
120:薄膜トランジスタ(TFT)基板
130:液晶層
210:第一の基板
211:第一の支持基板
212:第一の電極
220:第二の基板
221:第二の支持基板
222:絶縁層
222A:ホール
223:第二の電極
230:高分子分散液晶
231:ポリマーネットワーク
232:液晶成分
B1、B2、B3、B4:隙間
Lsw0:幅
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23A
図23B
図24
図25
図26
図27
図28
図29
図30
図31
図32
図33
図34
図35
図36