(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024073629
(43)【公開日】2024-05-29
(54)【発明の名称】ニューラル自動販売機
(51)【国際特許分類】
G06Q 20/18 20120101AFI20240522BHJP
【FI】
G06Q20/18
【審査請求】有
【請求項の数】22
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2024043981
(22)【出願日】2024-03-19
(62)【分割の表示】P 2021546182の分割
【原出願日】2019-09-11
(31)【優先権主張番号】62/748,398
(32)【優先日】2018-10-20
(33)【優先権主張国・地域又は機関】US
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.BLUETOOTH
2.AIRLINE
(71)【出願人】
【識別番号】521168597
【氏名又は名称】ザ・ノーダム・グループ・エルエルシー
【氏名又は名称原語表記】THE NORDAM GROUP LLC
【住所又は居所原語表記】6910 North Whirlpool Drive,Tulsa,OK 74117,U.S.A.
(74)【代理人】
【識別番号】110000523
【氏名又は名称】アクシス国際弁理士法人
(72)【発明者】
【氏名】マーク・ロバート・ハッカー
(72)【発明者】
【氏名】レーゲン・ヘンリー・ジークフリート
【テーマコード(参考)】
5L020
【Fターム(参考)】
5L020AA38
(57)【要約】
【課題】飛行中の商用航空機で使用するために特別に設計された、新しく改良された自動販売機を提供すること。
【解決手段】自動販売機(28)において商品を販売する方法は、いくつかの商品(n)の初期のストック(S)を陳列棚(34)に陳列すること;陳列棚(34)からユーザ(48)によって取り出されたいずれかの商品(13)を特定することであって、取り出された商品(13)自体を検出することによってではなく、商品が取り出される前後の陳列されたストック(S)の画像(50,52)を比較して、残りのストック(S-(S-P))の画像(52)において欠落しているいずれかの商品(13)を確定することによって、当該商品(13)を特定すること;及び、前記欠落した商品(13)を前記ユーザ(48)に会計することを含む。
【選択図】
図5
【特許請求の範囲】
【請求項1】
いくつかの商品の初期のストックを陳列棚(34)に陳列すること;
前記陳列棚(34)からユーザによって取り出されたいずれかの商品を特定することであって、前記取り出された商品(13)自体を検出することによってではなく、前記商品が取り出される前後の前記陳列されたストック(S)の画像(50,52)を比較して、残りのストックの前記画像(52)において欠落している商品を確定することによって、当該商品を特定すること;及び、
前記欠落した商品(13)を前記ユーザに会計することを含む商品を販売する方法。
【請求項2】
前記商品(13)が前記ユーザによって陳列棚から取り出される前後の前記陳列されたストック(S)を画像化(50,52)すること;
商品の取り出し前の前記初期のストック(S)及び商品の取り出し後の前記残りのストック(S-(S-P))の両方におけるすべての商品(n)を前記画像(50,52)から特定すること;及び、
前記初期のストック及び残りのストックにおいて特定された前記商品(n)を比較して、それらの間の欠落した商品(13)を確定し、それにより、前記欠落した商品(13)を前記取り出された商品(13)として指定することを更に含む請求項1に記載の方法。
【請求項3】
商品の取り出し前の商品(n)の初期のストック(S)をプレ画像化(50)すること;
前記プレ画像(50)から商品(n)の前記初期のストック(S)を特定すること;
商品の取り出し後の商品(n)の前記残りのストック(S-(S-P))をポスト画像化(52)すること;
前記ポスト画像(52)から商品(n)の前記残りのストック(S-(S-P))を特定すること;及び、
前記特定された残りのストック(S-(S-P))と前記特定された初期のストック(S)とを比較して、前記欠落した商品(13)を特定することを更に含む請求項3に記載の方法。
【請求項4】
前記ストックのプレ画像(50)における各商品(n)を検出しかつ認識するように訓練された人工ニューラルネットワーク(ANN)を配置すること;
前記ストックのポスト画像(52)における各商品(n)を検出しかつ認識するように訓練された人工ニューラルネットワーク(ANN)を配置すること;
前記ポスト画像(52)と前記プレ画像(50)とにおける前記ANN認識されたストックの商品(n)を比較して、前記欠落した商品(13)を特定することを更に含む請求項3に記載の方法。
【請求項5】
前記ANNは、前記商品(n)の分配に使用する前に事前訓練され、
前記事前訓練は、
前記初期の商品のストック(S)を含む多数の商品(n)のインベントリ(N)を画像化すること;及び、
対応配置されたニューラルシグネチャ(X(n))に基づいて前記インベントリ(N)内の各商品(n)を前記画像から検出及び認識するように前記ANNを訓練することを含む請求項4に記載の方法。
【請求項6】
前記事前訓練されたANNは、前記プレ画像(50)及び前記ポスト画像(52)の両方における前記商品(n)を検出及び認識するために使用される請求項4に記載の方法。
【請求項7】
2つの異なるANN(-1,-2)が、前記プレ画像(50)及び前記ポスト画像(52)の両方における前記商品(n)を独立して検出及び認識するためにシンジケートプーリング評価において並列に配置され、
商品認識は、前記欠落した商品(13)を特定するために、前記ストックのプレ画像(50)及びストックのポスト画像(52)の両方に対して異なるANN(-1,-2)の両方が一致しなければならない請求項4に記載の方法。
【請求項8】
前記2つの異なるANNは、
シングルショット検出器(SSD-ANN-1)と、
地域ベースの畳み込みニューラルネットワーク(RCNN-ANN-2)とからなる請求項7に記載の方法。
【請求項9】
前記初期の商品のストック(S)を含む多数の商品(n)のインベントリ(N)を画像化すること;
商品外観に基づいて前記インベントリにおける各商品(n)に対して二次シグネチャ(Y(n))を作り出すこと;
前記ストックのプレ画像(50)及び前記ストックのポスト画像(52)の両方における各商品(n)を前記二次シグネチャ(Y(n))から特定するため、二次視覚認識システム(SVRS 58)を配置すること;及び、
前記ストックのプレ画像(50)とストックのポスト画像(52)とを比較して、前記二次シグネチャ(Y(n))に基づいて前記欠落した商品(13)を特定することを更に含む請求項4に記載の方法。
【請求項10】
前記二次シグネチャ(Y(n))は、前記商品(n)の色シグネチャであり、前記SVRS(58)は、前記色シグネチャ(Y(N))のバイナリラージオブジェクト(BLOB)検出を含む請求項9に記載の方法。
【請求項11】
前記二次シグネチャ(Y(n))は前記商品(n)に印刷されたテキストであり、前記SVRS(58)は前記テキストの光学式文字認識(OCR)を含む請求項9に記載の方法。
【請求項12】
自動販売機(28)内のロックされた陳列キャビネット(30)における前記陳列棚(34)に商品(n)の前記初期のストック(S)を陳列すること;
前記陳列キャビネット(30)からの購入のために前記ユーザにアクセスを許可すること;
前記陳列キャビネット(30)のロックを解除する前に、商品(n)の前記初期のストック(S)をプレ画像化(50)しそこから特定すること;
前記陳列された商品(n)のいずれか1つ又は複数を取り出すために、前記陳列キャビネット(30)のロックを解除して前記ユーザによる前記陳列キャビネット(30)へのアクセスを可能にすること;
前記ユーザがある商品(13)を取り出した後、商品(n)の前記残りのストック(S-(S-P))をポスト画像化(52)しそこから特定すること;
前記プレ画像(50)及び前記ポスト画像(52)において特定された商品(n)を突き合わせて、前記ポスト画像(52)から欠落している前記商品(13)を確定すること;及び、
前記欠落した商品(13)に対して前記ユーザに支払いを請求することを更に含む請求項4に記載の方法。
【請求項13】
ロックされた陳列扉(32)の背後の前記陳列キャビネット(30)内の複数の棚(34)に前記商品(n)を陳列すること;
前記複数の棚(34)に陳列された商品(n)の全ストック(S)の画像(50,52)をキャプチャするために、水平及び垂直視野を有するデジタルカメラ(42)を前記陳列キャビネット(30)内に取り付けること;
前記自動販売機内に収容されたデジタルコンピュータ(44)に前記デジタルカメラ(42)を結合することであって、前記デジタルコンピュータ(44)がプログラムされた前記訓練されたANNを含むこと;
前記ユーザが前記陳列扉(32)を開ける前に、前記複数の棚(34)に陳列された商品(n)の前記初期のストック(S)を、前記デジタルカメラ(42)を使用してプレ画像化(50)しかつ前記訓練されたANNを使用して特定すること;
前記ユーザが商品(13)を取り出して前記陳列扉(32)を閉じた後に、前記複数の棚(34)に陳列された商品(n)の前記残りのストック(S-(S-P))を、前記デジタルカメラ(42)を使用してポスト画像化(52)しかつ前記訓練されたANNを使用して特定すること;及び、
前記ポスト画像(52)から欠落している前記商品(13)を確定し、その支払いを前記ユーザに請求することを含む請求項12に記載の方法。
【請求項14】
前記プレ画像(50)及びポスト画像(52)の両方において前記商品(n)を検出及び認識するために前記訓練されたANNが使用される請求項13に記載の方法。
【請求項15】
2つの異なるANN(ANN-1,ANN-2)が、前記プレ画像(50)及び前記ポスト画像(52)の両方における前記商品(n)を独立して検出及び認識するようにシンジケートプーリング評価において並列に配置され、
商品認識は、前記欠落した商品(13)を特定するために、前記ストックのプレ画像(50)及びストックのポスト画像(52)の両方に対して異なるANNの両方が一致しなければならない請求項13に記載の方法。
【請求項16】
前記2つの異なるANNは、
シングルショット検出器(SSD-ANN-1)と、
地域ベースの畳み込みニューラルネットワーク(RCNN-ANN-2)とからなる請求項15に記載の方法。
【請求項17】
前記初期の商品のストック(S)を含む多数の商品(n)のインベントリ(N)を画像化すること;
商品外観に基づいて前記インベントリにおける各商品(n)に対して二次シグネチャ(Y(n))を作り出すこと;
前記ストックのプレ画像(50)及び前記ストックのポスト画像(52)の両方における各商品(n)を前記二次シグネチャ(Y(n))から特定するため、二次視覚認識システム(SVRS 58)を配置すること;及び、
前記ストックのプレ画像(50)とストックのポスト画像(52)とを比較して、前記二次シグネチャ(Y(n))に基づいて前記欠落した商品(13)を特定することを更に含む請求項16に記載の方法。
【請求項18】
飛行中に前記陳列キャビネット(30)が乗客にアクセスできるように、前記自動販売機(28)を客室(26)内の航空機胴体(22)に取り付けることを含み、
前記自動販売機(28)はバーコードリーダ(62)、無線周波数識別(RFID)検出器(64)、及び機械的駆動式分配シュート(66)を含む前記陳列キャビネットからいずれかの商品を直接特定しかつ自動的に分配するためのシステムが明確に不存在であることにより特徴付けられる最小限の複雑さ及び重量を有する請求項13に記載の方法。
【請求項19】
自動販売機(28)の陳列キャビネット(30)の複数の陳列棚(34)に商品(n)の前記初期のストック(S)をランダム位置に陳列することを含み、自動販売機(28)が有するロックされた陳列扉(32)を通じて前記商品(n)を見ることができ、
前記陳列キャビネット(30)は、前記棚(34)に陳列された商品(n)の全ストック(S)を含む視野を有するデジタルカメラ(42)を含み、
前記デジタルカメラ(42)はデジタルコンピュータ(44)に動作可能に結合され、前記デジタルコンピュータ(44)は、前記商品の取り出しの前後に前記デジタルカメラ(42)によって撮影されたプレ画像及びポスト画像(50,52)を比較することにより、前記ユーザによって前記キャビネット(30)から取り出された前記商品(13)を特定し、残りのストック(S-(S-P))の前記ポスト画像(52)において欠落した商品(13)を確定するためのソフトウェアで構成され、
前記デジタルコンピュータ(44)は、前記ロックされた陳列キャビネット(30)へのアクセスをユーザに許可し、商品の取り出しの前後に前記陳列扉(32)のロックを解除及び再ロックし、前記欠落した商品(13)に対する前記ユーザからの支払いを処理するように更に構成される請求項1に記載の方法。
【請求項20】
前記ストックのプレ画像及びポスト画像(50,52)における各商品(n)を検出及び認識するように事前訓練された第1人工ニューラルネットワーク(ANN-1)と、
前記第1ANNとは異なる構成であり、前記ストックのプレ画像及びポスト画像(50,52)における各商品(n)を検出及び認識するために事前訓練された第2人工ニューラルネットワーク(ANN-2)とを含み、
前記第1及び第2ANNは、前記プレ画像(50)及びポスト画像(52)の両方において前記商品(n)を独立して検出及び認識するようにシンジケートプーリング評価において並行に結合され、
前記ソフトウェアは、前記ポスト画像(52)と前記プレ画像(50)とにおける前記ANN認識されたストック商品(n)を比較して、前記欠落した商品(13)を特定するように更に構成され、
前記第1及び第2ANNによる前記商品認識は、前記欠落した商品(13)を特定するために、前記ストックのプレ画像(50)及び前記ストックのポスト画像(52)の両方に対して一致しなければならない請求項19に記載の方法。
【請求項21】
自動販売機(28)であって、
ロックされた陳列扉(32)を有し、販売するいくつかの商品(n)の初期のストック(S)を、前記陳列扉(32)を通じて表示するための複数の陳列棚(34)を含む陳列キャビネット(30)と、
前記陳列棚(34)に陳列された商品(n)の全ストック(S)を含む視野を有する、前記キャビネット(30)内に取り付けられたデジタルカメラ(42)と、
前記デジタルカメラ(42)に動作可能に結合されたデジタルコンピュータ(44)であって、前記取り出された商品(13)自体を検出することによってではなく、前記商品の取り出しの前後に前記デジタルカメラ(42)によって撮影された前記陳列されたストック(S)のプレ画像及びポスト画像(50,52)を比較することによって、残りのストック(S-(S-P))の前記ポスト画像(52)において欠落した商品を確定することによって、前記キャビネット(30)からユーザが取り出したいずれかの商品を特定するためのソフトウェアで構成されたデジタルコンピュータ(44)とを備え、
前記デジタルコンピュータ(44)は、ユーザにアクセスを許可し、商品の取り出しの前後に前記陳列扉(32)のロックを解除及び再ロックし、前記欠落した商品(13)に対する前記ユーザからの支払いを処理するように更に構成される自動販売機(28)。
【請求項22】
前記ソフトウェアは、
前記ストックのプレ画像及びポスト画像(50,52)における各商品(n)を検出及び認識するように事前訓練された第1人工ニューラルネットワーク(ANN-1)と、
前記第1ANNとは異なる構成であり、前記ストックのプレ画像及びポスト画像(50,52)における各商品(n)を検出及び認識するために事前訓練された第2人工ニューラルネットワーク(ANN-2)とを含み、
前記第1及び第2ANNは、前記プレ画像(50)及びポスト画像(52)の両方において前記商品(n)を独立して検出及び認識するようにシンジケートプーリング評価において並行に結合され、
前記ソフトウェアは、前記ポスト画像(52)と前記プレ画像(50)とにおける前記ANN認識されたストック商品(n)を比較して、前記欠落した商品(13)を特定するように更に構成され、
前記第1及び第2ANNによる前記商品認識は、前記欠落した商品(13)を特定するために、前記ストックのプレ画像(50)及び前記ストックのポスト画像(52)の両方に対して一致しなければならない請求項21に記載の自動販売機(28)。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般に、自動販売機、より具体的には、飛行中の商用航空機の乗客サービスに関する。
【背景技術】
【0002】
乗客とフライトの経済力学は絶えず変化しているため、機内ケータリングと商品サービスは、乗客に選択とチョイスを与えながら、航空会社の収益源と見なされる。ただし、既存の食事サービスとマーチャンダイジングシステムは、依然としてキャビンクルーと従来のトロリーベースの分配に依存している。
【0003】
乗客の快適さと安全性を確保するために民間航空機に課せられた多くの政府規制要件のため、飛行中の旅客機での食事と商品又は商品販売の自動化は大きな課題を提示する。
【0004】
航空機の自動販売サービスは、乗客の相互作用、支払い、速度、使いやすさ、物理的サイズ、航空機の位置、F.A.A.規制認証、耐空性、及び重量等を含む固有の課題を伴う。
【0005】
市販の自動販売機は航空機内で禁止されるであろう。これは主に、それらが航空機の安全な運航のための種々の規制要件を満たすように設計されておらず、また実際面では、基本的に複雑な構成、大きなサイズ、過度の重量、及び材料組成のためである。
【0006】
典型的な自動販売機は非常に大きく、重く、かつ複雑であり、表示し、選択し、選択された商品を顧客又はユーザに対して正確に分配するための多数の機械的システムを含む。これらは、旅客機での使用は実際的ではなく、それ故、旅客航空機には現在見られない。
【0007】
従来の自動販売機は、一般に、飲料缶、食品及びスナックアイテム及び小さな製品アイテム等のユーザが選択したアイテムの正確な分配を確実にするために、個別に識別され、事前に構成された所定のトレイ又はスロット又は区画又は瓶に商品をストックする必要があり、そのため複雑な機械式駆動分配シュートが必要となる。
【0008】
商品は一般に、識別用のユビキタスユニバーサルバーコードを含むが、これらの自動販売機器は、対応するバーコードスキャナーと関連機器が必要であり、これらすべてが複雑さと重量を増大させる。
【0009】
商品には、比較的高価な共通無線周波数識別(RFID)タグを取り付けることができ、この場合も対応するスキャン及び関連機器が必要であり、これも複雑さと重量を増長する。
【0010】
それにもかかわらず、航空機での使用に特別に調整された自動販売機が望まれ、強制的な概念上又は設計上の課題を提示し、飛行中の旅客機で使用するための新しいソリューションを必要とする。
【発明の概要】
【発明が解決しようとする課題】
【0011】
セルフサービス又は自動販売機はどこにでもあり、顧客によく理解されており、航空機の旅行中に乗客に容易に受け入れられるであろう。航空機での使用に特別に構成された自動販売機は、商品を迅速に販売する必要があり、待ち行列及び乗客の動きを減らすために、小型で、コンパクトで、軽量であり、客室内に戦略的に配置する必要がある。設計上の課題は、そのような商品を航空に適するものにし、乗客と航空会社の両方に望ましいソリューションを提供することである。
【0012】
自動販売機は乗客自身が操作できるべきであり、そこから取り出された商品の請求が安全であり、乗務員の支援は最小限で、補充又は故障の解決に限定されるべきである。
【0013】
従って、飛行中の商用航空機で使用するために特別に設計された、新しく改良された自動販売機を提供することが望まれる。
【課題を解決するための手段】
【0014】
自動販売機で商品を販売する方法は、陳列棚に複数の商品の初期のストックを表示すること、取り出した商品自体を検出するのではなく、商品の取り出し前後の表示されたストックの画像を比較することにより、残りのストックのポスト画像において欠落しているいずれかの商品を確定し、ユーザが取り出したいずれかの商品を特定すること、及び、次いで欠落した商品をユーザに課金することを含む。
【0015】
好ましい例示的な実施形態に従う本発明は、その更なる目的及び利点と共に、添付の図面と組み合わせて以下の詳細な説明においてより具体的に説明される。
【図面の簡単な説明】
【0016】
【
図1】
図1は、客室内に取り付けたセルフサービス自動販売機(AVM)を有する旅客機の等角投影図である。
【
図5】
図5は、顧客がAVMから商品を選択して取り出すことによるAVMの操作を示すフローチャートであり、取り出された商品は、陳列されたストックのプレ画像及びポスト画像の違いを区別するように訓練された人工ニューラルネットワーク(ANN)によって特定される。
【
図6】
図6は、
図5のAVMに示されるANNの事前訓練を示すフローチャートである。
【
図7】
図7は、ポスト画像において欠落した商品として取り出された商品を特定するために異なるANNにより構成される、
図5に示すAVMのフローチャートである。
【
図8】
図8は、
図5に示されるAVMでの使用のための異なるANNの訓練を示すフローチャートである。
【発明を実施するための形態】
【0017】
図1には、円筒状胴体22及び対応する長手方向軸線すなわち軸線24を有する例示的な民間旅客機20が示される。航空機20は、高度での典型的な飛行操作のためにその翼に取り付けられたツインターボファンエンジンにより動力が与えられる。胴体22は、従来、乗客席の列(図示せず)、サービスギャレー及び洗面所により構成された内部キャビン26を含む。
【0018】
本発明によれば、セルフサービス自動分配又は販売機(AVM)28は、キャビン26内における飛行中に乗客が使用するのに都合のよい任意の位置に適切に取り付けられる。付加的なAVMは、所望によりキャビン全体に分散させてもよい。
【0019】
AVM28は、耐空性及び安全性を満たすための該当するF.A.A.政府規制の下で航空機に使用するために特別に構成され、加えて、機内乗務員の通常の支援を必要とせずにセルフサービスにより、飛行中に乗客に商品を正確かつ安全に販売するための最小重量を有する最小構成部品で構成される。
【0020】
図2、
図3及び
図4はAVM28の側面図、正面図及び等角投影図を示し、AVM28は、乗客が便利にアクセスできるように、客室26内の床及び湾曲した胴体に取り付けられた例示的な構成である。この独立型実施形態に加えて、ギャレー及びより小さな壁に取り付けられた構成が、利用可能なスペースであることを条件として客室でも使用可能である。
【0021】
すべての航空機構成において、AVM28は、所望の商品の機内セルフサービス販売を可能にするため、軽量で、信頼性、迅速性があり、また認証可能であるように構成される。自動販売機の航空機構成は、飛行中の運用に適用される政府規制を認定しかつ満たすことが比較的容易である典型的な航空宇宙の設計機能、材料及び慣行を使用する。
【0022】
図2~
図4に示されるAVM28は、ロックされ透明な陳列扉32を有する適切に安全な陳列キャビネット30を含み、また、扉を通じて品物又は商品(n)の初期の限定されたストックを陳列するための複数の陳列棚34を含む。
【0023】
任意の数及び種類の商品(n)、例えば食品、飲料、小規模小売製品等を販売用に提供することができる。販売可能な商品の総数は航空会社によって選択され、各商品P(n)は、1,2,3,...Nの範囲のその数値nによって特定される。ここで、Nは潜在的な商品の最大数を表し、必要に応じて10,100,500,更には1000以上等の適切な値をとることができる。
【0024】
この独立型構成の陳列キャビネット30は、ベースキャビネット又は単なるベース36の上に取り付けることができ、好ましくは2つ又は同様の慣用のケータリングカート38を収容するように構成される。ケータリングカート38内に、販売中の商品の余分のインベントリ又はストックを含む、航空機サービスに必要な任意のアイテムを保管することができる。キャビネット30は、限られた数又は量(S)の商品を陳列表示するように特別に構成され、余剰及び追加の商品は、一方又は両方のカート38に便利に保管することができる。カート38は、ベース36に適切に固定又はロックされ、陳列扉32は、適切に電気的に作動するドアロック40によりキャビネット30にロックされる。
【0025】
図4に最初に示されるように、キャビネット30は、好ましくはキャビネットの上部の内側に取り付けられる航空宇宙グレードのデジタルカメラ42を含む。デジタルカメラ42は、すべての陳列棚34を特に含むように視野Fが水平及び垂直の両方に延在し、これにより、いくつかの棚34に陳列された商品(n)の全ストック(S)を同時に見る。所望により1つ以上の異なる視点から、キャビネットに陳列された全商品の全ビューイング範囲を確実にするために1以上のカメラ42が使用され得る。
【0026】
カメラ42の視界が遮られないように商品を最適に分散するため、水平陳列棚34は、好ましくは、例えば4段で示される垂直段に配置される。陳列された各商品は、陳列されている隣り合う商品によって部分的に又は完全に遮断されることなく、カメラが別々に見ることができる。
【0027】
デジタルコンピュータ44は、スペースが許す場合、キャビネット30又はベース36の内部に適切に取り付けられ、AVM28の動作を制御するためにカメラ42及びロック40に動作可能に結合される。最も簡易な構成では、AVM28は主に安全な陳列キャビネット30、カメラ42及びコンピュータ44である。
【0028】
このカメラベースのビジョンシステムは、複雑で重い機構の必要性を回避し、これは重量を省き、航空機の認証の困難性を低減する。AVM28は、ほぼいかなるサイズにもすることができ、キャビン内の最小限のスペースを占めるように構成することができ、通信及び電力のために最小限の航空機インターフェースを必要とする。AVM28は、キャッシュレス電子会計及び支払いシステムを含み、商品の分配又は販売は、航空機での使用に特別に構成された機構レスでコンピュータベースのビジョンシステムによって監視及び制御される。
【0029】
デジタルコンピュータ44は、取り出された商品自体を最初に識別又は検出することによってではなく、カメラ42によって撮影された、商品の取り出しの前後の陳列ストックのプレ画像及びポスト画像を比較することにより、残りのストックのポスト画像において欠落するいずれかの商品を確定し、これにより1つ又は複数のどの商品がユーザによって選択され取り出されたかを予測又は推論し、ユーザ又は顧客によってキャビネットから取り出されたいずれかの商品を特定するためのソフトウェアにおいて特に構成される。
【0030】
コンピュータ44は、電気扉ロック40に結合され、登録又は許可された顧客にアクセスを許可するように構成され、商品の取り出しの前後に扉のロック解除及び再ロックし、次いで、欠落した又は選択された商品に対する顧客への会計又は帰属を実行し、その支払いを処理する。
【0031】
顧客のアクセス及び通信は、コンピュータ44に動作可能に結合された
図4に概略的に示される適切なディスプレイパネル46によって提供され得る。乗客又は顧客等の任意のユーザ48は、ディスプレイパネル46を介してAVM28に簡易にアクセスすることができる。ディスプレイパネル46は、顧客48によって提示されたクレジットカード又は携帯電話支払いアプリ(アプリケーション又はソフトウェア)からのクレジット又は支払いを登録又は承認するためのクレジットカードリーダ、RFIDセンサ及びブルートゥース(登録商標)システムと共に慣用に構成され得る。
【0032】
図5に示されるように、航空機乗客顧客48に商品(n)を分配又は販売する基本的な方法は、AVM28の陳列キャビネット30内にロックされた複数段陳列棚等の陳列棚34にいくつかの商品(n)の初期ストック(S)を単に陳列することを含む。上記のように、商品(n)の完全ストック又はマスターインベントリ(N)は、所望により商品の総数Nを有する。
【0033】
図5には、棚34上の例示的な商品レイアウト分布が示され、陳列されたストック(S(n))は、単なる例であるが16個の商品(P(n))の総数Sを含み、これらは、図示される4つの例示的な棚等、いくつかの棚34上のキャビネット30の利用可能なスペースに適合する任意のサイズ及び形態である得る。
【0034】
商品棚レイアウトは一般にランダムであり得るが、特定の商品の販売を促進するために事前に決定することができる。いくつかの棚34は、スペースが許す限り、商品配置の任意のランダムな位置付けを可能にし、商品は、所定の棚位置又はその上の物理的補完シートに限定される必要はない。
【0035】
初期の陳列ストックS(n)は、例示的な商品1、2、3、…16を含み、そのためnは1~16を含み、これら初期のストック商品S(n)は、異なる3次元(3D)又は物理的な形状で概略的に例示される。物理的な形状は、底棚又は第1棚上の円錐形1-5、第2棚上の背の高い長方形の箱6-9、第3棚上の背の低い長方形の箱10-13、及び第4棚又は上棚の円筒形の缶14-16を含む。
【0036】
これらの16個の商品(n)は、販売の必要に応じて重複を含む場合もあれば、すべてが互いに異なる場合もあり、16の参照番号1-16は、異なる商品の識別と、これらの商品の外面に提示又は印刷された異なるグラフィック、テキスト、色、バーコード、及びすべての表示との両方を表す。
【0037】
商品の数(n)は1~Nの範囲であり、そのため各商品(n)はP(n)として指定されるマスターインベントリにおけるその商品番号によって、又は、S(n)として指定されるサブセットストックインベントリに表示されるその商品番号によって代替的に特定され得る。各商品の異なる外観は、本明細書では商品の参照番号n=1,2,3,...Nによって簡易に参照される。
【0038】
例えば、商品14-16は、異なるグラフィックスパターン及び色を有する、異なる製造業者による異なる飲料缶を表示し得る。例えば飲料缶14は主に赤色であり、対応するグラフィックス及びテキストを有する。飲料缶15は主に青色であり、対応するグラフィックス及びテキストを有する。
【0039】
商品6-13は、ここでもまた異なる製造業者により販売され、異なるグラフィックス及び色を有する典型的な食品又は小売商品を表することができる。
【0040】
また、商品1-5は、異なる製造業者によって販売され、異なるグラフィックス及び色を有する、例えばキャンディー、他の食品又は小売商品等の典型的な追加のアイテムを表すことができる。
【0041】
図5の正面図に示される段状の棚34の好ましい構成では、キャビネット30に陳列される商品(n)の全ストック(S)は、隣り合う商品による遮断なしでキャビネット内においてカメラ42による完全なビューを提供するために重なり合うことなく水平及び垂直に適切に広げられる。各商品は、対応する保持シート又は接着剤、又は航空機AVM用途のVELCRO(TM)によって棚34に適切に固定され得るが、AVMの移動がない陸上ベースの形態では、重力によって棚に載置することができる。
【0042】
AVM28は、取り外された商品自体を検出することによってではなく、商品が取り外される前後の陳列されたストックの画像を比較することにより、顧客によって陳列棚34から取り出されたいずれかの商品を特定し、残りのストックの画像において欠落するいずれかの商品を確定するために特別に構成される。顧客48は、次いで欠落した商品に対して請求され、支払う。これは、そのような商品が顧客によりキャビネット30から選択され、取り出されたと推測する。
【0043】
この自動販売手順は一般的な自動販売機とはまったく異なり、選択された商品が、対応する機器、複雑さ及び重量により何らかの態様で直接特定されることを要する。
【0044】
一般的な商品バーコードには、購入時に商品を特定するための対応するバーコードスキャナーが必要である。同様に、RFIDタグ付き商品は購入のためにスキャナー及び機器が必要である。このようなバーコード及びRFID商品の識別は、それらの複雑さ及び重量のために航空機AVMでは望ましくなく、通常は客室乗務員による監督が必要であり、そのためセルフサービス及び安全な操作に容易には貢献しない。
【0045】
図5に示されるAVM28は、著しく少ない構成要素を有し、顧客48によって商品がキャビネット30から取り出される前後に陳列されたストックを画像化するためにカメラ42を使用する。コンピュータ44は、商品取り出し前の初期ストックと商品取り出し後の残りのストックとの両方においてカメラ画像からすべての商品を識別するように特に構成される。
【0046】
次の点に留意されたい。すなわち、初期の陳列ストック(S)はすべての商品1-16を含み、顧客48が例えば商品13等の単一の商品のみを手に取り又は取り出すと、これは、残りのストック(S-(S-P))に15個の商品1-12及び14-16を残す。
【0047】
コンピュータ44は次いで、初期ストックと残りのストックにおいて特定された商品を比較し、それらの間で欠落している商品、例示的に商品13等を確定し、これにより欠落している商品13を、取り出された又は顧客が選択した商品として推測し、指定する。
【0048】
カメラ42はコンピュータ44により好ましく操作され、商品取り出し前に商品(n)の初期ストック(S)をプレ画像化し、次にプレ画像50から商品の初期ストックを識別し、次いで商品取り出した後の残りのストックをポスト画像化し、ポスト画像52から商品の残りのストックを識別する。次いで、そのように識別された残りのストックとそのように識別された初期ストックを比較することにより、いずれかの欠落した商品が特定され、会計報告される。
【0049】
図5において、ストック(S)のプレ画像50が、陳列された16個の商品1-16のすべての立面図として概略的に示され、ポスト画像52が、陳列された残りの15個の商品1-12及び14-16の同様の立面図として概略的に示される。
【0050】
概略的な
図5において、初期ストック(S)は16個の商品を有し、商品P(13)が取り出され(S-P)、すなわち15個の商品が陳列に残る。プレ画像50及びポスト画像52の比較は、(S(S-P))に対応し、これは結果として、Pが、例えば
図5に例示される単一の商品13等の取り出された商品となる。
【0051】
例えば2つの商品13及び7がキャビネット30から取り出された場合、比較(S-(S-P))は、それらの欠落した商品13及び7を取り出されて現在欠落している商品として特定する結果となる。
【0052】
今やポスト画像52は、顧客が陳列されたストック商品(n)のいくつかを手で触り、最終的に例示的な商品13を選択して取り出す前に、それらのいくつかを再配置することを示す。顧客がいずれかの商品を見て、触れて、吟味して、更に陳列キャビネット30に戻す機能は、その元の棚配置とは無関係に、AVM28の優れた汎用性及び販売の完成性を示す。
【0053】
そのため、商品の初期ストック(n)は、透明な陳列扉32を通して顧客48が最初に見るために、ロックされた陳列キャビネット30の1つ又は複数の陳列棚34上に単にランダムに又は望ましいレイアウトもしくはパターンで陳列され得る。
【0054】
次いで顧客48は、キャビネット30からの購入のアクセスを許可するためのディスプレイパネル46又は適切にマーク付けされた通信領域に対して、ブルートゥース(登録商標)又はRFID支払いアプリ(アプリケーション)を有するクレジットカード又は携帯電話を提示する。コンピュータ44はカメラ42を作動させ、陳列上の初期ストック(S)のプレ画像50を撮影させ、次いで、そのプレ画像50から、キャビネット30のロックを解除する前に、その初期ストック内のすべての商品(n)を適切に識別する。
【0055】
コンピュータ44は次いで、キャビネット扉32のロックを解除し、キャビネット内に陳列されるすべての商品に対する顧客によるアクセスを可能にし、それらのうちの1つ又は複数は、検査及び購入のために顧客によって手動で扱われ又は取り出され、望ましくない場合はキャビネットに戻され得る。
【0056】
顧客は、商品の検査が終了したら陳列扉32を単に閉じ、次いでコンピュータ44は扉をロックし、再びカメラ42を作動させてポスト画像52を撮影し、その後、商品の残りのストックが顧客によって取り去られた後又は取り去られなかった後、そのポスト画像から商品の残りのストックを適切に識別する。
【0057】
コンピュータ44は、両方の画像で見い出され及び識別された一致する商品についてプレ画像50とポスト画像52を比較し、ポスト画像52からいずれかの商品が欠落しているかを確定するように特別に構成される。
【0058】
図5において、プレ画像50は、コンピュータによって識別された16個の初期ストック(S)の商品1~16すべてを含み、ポスト画像52は、コンピュータによって再び識別された15個(S-P)の商品1-12及び14-16のみを含む。これらの結果(S(S-P))を比較すると、商品13(P(13))がポスト画像52から欠落していることを示す。
【0059】
これにより商品13は、これが陳列ストックから欠落しているので推論によって特定され、自動販売プロセスは、そのように特定された欠落した商品(13)の代金を顧客に請求することによって完了する。
【0060】
AVM28は、基本的に、その視覚又は光学カメラ42及び関連コンピュータ44に依存し、関連コンピュータ44は、商品ストックのプレ画像及びポスト画像を取得し、キャプチャされた商品(n)を識別し、それによって顧客が陳列扉を閉じた後にいずれかの商品がポスト画像に欠落しているか否かを確定するようにソフトウェアに特別にプログラムされる。
【0061】
顧客は陳列された商品(n)を手動で取り出して視察し、キャビネットの元の位置又は別の位置にランダムに戻すことができるため、そのような顧客の介入の前後両方で陳列されたストックの視覚的な識別を実行する必要がある。顧客がなんの商品も選択せず取り出さない可能性があり、そのため顧客は、キャビネットから取り出されていない商品又はキャビネット内に単に再配置された商品について請求されない。
【0062】
従って、コンピュータ44は、カメラ42を作動させ、顧客が陳列扉のロックを解除して開く前及び扉を再び閉じて再度ロックした後に商品ストックの正確な画像を作成し、次いで陳列棚34上の位置及び向きとは無関係に、プレ画像50及びポスト画像52に含まれるすべての各商品(n)を正確に検出及び認識するように特別に構成される。
【0063】
ストック画像からの正確な認識が陳列されているすべての商品の正確な識別を確実にし、また、正確な会計と適切な請求のために、顧客が取り出したいずれかの商品の正確な推測を確実にする。
【0064】
この手順は、キャビネット30に陳列されるすべての商品インベントリ又はストックの識別に依存し、顧客が実際に取り出したいずれかの商品を直接特定する必要がないため、商品の販売におけるセキュリティをも強化する。
【0065】
結果として生じる請求書における商品を特定しその商品を集計するために顧客が典型的なバーコードスキャナーを通過させて個々の商品を道義上セルフスキャンしなければならい典型的なセルフサービスチェックアウトシステムを対比する。もちろん、いずれかのアイテムのスキャンに失敗することは、そのようなアイテムは集計されないか支払いも行われないことを意味する。そして、非常に重要なことに、そのような自己スキャンは、それに対応するバーコードスキャナー機器を必要とする。航空機の限られた環境では、バーコードスキャナーのようなセルフサービス機器は実用的ではなく、また乗務員による操作なしでは十分に安全でもない。
【0066】
そのため、上記で紹介したAVM28は顕著な利点を提供する。すなわち、単なる例示であるが、構成部品が少なく、重量が小さく、選択した商品の正確な特定、及び旅客機の形態における商品の安全なセルフサービス販売を提供する。
【0067】
コンピュータ44に、ストックのプレ画像50及びポスト画像52の両方における各商品(n)を検出及び認識するように訓練された人工ニューラルネットワーク(A.N.N.又は単にANN)を配置することにより、ストック商品(n)の正確な識別をAVM28において提供することができる。
【0068】
人工ニューラルネットワークは、生物学的ニューラルネットワークに触発された慣用の既知のコンピューティングシステムである。生物学的ニューラルネットワークは、一般にタスク固有ルールによりプログラムすることなく、例を検討することにより様々なタスクを実行するように訓練可能である。
【0069】
例えば、あるウィキペディアのリファレンスでは、ANNは画像認識のために訓練され、猫等のオブジェクトを含む画像を識別することができる。訓練段階では、多数の例又は訓練画像に猫又は猫無しとして手動でラベル付けされて分析され、次いで他の画像における猫を識別するために使用される。
【0070】
ANNは、猫についての事前の知識、例えば、猫は毛皮、尻尾、ひげ、猫のような顔を有するといった知識なしにこれを行う。代わりに、ANNは、処理する学習教材から識別特性を自動的に生成し、適切な訓練の後、猫等の各オブジェクトに対応するヒューリスティックシグネチャ又はニューラルシグネチャを発達させる。
【0071】
ANNは、例えば、コンピュータビジョン、音声認識、機械翻訳、ソーシャルネットワークフィルタリング、ボードゲーム及びビデオゲームのプレイ、医療診断等、様々なタスクで使用されている。
【0072】
AVM28において、コンピュータ44に配備されたANNは、コンピュータビジョンを使用し、そこにキャプチャされたストック商品画像を検出及び認識するためにプレ画像50及びポスト画像52を分析するように特別に構成される。特に、ANNは、陳列棚30から取り出された実際の商品(13)を直接画像化して特定するようには構成されておらず、代わりに、上述し更に以下に述べるように欠落した商品を予測又は推測するためにプレストック及びポストストックを画像化することに留意されたい。
【0073】
コンピュータ44に配備されたANNは、ストックのプレ画像50並びにストックのポスト画像52内の各商品を検出しかつ認識するように訓練される。次いで、コンピュータ44は、ポスト画像52とプレ画像50とにおけるANNが認識したストック商品画像を比較して、商品13等の欠落している商品を特定する。
【0074】
図5においてAVM28に展開されるように、ANNは、プレ画像50とポスト画像52にキャプチャされたいくつかの商品(n)を正確に検出及び認識するための使用のために、既に訓練され又は事前訓練される。このように自動販売機28は、人工ニューラルネットワーク自動販売機又は単にニューラル自動販売機として特別に構成される。ニューラル自動販売機は、ストック商品を画像化するためにコンピュータビジョンに依存し、その画像にキャプチャされた種々のオブジェクト又は商品を検出及び認識する。
【0075】
図6は、AVM28で使用するために特別に変更された場合を除き、慣用のプロセスにおいてANNがどのように訓練されるかを概略的に示す。
図6は、より詳細に後述されるように、AVM28に使用するための異なる2つのANN、第1ANN-1及び第2ANN-2に対する類似の訓練を示す。
【0076】
第1ANN-1及び第2ANN-2の両方は、商品のマスターインベントリにおける多数の商品(N)各々を正確に識別するように、商品の販売での使用に先行して事前訓練される。各商品(n)は、最初にカメラ42によって適切な角度からキャプチャされ、外観及び色又は任意の適切な物理的属性を含む、その物理的形態、サイズ及び/又は形状に基づいて固有の識別性を提供する。例えば、同じサイズの2つの飲料缶は、その特徴的なラベルの色及びパターンによって識別され区別され得る。
【0077】
次に、商品識別訓練の結果は、適切に大きい商品ストック(N)の正確なデータベースを提供するためにAVM28において使用される。このデータベースから、AVMに販売用に陳列されたサブセットストック(S)の商品(n)を、乗客への販売のために認証することができる。
【0078】
従来の事前訓練は、最初に、初期商品ストック(S)を含む多数の商品(n)のマスターインベントリが望まれる。ターストックを画像化することを含む。上記したように、商品(n)のマスターインベントリからディスプレイストック(S)が選択され、商品(n)のマスターインベントリは、所望により大きく多様にすることができる。ここで、Nは潜在的な商品の最大数を表し、10、100、500、更に必要に応じて1000以上の任意の適切な数値を有し得る。
【0079】
各商品(n)は、物理的な3次元(3D)形態であり、その外面に印刷された対応するグラフィック、テキスト、配色、及びバーコードを有し、
図6に示す商品番号1、2、3、...18...Nにより概略的に参照される。
【0080】
訓練中の商品(n)は、目的のAVM28において後に使用するための実際の商品である。AVMに表示されるストック(S)は、マスターストック(N)の適切なサブセットであり、例えば
図5に示される商品1-16を含む。
【0081】
適切な訓練カメラ54は、典型的にはメインフレームである別のコンピュータ56に動作可能に結合され、2つのANNにおいて学習するか又は訓練を受ける各商品(n)の複数の訓練画像が撮影される。
【0082】
各訓練画像は、商品の完全な画像化を確実にするために、訓練技術者による手動のボックス化又はフレーミングのために適切に間隔があけられた1つ以上の商品を含むことができる。各商品の複数の画像は、所望により異なる配向、角度、照明、背景、位置、ボックス化等により撮影される。
【0083】
例えば、最初に訓練された商品は、ANNがそれを正確に検出及び認識するために、それぞれ500~1000の画像が必要であり得る。その後、訓練された商品は、ANNの正確な訓練のために約70~100の異なる画像のみを必要とし得る。
【0084】
上記したように、ANN並びにその訓練は一般に慣用である。各ANNは、各商品訓練画像を分析し、画像の商品を検出してそれらの商品を認識し、分析された商品を予測するように構成される。
【0085】
最初に、訓練されていないANNによって予測された商品は、訓練画像に含まれる実際の商品と比較した場合、訓練プロセスにおいて不正確になり、次いで、対応する重み又はバイアスがANNモデルにおいて調整される。これが次の予測にも実行される。この反復プロセスは、ANNが適切に訓練され、各商品(n)に対応するニューラルシグネチャX(n)を学習するまで多数の反復又はエポックで繰り返される。
【0086】
上記したように、従来のANNは、これらが処理する学習教材から識別特性を自動的に生成する。この識別特性は数学的抽象概念であるが、それでも、各商品を正確に検出及び認識するためにANNが理解する商品又はニューラルシグネチャX(n)を表す。
【0087】
訓練プロセスは、対応する発展したニューラルシグネチャX(n)に基づいて、すべての商品(n)がその画像から正確に検出及び認識されるまで商品ごとに続行され、各商品の対応するニューラルシグネチャが後のAVMでの後の使用のために格納され、全商品に適したシグネチャインベントリ又はデータベースに保存される。
【0088】
6つのテストオブジェクトを検出及び認識する1つの開発プログラム中に、100万回の訓練反復又はエポックが実行され、対応する画像からこれらの6つのテストオブジェクトを識別するように十分な精度で第12世代ANNを開発し、かつこれにより概念実証をサポートするために、24時間フルで6日のコンピュータ時間を必要とする。
【0089】
上記したように、2つのANNは、
図6のフローチャートで同様に訓練され、
図5は、AVMコンピュータ44に配備された1つ又は複数のそのように事前訓練されたANNを概略的に示す。
【0090】
最良の商品識別のために、同じ事前訓練されたANNが、
図5に示すAVM28におけるプレ画像50及びポスト画像52の両方において商品(n)を検出及び認識するために使用される。これに対応して、AVMカメラ42は、訓練カメラ54と同一か又は類似であるべきであり、画像及び学習したシグネチャインベントリ又はデータベースから検出されたニューラル商品シグネチャX(n)の最良のマッチングを確実にするために適切な光学的及びデジタル性能を有するべきである。
【0091】
図6に示される訓練コンピュータ56は、好ましくは、ANNを訓練するための強化された計算能力を有するメインフレームコンピュータである。
図5に示されるAVMコンピュータ44は、商品識別のために訓練されたANNの展開に適切に使用するために、サイズ及び計算処理性能を実質的により小さくすることができる。
【0092】
図7は、
図5に示されるAVM28の好ましい構成を示す。この構成において、コンピュータ44は2つの異なるANNを含むようにソフトウェアにおいて構成される。2つの異なるANNは、ストック画像における各商品(n)を検出及び認識するために事前に訓練された第1人工ニューラルネットワーク(ANN-1)と、同じストック画像における各商品を検出及び認識するように事前に訓練された、第1ANN-1とは異なる構成の第2人工ニューラルネットワーク(ANN-2)とを含む。
【0093】
第1ANN-1は、これ自体の訓練された、ニューラルシグネチャX(n)の第1データベース又はインベントリ-1を有する。第2ANN-2は、これ自体の訓練された、ニューラルシグネチャX(n)の第2データベース又はインベントリ-2を有する。第2データベース又はインベントリ-2は第1ANN-1のシグネチャとは異なる。
【0094】
2つの異なるANNは、シンジケートプーリング評価(SPE)において並行に配置され、プレ画像50及びポスト画像52の両方における商品を独立に検出及び認識する。第1ANN-1は、プレ画像50及びポスト画像52における商品を検出及び認識するために使用され、適切な精度又はエラー閾値を有する。第2ANN-2は、同じプレ画像50及び同じポスト画像52における商品を検出及び認識するために並行に使用され、適切な精度又はエラー閾値を有する。
【0095】
次に、両ANNは、それらのプレ画像及びポスト画像におけるすべての商品(n)を予測し、コンピュータソフトウェアは、ポスト画像52とプレ画像50においてそのようなANNが認識したストック商品(n)を比較するように特別に構成される。第1及び第2ANNによる商品識別は、商品識別の精度を向上させるために一致しなければならず、画像に見出した予測商品(n)が一致しない場合、AVM28はディスプレイパネル46にエラーを報告し、次いでキャビンクルーの介入を要求する。
【0096】
2つのANN商品予測間の一致は、ポスト画像52において取り出された又は欠落した商品のより正確な識別を保証し、顧客への支払い請求と共に購入トランザクションの完了を可能にする。
【0097】
2つの異なるANNが、対応する異なるニューラルシグネチャX(n)と共に異なるANNモデル又は技術の対応する利点を活用するためにAVM28において好ましい。多くの種類の慣用のANNが知られており、性能が顕著に変化する。
【0098】
AVM28では、検出及び認識への異なるアプローチを有する2つの異なるANNを有することが望ましい。商品識別は商品画像の分析に依存するため、各画像が異なるオブジェクト又は商品を検出するために最初に分析されなければならない。オブジェクトが検出されるや否や、オブジェクトはまた適切に認識されなければならない。
【0099】
図5及び
図7に示される例示的な商品ストック(S)のプレ画像50において、16個の陳列された商品(n)は、異なる形態、形状及び外観を有し、ANNは、最初に、プレ画像50に見出される16個の商品を検出及び区別しなければならない。次に、ANNは、ANNの広範な訓練及び対応するニューラルシグネチャX(n)に基づいて、これら16個の商品(n)各々を認識しなければならない。
【0100】
ニューラルAVM28に2つの非常に異なるANNを組み込むことで、各商品の識別において2つのANN間の一致を要求することにより、商品識別の精度を大幅に向上させることができ、あるいはまた販売トランザクションがエラーで終了し、そのためキャビンクルーの介入を必要とする。
【0101】
従来のANNの適切なタイプの1つは、画像の認識及び分類用に構成された畳み込みニューラルネットワーク(CNN又はConvNet)である。CNNは、ロボット及び自動運転自動車のビジョンシステムに電力を供給するために、顔、物体及び交通標識の特定に成功している。
【0102】
従来のANNの別の適切なタイプは、領域ベースの畳み込みニューラルネットワーク(RCNN)であり、選択的検索スライディングウィンドウを使用して評価するため、ターゲット領域を有するCNNを使用して最先端の視覚オブジェクト検出を提供する。例示的なRCNNは、arXiv.orgからオンラインで入手可能なarVixペーパー1311.2524に開示されており、これは2013年11月11日(v1)に提出され、2014年10月22日(v5)に最終改訂された。
【0103】
従来のANNの別の適切なタイプは、CNNが入力画像を1回だけ操作し、特徴マップを計算するシングルショット検出器(SSD)である。シングルショットマルチボックス検出器の形式の例示的なSSDは、arXiv.orgからオンラインで入手できるarVixペーパー1512.02325に開示されており、これは2015年12月8日(v1)に提出され、2016年12月29日(v5)に最終改訂された。
【0104】
このフィーチャマップ上の小さな3x3サイズの畳み込みカーネルは、境界ボックスと分類確率を予測するために使用される。SSDはまた、RCNNと同様に種々のアスペクト比にてアンカーボックスを使用する。スケールを処理するために、SSDは複数の畳み込み層の後の境界ボックスを予測する。各畳み込み層は異なるスケールで動作するため、種々のスケールのオブジェクトを検出可能である。
【0105】
図7に示すAVM28において、2つの異なるANNは、シングルショット検出器(SSD)の形式の第1ANN-1と、領域ベースの畳み込みニューラルネットワーク(RCNN)の形式の第2ANN-2を好ましく含む。
【0106】
この選択の目的は、検出及び認識へのアプローチが異なる2つの非常に異なるネットワークを持つことである。RCNNは機能が典型的により大きく、より集約的であるため、パフォーマンスがより緩慢であり、結果として認識機能が向上する。SSDは機能が一般により小さく、それに応じてパフォーマンスがより速く、より寛大な検出閾値を有する。
【0107】
次いで、2つの異なるANNがAVM28で組み合わされ、シンジケートプーリング評価を集合的に実行する。シンジケートプーリング評価では、各ネットワーク、SSD及びRCNNが同じプレ画像50及び同じポスト画像52で並行して動作して、どの商品(n)が認識されるかを独立に予測する。次いで、それらの予測が共にプールされ、比較により評価され、画像にキャプチャされた商品のストック(S)に対する商品ごとの予測の一致のみがポスト画像52から欠落している商品の推論及び特定を可能にする。
【0108】
予測のそのようなプーリングが一致する場合、欠落した商品がより正確に推測され、顧客に支払いを請求することにより自動販売トランザクションの完了が許可される。
【0109】
もしそのようなプーリングが商品画像のいずれにも一致しない場合、エラー結果がディスプレイパネル46に送信され、客室乗務員の介入が要求する。
【0110】
ストックプレ画像50及びストックポスト画像52の両方において適切な二次シグネチャY(n)から各商品(n)を特定するために、追加のソフトウェア又はアルゴリズムにおいて二次視覚認識システム(SVRS)58をコンピュータ44に配備することにより、
図7に示される欠落商品13の特定の更なる精度を随意的にもたらすことができる。
【0111】
図6は、
図7のAVMキャビネット30に陳列されている初期商品ストック(S)を含むマスターインベントリ又は多数の商品(N)を示す。
【0112】
図7に示すように、二次シグネチャY(n)は、異なるニューラル商品シグネチャX(n)を確立するためのANNの訓練に使用されるヒューリスティックなアプローチだけでなく、実際の商品の外観に基づいて、マスターストック(N)における各商品(n)に対して適切に定義され得る。
【0113】
各商品(n)は、3D物理的形状及びサイズを含む適切な形態と、その外面に提示又は印刷された様々なグラフィック、テキスト、色、バーコード、及びその他の表示とを有する。
【0114】
商品の任意の適切な物理的外観特性は、AVMコンピュータ44における二次シグネチャY(n)の適切なデータベース60に格納された二次シグネチャY(n)として使用するための訓練画像から選択及び抽出され得る。
【0115】
次に、ストックプレ画像50及びストックポスト画像52の追加の比較をコンピュータ44が独立に行うことができ、ニューラルシグネチャX(n)を使用する2つのANNにより独立に提供されるSPE比較に加えて、その二次シグネチャY(n)に基づいて欠落商品(13)を特定する。
【0116】
例えば、二次シグネチャY(n)は商品(n)の色シグネチャであってもよく、SVRS58は、色シグネチャY(n)の慣用のバイナリラージオブジェクト(BLOB)検出を含むように適切なソフトウェアアルゴリズムで構成することができる。
【0117】
別の例では、二次シグネチャY(n)は、商品に印刷されたテキスト又はラベルであり得、SVRS58は、テキストシグネチャY(n)を認識するための慣用の光学式文字認識(OCR)ソフトウェア又はアルゴリズムを含むであろう。
【0118】
いずれの構成においても、そこにキャプチャされた商品の物理的外観に基づくプレ画像50及びポスト画像52の二次評価が、2つのANNによって提供される神経ベースSPE評価と並行する別の評価においてそれらの商品を適切に識別するために使用され得る。
【0119】
欠落する商品(13)の主要な特定は、2つのSPE-ANNによってなされる。2つのSPE-ANNは、自動販売トランザクションを認可して完了し、顧客に支払いを請求するために、互いに一致(YES)しなければならない。
【0120】
欠落する商品(13)のSVRS識別も成功した場合(YES)、自動販売トランザクションは依然とし認可されるが、取り出した商品(13)の特定に追加の確実性を伴う。SVRS識別が欠落した商品(13)を特定しない場合、エラーは単に記録又はログ記録され、トランザクションは2つのSPE-ANNの単一(YES)の一致に基づいて依然として認可される。
【0121】
ある顧客による最初の自動販売トランザクション後、別の顧客がAVM28にアクセスして上記自動販売トランザクションを繰り返すかもしれない。
図5及び7に対して上記したように、前者の顧客は商品13を購入したかもしれず、例えば、この商品13は陳列されたストック(S-P13)に目下欠落している。更に、前者の顧客は、ポスト画像52に示されるように陳列された商品を再配置したかもしれない。
【0122】
客室乗務員がAVM28を整備又は補充する場合、キャビネットは、元のレイアウト又は別の再編成されたレイアウトのいずれかで、商品1~16の元のフル陳列ストック(S)に復元され得る。前回の販売後に客室乗務員がAVM28をサービス処理しなかった場合、陳列されたストック(S-P13)はポスト画像52に示される配置のままである。
【0123】
次の顧客が販売トランザクションを開始する際、結果として生じるプレ画像50がカメラ42により新たに撮影され、次いで前回のポスト画像52と照合する。また、新しいポスト画像(52)がカメラによって撮影され、どの商品が、もしあれば、次の顧客によって購入のために、陳列キャビネット30から取り出されたかを確定する。
【0124】
この自動販売プロセスは、陳列されたストックがなくなるかあるいは減少するか、又は航空機の飛行が終了するまで継続し、連続的販売トランザクション各々は、カメラ42によって撮影された各ポスト画像52から取り出された又は欠落したいずれかの商品を特定するため、上述したANNベースの視覚的検出及び認識に従う。
【0125】
AVM28は、陸上ベースを含む任意の適切な環境で使用するように構成することができるが、その特別なANNベースの形態により、航空機用途においてそれを特に有用かつ有益にする。航空機用途は、最初に耐空性に対するF.A.A政府のコンプライアンスを必要とし、軽量であるべきであり、エラーや誤動作の状態又は補充のためを除き、客室乗務員の操作又は監督を必要とすることなく、個々の顧客による安全なセルフサービスを提供する。
【0126】
従って、AVM28は、客室26内の任意の適切な位置において
図1及び2に示される航空機胴体22に都合よく取り付けることができ、陳列キャビネット30は飛行中に乗客が容易にアクセス可能である。上記したように、陳列キャビネット30自体は、スペースが許す場合、客室内に適切に分配するための種々の形態を有し得る。
【0127】
航空機構成のAVM28は最小限の複雑さと重量を有することができ、陳列キャビネットからいずれかの商品を直接特定して自動的に分配するための慣用システムが明らかに存在しないことにより特徴付けられる。慣用システムは、
図3に概略的に示されるようにバーコードリーダ62、無線周波数識別(RFID)検出器64、及び機械的に駆動される分配シュート66を含み、これらはAVM28には不要であり、設けられない。
【0128】
従って、ほとんどの慣用の自動販売機器は操作に必要ではなく、基本構成は、商品(n)のストック(S)を陳列するための適切な棚34を有するロックされた陳列キャビネット30、及びキャビネット30内に適切に取り付けられ、コンピュータ44に動作可能に結合されたカメラ42のみを必要とする。コンピュータ44は、顧客によって選択され、自動購入のためにキャビネット30から取り出されたいずれかの商品の人工ニューラルネットワーク識別を含む、AVM28のすべての機能を操作するためにソフトウェアに事前にプログラムされる。
【0129】
図8はより詳細な訓練フローチャート68を示す。フローチャート68において、特定の航空会社はAVM28において販売用の望ましい商品又は品物を選択し、AVM28におけるその後の配備用の各商品(n)のために対応するヒューリスティック又はニューラルシグネチャX(n)を展開するため、第1又はマスターANN-1及びスレーブ又は第2ANN-2が適切に訓練される。
【0130】
ANN訓練は慣用であるが、航空機AVM28で使用するための開発テストは、それに固有のある一定の改善を示唆する。訓練は、ニューラルネットワークに各商品画像と、商品オブジェクト及びそのタイプを示す境界ボックスとを提供し、次いでネットワークはすべての訓練画像を繰り返し確認し、その内部属性を調整して最適化されたソリューションに向けて収束する。
【0131】
新しい商品(n)は、AVMをエミュレートする管理された環境において静止画像を商品の様々な角度及び距離にて撮影することにより追加することができる。次いで画像はパックされ数値形式に変換され、ニューラルネットワークが訓練されることを可能にする。
【0132】
ANN訓練パラメータは次のものを含むことができる。すなわち、適切な事前構成人工ニューラルネットワークの選択;過剰適合を回避するためのネットワークの収束ロバスト性;望ましい商品の選択(n);一度に3つのストック管理単位(SKU);訓練画像ごとに1つ以上の商品(n);70、100、200、300、600、1000、又はそれ以上の訓練画像;大きいか又は小さい認識境界ボックス及び根拠のある真実;整列及び/又は非整列の境界ボックス;及び、訓練画像品質。
【0133】
最初に訓練された商品は、それぞれ500以上の訓練画像を必要とし得るが、その後の訓練された商品は、ANNの正確な訓練のために、70~100等のより少ない訓練画像を必要とし得る。
【0134】
システムは、商品の新しいアイテムを認識するように視覚的に訓練する必要があり、そのため、商品は分類を可能にするために視覚的に異なる必要がある。類似に見えるアイテムは同一に分類される。これは、実際には価格設定及び絶対インベントリ管理戦略のみに影響を及ぼすため、運用上の懸念を引き起こすかもしれず又は引き起こさないかもしれない。
【0135】
必要な画像の数を減らすために転送学習を使用することが好ましい。転移学習は、事前に訓練されたANNを再訓練して画像の新しいセットを分類する。転送学習なしでは、空のネットワークを有用な精度へと訓練するのに数千の画像が必要となるであろう。
【0136】
訓練段階では、各訓練画像がどのようなオブジェクト又は商品を包含し、画像のどこに各オブジェクトが配置されているかをコンピュータに通知するために、各画像にトレーナーが手動により注釈を付けなければならない。ラベル付けされた境界ボックスは、トレーナーによって作り出される。次に、この生画像が訓練中のネットワークに提供され、結果を推定する。ネットワークが画像の内容をどれだけうまく推測するかについて、エラー値が提供される。
【0137】
訓練の開始時において、ネットワークが推測するのでエラーは非常に高くなる。また、学習アルゴリズムの目的は、ネットワークの各ニューロンの重み又はバイアス値を最適化することにより、エラーオブジェクト認識を低減することである。
【0138】
1つのANNの実験的開発は、新しい商品アイテムに対する正確で信頼性の高い結果を生成して商品(n)を正しく検出及び認識するために、70~100の最少の画像を使用が使用されることを示唆する。
【0139】
訓練中の特定のネットワークは、訓練段階中にヒューリスティック機能又は属性を抽出する。そのため、より多くの画像及びより多様な画像(位置、照明、配向等に関して)により、ネットワーク訓練が、特定の商品(n)に対するニューラルシグネチャX(n)の開発においてより高レベルでより高品質の特徴を抽出することを可能にする。人間の脳と同様に、識別機能は、形状、色、サイズ等の低レベルから始まり、顔、頭、体等のようにより高レベルでより抽象的になり、より優れた機能訓練がより優れたオブジェクト又は商品認識を実現する。新しい商品が追加された場合、ANNの認識段階のみが再訓練を必要とする。訓練は、物理的に1個のみの実際の商品を要求する。
【0140】
次に、種々のアングル及び商品位置にて背景、照明、カメラ、アングル等の管理された環境において画像が撮影される。これらの画像は、好ましくは、最大のカメラ解像度で撮影される。通常、いくつかの初期商品を訓練した後、各商品(n)の70~100の視覚的に定量化可能な異なる画像が必要である。初期商品は実質的により多くの訓練画像を要する。
【0141】
訓練画像は、各商品(n)を強調又は指定するためにオペレータ又は技術者が手動により適用して適切な境界ボックスを使用して、単一の又は異なる商品アイテムを含むことができる。即ち、ANNの検出段階は再訓練されていないため、ユーザは、各画像上の1個ごとの商品に対して最大の境界ボックスを定義しなければならない。訓練画像はユーザ注釈と共に、ANNの訓練に使用されるデータセットに根拠のある真実を提供する。実際の訓練プロセスは、数値解決反復収束法である。これには多くの処理能力を要し、ローカルで実行したり又は計算のためにクラウドにプッシュすることができる。
【0142】
訓練画像は、テスト又は評価のための約20%と実際の訓練のための約80%に分割されることが好ましい。訓練データセットはANNを訓練するために使用され、重みバイアスを調整する。次に、各エポックすなわちループ反復において、分類がどの程度成功したかを評価するためにテストデータが使用される。分類ロスが許容基準内に収まると、訓練は完了する。訓練は1回限りのオフラインアクティビティであり、実際のAVM28自体では実行されない。
【0143】
従って、最適な訓練データの作成は、一般に次のものを含む。すなわち、商品背景;照明環境;オブジェクト間検出及び相対的位置;訓練画像ごとの単一及び複数のオブジェクト;訓練画像の数;訓練画像の品質、サイズ、ビットデプス;根拠のある真実の境界ボックス定義;及び訓練収束であり、様々なタイプのANNに対する様々な精度又はロスを伴う。訓練画像は、各商品の完全な境界を隠すオブジェクトの閉塞又はオーバーラップを回避すべきである。
【0144】
一旦訓練されると、ANNは、推論又は予測評価を高速化するために効率的な実行フォーマットに格納及びパックされ、AVMコンピュータ44に適切にロード又は送信される。
【0145】
AVMカメラ42は、訓練カメラ56から提供される画像から訓練された特定のANNの性能に最もよく整合するために、訓練カメラ56の性能と適切に整合する光学的及びデジタル性能を有するべきである。
【0146】
図9は、AVM28を使用する顧客による典型的な自動販売トランザクションの詳細な自動販売フローチャート70を提示する。上記訓練からの最適化事前訓練されたANNは、分類、商品、名前検索テーブルと共に、AVMコンピュータ44のメモリにロードされる。
【0147】
陳列された商品(n)の画像は、例えば、約1024×1024ピクセルの適切な解像度又は通常デプスにてAVMカメラ42により撮影されるべきである。画像データは適切に数値配列に変換され、ANNで使用可能な形式に正規化される。
【0148】
一旦画像データが提供されたANNは、そのデータを処理し、訓練された検出及び認識推論ルーチンは予測精度の指標として信頼度を与える。事前定義された商品クラス各々に対する信頼度が存在する。
【0149】
この評価は正確ではない。検出及び認識の両方の推論段階は、対応する信頼レベルが付属し、これらが組み合わされて全体的なオブジェクト認識率を与える。適切な視覚的閾値を超える信頼レベルを有するオブジェクトのみがインベントリへと分類される。これらの閾値の設定はマスター商品インベントリの精度を制御する。
【0150】
精度ロジックは一次及び二次の概念に基づくことができる。一次SPEが一致しない場合、エラーが呼び出され、人的介入を要求する。これは通常、商品を再配置し、新しいインベントリ画像でAVM28を再度リセットすることを意味する。
【0151】
二次SVRS58システムが一次SPEと一致しない場合は、実行可能な許容範囲外の場合にのみエラーが呼び出される。例えば、一次が画像において20個の商品を検出し、かつ二次が同じ画像において10個の商品のみを検出した場合、エラーが生成される。
【0152】
開発実験の結果は、全体的に最高の精度のためには次のことを有するべきであると示唆する。すなわち、商品のレイアウト間に空白があり、商品間に顕著なオーバーラップがなく、商品の説明や名前が見え、カメラの配置や向きが完全なストックを見ることができ、100個未満の商品が陳列され、ANNのパフォーマンスが、RCNNでは約0.05未満、SSDでは約2.0未満の許容可能なロスレベルへと解決されることである。
【0153】
基本的な購入シーケンスは極めて単純な手順を有する。この手順では、ユーザ又は乗客がAVM28に近づき、支払いを事前承認し、キャビネット扉32を開き、吟味して1つ以上の商品(n)を手動により選択し、扉32を閉じる。次いでAVM28は、取り出された商品を自動的に特定し、乗客の事前承認された支払いフォームに支払いを要求又は請求する。
【0154】
事前訓練された第1及び第2ANNは、対応するプレ画像50及びポスト画像52におけるストック商品を検出及び識別し、ポスト画像52から取り出されたか又は欠落したいずれかの商品を、それにより顧客が選択したものと推測するように特別に構成される。
【0155】
購入シーケンスフローチャート70において、乗客は自動販売機28に行き、透明窓陳列扉32を通じて入手可能な商品(n)をレビューし;携帯電話又は支払いカードをマシンディスプレイパネル46(RFID、Bluetooth、又は類似物、又はAirline電話アプリ経由であってもよい)にタップし;キャビネット扉32のロックが解除し;マシンは商品インベントリ(S)の初期インベントリスナップショット又はプレ写真50を取得し;乗客は扉32を開き;それらが必要ならば1つ又は複数の商品(n)を取り;扉32を閉じ、これはセルフロックし;マシンは、そのように変更されたストック(S(S-P))の二次インベントリスナップショット又はポスト写真52を取得して、選択された1つ以上の商品アイテム、例えば選ばれた商品13(P13)の注文又は購入を計算し;支払いシステムは注文を解決し、購入したアイテムを乗客の支払いメソッドに請求する。その後、マシンにおける残りのストック(S(S-P))が自動的に更新される。
【0156】
一旦キャビネット30をストックすると、一連のインベントリ画像がカメラ42によって撮影され、自動販売機に実際にストックされた商品(n)の初期インベントリ(n)を決定及び記録し、それに応じて商品インベントリデータベースが更新される。
【0157】
新しい画像が各ユーザ又は顧客の選択の直前にカメラにより撮影され、この新しい画像は、キャビネット30にストックされた全商品を視覚的に検出及び認識するために使用される。インベントリデータは、精度及び堅牢性を向上させるために事前選択画像の検証として使用される。
【0158】
商品の選択後、第2画像がカメラにより撮影され、陳列キャビネット30に含まれる陳列ストックの現在の状態を検出及び認識する。商品インベントリが更新され、キャビネット30における商品の移動、整列のずれ(misalignment、整列ミス)、位置のずれ(out-of-placement、配置外)に備え、並びに、どの1つ以上の陳列アイテムが陳列キャビネットから取り出されたかの現場決定を可能にする。
【0159】
この第2画像は、初期インベントリデータベース及び事前選択インベントリデータベースに対して検証され、予測されるマシンストックは必要に応じて調整又は修正される。
【0160】
上記したように、ANNベースの航空機自動販売機28は物理的形態において非常にシンプルとすることができ、この形態は、安全な又はロック可能な陳列キャビネット30と、1つ以上の画像を正確に記録するための適切な視野を有する精密カメラ42と、特別に構成されたソフトウェアを有する共通のプログラム可能なコンピュータ44によってすべて制御される統合電子支払い機構とを含む最小の基本構成要素を有する。
【0161】
これらの基本的な機械的構成要素は、航空機用に容易に設計でき、要求される政府の航空機規制の下で適切に認証可能である。任意の適切な支払いサポートシステムが便利な支払いオプションを提供するために使用可能である。
【0162】
任意の適切な商品インベントリサポートシステムが、自動販売機のための初期インベントリデータベースを維持するために使用可能であり、また次いで、自動販売機が使用され、そのインベントリストック(S)がなくなり、都合のよい場合、キャビンクルーにより補充される際に現場でそのデータベースの更新を提供するために使用可能である。
【0163】
乗客が陳列棚から1つ以上のアイテムを取り出すことにより選択する直前及び直後に、陳列キャビネット内の正確なインベントリを確立するために、AVMカメラ42が適切に使用される。
【0164】
次に、そのような取り出されたアイテムは、訓練されたインベントリデータベースと比較され、販売トランザクションの完了においてそれらの同一性及び販売価格を正確に確定する。その後、インベントリデータベースは更新される。次に続く自動販売購入も同様に、陳列棚の前後画像によって行われ、購入のためにそこから取り出されたいずれかの追加の商品(n)を正確に識別する。
【0165】
一連の販売の間に陳列棚のアイテムがなくなると、陳列棚は、利用可能な棚スペースに新しいアイテムを単に置き、キャビネット扉を閉じることにより、キャビンクルーによって補充され得る。次の販売前画像は、次いで、以前に訓練されたインベントリ識別を使用して陳列棚インベントリを自動的に更新する。また、次の選択後画像は、いずれかの取り出された商品(n)及びその販売価格を正確に確定する。
【0166】
従って、正確なインベントリ管理が以下により維持され得る。すなわち、最初に、安全なキャビネット30に保管された開始インベントリストックのプレ画像を分析し、個々の商品(n)を検出及び認識する;ユーザがいずれかの保管された商品を分配又は取り出すことを可能する;インベントリストックのポスト画像を分析し、そのように取り出された商品を検出及び認識する;次に、そのように取り出されたいずれかの商品をユーザに会計処理又は帰属させる。次いでユーザは、一般的な自動販売機トランザクションにてそれに対して適切に請求され得る。次にインベントリ管理が更新され、取り出された商品を反映し、これにより、その後の使用のために陳列棚の内容の正確なインベントリ記録を維持する。
【0167】
商品の検出及び認識は、検出及び認識に対して異なる段階を有する単一の事前訓練済み人工ニューラルネットワークを使用して実行され得る。あるいは、複数の事前訓練済み人工ニューラルネットワークが、商品形態及び望ましい識別精度に応じて商品の検出及び認識のために構成されるシンジケートプーリング構成に使用され得る。
【0168】
検出段階は工場で訓練することができ、それ故、データベースに物理的に組み込まれている。認識段階は、所望によりマスターインベントリに追加された新規又は追加の商品を有する。
【0169】
上述したAVM28は、非常に軽量で、信頼性が高く、迅速で、新しいオンボード自動販売のソリューションの提供を証明することができ、そのため、追加の航空会社の収益源を提供する。AVMを飛行中の旅客機での使用のために特別に構成するため、航空宇宙の設計、材料及び慣行を効果的に使用することができる。
【0170】
AVMマシンは、特定の航空機における利用可能な限られたスペースを補完するために、ほぼどのようなサイズ及び形態にもすることができ、単に通信及び電源のインターフェースを必要とする。実際には、AVMマシンは、安全なキャビネットに標準航空宇宙コンピュータ及びカメラの構成要素を含むことができ、これらにより認証がより簡易となる。
【0171】
カメラベースのビジョンシステムは複雑な機構の必要性を回避し、大幅な重量を省き、飛行中の航空機での使用に対してより容易に認定可能である。AVMはキャッシュレスの電子決済システムを使用することができ、物品の選択は、機構を有さないコンピュータベースのビジョンシステムによって評価、監視及び制御が行われる。
【0172】
セルフサービスのAVMは、乗客第一の体験を提供し、新技術を優雅に組み合わせながら、いかにして客室インテリア製品と自然かつ本能的な相互作用を実現し得るかを例示する。AVMは人工知能(A.I.)を使用して、乗客がセルフサービスディスプレイから単に商品を選択することを可能にし、これは次いで、乗客のアカウントに自動的に請求される。
【0173】
AVMは、オープンで入手可能な商品ディスプレイを使用し、高品質の航空機客室インテリア製品に完全に統合され、人工知能と組み合わされて、自然で、非侵襲的で、本能的で、動的で、単純な選択の相互作用を提供する。
【0174】
AVMは、様々な航空機の乗客又はギャレー区画室の様々な配置のための形態で特別に構成可能であり、ガラス張りの陳列棚を有するカスタムフィットキャビネット、その商品インベントリのカメラビューイング、電話又はe(電子)カードでアクティブ化されるアクセス扉、及び商品の選択及び購入トランザクションの詳細を示す電子ディスプレイを含む。陳列ケースは、補充商品を保つための標準航空機保管カート上に取り付けることができ、これと共に追加の廃棄区画が設けられ得る。
【0175】
AVMは、技術の開発と巧みに実行された設計を組み合わせ、航空機のケータリング商品への改善されたシンプルなインターフェースを提供する。これは潜在的な利益を与え、これは、キャビン内での乗客の相互作用が改善し、容易で、フレンドリーで、応答性がより高くなることを含み、より自然でイライラの少ない体験を与える。キャビンクルーは、依然として乗客に関与パーソナルサービスを提供し、ケータリング収入の流れを提供しながら、販売義務から解放される。
【0176】
キャビン全体のビジネスクラススタイルのセルフサービスには、複数のAVMマシンが提供可能である。AVMは、静的で、軽量で、信頼性の高い自動販売技術を提供し、また、商品を分配するための可動部品や機構がなく、所有コストを低減し、また、複雑な技術が乗客に優しい方法で導入され使用されることを可能にする。
【0177】
人工知能及びコンピュータビジョンの発展は、現在、様々なオブジェクトが正確に検出、識別及び認識可能であることを意味する。あなたの携帯電話、搭乗券又はクレジットカードが商品の陳列ケースを単に開け、乗客はいずれか1つ又は複数のアイテムを単に選択する。
【0178】
ビジョンシステムが監視している間ずっと、一旦乗客が選択して扉を閉めると、乗客は選択したものが何であれそれに対して請求される。間違った選択番号を入力したり、ストックされたパケットがなかったり、見た目よりも小さくて失望することはなく、単に拾い上げて去るだけである。
【0179】
もちろん、この巧妙な技術すべては、乗客には完全に見えず、隠され、バックグラウンドで静かに動作し、美麗な航空機AVMマシン内にあり、AVMマシンは、スタンドアロンユニット、ギャレーユニット又は壁取付ディスプレイユニットにて客室内の利用可能なスペースに円滑に融和する構成に調整される。
【0180】
従って、航空機AVMマシンは、客室乗務員の支援なしに一般人により使用可能である。これは誠実な又は信頼性に基づくシステムを必要とない。何らのトレーニングも必要ない。これはキャッシュレス電子支払いシステムを含む。このシステムは、非接触型決済カード、電話アプリ、航空会社アプリを許容し、又は、支払い伝票又はコードを介する支払いが可能である。
【0181】
要約すると、商品インベントリを視覚的に識別するように航空機の飛行に使用するためのAVMマシンを特別に構成することにより、従来の自動販売機の複雑さ及び重量なしに、AVM内の任意のアイテムの購入が自動購入のために容易に視覚的に特定され得る。
【0182】
更に、本明細書に記載のニューラル自動販売機28は、航空機以外の用途に対して、並びに、従来の自動販売機が使用されるいかなる場所、又はストックの分配及び管理が望まれるいかなる場所にも適切に構成され得る。人工ニューラルネットワークによる光学的検出及び認識に適した任意のタイプの商品又はアイテムを使用することができ、アクセス制御されたキャビネットに保管又は陳列することができる。
【0183】
次いで、ユーザによるそのようないずれかのアイテムの選択及び取り出しは、上述したように、陳列されたストックのポスト画像及びプレ画像を比較することにより自動的に検出され得る。認可されたユーザに対するアイテムの取り出しの会計又は帰属は、管理、ストック作業、誤動作又はエラーの介入が必要な場合を除き、監督者、オペレータ又はアテンダントを伴わない安全なセルフサービスオペレーションを可能にする。アイテムは正確に識別され、安全なキャビネットから認可されたユーザに、正確な会計又は帰属と共に分配され、これは企図されたアプリケーションによって望まれる支払いの有無にかかわらず行われる。航空機の自動販売用途は、他の無数の適切な自動販売用途における単なる一例である。
【0184】
本発明の好ましい例示的な実施形態が上記され、その様々な特徴を一般的な用語及びより具体的な用語を用いて主題にて説明した。そのような特徴は、上述した組み合わせにおいて1つ又は複数の例示的で詳細な種に対して連続的で詳細で漸進的に組み合わされ、また、添付の特許請求の範囲に記載される。
【0185】
従って、添付の特許請求の範囲のいずれか1つ又は複数の請求項又は上記詳細な説明に記載されるか、又は図面に示されている特定の特徴のいずれか1つ又は複数は、提出された上記詳細な説明、対応する図面及び/又は添付の特許請求の範囲に従って、種々の組み合わせ及びサブコンビネーションにおいて本発明の種々の変更を定義するにあたり、先行する又は親の請求項を含むいずれか1つ以上の添付請求項に組み込むことができる。従って、以下の特許請求の範囲は、発明の真の精神及び範囲の単なる例示である上記に提示された元の主題に従って、追加の特徴により解釈、変更、修正又は補足され得る。
【手続補正書】
【提出日】2024-03-19
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
ソフトウェアで構成されたデジタルコンピュータ(44)が実行する、商品(n)をユーザに分配する方法であって、
いくつかの商品(n)の初期のストック(S)を、ロックされたセルフサービス自動販売機(28)内の陳列棚(34)に陳列すること、ここで、いくつかの商品(n)の前記初期のストック(S)が、外観が異なる商品(n)を含む;
前記デジタルコンピュータ(44)に動作可能に接続されたカメラ(42)を使用して、前記陳列棚(34)に陳列された前記初期のストック(S)内のすべての各商品(n)のプレ画像(50)を撮影すること;
前記自動販売機(28)に陳列された前記商品(n)のいずれかを選択して取り出すために、前記ユーザにアクセスを許可すること;
前記カメラ(42)を使用して、前記陳列棚(34)上での商品の動き、整列のずれ、及び位置のずれとは無関係に、前記ユーザによる商品選択後の、陳列されたストックの残りの状態にあるすべての各商品(n)のポスト画像(52)を撮影すること;
前記デジタルコンピュータ(44)を使用して、前記陳列棚(34)から前記ユーザによって取り出されたいずれかの商品(13)を特定することであって、前記取り出された商品(13)自体を特定又は検出することによってではなく、前記陳列棚(34)上の前記商品(n)の位置及び向きとは無関係に、商品が取り出される前の初期のストックと商品が取り出された後の残りのストックの両方におけるすべての商品(n)のカメラ撮影によって、前記プレ画像(50)及び前記ポスト画像(52)に含まれるすべての各商品(n)を検出及び認識して、商品の外観から特定を行い、残りのストックの前記ポスト画像(52)において、特定された商品のうち欠落している商品を確定することによって、当該商品を特定すること;及び、
前記自動販売機(28)から前記ユーザによって取り出されたものとして、前記欠落した商品(13)を前記ユーザに会計することを含む方法。
【請求項2】
前記商品(13)が前記ユーザによって陳列棚から取り出される前の前記陳列されたストック(S)を画像化(50)し、前記自動販売機(28)に実際にストックされた商品(n)の初期インベントリを決定及び記録し、初期の商品インベントリデータベースを提供すること;
前記商品(13)が前記ユーザによって陳列棚から取り外された後の前記陳列されたストック(S-(S-P))を画像化(52)し、前記陳列棚(34)に残りの陳列されたストック(S-(S-P))の現在の状態を検出及び認識し、初期の前記商品インベントリデータベースを更新すること;
前記商品インベントリデータベースに記録されている、商品の取り出し前の前記初期のストック(S)及び商品の取り出し後の前記残りのストック(S-(S-P))の両方におけるすべての商品(n)を前記画像(50,52)から特定すること;及び、
前記初期のストック及び残りのストックにおいて特定された前記商品(n)を比較して、前記商品インベントリデータベースと照合して、それらの間の欠落した商品(13)を確定し、それにより、前記欠落した商品(13)を前記取り出された商品(13)として指定することを更に含む請求項1に記載の方法。
【請求項3】
商品の取り出し前の商品(n)の初期のストック(S)をプレ画像化(50)すること;
前記プレ画像(50)から商品(n)の前記初期のストック(S)を特定すること;
商品の取り出し後の商品(n)の前記残りのストック(S-(S-P))をポスト画像化(52)すること;
前記ポスト画像(52)から商品(n)の前記残りのストック(S-(S-P))を特定すること;及び、
前記特定された残りのストック(S-(S-P))と前記特定された初期のストック(S)とを比較して、前記欠落した商品(13)を特定することを更に含む請求項3に記載の方法。
【請求項4】
前記ストックのプレ画像(50)における各商品(n)を検出しかつ認識するように訓練された人工ニューラルネットワーク(ANN)を配置すること;
前記ストックのポスト画像(52)における各商品(n)を検出しかつ認識するように訓練された人工ニューラルネットワーク(ANN)を配置すること;
前記ポスト画像(52)と前記プレ画像(50)とにおける前記ANN認識されたストックの商品(n)を比較して、前記欠落した商品(13)を特定することを更に含む請求項3に記載の方法。
【請求項5】
前記ANNは、前記商品(n)の分配に使用する前に事前訓練され、
前記事前訓練は、
前記初期の商品のストック(S)を含む多数の商品(n)のインベントリ(N)を画像化すること;及び、
対応配置されたニューラルシグネチャ(X(n))に基づいて前記インベントリ(N)内の各商品(n)を前記画像から検出及び認識するように前記ANNを訓練することを含む請求項4に記載の方法。
【請求項6】
前記事前訓練されたANNは、前記プレ画像(50)及び前記ポスト画像(52)の両方における前記商品(n)を検出及び認識するために使用される請求項4に記載の方法。
【請求項7】
2つの異なるANN(-1,-2)が、前記プレ画像(50)及び前記ポスト画像(52)の両方における前記商品(n)を独立して検出及び認識するためにシンジケートプーリング評価において並列に配置され、
商品認識は、前記欠落した商品(13)を特定するために、前記ストックのプレ画像(50)及びストックのポスト画像(52)の両方に対して異なるANN(-1,-2)の両方が一致しなければならない請求項4に記載の方法。
【請求項8】
前記2つの異なるANNは、
シングルショット検出器(SSD-ANN-1)と、
地域ベースの畳み込みニューラルネットワーク(RCNN-ANN-2)とからなる請求項7に記載の方法。
【請求項9】
前記初期の商品のストック(S)を含む多数の商品(n)のインベントリ(N)を画像化すること;
前記商品外観に基づいて前記インベントリにおける各商品(n)に対して二次シグネチャ(Y(n))を作り出すこと;
前記ストックのプレ画像(50)及び前記ストックのポスト画像(52)の両方における各商品(n)を前記二次シグネチャ(Y(n))から特定するため、二次視覚認識システム(SVRS 58)を配置すること;及び、
前記ストックのプレ画像(50)とストックのポスト画像(52)とを比較して、前記二次シグネチャ(Y(n))に基づいて前記欠落した商品(13)を特定することを更に含む請求項4に記載の方法。
【請求項10】
前記二次シグネチャ(Y(n))は、前記商品(n)の色シグネチャであり、前記SVRS(58)は、前記色シグネチャ(Y(N))のバイナリラージオブジェクト(BLOB)検出を含む請求項9に記載の方法。
【請求項11】
前記二次シグネチャ(Y(n))は前記商品(n)に印刷されたテキストであり、前記SVRS(58)は前記テキストの光学式文字認識(OCR)を含む請求項9に記載の方法。
【請求項12】
自動販売機(28)内のロックされた陳列キャビネット(30)における前記陳列棚(34)に商品(n)の前記初期のストック(S)を陳列すること;
前記陳列キャビネット(30)からの購入のために前記ユーザにアクセスを許可すること;
前記陳列キャビネット(30)のロックを解除する前に、商品(n)の前記初期のストック(S)をプレ画像化(50)しそこから特定すること;
前記陳列された商品(n)のいずれか1つ又は複数を取り出すために、前記陳列キャビネット(30)のロックを解除して前記ユーザによる前記陳列キャビネット(30)へのアクセスを可能にすること;
前記ユーザがある商品(13)を取り出した後、商品(n)の前記残りのストック(S-(S-P))をポスト画像化(52)しそこから特定すること;
前記プレ画像(50)及び前記ポスト画像(52)において特定された商品(n)を突き合わせて、前記ポスト画像(52)から欠落している前記商品(13)を確定すること;及び、
前記欠落した商品(13)に対して前記ユーザに支払いを請求することを更に含む請求項4に記載の方法。
【請求項13】
ロックされた陳列扉(32)の背後の前記陳列キャビネット(30)内の複数の棚(34)に前記商品(n)を陳列すること;
前記複数の棚(34)に陳列された商品(n)の全ストック(S)の画像(50,52)をキャプチャするために、水平及び垂直視野を有するデジタルカメラ(42)を前記陳列キャビネット(30)内に取り付けること;
前記自動販売機内に収容されたデジタルコンピュータ(44)に前記デジタルカメラ(42)を結合することであって、前記デジタルコンピュータ(44)がプログラムされた前記訓練されたANNを含むこと;
前記ユーザが前記陳列扉(32)を開ける前に、前記複数の棚(34)に陳列された商品(n)の前記初期のストック(S)を、前記デジタルカメラ(42)を使用してプレ画像化(50)しかつ前記訓練されたANNを使用して特定すること;
前記ユーザが商品(13)を取り出して前記陳列扉(32)を閉じた後に、前記複数の棚(34)に陳列された商品(n)の前記残りのストック(S-(S-P))を、前記デジタルカメラ(42)を使用してポスト画像化(52)しかつ前記訓練されたANNを使用して特定すること;及び、
前記ポスト画像(52)から欠落している前記商品(13)を確定し、その支払いを前記ユーザに請求することを含む請求項12に記載の方法。
【請求項14】
前記プレ画像(50)及びポスト画像(52)の両方において前記商品(n)を検出及び認識するために前記訓練されたANNが使用される請求項13に記載の方法。
【請求項15】
2つの異なるANN(ANN-1,ANN-2)が、前記プレ画像(50)及び前記ポスト画像(52)の両方における前記商品(n)を独立して検出及び認識するようにシンジケートプーリング評価において並列に配置され、
商品認識は、前記欠落した商品(13)を特定するために、前記ストックのプレ画像(50)及びストックのポスト画像(52)の両方に対して異なるANNの両方が一致しなければならない請求項13に記載の方法。
【請求項16】
前記2つの異なるANNは、
シングルショット検出器(SSD-ANN-1)と、
地域ベースの畳み込みニューラルネットワーク(RCNN-ANN-2)とからなる請求項15に記載の方法。
【請求項17】
前記初期の商品のストック(S)を含む多数の商品(n)のインベントリ(N)を画像化すること;
前記商品外観に基づいて前記インベントリにおける各商品(n)に対して二次シグネチャ(Y(n))を作り出すこと;
前記ストックのプレ画像(50)及び前記ストックのポスト画像(52)の両方における各商品(n)を前記二次シグネチャ(Y(n))から特定するため、二次視覚認識システム(SVRS 58)を配置すること;及び、
前記ストックのプレ画像(50)とストックのポスト画像(52)とを比較して、前記二次シグネチャ(Y(n))に基づいて前記欠落した商品(13)を特定することを更に含む請求項16に記載の方法。
【請求項18】
飛行中に前記陳列キャビネット(30)が乗客にアクセスできるように、前記自動販売機(28)を客室(26)内の航空機胴体(22)に取り付けることを含み、
前記自動販売機(28)はバーコードリーダ(62)、無線周波数識別(RFID)検出器(64)、及び機械的駆動式分配シュート(66)を含む前記陳列キャビネットからいずれかの商品を直接特定しかつ自動的に分配するためのシステムが明確に不存在であることにより特徴付けられる最小限の複雑さ及び重量を有する請求項13に記載の方法。
【請求項19】
自動販売機(28)の陳列キャビネット(30)の複数の陳列棚(34)に商品(n)の前記初期のストック(S)をランダム位置に陳列することを含み、自動販売機(28)が有するロックされた陳列扉(32)を通じて前記商品(n)を見ることができ、
前記陳列キャビネット(30)は、前記棚(34)に陳列された商品(n)の全ストック(S)を含む視野を有するデジタルカメラ(42)を含み、
前記デジタルカメラ(42)はデジタルコンピュータ(44)に動作可能に結合され、前記デジタルコンピュータ(44)は、前記商品の取り出しの前後に前記デジタルカメラ(42)によって撮影されたプレ画像及びポスト画像(50,52)を比較することにより、前記ユーザによって前記キャビネット(30)から取り出された前記商品(13)を特定し、残りのストック(S-(S-P))の前記ポスト画像(52)において欠落した商品(13)を確定するためのソフトウェアで構成され、
前記デジタルコンピュータ(44)は、前記ロックされた陳列キャビネット(30)へのアクセスをユーザに許可し、商品の取り出しの前後に前記陳列扉(32)のロックを解除及び再ロックし、前記欠落した商品(13)に対する前記ユーザからの支払いを処理するように更に構成される請求項1に記載の方法。
【請求項20】
前記ストックのプレ画像及びポスト画像(50,52)における各商品(n)を検出及び認識するように事前訓練された第1人工ニューラルネットワーク(ANN-1)と、
前記第1ANNとは異なる構成であり、前記ストックのプレ画像及びポスト画像(50,52)における各商品(n)を検出及び認識するために事前訓練された第2人工ニューラルネットワーク(ANN-2)とを含み、
前記第1及び第2ANNは、前記プレ画像(50)及びポスト画像(52)の両方において前記商品(n)を独立して検出及び認識するようにシンジケートプーリング評価において並行に結合され、
前記ソフトウェアは、前記ポスト画像(52)と前記プレ画像(50)とにおける前記ANN認識されたストック商品(n)を比較して、前記欠落した商品(13)を特定するように更に構成され、
前記第1及び第2ANNによる前記商品認識は、前記欠落した商品(13)を特定するために、前記ストックのプレ画像(50)及び前記ストックのポスト画像(52)の両方に対して一致しなければならない請求項19に記載の方法。
【請求項21】
自動販売機(28)であって、
ロックされた陳列扉(32)を有し、販売するいくつかの商品(n)の初期のストック(S)を、前記陳列扉(32)を通じて表示するための複数の陳列棚(34)を含む陳列キャビネット(30)であって、いくつかの商品(n)の前記初期のストック(S)が、外観が異なる商品(n)を含む、陳列キャビネット(30)と、
前記陳列棚(34)に陳列された商品(n)の全ストック(S)を含む視野を有する、前記キャビネット(30)内に取り付けられたデジタルカメラ(42)と、
前記デジタルカメラ(42)に動作可能に結合されたデジタルコンピュータ(44)であって、
前記カメラ(42)を操作して、前記陳列棚(34)に陳列された前記初期のストック(S)内のすべての各商品(n)のプレ画像(50)を撮影を撮影し、初期の商品インベントリデータベースを提供し、
前記カメラ(42)を操作して、前記陳列棚(34)上での商品の動き、整列のずれ、及び位置のずれとは無関係に、前記ユーザによる商品選択後の、陳列されたストックの残りの状態にあるすべての各商品(n)のポスト画像(52)を撮影し、前記商品インベントリデータベースを更新し、
前記キャビネット(30)から前記ユーザによって取り出されたいずれかの商品(13)を特定することであって、前記取り出された商品(13)自体を特定又は検出することによってではなく、前記陳列棚(34)上の前記商品(n)の位置及び向きとは無関係に、商品が取り出される前の初期のストックと商品が取り出され後の残りのストックの両方におけるすべての商品(n)のカメラ撮影によって、前記プレ画像(50)及び前記ポスト画像(52)に含まれるすべての各商品(n)を検出及び認識して、商品の外観から特定を行い、前記残りのストック(S-(S-P))の前記ポスト画像(52)において、特定された商品のうち欠落している商品を確定することによって、当該商品を特定するためのソフトウェアで構成されたデジタルコンピュータ(44)と
を備え、
前記デジタルコンピュータ(44)は、ユーザにアクセスを許可し、商品の取り出しの前後に前記陳列扉(32)のロックを解除及び再ロックし、前記欠落した商品(13)に対する前記ユーザからの支払いを処理するように更に構成される自動販売機(28)。
【請求項22】
前記ソフトウェアは、
前記ストックのプレ画像及びポスト画像(50,52)における各商品(n)を検出及び認識するように事前訓練された第1人工ニューラルネットワーク(ANN-1)と、
前記第1ANNとは異なる構成であり、前記ストックのプレ画像及びポスト画像(50,52)における各商品(n)を検出及び認識するために事前訓練された第2人工ニューラルネットワーク(ANN-2)とを含み、
前記第1及び第2ANNは、前記プレ画像(50)及びポスト画像(52)の両方において前記商品(n)を独立して検出及び認識するようにシンジケートプーリング評価において並行に結合され、
前記ソフトウェアは、前記ポスト画像(52)と前記プレ画像(50)とにおける前記ANN認識されたストック商品(n)を比較して、前記欠落した商品(13)を特定するように更に構成され、
前記第1及び第2ANNによる前記商品認識は、前記欠落した商品(13)を特定するために、前記ストックのプレ画像(50)及び前記ストックのポスト画像(52)の両方に対して一致しなければならない請求項21に記載の自動販売機(28)。
【外国語明細書】