IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社トッパンフォトマスクの特許一覧

特開2024-79848位相シフトマスクブランク、位相シフトマスク及び位相シフトマスクの製造方法
<>
  • 特開-位相シフトマスクブランク、位相シフトマスク及び位相シフトマスクの製造方法 図1
  • 特開-位相シフトマスクブランク、位相シフトマスク及び位相シフトマスクの製造方法 図2
  • 特開-位相シフトマスクブランク、位相シフトマスク及び位相シフトマスクの製造方法 図3
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024079848
(43)【公開日】2024-06-11
(54)【発明の名称】位相シフトマスクブランク、位相シフトマスク及び位相シフトマスクの製造方法
(51)【国際特許分類】
   G03F 1/32 20120101AFI20240604BHJP
   G03F 1/48 20120101ALI20240604BHJP
【FI】
G03F1/32
G03F1/48
【審査請求】有
【請求項の数】15
【出願形態】OL
(21)【出願番号】P 2024062752
(22)【出願日】2024-04-09
(62)【分割の表示】P 2020150758の分割
【原出願日】2020-09-08
(71)【出願人】
【識別番号】522212882
【氏名又は名称】株式会社トッパンフォトマスク
(74)【代理人】
【識別番号】100105854
【弁理士】
【氏名又は名称】廣瀬 一
(74)【代理人】
【識別番号】100116012
【弁理士】
【氏名又は名称】宮坂 徹
(72)【発明者】
【氏名】黒木 恭子
(72)【発明者】
【氏名】松井 一晃
(72)【発明者】
【氏名】小嶋 洋介
(57)【要約】
【課題】マスク上におけるヘイズの発生を十分に抑制することができる位相シフトマスクブランク、ヘイズ欠陥の少ない位相シフトマスク及びその位相シフトマスクの製造方法を提供する。
【解決手段】本実施形態に係る位相シフトマスクブランク10は、波長200nm以下の露光光が適用される位相シフトマスクを作製するために用いられる位相シフトマスクブランクであって、基板11と、基板11の上に形成された位相シフト膜14と、を備え、位相シフト膜14は、透過する露光光に対して所定量の位相及び透過率をそれぞれ調整可能とする位相層12と、位相層12の上に形成され、位相層12への気体透過を阻止する保護層13と、を備え、位相層12は、基板11側に位置し、位相層12の膜厚をd1とし、保護層13の膜厚をd2としたときに、位相層12の膜厚d1は保護層13の膜厚d2よりも厚く、保護層13の膜厚d2は15nm以下である。
【選択図】図1
【特許請求の範囲】
【請求項1】
波長200nm以下の露光光が適用される位相シフトマスクを作製するために用いられる位相シフトマスクブランクであって、
透明基板と、前記透明基板の上に形成された位相シフト膜と、を備え、
前記位相シフト膜は、透過する露光光に対して所定量の位相及び透過率をそれぞれ調整可能とする位相差透過率調整層と、前記位相差透過率調整層の上に形成され、前記位相差透過率調整層への気体透過を阻止する気体透過保護層と、を備え、
前記位相差透過率調整層は、前記透明基板側に位置し、
前記位相差透過率調整層の膜厚をd1とし、前記気体透過保護層の膜厚をd2としたときに、d1はd2よりも厚く、d2は15nm以下であることを特徴とする位相シフトマスクブランク。
【請求項2】
前記位相シフト膜は、酸素含有塩素系エッチング(Cl/O系)に対して耐性を有し、且つフッ素系エッチング(F系)でエッチング可能であることを特徴とする請求項1に記載の位相シフトマスクブランク。
【請求項3】
前記位相差透過率調整層は、ケイ素を含有し、且つ遷移金属、窒素、酸素、及び炭素から選ばれる少なくとも1種を含有し、
前記遷移金属は、モリブデン、チタン、バナジウム、コバルト、ニッケル、ジルコニウム、ニオブ、及びハフニウムから選ばれる少なくとも1種であることを特徴とする請求項1または請求項2に記載の位相シフトマスクブランク。
【請求項4】
前記気体透過保護層は、タンタル金属、タンタル化合物、タングステン金属、タングステン化合物、テルル金属、及びテルル化合物から選ばれる少なくとも1種を含有することを特徴とする請求項1から請求項3のいずれか1項に記載の位相シフトマスクブランク。
【請求項5】
前記タンタル化合物は、タンタルと、酸素、窒素、及び炭素から選ばれる少なくとも1種と、を含有することを特徴とする請求項4に記載の位相シフトマスクブランク。
【請求項6】
前記タングステン化合物は、タングステンと、酸素、窒素、及び炭素から選ばれる少なくとも1種と、を含有することを特徴とする請求項4に記載の位相シフトマスクブランク。
【請求項7】
前記テルル化合物は、テルルと、酸素、窒素、及び炭素から選ばれる少なくとも1種と、を含有することを特徴とする請求項4に記載の位相シフトマスクブランク。
【請求項8】
波長200nm以下の露光光が適用され、回路パターンを備えた位相シフトマスクであって、
透明基板と、前記透明基板の上に形成された位相シフト膜と、を備え、
前記位相シフト膜は、透過する露光光に対して所定量の位相及び透過率をそれぞれ調整可能とする位相差透過率調整層と、前記位相差透過率調整層の上に形成され、前記位相差透過率調整層への気体透過を阻止する気体透過保護層と、を備え、
前記位相差透過率調整層は、前記透明基板側に位置し、
前記位相差透過率調整層の膜厚をd1とし、前記気体透過保護層の膜厚をd2としたときに、d1はd2よりも厚く、d2は15nm以下であることを特徴とする位相シフトマスク。
【請求項9】
前記位相シフト膜は、酸素含有塩素系エッチング(Cl/O系)に対して耐性を有し、且つフッ素系エッチング(F系)でエッチング可能であることを特徴とする請求項8に記
載の位相シフトマスク。
【請求項10】
前記位相差透過率調整層は、ケイ素を含有し、且つ遷移金属、窒素、酸素、及び炭素から選ばれる少なくとも1種を含有し、
前記遷移金属は、モリブデン、チタン、バナジウム、コバルト、ニッケル、ジルコニウム、ニオブ、及びハフニウムから選ばれる少なくとも1種であることを特徴とする請求項8または請求項9に記載の位相シフトマスク。
【請求項11】
前記気体透過保護層は、タンタル金属、タンタル化合物、タングステン金属、タングステン化合物、テルル金属、及びテルル化合物から選ばれる少なくとも1種を含有することを特徴とする請求項8から請求項10のいずれか1項に記載の位相シフトマスク。
【請求項12】
前記タンタル化合物は、タンタルと、酸素、窒素、及び炭素から選ばれる少なくとも1種と、を含有することを特徴とする請求項11に記載の位相シフトマスク。
【請求項13】
前記タングステン化合物は、タングステンと、酸素、窒素、及び炭素から選ばれる少なくとも1種と、を含有することを特徴とする請求項11に記載の位相シフトマスク。
【請求項14】
前記テルル化合物は、テルルと、酸素、窒素、及び炭素から選ばれる少なくとも1種と、を含有することを特徴とする請求項11に記載の位相シフトマスク。
【請求項15】
請求項1から請求項7のいずれか1項に記載の位相シフトマスクブランクを用いる位相シフトマスクの製造方法であって、
前記位相シフト膜上に遮光膜を形成する工程と、
前記位相シフト膜上に形成された前記遮光膜上にレジストパターンを形成する工程と、
前記レジストパターンを形成した後に、酸素含有塩素系エッチング(Cl/O系)にて前記遮光膜にパターンを形成する工程と、
前記遮光膜にパターンを形成した後に、フッ素系エッチング(F系)にて前記位相シフト膜にパターンを形成する工程と、
前記位相シフト膜にパターンを形成した後に、前記レジストパターンを除去する工程と、
前記レジストパターンを除去した後、前記位相シフト膜上から、酸素含有塩素系エッチング(Cl/O系)にて前記遮光膜を除去する工程と、を含むことを特徴とする位相シフトマスクの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体デバイス等の製造において使用される位相シフトマスクブランク、位相シフトマスク及び位相シフトマスクの製造方法に関する。
【背景技術】
【0002】
近年、半導体加工においては、特に大規模集積回路の高集積化により、回路パターンの微細化が必要になってきており、回路を構成する配線パターンやコンタクトホールパターンの微細化技術への要求が高まってきている。そのため、半導体デバイス等の製造で用いられる露光光源は、KrFエキシマレーザー(波長248nm)から、ArFエキシマレーザー(波長193nm)へと短波長化が進んでいる。
【0003】
また、ウエハ転写特性を向上させたマスクとして、例えば、位相シフトマスクがある。位相シフトマスクでは、透明基板を透過するArFエキシマレーザー光と、透明基板と位相シフト膜の両方を透過するArFエキシマレーザー光との位相差(以下、単に「位相差」という。)が180度、かつ透明基板を透過するArFエキシマレーザー光の光量に対し、透明基板と位相シフト膜の両方を透過するArFエキシマレーザー光の光量の比率(以下、単に「透過率」という)が6%というように、位相差と透過率の両方を調整するこ
とが可能である。
【0004】
例えば、位相差が180度の位相シフトマスクを製造する場合、位相差が177度付近になるよう位相シフト膜の膜厚を設定した後、位相シフト膜をフッ素系ガスにてドライエッチングすると同時に透明基板を3nm程度加工して、最終的に位相差を180度付近に調整する方法が知られている。
【0005】
波長200nm以下の露光光が適用される位相シフトマスクにおいては、露光することにより、マスクに「ヘイズ」と呼ばれる異物が徐々に生成・成長・顕在化して、そのマスクが使用できなくなることがある。特に位相シフト膜がシリコンと遷移金属と酸素や窒素などの軽元素とで構成された膜である場合、位相シフト膜表面に異物が発生することがある。
ヘイズを抑制するための技術としては、例えば、特許文献1、2に記載されたものある。
しかしながら、特許文献1、2に記載された技術では、上述のようなヘイズを抑制する効果が十分でない場合がある。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2018-173621号公報
【特許文献2】特許第4579728号
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明は、以上のような事情の元になされ、位相シフト膜表面におけるヘイズの発生を十分に抑制することができる位相シフトマスクブランク、ヘイズ欠陥の少ない位相シフトマスク及びその位相シフトマスクの製造方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明は上記課題を解決するために成されたものであって、本発明の一態様に係る位相シフトマスクブランクは、波長200nm以下の露光光が適用される位相シフトマスクを作製するために用いられる位相シフトマスクブランクであって、透明基板と、前記透明基板の上に形成された位相シフト膜と、を備え、前記位相シフト膜は、透過する露光光に対して所定量の位相及び透過率をそれぞれ調整可能とする位相差透過率調整層と、前記位相差透過率調整層の上に形成され、前記位相差透過率調整層への気体透過を阻止する気体透過保護層と、を備え、前記位相差透過率調整層は、前記透明基板側に位置し、前記位相差透過率調整層の膜厚をd1とし、前記気体透過保護層の膜厚をd2としたときに、d1はd2よりも厚く、d2は15nm以下であることを特徴とする。
【0009】
また、本発明の一態様に係る位相シフトマスクは、波長200nm以下の露光光が適用され、回路パターンを備えた位相シフトマスクであって、透明基板と、前記透明基板の上に形成された位相シフト膜と、を備え、前記位相シフト膜は、透過する露光光に対して所定量の位相及び透過率をそれぞれ調整可能とする位相差透過率調整層と、前記位相差透過率調整層の上に形成され、前記位相差透過率調整層への気体透過を阻止する気体透過保護層と、を備え、前記位相差透過率調整層は、前記透明基板側に位置し、前記位相差透過率調整層の膜厚をd1とし、前記気体透過保護層の膜厚をd2としたときに、d1はd2よりも厚く、d2は15nm以下であることを特徴とする。
【0010】
また、本発明の一態様に係る位相シフトマスクの製造方法は、上述した位相シフトマスクブランクを用いる位相シフトマスクの製造方法であって、前記位相シフト膜上に遮光膜を形成する工程と、前記位相シフト膜上に形成された前記遮光膜上にレジストパターンを形成する工程と、前記レジストパターンを形成した後に、酸素含有塩素系エッチング(Cl/O系)にて前記遮光膜にパターンを形成する工程と、前記遮光膜にパターンを形成した後に、フッ素系エッチング(F系)にて前記位相シフト膜にパターンを形成する工程と、前記位相シフト膜にパターンを形成した後に、前記レジストパターンを除去する工程と、前記レジストパターンを除去した後、前記位相シフト膜上から、酸素含有塩素系エッチング(Cl/O系)にて前記遮光膜を除去する工程と、を含むことを特徴とする。
【発明の効果】
【0011】
本発明の一態様に係る位相シフトマスクブランクを用いることで、マスク上におけるヘイズの発生を十分に抑制することができる。
【図面の簡単な説明】
【0012】
図1】本発明の実施形態に係る位相シフトマスクブランクの構成を示す断面概略図である。
図2】本発明の実施形態に係る位相シフトマスクの構成を示す断面概略図である。
図3】本発明の実施形態に係る位相シフトマスクブランクを用いた位相シフトマスクの製造工程を示す断面概略図である。
【発明を実施するための形態】
【0013】
本願発明者らは、位相シフトマスクブランクまたは位相シフトマスクを構成する位相調整膜(後述する位相差透過率調整層)の構成材料と、水や酸素等の酸化性気体と、露光エネルギーとの3要素が全て揃わなければマスクブランクまたはマスクにおけるヘイズの発生は低減可能と考え、位相シフトマスクブランクまたは位相シフトマスクを下記構成とした。つまり、本実施形態に係る位相シフトマスクブランク、位相シフトマスク及びその製造方法は、位相調整膜上に気体保護層(所謂、気体バリア層)を設けることで、位相調整膜の構成材料に酸化性気体が接触しないようにすることでヘイズの発生を低減するという技術的思想に基づくものである。
【0014】
以下に図面を参照して、本発明を実施するための形態について説明する。なお、断面概略図は、実際の寸法比やパターン数を正確には反映しておらず、透明基板の掘り込み量や膜のダメージ量は省略してある。
本発明の位相シフトマスクブランクの好適な実施形態としては、以下に示す形態が挙げられる。
【0015】
(位相シフトマスクブランクの全体構成)
図1は、本発明の実施形態に係る位相シフトマスクブランクの構成を示す断面概略図である。図1に示す位相シフトマスクブランク10は、波長200nm以下の露光光が適用される位相シフトマスクを作製するために用いられる位相シフトマスクブランクであって、露光波長に対して透明な基板(以下、単に「基板」ともいう)11と、基板11の上に成膜された位相シフト膜14とを備えている。また、位相シフト膜14は、透過する露光光に対して所定量の位相及び透過率をそれぞれ調整可能とする位相差透過率調整層(以下、単に「位相層」ともいう)12と、位相差透過率調整層12の上に形成され、位相差透過率調整層12への気体透過を阻止する気体透過保護層(以下、単に「保護層」ともいう)13と、を少なくとも備えており、位相層12は、基板11側に位置している。また、位相層12の膜厚をd1とし、保護層13の膜厚をd2としたときに、d1はd2よりも厚く、d2は15nm以下である。
以下、本発明の実施形態に係る位相シフトマスクブランク10の構成する各層について詳しく説明する。
【0016】
(基板)
基板11に対する特別な制限はなく、基板11としては、例えば、石英ガラスやCaFあるいはアルミノシリケートガラスなどが一般的に用いられる。
【0017】
(位相シフト膜)
位相シフト膜14は、位相層12と保護層13とをこの順に備えており、基板11上に他の膜を介して又は介さずに形成されている。
位相シフト膜14は、例えば、酸素含有塩素系エッチング(Cl/O系)に対して耐性を有し、且つフッ素系エッチング(F系)でエッチング可能な膜である。
【0018】
位相シフト膜14の透過率の値は、基板11の透過率に対して、例えば、3%以上80%以下の範囲内であり、所望のウエハパターンに応じて最適な透過率を適宜選択することが可能である。また、位相シフト膜14の位相差の値は、例えば、160度以上220度以下の範囲内であり、175度以上190度以下の範囲内であればより好ましい。つまり、位相シフト膜14は、露光光に対する透過率が3%以上80%以下の範囲内であり、位相差が160度以上220度以下の範囲内であってもよい。位相シフト膜14の露光光に対する透過率が3%未満の場合には、良好な露光性能が得られないことがある。また、位相差が160度以上220度以下の範囲内であれば、必要な露光性能を容易に維持することができる。
【0019】
<位相層>
位相層12は、基板11上に他の膜を介して又は介さずに形成されており、透過する露光光に対して所定量の位相及び透過率をそれぞれ調整可能とする層である。ここで、「位相を調整」とは、例えば、位相を反転させることを意味する。また、「透過率」とは、露光光に対する透過率を意味する。
位相層12は、例えば、ケイ素を含有し、且つ遷移金属、窒素、酸素、及び炭素から選ばれる少なくとも1種を含有した単層膜、又はこれらの複数層膜もしくは傾斜膜であり、組成と膜厚とを適宜選択することで露光波長に対する透過率と位相差とを調整させたものである。
【0020】
位相層12は、位相層12全体の元素比率において、ケイ素を20原子%以上60原子%以下の範囲内で含有することが好ましく、遷移金属を0原子%以上20原子%以下の範囲内で含有することが好ましく、窒素を30原子%以上80原子%以下の範囲内で含有することが好ましく、酸素を0原子%以上30原子%以下の範囲内で含有することが好ましく、炭素を0原子%以上10原子%以下の範囲内で含有することが好ましい。位相層12における各元素のより好ましい含有量の範囲は、位相層12全体の元素比率において、ケイ素は30原子%以上50原子%以下の範囲内であり、遷移金属は0原子%以上10原子%以下の範囲内であり、窒素は40原子%以上70原子%以下の範囲内であり、酸素は0原子%以上20原子%以下の範囲内であり、炭素は0原子%以上5原子%以下の範囲内である。位相層12における各元素の含有量が上記数値範囲内であれば、位相層12の透過率とともに、位相差も容易に制御することができる。
なお、位相層12は、金属シリサイドの酸化物、炭化物及び窒化物の少なくとも1種を含有したものであってもよい。その場合、金属シリサイドを構成する金属は、上述した遷移金属であってもよい。
【0021】
位相層12が含有する遷移金属は、モリブデン、チタン、バナジウム、コバルト、ニッケル、ジルコニウム、ニオブ、及びハフニウムから選ばれる少なくとも1種が好ましく、モリブデンであればより好ましい。位相層12が含有する遷移金属が、モリブデン、チタン、バナジウム、コバルト、ニッケル、ジルコニウム、ニオブ、及びハフニウムから選ばれる少なくとも1種であれば、位相層12の加工が容易になり、モリブデンであればさらに位相層12のエッチング等の加工性が高くなる。
【0022】
位相層12の膜厚をd1とし、保護層13の膜厚をd2としたときに、位相層12の膜厚d1は保護層13の膜厚d2よりも厚く、保護層13の膜厚d2は15nm以下である。なお、保護層13の膜厚d2を15nmよりも厚くした場合には、光学特性や修正特性において影響を受ける可能性がある。
また、位相層12の膜厚d1は15nmよりも厚くてもよい。位相層12の膜厚d1が15nmよりも厚い場合には、位相及び透過率の各調整が容易になる。
また、位相層12の膜厚と、保護層13の膜厚との合計膜厚は、50nm以上であれば好ましく、70nm以上であればより好ましい。位相層12の膜厚と、保護層13の膜厚との合計膜厚が上記数値範囲内であれば、位相シフト膜14の機能を所望の値に設定しやすくなる。
【0023】
<保護層>
保護層13は、位相層12上に他の膜を介して又は介さずに形成されており、位相層12への気体透過(特に、水や酸素等の酸化性気体の透過)を阻止・抑制するための層、即ち気体バリア層である。本実施形態であれば、ヘイズ発生の要素の1つと考える気体の位相層12への侵入を阻止・抑制することができるため、長期間マスクを使用した場合(例えば、マスク上のドーズ量が100kJ/cmを超えた場合)であっても、位相シフトマスク表面におけるヘイズの発生を阻止・抑制することができる。
なお、保護層13で透過が阻止・抑制される気体(雰囲気ガス)は、酸化性気体であり、具体的には酸素含有分子であり、さらに具体的には水分子である。
【0024】
保護層13は、酸素含有塩素系(Cl/O系)のガスエッチングに耐性があり、フッ素系ガス(F系)でエッチング可能であり、EB(電子ビーム)修正法で修正できる層であれば好ましい。
保護層13は、タンタル金属、タンタル化合物、タングステン金属、タングステン化合物、テルル金属、及びテルル化合物から選ばれる1種以上の化合物からなる単層膜、またはこれらの化合物の混合膜、もしくは複数層膜であることが好ましいが、バリア機能を備
える層であれば特に組成は限定されるものではない。なお、上述のタンタル金属、タングステン金属、及びテルル金属は、各金属の単体を意味する。
【0025】
タンタル化合物からなる保護層13は、タンタルと、酸素、窒素、及び炭素から選ばれる1種以上の元素とを含有する単層膜、またはこれらの複数層膜、もしくは傾斜膜である。
タンタル化合物からなる保護層13は、保護層13全体の元素比率において、タンタルを10原子%以上90原子%以下の範囲内で含有することが好ましく、酸素を0原子%以上90原子%以下の範囲内で含有することが好ましく、窒素を0原子%以上70原子%以下の範囲内で含有することが好ましく、炭素を0原子%以上20原子%以下の範囲内で含有することが好ましい。タンタル化合物からなる保護層13における各元素のより好ましい含有量の範囲は、保護層13全体の元素比率において、タンタルは20原子%以上80原子%以下の範囲内であり、酸素は0原子%以上80原子%以下の範囲内であり、窒素は0原子%以上60原子%以下の範囲内であり、炭素は0原子%以上10原子%以下の範囲内である。タンタル化合物からなる保護層13における各元素の含有量が上記数値範囲内であれば、保護層13の位相層12への気体透過のバリア性が高まる。
【0026】
また、タングステン化合物からなる保護層13は、タングステンと、酸素、窒素、及び炭素から選ばれる1種以上の元素とを含有する単層膜、またはこれらの複数層膜、もしくは傾斜膜である。
タングステン化合物からなる保護層13は、保護層13全体の元素比率において、タングステンを10原子%以上70原子%以下の範囲内で含有することが好ましく、酸素を30原子%以上90原子%以下の範囲内で含有することが好ましく、窒素を0原子%以上20原子%以下の範囲内で含有することが好ましく、炭素を0原子%以上20原子%以下の範囲内で含有することが好ましい。タングステン化合物からなる保護層13における各元素のより好ましい含有量の範囲は、保護層13全体の元素比率において、タングステンは20原子%以上60原子%以下の範囲内であり、酸素は50原子%以上80原子%以下の範囲内であり、窒素は0原子%以上10原子%以下の範囲内であり、炭素は0原子%以上10原子%以下の範囲内である。タングステン化合物からなる保護層13における各元素の含有量が上記数値範囲内であれば、保護層13の位相層12への気体透過のバリア性が高まる。
【0027】
また、テルル化合物からなる保護層13は、テルルと、酸素、窒素、及び炭素から選ばれる1類種以上の元素とを含有する単層膜、またはこれらの複数層膜、もしくは傾斜膜である。
テルル化合物からなる保護層13は、保護層13全体の元素比率において、テルルを20原子%以上70原子%以下の範囲内で含有することが好ましく、酸素を30原子%以上90原子%以下の範囲内で含有することが好ましく、窒素を0原子%以上20原子%以下の範囲内で含有することが好ましく、炭素を0原子%以上20原子%以下の範囲内で含有することが好ましい。テルル化合物からなる保護層13における各元素のより好ましい含有量の範囲は、保護層13全体の元素比率において、テルルは30原子%以上60原子%以下の範囲内であり、酸素は50原子%以上80原子%以下の範囲内であり、窒素は0原子%以上10原子%以下の範囲内であり、炭素は0原子%以上10原子%以下の範囲内である。テルル化合物からなる保護層13における各元素の含有量が上記数値範囲内であれば、保護層13の位相層12への気体透過のバリア性が高まる。
【0028】
以上のように、保護層13が、タンタル金属、タンタル化合物、タングステン金属、タングステン化合物、テルル金属、及びテルル化合物から選ばれる1種以上の化合物からなる単層膜、またはこれらの化合物の混合膜、もしくは複数層膜であれば、位相層12への気体透過を効果的に阻止することができる。
なお、保護層13の膜厚d2は、上述のように15nm以下であるが、保護層13の膜厚d2が上記数値範囲内であれば、光学特性や修正特性を維持しつつ、位相層12への気体透過のバリア性も維持することができる。
【0029】
(位相シフトマスクの全体構成)
以下、本発明の実施形態に係る位相シフトマスク100の構成について説明する。
図2は、本発明の実施形態に係る位相シフトマスクの構成を示す断面概略図である。図2に示す位相シフトマスク100は、波長200nm以下の露光光が適用され、回路パターンを備えた位相シフトマスク(即ち、パターニングされた位相シフトマスク)であって、露光波長に対して透明な基板11と、基板11の上に成膜された位相シフト膜14とを備えている。また、位相シフト膜14は、透過する露光光に対して所定量の位相及び透過率をそれぞれ調整可能とする位相層12と、位相層12の上に形成され、位相層12への気体透過を阻止する保護層13と、を少なくとも備えており、位相層12は、基板11側に位置している。また、位相層12の膜厚をd1とし、保護層13の膜厚をd2としたときに、d1はd2よりも厚く、d2は15nm以下である。
【0030】
位相シフトマスク100は、位相シフト膜14の一部を除去して基板11の表面を露出することで形成した位相シフト膜パターン17を備えている。
なお、本発明の実施形態に係る位相シフトマスク100を構成する各層の組成等は、上述した本発明の実施形態に係る位相シフトマスクブランク10の構成する各層の組成等と同じであるため、各層の組成等に関する詳細な説明については省略する。
【0031】
(位相シフトマスクブランクの製造方法)
本実施形態に係る位相シフトマスクブランク10を用いる位相シフトマスク100の製造方法は、位相シフト膜14上に遮光膜15を形成する工程と、位相シフト膜14上に形成された遮光膜15上にレジストパターン16を形成する工程と、レジストパターン16を形成した後に、酸素含有塩素系エッチング(Cl/O系)にて遮光膜15にパターンを形成する工程と、遮光膜15にパターンを形成した後に、フッ素系エッチング(F系)にて位相シフト膜14にパターンを形成する工程と、位相シフト膜14にパターンを形成した後に、レジストパターン16を除去する工程と、レジストパターン16を除去した後、位相シフト膜14上から、酸素含有塩素系エッチング(Cl/O系)にて遮光膜15を除去する工程と、を含んでいる。
ここで、本発明の実施形態に係る遮光膜15について説明する。
【0032】
<遮光膜>
遮光膜15は、上述した本発明の実施形態に係る位相シフトマスクブランク10(保護層13)の上に形成される層である。
遮光膜15は、例えば、クロム単体、又はクロム化合物からなる単層膜、またはこれらの複数層膜、もしくは傾斜膜である。より詳しくは、クロム化合物からなる遮光膜15は、クロムと、窒素及び酸素から選ばれる1種以上の元素とを含有する単層膜、またはこれらの複数層膜、もしくは傾斜膜である。
【0033】
クロム化合物からなる遮光膜15は、遮光膜15全体の元素比率において、クロムを30原子%以上100原子%以下の範囲内で含有することが好ましく、酸素を0原子%以上50原子%以下の範囲内で含有することが好ましく、窒素を0原子%以上50原子%以下の範囲内で含有することが好ましく、炭素を0原子%以上10原子%以下の範囲内で含有することが好ましい。クロム化合物からなる遮光膜15における各元素のより好ましい含有量の範囲は、遮光膜15全体の元素比率において、クロムは50原子%以上100原子%以下の範囲内であり、酸素は0原子%以上40原子%以下の範囲内であり、窒素は0原子%以上40原子%以下の範囲内であり、炭素は0原子%以上5原子%以下の範囲内である。クロム化合物からなる遮光膜15における各元素の含有量が上記数値範囲内であれば、遮光膜15の遮光性が高まる。
【0034】
遮光膜15の膜厚は、例えば、35nm以上80nm以下の範囲内、特に40nm以上75nm以下の範囲内が好ましい。
遮光膜15は、公知の方法により成膜することができる。最も容易に均質性に優れた膜を得る方法としては、スパッタ成膜法が好ましく挙げられるが、本実施形態ではスパッタ成膜法に限定する必要はない。
【0035】
ターゲットとスパッタガスは膜組成によって選択される。例えば、クロムを含有する膜の成膜方法としては、クロムを含有するターゲットを用い、アルゴンガス等の不活性ガスのみ、酸素等の反応性ガスのみ、又は不活性ガスと反応性ガスとの混合ガス中で反応性スパッタリングを行う方法を挙げることができる。スパッタガスの流量は膜特性に合わせて調整すればよく、成膜中一定としてもよいし、酸素量や窒素量を膜の厚み方向に変化させたいときは、目的とする組成に応じて変化させてもよい。また、ターゲットに対する印加電力、ターゲットと基板との距離、成膜チャンバー内の圧力を調整してもよい。
【0036】
以下、本発明の実施形態に係る位相シフトマスク100の製造方法が有する各工程について詳しく説明する。
図3は、図1に示す位相シフトマスクブランク10を用いた位相シフトマスク100の製造工程を示す断面概略図である。図3(a)は、位相シフト膜14上に遮光膜15を形成する工程を示す。図3(b)は、遮光膜15上にレジスト膜を塗布し、描画を施し、その後に現像処理を行い、レジストパターン16を形成する工程を示す。図3(c)は、レジストパターン16に沿って酸素含有塩素系ドライエッチング(Cl/O系)により遮光膜15をパターニングする工程を示す。図3(d)は、遮光膜15のパターンに沿ってフッ素系エッチング(F系)により位相シフト膜14をパターニングし、位相シフト膜パターン17を形成する工程を示す。図3(e)は、レジストパターン16を剥離除去した後、洗浄する工程を示す。図3(f)は、位相シフト膜パターン17が形成された位相シフト膜14上から、酸素含有塩素系エッチング(Cl/O系)にて遮光膜15を除去する工程を示す。こうして、本実施形態に係る位相シフトマスク100を製造する。
【0037】
本実施形態に係る位相シフトマスク100は、波長200nm以下の露光光が適用される位相シフトマスクであって、基板11と、基板11上に他の膜を介して又は介さずに形成された位相シフト膜14と、を備えている。また、位相シフト膜14は、透過する露光光に対して所定量の位相及び透過率をそれぞれ調整可能とする位相層12と、位相層12の上に形成され、位相層12への気体透過を阻止する保護層13と、を備えており、位相層12は、基板11側に位置している。また、位相シフトマスク100は、基板11の一部が露出するように位相シフト膜14の一部を除去して形成した位相シフト膜パターン17を備えている。そして、位相層12の膜厚をd1とし、保護層13の膜厚をd2としたときに、位相層12の膜厚d1は保護層13の膜厚d2よりも厚く、保護層13の膜厚d2は15nm以下でとなっている。
【0038】
図3(b)の工程において、レジスト膜の材料としては、ポジ型レジストでもネガ型レジストでも用いることができるが、高精度パターンの形成を可能とする電子ビーム描画用の化学増幅型レジストを用いることが好ましい。レジスト膜の膜厚は、例えば50nm以上250nm以下の範囲内である。特に、微細なパターン形成が求められる位相シフトマスクを作製する場合、パターン倒れを防止する上で、レジストパターン16のアスペクト比が大きくならないようにレジスト膜を薄膜化することが必要であり、200nm以下の膜厚が好ましい。一方、レジスト膜の膜厚の下限は、用いるレジスト材料のエッチング耐性などの条件を総合的に考慮して決定され、60nm以上が好ましい。レジスト膜として
電子ビーム描画用の化学増幅型のものを使用する場合、描画の際の電子ビームのエネルギー密度は35μC/cmから100μC/cmの範囲内であり、この描画の後に加熱処理及び現像処理を施してレジストパターン16を得る。
【0039】
また、図3(e)の工程において、レジストパターン16の剥離除去は、剥離液によるウェット剥離であってもよく、また、ドライエッチングによるドライ剥離であってもよい。
また、図3(c)の工程において、クロム単体、又はクロム化合物からなる遮光膜15をパターニングする酸素含有塩素系ドライエッチング(Cl/O系)の条件は、クロム化合物膜の除去に用いられてきた公知のものであってもよく、塩素ガスと酸素ガスとに加えて、必要に応じて窒素ガスやヘリウムガスなどの不活性ガスを混合してもよい。下層の位相シフト膜14は、酸素含有塩素系ドライエッチング(Cl/O系)に対して耐性を有しているため、本工程では除去もしくはパターニングされずに残る。
【0040】
また、図3(d)の工程において、位相シフト膜14をパターニングするフッ素系ドライエッチング(F系)の条件は、ケイ素系化合物膜、タンタル化合物膜、あるいはモリブデン化合物膜等をドライエッチングする際に用いられてきた公知のものであってもよく、フッ素系ガスとしては、CFやCやSFが一般的であり、必要に応じて酸素などの活性ガスや窒素ガスやヘリウムガスなどの不活性ガスを混合してもよい。図3(d)の場合は、上層の遮光膜15又はレジストパターン16は、フッ素系ドライエッチング(F系)に対して耐性を有しているため、本工程では除去もしくはパターニングされずに残る。図3(d)では、同時に基板11を1nmから3nm程度掘り込み、位相シフト膜14の抜け不良を防止すると共に、位相差の微調整を行うことが一般的である。
【0041】
また、図3(f)の工程において、遮光膜15を除去する酸素含有塩素系ドライエッチング(Cl/O系)の条件は、クロム化合物膜の除去に用いられてきた公知のものであってもよく、塩素ガスと酸素ガスとに加えて、必要に応じて窒素ガスやヘリウムガスなどの不活性ガスを混合してもよい。下層の位相シフト膜14及び基板11は、いずれも酸素含有塩素系ドライエッチング(Cl/O系)に対して耐性を有しているため、本工程では除去もしくはパターニングされずに残る。
【0042】
[実施例]
以下、実施例により、本発明の実施形態を更に具体的に説明するが、本発明は下記実施例に制限されるものではない。
【0043】
(実施例1)
石英基板の上に2つのターゲットを用いたDCスパッタ装置を用いて、ケイ素とモリブデンと酸素と窒素とからなる位相層を65nmの厚さで成膜した。ターゲットはモリブデンとケイ素とを用い、スパッタガスはアルゴンと酸素と窒素とを用いた。この位相層の組成をESCAで分析したところ、Si:Mo:O:N=30:5:20:45(原子%比)であった。
この位相層の上にDCスパッタ装置を用いて、タンタルと酸素とからなる保護層を8nmの厚さで成膜した。ターゲットはタンタルを用い、スパッタガスはアルゴンと酸素を用いた。この保護層の組成をESCAで分析したところ、Ta:O=30:70(原子%比)であった。
【0044】
なお、こうして形成した位相層と保護層とから構成される位相シフト膜は、露光光の透過率が6%であり、位相差が180度であった。
次に、この保護層の上にDCスパッタ装置を用いて、クロムと酸素と窒素とからなる遮光膜を50nmの厚さで成膜した。ターゲットはクロムを用い、スパッタガスはアルゴン
と酸素と窒素とを用いた。この遮光膜の組成をESCAで分析したところ、Cr:O:N=55:35:10(原子%比)であった。
【0045】
次に、この遮光膜上にネガ型化学増幅型電子線レジストを膜厚200nmでスピンコートし、パターンをドーズ量35μC/cmで電子ビーム描画し、110℃で10分間熱処理し、パドル現像で90秒間現像を行い、レジストパターンを形成した。
次に、ドライエッチング装置を用いて、遮光膜をパターニングした。エッチングガスは塩素と酸素とヘリウムとを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。オーバーエッチングは100%行った。
次に、ドライエッチング装置を用いて、保護層と位相層とで構成された位相シフト膜をパターニングした。エッチングガスはCFと酸素とを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。ドライエッチングは、石英基板を平均3nm掘り込んだ時点で停止した。
【0046】
次に、レジストパターンを硫酸加水洗浄によって剥膜洗浄した。
次に、ドライエッチング装置を用いて、遮光膜を除去した。エッチングガスは塩素と酸素とヘリウムとを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。この際、下層の位相シフト膜及び石英基板にはダメージは発生しなかった。
こうして、実施例1に係る位相シフトマスクを得た。
次に、この位相シフトマスクに対し、加速露光によりヘイズが発生したドーズ量を測定したところ、135kJ/cmであった。
【0047】
上記「加速露光によりヘイズが発生したドーズ量」は、その値が大きい程、ヘイズが発生しにくいことを意味する。ドーズ量が70kJ/cm以上であれば、位相シフトマスクを使用する上で何ら問題なく、ドーズ量が100kJ/cm以上であれば、極めてヘイズが発生しにくい位相シフトマスクといえる。
上記測定結果から、実施例1の位相シフトマスクであれば、ドーズ量が135kJ/cmであるため、ヘイズの発生を低減可能であることが確認された。
【0048】
(実施例2)
石英基板の上に2つのターゲットを用いたDCスパッタ装置を用いて、ケイ素とモリブデンと酸素と窒素とからなる位相層を67nmの厚さで成膜した。ターゲットはモリブデンとケイ素とを用い、スパッタガスはアルゴンと酸素と窒素とを用いた。この位相層の組成をESCAで分析したところ、Si:Mo:O:N=35:5:15:45(原子%比)であった。
この位相層の上にDCスパッタ装置を用いて、タングステンと酸素とからなる保護層を5nmの厚さで成膜した。ターゲットはタングステンを用い、スパッタガスはアルゴンと酸素を用いた。この保護層の組成をESCAで分析したところ、W:O=25:75(原子%比)であった。
【0049】
なお、こうして形成した位相層と保護層とから構成される位相シフト膜は、露光光の透過率が6%であり、位相差が180度であった。
次に、この保護層の上にDCスパッタ装置を用いて、クロムと酸素と窒素とからなる遮光膜を50nmの厚さで成膜した。ターゲットはクロムを用い、スパッタガスはアルゴンと酸素と窒素とを用いた。この遮光膜の組成をESCAで分析したところ、Cr:O:N=55:35:10(原子%比)であった。
次に、この遮光膜上にネガ型化学増幅型電子線レジストを膜厚200nmでスピンコートし、パターンをドーズ量35μC/cmで電子ビーム描画し、110℃で10分間熱処理し、パドル現像で90秒間現像を行い、レジストパターンを形成した。
【0050】
次に、ドライエッチング装置を用いて、遮光膜をパターニングした。エッチングガスは塩素と酸素とヘリウムとを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。オーバーエッチングは100%行った。
次に、ドライエッチング装置を用いて、保護層と位相層とで構成された位相シフト膜をパターニングした。エッチングガスはCFと酸素とを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。ドライエッチングは、石英基板を平均3nm掘り込んだ時点で停止した。
【0051】
次に、レジストパターンを硫酸加水洗浄によって剥膜洗浄した。
次に、ドライエッチング装置を用いて、遮光膜を除去した。エッチングガスは塩素と酸素とヘリウムとを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。この際、下層の位相シフト膜及び石英基板にはダメージは発生しなかった。
こうして、実施例2に係る位相シフトマスクを得た。
次に、この位相シフトマスクに対し、加速露光によりヘイズが発生したドーズ量を測定したところ、92kJ/cmであった。
以上の結果から、実施例2の位相シフトマスクであれば、ドーズ量が92kJ/cmであるため、ヘイズの発生を低減可能であることが確認された。
【0052】
(実施例3)
石英基板の上に2つのターゲットを用いたDCスパッタ装置を用いて、ケイ素とモリブデンと酸素と窒素とからなる位相層を67nmの厚さで成膜した。ターゲットはモリブデンとケイ素とを用い、スパッタガスはアルゴンと酸素と窒素とを用いた。この位相層の組成をESCAで分析したところ、Si:Mo:O:N=40:8:7:45(原子%比)であった。
この位相層の上にDCスパッタ装置を用いて、テルルと酸素とからなる保護層を3nmの厚さで成膜した。ターゲットはテルルを用い、スパッタガスはアルゴンと酸素を用いた。この保護層の組成をESCAで分析したところ、Te:O=35:65(原子%比)であった。
【0053】
なお、こうして形成した位相層と保護層とから構成される位相シフト膜は、露光光の透過率が6%であり、位相差が180度であった。
次に、この保護層の上にDCスパッタ装置を用いて、クロムと酸素と窒素とからなる遮光膜を50nmの厚さで成膜した。ターゲットはクロムを用い、スパッタガスはアルゴンと酸素と窒素とを用いた。この遮光膜の組成をESCAで分析したところ、Cr:O:N=55:35:10(原子%比)であった。
次に、この遮光膜上にネガ型化学増幅型電子線レジストを膜厚200nmでスピンコートし、パターンをドーズ量35μC/cmで電子ビーム描画し、110℃で10分間熱処理し、パドル現像で90秒間現像を行い、レジストパターンを形成した。
【0054】
次に、ドライエッチング装置を用いて、遮光膜をパターニングした。エッチングガスは塩素と酸素とヘリウムとを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。オーバーエッチングは100%行った。
次に、ドライエッチング装置を用いて、保護層と位相層とで構成された位相シフト膜をパターニングした。エッチングガスはCFと酸素とを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。ドライエッチングは、石英基板を平均3nm掘り込んだ時点で停止した。
【0055】
次に、レジストパターンを硫酸加水洗浄によって剥膜洗浄した。
次に、ドライエッチング装置を用いて、遮光膜を除去した。エッチングガスは塩素と酸素とヘリウムとを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。この際、下層の位相シフト膜及び石英基板にはダメージは発生しなかった。
こうして、実施例3に係る位相シフトマスクを得た。
次に、この位相シフトマスクに対し、加速露光によりヘイズが発生したドーズ量を測定したところ、87kJ/cmであった。
以上の結果から、実施例3の位相シフトマスクであれば、ドーズ量が87kJ/cmであるため、ヘイズの発生を低減可能であることが確認された。
【0056】
(実施例4)
石英基板の上に2つのターゲットを用いたDCスパッタ装置を用いて、ケイ素とモリブデンと酸素と窒素とからなる位相層を70nmの厚さで成膜した。ターゲットはモリブデンとケイ素とを用い、スパッタガスはアルゴンと酸素と窒素とを用いた。この位相層の組成をESCAで分析したところ、Si:Mo:O:N=35:5:15:45(原子%比)であった。
この位相層の上にDCスパッタ装置を用いて、タンタルと酸素と窒素とからなる保護層を2nmの厚さで成膜した。ターゲットはタンタルを用い、スパッタガスはアルゴンと酸素と窒素とを用いた。この保護層の組成をESCAで分析したところ、Ta:O:N=65:5:30(原子%比)であった。
【0057】
なお、こうして形成した位相層と保護層とから構成される位相シフト膜は、露光光の透過率が6%であり、位相差が180度であった。
次に、この保護層の上にDCスパッタ装置を用いて、クロムと酸素と窒素とからなる遮光膜を50nmの厚さで成膜した。ターゲットはクロムを用い、スパッタガスはアルゴンと酸素と窒素とを用いた。この遮光膜の組成をESCAで分析したところ、Cr:O:N=55:35:10(原子%比)であった。
次に、この遮光膜上にネガ型化学増幅型電子線レジストを膜厚200nmでスピンコートし、パターンをドーズ量35μC/cmで電子ビーム描画し、110℃で10分間熱処理し、パドル現像で90秒間現像を行い、レジストパターンを形成した。
【0058】
次に、ドライエッチング装置を用いて、遮光膜をパターニングした。エッチングガスは塩素と酸素とヘリウムとを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。オーバーエッチングは100%行った。
次に、ドライエッチング装置を用いて、保護層と位相層とで構成された位相シフト膜をパターニングした。エッチングガスはCFと酸素とを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。ドライエッチングは、石英基板を平均3nm掘り込んだ時点で停止した。
【0059】
次に、レジストパターンを硫酸加水洗浄によって剥膜洗浄した。
次に、ドライエッチング装置を用いて、遮光膜を除去した。エッチングガスは塩素と酸素とヘリウムとを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。この際、下層の位相シフト膜及び石英基板にはダメージは発生しなかった。
こうして、実施例4に係る位相シフトマスクを得た。
次に、この位相シフトマスクに対し、加速露光によりヘイズが発生したドーズ量を測定したところ、110kJ/cmであった。
以上の結果から、実施例4の位相シフトマスクであれば、ドーズ量が110kJ/cmであるため、ヘイズの発生を低減可能であることが確認された。
【0060】
(比較例1)
石英基板の上に2つのターゲットを用いたDCスパッタ装置を用いて、ケイ素とモリブデンと酸素と窒素とからなる位相層を70nmの厚さで成膜した。ターゲットはモリブデンとケイ素とを用い、スパッタガスはアルゴンと酸素と窒素とを用いた。この位相層の組成をESCAで分析したところ、Si:Mo:O:N=40:8:7:45(原子%比)であった。
次に、この位相層の上にDCスパッタ装置を用いて、クロムと酸素と窒素とからなる遮光膜を50nmの厚さで成膜した。ターゲットはクロムを用い、スパッタガスはアルゴンと酸素と窒素とを用いた。この遮光膜の組成をESCAで分析したところ、Cr:O:N=55:35:10(原子%比)であった。
【0061】
次に、この遮光膜上にネガ型化学増幅型電子線レジストを膜厚200nmでスピンコートし、パターンをドーズ量35μC/cmで電子ビーム描画し、110℃で10分間熱処理し、パドル現像で90秒間現像を行い、レジストパターンを形成した。
次に、ドライエッチング装置を用いて、遮光膜をパターニングした。エッチングガスは塩素と酸素とヘリウムとを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。オーバーエッチングは100%行った。
【0062】
次に、ドライエッチング装置を用いて、位相層のみで構成された位相シフト膜をパターニングした。エッチングガスはCFと酸素とを用い、ガス圧力は5mTorr、ICP電力は400W、バイアスパワーは40Wに設定した。ドライエッチングは、石英基板を平均3nm掘り込んだ時点で停止した。
次に、レジストパターンを硫酸加水洗浄によって剥膜洗浄した。
次に、ドライエッチング装置を用いて、遮光膜を除去した。エッチングガスは塩素と酸素とヘリウムとを用い、ガス圧力は10mTorr、ICP電力は500W、バイアスパワーは10Wに設定した。オーバーエッチングは200%行った。この際、下層の位相シフト膜及び石英基板にはダメージは発生しなかった。
【0063】
こうして、比較例1に係る位相シフトマスクを得た。つまり、比較例1に係る位相シフトマスクは、実施例1~4で形成した保護層を備えない位相シフトマスクである。
次に、この位相シフトマスクに対し、加速露光によりヘイズが発生したドーズ量を測定したところ、58kJ/cmであった。
以上の結果から、比較例1の位相シフトマスクでは、ドーズ量が58kJ/cmであるため、ヘイズの発生を十分に低減することができないことが確認された。
上述のように、位相層上に保護層を形成することは、位相シフトマスクにおけるヘイズの発生量を低減させる際に有効であることが分かる。
【0064】
以上、上記実施例により、本発明の位相シフトマスクブランクおよびこれを用いて作成される位相シフトマスクについて説明したが、上記実施例は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではない。また、これらの実施例を変形することは本発明の範囲内であり、更に本発明の範囲内において他の様々な実施例が可能であることは上記の記載から自明である。
【産業上の利用可能性】
【0065】
本発明では、位相シフトマスクブランクの組成及び膜厚及び層構造と、これを用いた位相シフトマスクの製造工程及び条件を適切な範囲で選択したので、28nm以下のロジック系デバイス、又は30nm以下のメモリ系デバイス製造に対応した、微細なパターンを高精度で形成した位相シフトマスクを提供することができる。
【符号の説明】
【0066】
10・・・位相シフトマスクブランク
11・・・露光波長に対して透明な基板(基板)
12・・・位相層(位相差透過率調整層)
13・・・保護層(気体透過保護層)
14・・・位相シフト膜
15・・・遮光膜
16・・・レジストパターン
17・・・位相シフト膜パターン
100・・・位相シフトマスク
d1・・・位相層の膜厚
d2・・・保護層の膜厚
図1
図2
図3