(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024080441
(43)【公開日】2024-06-13
(54)【発明の名称】電気化学反応装置および電気化学反応装置スタック
(51)【国際特許分類】
C25B 3/26 20210101AFI20240606BHJP
C25B 1/042 20210101ALI20240606BHJP
C25B 3/03 20210101ALI20240606BHJP
【FI】
C25B3/26
C25B1/042
C25B3/03
【審査請求】未請求
【請求項の数】10
【出願形態】OL
(21)【出願番号】P 2022193630
(22)【出願日】2022-12-02
(71)【出願人】
【識別番号】000004695
【氏名又は名称】株式会社SOKEN
(71)【出願人】
【識別番号】000004260
【氏名又は名称】株式会社デンソー
(71)【出願人】
【識別番号】504157024
【氏名又は名称】国立大学法人東北大学
(74)【代理人】
【識別番号】110000648
【氏名又は名称】弁理士法人あいち国際特許事務所
(72)【発明者】
【氏名】宮脇 亜紀
(72)【発明者】
【氏名】山本 亮平
(72)【発明者】
【氏名】寺西 真哉
(72)【発明者】
【氏名】雨澤 浩史
(72)【発明者】
【氏名】中村 崇司
(72)【発明者】
【氏名】木村 勇太
【テーマコード(参考)】
4K021
【Fターム(参考)】
4K021AA01
4K021AC03
4K021AC06
4K021BA02
4K021DB05
4K021DB18
4K021DB31
4K021DB36
4K021DB43
4K021DB46
4K021DB53
4K021DC01
4K021DC15
(57)【要約】
【課題】CO
2の還元反応による狙いの化合物の選択性向上、狙いの化合物の生成量を増加可能な電気化学反応装置、これを用いた電気化学反応装置スタックを提供する。
【解決手段】電気化学反応装置1は、CO
2還元セル2と、水素ポンプセル3と、CO
2を含むガスG1が導入されるガス導入部41を備えるガス流路4とを有する。CO
2還元セル2は、酸化物イオン伝導体20と、CO
2を含むガスG1からCO
2を電気化学的に還元可能な第1カソード電極21と、酸化物イオンを酸素として放出可能な第1アノード電極22とを備える。水素ポンプセル3は、水素イオン伝導体30と、水素原子を含むガスG2から水素イオンを解離可能な第2アノード電極32と、水素イオンが供給される第2カソード電極31とを備える。第1カソード電極21と第2カソード電極31とは、CO
2の還元を促す触媒体5が設けられたガス流路4内に設けられている。
【選択図】
図1
【特許請求の範囲】
【請求項1】
酸化物イオンを移動させることが可能な酸化物イオン伝導体(20)と、上記酸化物イオン伝導体の一方面に設けられ、CO2を含むガス(G1)から上記CO2を電気化学的に還元可能な第1カソード電極(21)と、上記酸化物イオン伝導体の他方面に設けられ、上記酸化物イオン伝導体を通って移動した上記酸化物イオンを酸素として放出可能な第1アノード電極(22)と、を備えるCO2還元セル(2)と、
水素イオンを移動させることが可能な水素イオン伝導体(30)と、上記水素イオン伝導体の一方面に設けられ、水素原子を含むガス(G2)から水素イオンを解離可能な第2アノード電極(32)と、上記水素イオン伝導体の他方面に設けられ、上記水素イオン伝導体を通って移動した上記水素イオンが供給される第2カソード電極(31)と、を備える水素ポンプセル(3)と、
上記CO2を含むガスが導入されるガス導入部(41)を備えるガス流路(4)と、を有しており、
上記CO2還元セルの上記第1カソード電極と、上記水素ポンプセルの上記第2カソード電極とが、互いに向かい合うように上記ガス流路内に設けられており、
上記ガス流路内に、上記CO2の還元を促す触媒体(5)が設けられている、
電気化学反応装置(1)。
【請求項2】
上記ガス流路は、上記第1カソード電極および上記第2カソード電極が配置される領域部分より構成されるチャンバ部(42)と、上記チャンバ部と連通し上記チャンバ部の下流に配置された下流側流路部(44)と、を有しており、
上記触媒体は、上記チャンバ部および上記下流側流路部のうち少なくとも一方に設けられている、
請求項1に記載の電気化学反応装置(1)。
【請求項3】
上記触媒体は、上記第1カソード電極と上記第2カソード電極との間に形成される電極間空間(420)に配置されている、および/または、
上記第1カソード電極および上記第2カソード電極のうち少なくとも一方に配置されている、
請求項1または請求項2に記載の電気化学反応装置(1)。
【請求項4】
上記触媒体は、
Sn、In、Ga、Ge、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ir、Pt、Au、Ru、Rh、Pd、Ag、Zr、Nb、Mo、Ta、および、Wからなる群より選択される少なくとも1種の金属元素を含有する、
請求項1または請求項2に記載の電気化学反応装置(1)。
【請求項5】
上記チャンバ部を通過した反応後のガス(G3)の少なくとも一部を、上記チャンバ部へ循環可能に構成されている、
請求項2に記載の電気化学反応装置(1)。
【請求項6】
上記チャンバ部を通過した反応後のガス(G3)を上記ガス導入部へ循環させる循環流路部(61)と、
上記反応後のガスを排気する排気流路部(62)と、
上記反応後のガスが流入し、当該ガスを上記循環流路部または上記排気流路部に流れるように切り換える切換弁部(63)と、
上記反応後のガスの水素濃度を測定する水素センサ(64)と、
上記反応後のガスの酸素濃度を測定する酸素センサ(65)と、を有しており、
上記水素センサによる水素濃度および上記酸素センサによる酸素濃度の少なくとも一方が所定の濃度に達するまで、上記反応後のガスの全部または一部を、上記切換弁部、上記循環流路部および上記ガス導入部を介して上記チャンバ部へ循環させるように構成されている、
請求項2に記載の電気化学反応装置(1)。
【請求項7】
上記触媒体は、上記チャンバ部に設けられており、
上記CO2を含むガスを上記チャンバ部内に所定時間滞留させるように構成されている、
請求項2に記載の電気化学反応装置(1)。
【請求項8】
上記触媒体は、上記第1カソード電極と上記第2カソード電極との間に形成される電極間空間(420)に配置されており、
上記チャンバ部は、
上記CO2を含むガスが、上記ガス導入部から上記第1カソード電極に導入され、上記第1カソード電極内を通過し、上記電極間空間に流入した後、上記下流側流路部に排出されるように構成された流路構造(421)を有する、
請求項2に記載の電気化学反応装置(1)。
【請求項9】
上記第1カソード電極における上記ガス導入部側の端面を開口した状態とするとともに、上記第2カソード電極および上記電極間空間における上記ガス導入部側の端面をガス封止する上流側封止部(451)と、
上記電極間空間における上記ガス導入部側とは反対側の端面を開口した状態とするとともに、上記第1カソード電極および上記第2カソード電極における上記ガス導入部側とは反対側の端面をガス封止する下流側封止部(452)と、を有する、
請求項8に記載の電気化学反応装置(1)。
【請求項10】
請求項1または請求項2に記載の上記電気化学反応装置が複数積層された積層構造(10)を有しており、
上記積層構造は、隣接する上記電気化学反応装置における各上記水素ポンプセルの上記第2アノード電極同士が互いに隙間(101a)を挟んだ状態で配置された第1の配置構造(101)、および、隣接する上記電気化学反応装置における各上記CO2還元セルの第1アノード電極同士が互いに隙間(102a)を挟んだ状態で配置された第2の配置構造(102)のうち少なくとも一方を含んでおり、
隣接する上記電気化学反応装置の一方から排出された反応後のガス(G3)が、隣接する上記電気化学反応装置の他方の上記ガス導入部に導入されるように、隣接する上記電気化学反応装置の各上記ガス流路が連通しており、
上記第1の配置構造における隙間に、上記水素原子を含むガスが供給されるように構成されている、
電気化学反応装置スタック(1S)。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電気化学反応装置および電気化学反応装置スタックに関する。
【背景技術】
【0002】
従来、CO2を電気化学的に還元し水素化することにより、CH4などの狙いの化合物を生成させる電気化学反応装置が知られている。
【0003】
例えば、特許文献1には、水を酸化して酸素を生成するためのアノードと、水を含む第1の電解液を流すために設けられかつアノードに面する電解液流路と、二酸化炭素を還元して炭素化合物を生成するためのカソードと、アノードとカソードとを分離するセパレータと、アノードおよびカソードに電気的に接続された電源と、二酸化炭素を流すために設けられかつカソードに面する第1の流路、および、第2の電解液を流すために設けられかつカソードに面する第2の流路を備える流路板と、を具備する電気化学反応装置が開示されている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
CO2を電気化学的に還元し水素化させる反応において、得られる化合物の種類を決定する要素は化学ポテンシャルである。複数の元素が反応に関わる場合、各元素の化学ポテンシャルによって得られる化合物が変化する。そのため、上述した従来技術では、導入する原料ガスの各分圧や電極に印加する電圧などにより、電極表面の反応場近傍における各元素の化学ポテンシャルを制御し、化合物を選択している。
【0006】
しかしながら、導入する原料ガスの分圧により制御できる化学ポテンシャルには限界がある。また、単一の電気化学セルにおいては、複数の各元素の化学ポテンシャルを個別に制御することができない。そのため、従来技術では、狙いの化合物の選択性を向上させることが難しい。また、選択的に合成した狙いの化合物はできる限り生成量が多いことが望まれる。
【0007】
本発明は、かかる課題に鑑みてなされたものであり、CO2の還元反応による狙いの化合物の選択性を向上させることができ、狙いの化合物の生成量を増加させることが可能な電気化学反応装置、また、これを用いた電気化学反応装置スタックを提供しようとするものである。
【課題を解決するための手段】
【0008】
本発明の一態様は、
酸化物イオンを移動させることが可能な酸化物イオン伝導体(20)と、上記酸化物イオン伝導体の一方面に設けられ、CO2を含むガス(G1)から上記CO2を電気化学的に還元可能な第1カソード電極(21)と、上記酸化物イオン伝導体の他方面に設けられ、上記酸化物イオン伝導体を通って移動した上記酸化物イオンを酸素として放出可能な第1アノード電極(22)と、を備えるCO2還元セル(2)と、
水素イオンを移動させることが可能な水素イオン伝導体(30)と、上記水素イオン伝導体の一方面に設けられ、水素原子を含むガス(G2)から水素イオンを解離可能な第2アノード電極(32)と、上記水素イオン伝導体の他方面に設けられ、上記水素イオン伝導体を通って移動した上記水素イオンが供給される第2カソード電極(31)と、を備える水素ポンプセル(3)と、
上記CO2を含むガスが導入されるガス導入部(41)を備えるガス流路(4)と、を有しており、
上記CO2還元セルの上記第1カソード電極と、上記水素ポンプセルの上記第2カソード電極とが、互いに向かい合うように上記ガス流路内に設けられており、
上記ガス流路内に、上記CO2の還元を促す触媒体(5)が設けられている、
電気化学反応装置(1)にある。
【0009】
本発明の他の態様は、
上記電気化学反応装置が複数積層された積層構造(10)を有しており、
上記積層構造は、隣接する上記電気化学反応装置における各上記水素ポンプセルの上記第2アノード電極同士が互いに隙間(101a)を挟んだ状態で配置された第1の配置構造(101)、および、隣接する上記電気化学反応装置における各上記CO2還元セルの第1アノード電極同士が互いに隙間(102a)を挟んだ状態で配置された第2の配置構造(102)のうち少なくとも一方を含んでおり、
隣接する上記電気化学反応装置の一方から排出されたガスが、隣接する上記電気化学反応装置の他方の上記ガス導入部に導入されるように、隣接する上記電気化学反応装置の各上記ガス流路が連通しており、
上記第1の配置構造における隙間に、上記水素原子を含むガスが供給されるように構成されている、
電気化学反応装置スタック(1S)にある。
【発明の効果】
【0010】
上記電気化学反応装置は、上記構成を有する。そのため、上記電気化学反応装置は、CO2還元セルの第1カソード電極および第1アノード電極に電気的に第1電源を接続し、水素ポンプセルの第2カソード電極および第2アノード電極に電気的に第2電源を接続することにより、CO2還元セルおよび水素ポンプセルに対しそれぞれ独立して電圧を印加することができる。そのため、上記電気化学反応装置によれば、同じガス流路内におけるO元素の化学ポテンシャルとH元素の化学ポテンシャルとを独立して同時に制御することが可能になる。それ故、上記電気化学反応装置は、CO2を還元して任意のHまたはOを付与あるいは脱離させ、選択的に狙いの化合物を合成することができる。
【0011】
また、上記電気化学反応装置は、ガス流路内にCO2の還元を促す触媒体が設けられている。そのため、上記電気化学反応装置は、CO2の転化率が向上し、狙いの化合物の生成量を増加させることができる。これは次の理由によるものと考えられる。すなわち、上記電気化学反応装置によれば、第1カソード電極および第2カソード電極の近傍において電気化学的な反応を生じさせることができるのみならず、触媒体が設けられた部分において触媒反応を生じさせることができる。そのため、上記電気化学反応装置は、触媒体が設けられていない場合に比べ、ガス流路内における反応場を増加させることができる。さらに、上記電気化学反応装置によれば、触媒体による活性化エネルギーの低減、反応速度の向上により、狙いの化合物が熱平衡に達するまでの時間を短縮することができる。それ故、上記電気化学反応装置は、CO2の転化率が向上し、狙いの化合物の生成量を増加させることができる。
【0012】
よって、上記電気化学反応装置によれば、CO2の還元反応による狙いの化合物の選択性を向上させることでき、狙いの化合物の生成量を増加させることが可能な電気化学反応装置を提供することができる。
【0013】
また、上記電気化学反応装置スタックは、上記構成を有する。そのため、上記電気化学反応装置スタックは、上記電気化学反応装置から排出された反応後のガスが後段に配置された上記電気化学反応装置に順次導入されるため、総反応面積が増加し、上記電気化学反応装置の作用効果とも相まって、狙いの化合物の生成量をより増加させることができる。
【0014】
なお、特許請求の範囲および課題を解決する手段に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本発明の技術的範囲を限定するものではない。
【図面の簡単な説明】
【0015】
【
図1】
図1は、実施形態1の電気化学反応装置の概略構成を模式的に示した図である。
【
図2】
図2は、実施形態2の電気化学反応装置の概略構成を模式的に示した図である。
【
図3】
図3は、実施形態3の電気化学反応装置の概略構成を模式的に示した図である。
【
図4】
図4は、実施形態4の電気化学反応装置の概略構成を模式的に示した図である。
【
図5】
図5は、実施形態6の電気化学反応装置の概略構成を模式的に示した図である。
【
図6】
図6は、実施形態7の電気化学反応装置スタックの概略構成を模式的に示した図である。
【
図7】
図7は、実験例1において作製した試料1、試料1Rの電気化学反応装置のCO
2転嫁率を比較した図である。
【
図8】
図8は、実験例1において作製した試料1、試料1Rの電気化学反応装置のCH
4生成量を比較した図である。
【
図9】
図9は、実験例2において作製した試料1、試料2、試料1Rの電気化学反応装置のCH
4生成量を比較した図である。
【発明を実施するための形態】
【0016】
(実施形態1)
実施形態1の電気化学反応装置について、
図1を用いて説明する。
図1に例示されるように、本実施形態の電気化学反応装置1は、CO
2還元セル2と、水素ポンプセル3と、ガス流路4と、触媒体5とを有している。以下、これを詳説する。
【0017】
CO2還元セル2は、酸化物イオン伝導体20と、酸化物イオン伝導体20の一方面に設けられた第1カソード電極21と、酸化物イオン伝導体20の他方面に設けられた第1アノード電極22とを備えている。
【0018】
酸化物イオン伝導体20は、酸化物イオン(O2-)を移動させることが可能である。つまり、酸化物イオン伝導体20は、酸化物イオン伝導性を有している。酸化物イオン伝導体20は、第1カソード電極21と第1アノード電極22との間で電子が流れないように両者を隔てるセパレータとしての役割を有しており、酸化物イオンのみが酸化物イオン伝導体20内を移動することができる。酸化物イオン伝導体20は、具体的には、酸化物イオン伝導性を有する固体電解質より構成されることができる。酸化物イオン伝導体20は、ガス密性を確保するため、通常、緻密質に形成される。
【0019】
酸化物イオン伝導体20を構成する酸化物イオン伝導性材料としては、例えば、酸化物イオン伝導性、強度、熱的安定性などの観点から、イットリア安定化ジルコニア(YSZ)、スカンジア安定化ジルコニア(ScSZ)などの酸化ジルコニウム系酸化物などを例示することができる。これらは1種または2種以上併用することができる。酸化物イオン伝導性材料としては、酸化物イオン伝導性、機械的安定性、他の材料との両立、酸化雰囲気から還元雰囲気まで化学的に安定であるなどの観点から、イットリア安定化ジルコニアなどが好適である。酸化物イオン伝導体20の厚みは、例えば、5μm以上2000μm以下とすることができる。
【0020】
第1カソード電極21は、CO2を含むガスG1に含まれるCO2を電気化学的に還元可能な電極である。つまり、第1カソード電極21は、電子伝導が可能であり、かつ、CO2からOを引き抜くことが可能な電極である。CO2を含むガスG1としては、例えば、CO2ガス、あるいは、CO2ガスとH2ガスとを含むガスなどを例示することができる。第1カソード電極21は、層状に構成されることができ、例えば、第1カソード内電子伝導性材料、あるいは、第1カソード内電子伝導性材料および第1カソード内酸化物イオン伝導性材料を含む構成とすることができる。第1カソード内電子伝導性材料としては、例えば、Pt、Pd、Rh、Ru、Ir、Osといった白金族、Au、Ag、Ni、Zn、Cuなどを例示することができる。これらは1種または2種以上併用することができる。また、第1カソード内酸化物イオン伝導性材料としては、イットリア安定化ジルコニア、スカンジア安定化ジルコニアなどの酸化ジルコニウム系酸化物などを例示することができる。これらは1種または2種以上併用することができる。第1カソード内酸化物イオン伝導性材料は、酸化物イオン伝導性、第1カソード電極21と酸化物イオン伝導体20との接合性、CO2還元セル2の製造性などの観点から、酸化物イオン伝導体20に用いられる酸化物イオン伝導性材料と同種の材料とすることができる。第1カソード電極21において、第1カソード内電子伝導性材料および第1カソード内酸化物イオン伝導性材料は、いずれも粒子状であることができる。
【0021】
第1カソード電極21は、ガス拡散性向上などの観点から、気孔を含む多孔質に形成されることができる。なお、ガスが透過できる程度に第1カソード電極21の厚みが薄い場合には、第1カソード電極21は、必ずしも多孔質に形成されている必要性はない。第1カソード電極21の厚みは、例えば、0.1μm以上2000μm以下とすることができる。
【0022】
第1アノード電極22は、酸化物イオン伝導体20を通って移動した酸化物イオンを酸素(O2)として放出可能な電極である。つまり、第1アノード電極22は、O2-からO2を生成させることが可能な電極である。第1アノード電極22は、層状に構成されることができ、例えば、第1アノード内電子伝導性材料、あるいは、第1アノード内電子伝導性材料および第1アノード内酸化物イオン伝導性材料を含む構成とすることができる。第1アノード内電子伝導性材料としては、例えば、Pt、Pd、Rh、Ru、Ir、Osといった白金族、Au、Ag、Ni、ランタン-ストロンチウム-コバルト系酸化物(LSC)、ランタン-ストロンチウム-コバルト-鉄系酸化物(LSCF)、ランタン-ストロンチウム-マンガン-鉄系酸化物といった遷移金属ペロブスカイト型酸化物などを例示することができる。これらは1種または2種以上併用することができる。また、第1アノード内酸化物イオン伝導性材料としては、イットリア安定化ジルコニア、スカンジア安定化ジルコニアなどの酸化ジルコニウム系酸化物などを例示することができる。これらは1種または2種以上併用されることができる。第1アノード内酸化物イオン伝導性材料は、酸化物イオン伝導性、第1アノード電極22と酸化物イオン伝導体20との接合性、CO2還元セル2の製造性などの観点から、酸化物イオン伝導体20に用いられる酸化物イオン伝導性材料と同種の材料とすることができる。第1アノード電極22において、第1アノード内電子伝導性材料および第1アノード内酸化物イオン伝導性材料は、いずれも粒子状であることができる。
【0023】
第1アノード電極22は、ガス拡散性向上などの観点から、気孔を含む多孔質に形成されることができる。なお、ガスが透過できる程度に第1アノード電極22の厚みが薄い場合には、第1アノード電極22は、必ずしも多孔質に形成されている必要性はない。第1アノード電極22の厚みは、例えば、0.1μm以上2000μm以下とすることができる。
【0024】
水素ポンプセル3は、水素イオン伝導体30と、水素イオン伝導体30の一方面に設けられた第2アノード電極32と、水素イオン伝導体30の他方面に設けられた第2カソード電極31とを備えている。
【0025】
水素イオン伝導体30は、水素イオン(H+、プロトン)を移動させることが可能である。つまり、水素イオン伝導体30は、プロトン伝導性を有している。水素イオン伝導体30は、第2カソード電極31と第2アノード電極32との間で電子が流れないように両者を隔てるセパレータとしての役割を有しており、水素イオンのみが水素イオン伝導体30内を移動することができる。水素イオン伝導体30は、具体的には、水素イオン伝導性を有する固体電解質より構成されることができる。水素イオン伝導体30は、ガス密性を確保するため、通常、緻密質に形成される。
【0026】
水素イオン伝導体30を構成する水素イオン伝導性材料としては、例えば、水素イオン伝導性、材料安定性などの観点から、BaZrO3(ジルコン酸バリウム)、BaZrO3におけるZr元素の一部がY、Sc、Lu、In、Al、Gaなどの元素に置換されたもの(BaZr1-xMxO3、但し、Mは、Y、Sc、Lu、In、Al、および、Gaからなる群より選択される少なくとも1種の元素、0<x<1)、BaCeO3、BaCeO3におけるCe元素の一部がY、Yb、Nbなどの元素に置換されたもの(BaCe1-xMxO3、但し、Mは、Y、Yb、および、Nbからなる群より選択される少なくとも1種の元素、0<x<1)などのBaを含む金属酸化物;SrZrO3(ジルコン酸ストロンチウム)、SrZrO3におけるZr元素の一部がYb、Y、Inなどの元素に置換されたもの(SrZr1-xMxO3、但し、Mは、Yb、Y、および、Inからなる群より選択される少なくとも1種の元素、0<x<1)などのSrを含む金属酸化物;SnP2O7、SnP2O7におけるSn元素の一部がIn、Al、Mgなどの元素に置換されたもの(Sn1-xMxP2O7、但し、Mは、In、Al、および、Mgからなる群より選択される少なくとも1種の元素、0<x<1)などのSnを含む金属酸化物;Sn0.9In0.1P2O7などのリン酸塩系ガラスなどを例示することができる。これらは1種または2種以上併用することができる。水素イオン伝導性材料としては、400℃~800℃における高い水素イオン伝導性、材料安定性などの観点から、Baを含む金属酸化物などが好適である。なお、上述した金属酸化物は、酸素不定比性を有することができる。また、上述した金属酸化物は、複合金属酸化物であってもよい。水素イオン伝導体30の厚みは、例えば、5μm以上2000μm以下とすることができる。
【0027】
第2カソード電極31は、水素イオン伝導体30を通って移動した水素イオンが供給される電極である。第2カソード電極31は、具体的には、水素イオン伝導体30を通って移動した水素イオンを水素(H2)または水素イオンとして放出可能な電極であることができる。つまり、第2カソード電極31は、H+からH2を生成させることが可能な電極、あるいは、H+をそのまま放出することが可能な電極であることができる。第2カソード電極31は、例えば、第2カソード内電子伝導性材料、あるいは、第2カソード内電子伝導性材料および第2カソード内水素イオン伝導性材料を含む構成とすることができる。第2カソード内電子伝導性材料としては、例えば、Pt、Pd、Rh、Ru、Ir、Osといった白金族、Au、Ag、Ni、Zn、Cuなどを例示することができる。これらは1種または2種以上併用することができる。また、第2カソード内水素イオン伝導性材料としては、上述した水素イオン伝導体30を構成する水素イオン伝導性材料などを例示することができる。これらは1種または2種以上併用されることができる。第2カソード内水素イオン伝導性材料は、好ましくは、BaZrO3、BaZr1-xM1xO3(但し、0<x<1)などのBaを含む金属酸化物であるとよい。第2カソード内水素イオン伝導性材料は、水素イオン伝導性、第2カソード電極31と水素イオン伝導体30との接合性、水素ポンプセル3の製造性などの観点から、水素イオン伝導体30に用いられる水素イオン伝導性材料と同種の材料とすることができる。第2カソード電極31において、第2カソード内電子伝導性材料および第2カソード内水素イオン伝導性材料は、いずれも粒子状であることができる。
【0028】
第2カソード電極31は、ガス拡散性向上などの観点から、気孔を含む多孔質に形成されることができる。なお、ガスが透過できる程度に第2カソード電極31の厚みが薄い場合には、第2カソード電極31は、必ずしも多孔質に形成されている必要性はない。第2カソード電極31の厚みは、例えば、0.1μm以上2000μm以下とすることができる。
【0029】
第2アノード電極32は、水素原子を含むガスG2から水素イオンを解離可能な電極である。つまり、第2アノード電極32は、水素原子を含むガスG2から水素イオンを引き抜くことが可能な電極である。水素原子を含むガスG2としては、例えば、H2ガス、H2Oガス(水蒸気)、あるいは、H2ガスとH2Oガスとを含むガスなどを例示することができる。第2アノード電極32は、例えば、第2アノード内電子伝導性材料、あるいは、第2アノード内電子伝導性材料および第2アノード内水素イオン伝導性材料を含む構成とすることができる。第2アノード内電子伝導性材料としては、例えば、Pt、Pd、Rh、Ru、Ir、Osといった白金族、Au、Ag、Niなどを例示することができる。これらは1種または2種以上併用することができる。また、第2アノード内水素イオン伝導性材料としては、上述した水素イオン伝導体30を構成する水素イオン伝導性材料などを例示することができる。これらは1種または2種以上併用することができる。第2アノード内水素イオン伝導性材料は、好ましくは、BaZrO3、BaZr1-xM1xO3(但し、0<x<1)などのBaを含む金属酸化物であるとよい。第2アノード内水素イオン伝導性材料は、水素イオン伝導性、第2アノード電極32と水素イオン伝導体30との接合性、水素ポンプセル3の製造性などの観点から、水素イオン伝導体30に用いられる水素イオン伝導性材料と同種の材料とすることができる。第2アノード電極32において、第2アノード内電子伝導性材料および第2アノード内酸化物イオン伝導性材料は、いずれも粒子状であることができる。
【0030】
第2アノード電極32は、ガス拡散性向上などの観点から、気孔を含む多孔質に形成されることができる。なお、ガスが透過できる程度に第2アノード電極32の厚みが薄い場合には、第2アノード電極32は、必ずしも多孔質に形成されている必要性はない。第2アノード電極32の厚みは、例えば、0.1μm以上2000μm以下とすることができる。
【0031】
ガス流路4は、
図1に例示されるように、CO
2還元セル2と水素ポンプセル3との間に配置されることができる。ガス流路4は、CO
2還元セル2の第1アノード電極22から放出される酸素(O
2)と、水素ポンプセル3の第2アノード電極32に供給される水素原子を含むガスG2とがガス流路4内に入り込まないように構成される。ガス流路4は、必要に応じて、シール部材(不図示)などによって適宜シールされることができる。ガス流路4の材料としては、例えば、アルミナ、ムライト、石英などの絶縁材料、上述した酸化物イオン伝導性材料、上述した水素イオン伝導性材料などを例示することができる。
図1では、CO
2還元セル2の酸化物イオン伝導体20および水素ポンプセル3の水素イオン伝導体30が、ガス流路4の流路壁を構成している例が示されている。
【0032】
ガス流路4は、CO
2を含むガスG1が導入されるガス導入部41を有している。
図1では、互いに向かい合うように配置されたCO
2還元セル2および水素ポンプセル3における一側端面の部分が、ガス導入部41として構成されており、上記一側端面とは反対側の側端面の部分が、反応後のガスG3が導出されるガス導出部40として構成されている例が示されている。なお、反応後のガスG3には、炭化水素(酸素原子を含有する含酸素炭化水素含む)などのガスが含まれる。
【0033】
電気化学反応装置1では、CO2還元セル2の第1カソード電極21と、水素ポンプセル3の第2カソード電極31とが、ガス流路4内に設けられている。つまり、第1カソード電極21および第2カソード電極31は、いずれも、ガス流路4内に存在し、ガス流路4内に露出している。なお、第1アノード電極22および第2アノード電極32は、いずれも、ガス流路4内に露出していない。
【0034】
本実施形態では、ガス流路4のうち、第1カソード電極21および第2カソード電極31が配置されている領域部分がチャンバ部42とされる。また、ガス流路4のうち、チャンバ部42と連通し、チャンバ部42の上流側に配置されている領域部分が上流側流路部43とされる。また、ガス流路4のうち、チャンバ部42と連通し、チャンバ部42の下流側に配置されている領域部分が下流側流路部44とされる。
図1では、上流側流路部43の流路入口部分にガス導入部41が設けられ、下流側流路部44の流路出口部分にガス導出部40が設けられている例が示されている。なお、チャンバ部42は、第1カソード電極21と第2カソード電極31との間に形成される電極間空間420だけでなく、第1カソード電極21および第2カソード電極31内の空隙をも含むものとする。
【0035】
電気化学反応装置1は、CO
2還元セル2および水素ポンプセル3に対しそれぞれ独立して電圧を印加可能に構成されることができる。
図1では、CO
2還元セル2の第1カソード電極21および第1アノード電極22に第1電源51が電気的に接続されている例が示されている。具体的には、第1電源51の負極は第1カソード電極21に電気的に接続され、第1電源51の正極は第1アノード電極22に電気的に接続されている。また、
図1では、水素ポンプセル3の第2カソード電極31および第2アノード電極32に第2電源52が電気的に接続されている例が示されている。具体的には、第2電源52の負極は第2カソード電極31に電気的に接続され、第2電源52の正極は第2アノード電極32に電気的に接続されている。
【0036】
電気化学反応装置1は、第1電源51および第2電源52を電気的に接続し、これら第1電源51および第2電源52を介して、CO2還元セル2および水素ポンプセル3に対しそれぞれ独立して電圧を印加することにより、ガス流路4内におけるO元素の化学ポテンシャルとH元素の化学ポテンシャルとを独立して同時に制御することができる。具体的には、ガス流路4内の所定温度におけるC-H-O状態図などから理解されるように、C元素、H元素、O元素のそれぞれの化学ポテンシャルの組み合わせにより得られる化合物は変化する。ガス流路4内の反応場の温度によってもC-H-O状態図は変化するが、電気化学反応装置1は、C元素の化学ポテンシャルを固定し、CO2還元セル2および水素ポンプセル3によってガス流路4内の反応場におけるO元素の化学ポテンシャル、H元素の化学ポテンシャルを独立して同時に制御することができる。これにより、電気化学反応装置1は、CO2を還元して任意のHまたはOを付与あるいは脱離させ、選択的に狙いの化合物を合成することが可能になる。化合物としては、例えば、COや、CH4、C2H6、CH3OH等の炭化水素(酸素原子を含有する炭化水素含む)などの炭素化合物などが挙げられる。よって、電気化学反応装置1によれば、CO2の還元反応による狙いの化合物の選択性向上に有効な電気化学反応装置1が得られる。また、電気化学反応装置1によれば、CO2の還元反応による狙いの化合物の種類を増やすことも可能になる。C2H6などの炭素数が2以上の炭化水素の合成はこれまで困難であったが、電気化学反応装置1は、炭素数が2以上の炭化水素も合成することができる。電気化学反応装置1の作動温度は、例えば、400℃以上800℃以下とすることができる。
【0037】
なお、CH4は、ガス流路4内において、次の反応式により合成することができる。
CO2+4H2→CH4+2H2O
また、C2H6は、ガス流路4内において、次の反応式により合成することができる。
2CO2+7H2→C2H6+4H2O
また、CH3OHは、ガス流路4内において、次の反応式により合成することができる。
CO2+3H2→CH3OH+H2O
【0038】
電気化学反応装置1において、CO
2還元セル2の第1カソード電極21と、水素ポンプセル3の第2カソード電極31とは、互いに向かい合うようにガス流路4内に設けられている。
図1では、具体的には、ガス流路4におけるチャンバ部42内において、第1カソード電極21と第2カソード電極31とが互いに向かい合うように設けられている例が示されている。この構成によれば、CO
2還元セル2および水素ポンプセル3に独立してそれぞれ電圧を印加し、第1カソード電極21と第2カソード電極31との間に形成される電極間空間420におけるO元素の化学ポテンシャルとH元素の化学ポテンシャルとを制御することができる。そのため、この構成によれば、電極間空間420内にCO
2を含むガスG1を流すことにより、効率良くCO
2を電気化学的に還元し水素化させることができるので、狙いの化合物の選択性向上を図りやすくなる。
【0039】
なお、
図1では、側面視で、第1カソード電極21と第2カソード電極31とが同じ位置となるように対面させている例が示されているが、第1カソード電極21と第2カソード電極31とは一部が重複するように対面させて配置されていてもよい。
【0040】
電気化学反応装置1において、CO2還元セル2の酸化物イオン伝導体20と水素ポンプセル3の水素イオン伝導体30との間の距離(最短距離)は、好ましくは、10mm以下、より好ましくは、6mm以下、さらに好ましくは、3mm以下とすることができる。
【0041】
O元素の化学ポテンシャル、H元素の化学ポテンシャルは、CO2還元セル2の酸化物イオン伝導体20と水素ポンプセル3の水素イオン伝導体30との間の距離が大きくなるほど、狙いの各化学ポテンシャルからのズレが大きくなる。つまり、上記距離Lが大きくなると、各化学ポテンシャルの分布が生じやすくなる。一方、電極近傍は、化学ポテンシャルを高精度に制御しやすい領域である。そのため、第1カソード電極21と第2カソード電極31とが互いに向かい合うように対面する構成によれば、O元素の化学ポテンシャルを制御可能な領域とH元素の化学ポテンシャルを制御可能な領域とが近接ないし重なるように、CO2還元セル2の第1カソード電極21と水素ポンプセル3の第2カソード電極31とを互いに接触しない範囲で近接させることができる。したがって、上記構成によれば、O元素の化学ポテンシャル、H元素の化学ポテンシャルを制御可能な空間範囲が増大し、有効反応場が拡大することにより、狙いの化合物の選択性向上により有利な電気化学反応装置1が得られる。
【0042】
電気化学反応装置1は、ガス流路4内に、CO2の還元を促す触媒体5が設けられている。そのため、電気化学反応装置1は、CO2の転化率が向上し、狙いの化合物の生成量を増加させることができる。これは次の理由によるものと考えられる。
【0043】
上述したように、電気化学反応装置1は、CO2還元セル2および水素ポンプセル3によってO元素およびH元素の化学ポテンシャルを制御することにより狙いの化合物の選択性を向上させることができる。しかしながら、各化学ポテンシャルの制御を高精度に制御しやすい領域は電極近傍であり、ガス流路4内にCO2の還元を促す触媒体5が設けられていない場合には、反応場が電極近傍に限定され、狙いの化合物の生成量が反応場で律速する。また、電極近傍は、瞬時に電気化学反応が進むが、電極近傍から離れるほどO元素およびH元素の化学ポテンシャルを制御し難くなるために反応が遅くなり、狙いの化合物の熱平衡状態に達するまでに時間がかかる。そのため、ガス流路4内にCO2の還元を促す触媒体5が設けられていない場合には、狙いの化合物の生成量を増加させることが難しい。これに対して、ガス流路4内にCO2の還元を促す触媒体5が設けられている電気化学反応装置1によれば、第1カソード電極21および第2カソード電極31の近傍において電気化学的な反応を生じさせることができるのみならず、触媒体5が設けられた部分において触媒反応を生じさせることができる。そのため、電気化学反応装置1は、触媒体5が設けられていない場合に比べ、ガス流路4内における反応場を増加させることができる。さらに、電気化学反応装置1によれば、触媒体5による活性化エネルギーの低減、反応速度の向上により、狙いの化合物が熱平衡に達するまでの時間を短縮することができる。それ故、電気化学反応装置1は、CO2の転化率が向上し、狙いの化合物の生成量を増加させることができる。
【0044】
電気化学反応装置1において、触媒体5は、ガス流路4内に設けられておれば、チャンバ部42、上流側流路部43、および、下流側流路部44のいずれに設けられていてもよいし、チャンバ部42、上流側流路部43、および、下流側流路部44の全てに設けられていてもよい。本実施形態では、触媒体5は、
図1に例示されるように、チャンバ部42に設けられている。より具体的には、本実施形態では、触媒体5は、
図1に例示されるように、チャンバ部42における電極間空間420に設けられている。この構成によれば、O元素の化学ポテンシャルとH元素の化学ポテンシャルとの制御に有利な電極間空間420において、反応に寄与する反応場の拡大と触媒体5による活性化エネルギーの低減、反応速度の向上を図ることができる。そのため、この構成によれば、狙いの化合物の生成量の増加を確実なものとすることができる。
【0045】
触媒体5は、ガス拡散性を有することができる。この場合、触媒体5は、多孔質に形成されることができる。触媒体5がガス拡散性を有する場合には、ガスとの接触性が向上するので、触媒反応の促進に有利である。
図1では、ガス拡散性を有する触媒体5が電極間空間420内を満たしている例が示されている。これは、ガス拡散性を有する触媒体5が、第1カソード電極21および第2カソード電極31の間に挟まれているということもできる。また、
図1では、ガス拡散性を有する触媒体5が電極間空間420に層状に配置されている例が示されている。ガス流路4内のガス流通性を確保することができれば、触媒体5自体は、ガス拡散性を有していない構成とすることもできる。この場合、例えば、触媒体5が設けられる領域に、ガスの流れを閉塞しないように触媒体5の外周囲の全部または一部に隙間を形成しておけばよい。もっとも、触媒体5がガス拡散性を有している場合であっても、触媒体5の外周囲の全部または一部に隙間を形成しておくこともできる。
【0046】
触媒体5は、触媒単体より構成されていてもよいし、担体に触媒が担持されていてもよい。担体としては、例えば、シリカ、アルミナ、グラスウールなどを例示することができる。また、触媒体5は、例えば、粉体より構成されることができる。なお、触媒体5は、ガスが透過可能な密度を有する圧粉体であってもよい。
【0047】
触媒体5は、具体的には、周期表第2族から第16族の金属元素、より具体的には、Sn、In、Ga、Ge、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ir、Pt、Au、Ru、Rh、Pd、Ag、Zr、Nb、Mo、Ta、および、Wなどの金属元素を含有する構成とすることができる。これら金属元素は1種または2種以上併用されることができる。この構成によれば、触媒反応による反応促進効果を確実なものとすることができる。触媒体5は、CO2の還元促進などの観点から、好ましくは、NiやCuなどの金属元素を好適に含有することができる。
【0048】
その他の構成および作用効果については、後述する他の実施形態の記載を適宜参照することができる。
【0049】
(実施形態2)
実施形態2の電気化学反応装置について、
図2を用いて説明する。なお、実施形態2以降において用いられる符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。
【0050】
図2に例示されるように、本実施形態の電気化学反応装置1は、触媒体5が下流側流路部44に設けられている。上述した実施形態1の電気化学反応装置1は、チャンバ部42に触媒体5が設けられているため、セル動作温度と触媒使用温度とが同じ状態で使用する必要がある。これに対し、本実施形態の電気化学反応装置1は、触媒体5が下流側流路部44、具体的には、下流側流路部44の途中位置に設けられているため、セル動作温度と触媒使用温度とを分別することができる。したがって、本実施形態の電気化学反応装置1によれば、セル動作温度については、CO
2還元セル2および水素ポンプセル3の性能が良い温度範囲とし、触媒体については、触媒活性が高く狙いの化合物が得られやすい温度範囲に設置することができる。それ故、本実施形態の電気化学反応装置1によれば、狙いの化合物の生成量を増加させやすい電気化学反応装置1が得られる。
【0051】
図2では、下流側流路部44が流路延長部440を有している例が示されている。流路延長部440は、互いに向かい合うように配置されたCO
2還元セル2および水素ポンプセル3におけるガス流れ方向下流側の側端面から延びている。
図2では、下流側流路部44における流路延長部440の途中部分に触媒体5が配置されている例が示されている。なお、本実施形態では、この流路延長部440のガス流れ方向下流側の側端面が流路出口部分とされ、この部分にガス導出部40が設けられる。下流側流路部44が流路延長部440を有しており、この流路延長部440に触媒体5が配置されている場合には、CO
2還元セル2および水素ポンプセル3から触媒体5までの距離を確保しやすくなるため、セル動作温度と触媒使用温度とを分別しやすくなる。また、この場合には、流路延長部440内おける触媒体5の配置箇所を適宜選択することにより、触媒使用温度が最適となる温度帯を確保しやすくなる。また、この場合には、触媒体5の配置自由度を向上させることができる。なお、電気化学反応装置1は、不図示のヒータなどの触媒加熱源などによって触媒体5が加熱可能に構成されていてもよい。
【0052】
その他の構成および作用効果については、他の実施形態の記載を適宜参照することができる。
【0053】
(実施形態3)
実施形態3の電気化学反応装置について、
図3を用いて説明する。
【0054】
図3に例示されるように、本実施形態の電気化学反応装置1において、触媒体5は、第1カソード電極21および第2カソード電極31のうち少なくとも一方に配置されている。より具体的には、本実施形態では、ガス流路4におけるチャンバ部42に設けられた第1カソード電極21および第2カソード電極31のうち少なくとも一方に配置されている。
【0055】
本実施形態の電気化学反応装置1によれば、第1カソード電極21および/または第2カソード電極31において電気化学的な作用と触媒作用とが合わさるため、狙いの化合物の生成量を増加させやすい電気化学反応装置1が得られる。
【0056】
本実施形態において、触媒体5は、第1カソード電極21および/または第2カソード電極31の表面、内部、または、その両方のいずれに存在していてもよい。
【0057】
触媒体5は、好ましくは、CO2還元セル2の第1カソード電極21に含まれているとよい。この場合には、第1カソード電極21において触媒体5によるCO2の還元が生じるため、触媒作用効果を大きくすることができる。そのため、この場合には、電極間空間420に触媒体5を配置する場合に比べ、狙いの化合物の生成量を増加させやすい。また、この場合において、CO2還元セル2の第1カソード電極21の厚みは、水素ポンプセル3の第2カソード電極31の厚みよりも厚い構成とすることができる。この構成によれば、第1カソード電極21における触媒作用効果を大きくしやすくなるため、上記作用効果を効果的に得ることができる。
【0058】
本実施形態において、第1カソード電極21および/または第2カソード電極31は、電極機能のみならず、CO2の還元を促す触媒体5としての機能を兼ねていてもよい。この場合、具体的には、第1カソード電極21および/または第2カソード電極31と触媒体5の両方として機能できる電極兼触媒材料により、第1カソード電極21および/または第2カソード電極31自体を構成すればよい。電極兼触媒材料としては、例えば、実施形態1にて上述した周期表第2族から第16族の金属元素などを例示することができる。この場合にも、第1カソード電極21および/または第2カソード電極31において電気化学的な作用と触媒作用とが合わさるため、狙いの化合物の生成量を増加させやすい電気化学反応装置1が得られる。
【0059】
その他の構成および作用効果については、他の実施形態の記載を適宜参照することができる。
【0060】
(実施形態4)
実施形態4の電気化学反応装置について、
図4を用いて説明する。
【0061】
本実施形態の電気化学反応装置1は、チャンバ部42を通過した反応後のガスG3の少なくとも一部を、チャンバ部42へ循環可能に構成されている。この構成によれば、チャンバ部42において反応が熱平衡に達していないガスを再び反応場に循環させることができるため、未反応のCO2の再利用によりCO2変換効率が向上し、狙いの化合物の最終的な生成量を増加させやすくなる。
【0062】
チャンバ部42へ再び循環させる反応後のガスG3は、チャンバ部42を通過した反応後のガスG3の全部であってもよいし、一部であってもよい。本実施形態の電気化学反応装置1は、具体的には、以下に示す構成を有することができる。
【0063】
図4に例示されるように、本実施形態の電気化学反応装置1は、循環流路部61と、排気流路部62と、切換弁部63と、水素センサ64と、酸素センサ65と、を有している。循環流路部61はチャンバ部42を通過した反応後のガスG3をガス導入部41へ循環させる流路である。本実施形態では、循環流路部61の一端部が切換弁部63に接続され、循環流路部61の他端部がガス導入部41に接続されている。なお、図示はしないが、ガス導入部41よりも上流側にガス流路4を延長し、この延長部分に循環流路部61の他端部を接続することもできる。また、チャンバ部42を通過してガス導入部41へ循環される反応後のガスG3は、新しいCO
2を含むガスG1に混合されずにガス導入部41に導入されてもよいし、ガス導入部41に導入される新しいCO
2を含むガスG1に混合されてもよい。
【0064】
排気流路部62は、チャンバ部42を通過した反応後のガスG3を排気する流路である。本実施形態では、排気流路部62の一端部が切換弁部63に接続されている。なお、本実施形態では、排気流路部62の他端部は、排気流路部62を流れたガスを排気するためのガス排気口とされる。切換弁部63は、チャンバ部42を通過した反応後のガスG3が流入し、当該ガスを循環流路部61または排気流路部62に流れるように切り換える弁である。切換弁部63は、具体的には、例えば、三方弁などにより構成することができる。
図4では、ガス流路4の下流側流路部44が流路延長部440を有しており、この流路延長部440におけるガス出口側の端部が切換弁部63に接続している例が示されている。この構成によれば、ガス流路4と切換弁部63とを接続しやすい利点がある。なお、図示はしないが、流路延長部440を設けずに、ガス流路4を切換弁部63に接続してもよい。
【0065】
水素センサ64は、チャンバ部42を通過した反応後のガスG3の水素濃度を測定するためのセンサである。
図4では、下流側流路部44における流路延長部440に水素センサ64が設けられている例が示されている。酸素センサ65は、チャンバ部42を通過した反応後のガスG3の酸素濃度を測定するためのセンサである。
図4では、下流側流路部44における流路延長部440に水素センサ64が設けられている例が示されている。これらの構成によれば、流路延長部440に水素センサ64および酸素センサ65が設けられているため、水素センサ64および酸素センサ65の設置自由度を向上させることができる。
【0066】
図4に例示される電気化学反応装置1は、水素センサ64による水素濃度および酸素センサ65による酸素濃度の少なくとも一方が所定の濃度に達するまで、チャンバ部42を通過した反応後のガスG3の全部または一部を、切換弁部63、循環流路部61およびガス導入部41を介してチャンバ部42へ循環させるように構成されている。この構成によれば、上述した本実施形態の作用効果を確実なものとすることができる。また、この構成によれば、水素センサ64による水素濃度および酸素センサ65による酸素濃度の少なくとも一方が目的とする所定の濃度に達するまでの一定時間の間、チャンバ部42を通過した反応後のガスG3の循環を行い、排気し、新しいCO
2を含むガスG1への交換を繰り返すことができる。また、この構成によれば、チャンバ部42を通過した一定割合の反応後のガスG3については排気流路部62より排出させ、残りのガスG3については循環流路部61を介して循環を行うように構成し、新しいCO
2を含むガスG1と循環させた未反応後のガスG3とを使用して電気化学反応装置1を連続的に作動させることが可能になる。
【0067】
なお、本実施形態では、
図4に例示されるように、ガス流路4におけるチャンバ部42に触媒体5が設けられている場合を例に用いて説明したが、本実施形態の電気化学反応装置1は、
図2に例示されるように、ガス流路4における下流側流路部44に触媒体5が設けられていてもよい。この場合には、上述した水素センサ64および酸素センサ65は、下流側流路部44に配置される触媒体5よりもガス流れ方向の下流側に設ければよい。
【0068】
その他の構成および作用効果については、他の実施形態の記載を適宜参照することができる。
【0069】
(実施形態5)
実施形態5の電気化学反応装置について、
図1および
図4を参照しながら説明する。
【0070】
本実施形態の電気化学反応装置1では、触媒体5は、チャンバ部42に設けられている。本実施形態の電気化学反応装置1は、CO2を含むガスG1をチャンバ部42内に所定時間滞留させるように構成されている。CO2を含むガスG1をチャンバ部42内に所定時間滞留させず、連続的にCO2を含むガスG1をチャンバ部42内に供給する場合には、反応速度やガス拡散速度が不十分となることが有り得る。これに対して、上記構成によれば、チャンバ部42内での反応が十分に進むまでCO2を含むガスG1を滞留させた後、反応後のガスG3を出力することができるため、反応速度やガス拡散速度を十分にしやすくなり、CO2変換効率が向上し、狙いの化合物の最終的な生成量を増加させやすくなる。なお、本実施形態の電気化学反応装置1は、CO2を含むガスG1から狙いの化合物をバッチ式で選択的に生成させるのに有効である。
【0071】
本実施形態の電気化学反応装置1は、具体的には、例えば、
図4に例示されるように、下流側流路部44における流路延長部440など、チャンバ部42の下流におけるガス流路4に、チャンバ部42を通過した反応後のガスG3の水素濃度を測定する水素センサ64と、チャンバ部42を通過した反応後のガスG3の酸素濃度を測定する酸素センサ65とを設け、CO
2を含むガスG1をチャンバ部42内に所定時間滞留させるように構成することができる。この構成は、例えば、
図4に例示されるように、循環流路部61と、排気流路部62と、切換弁部63と、水素センサ64と、酸素センサ65と、を有して電気化学反応装置1において実施することができる。この場合には、CO
2を含むガスG1を使用して狙いの化合物をバッチ式で選択的に生成させることもできるし、実施形態4にて説明したように、新しいCO
2を含むガスG1と循環させた未反応CO
2を含む反応後のガスG3とを使用して狙いの化合物を連続的に生成させることもできる。なお、この場合には、チャンバ部42を通過した反応後のガスG3は切換弁部63を介して排気流路部62のみへ流れるように構成しもよいし、必要に応じて、チャンバ部42を通過した反応後のガスG3が切換弁部63を介して循環流路部61および排気流路部62へ流れるように構成してもよい。
【0072】
その他の構成および作用効果については、他の実施形態の記載を適宜参照することができる。
【0073】
(実施形態6)
実施形態6の電気化学反応装置について、
図5を用いて説明する。
【0074】
図5に例示されるように、本実施形態の電気化学反応装置1において、触媒体5は、互いに向かい合った第1カソード電極21および第2カソード電極31の間ある電極間空間420に配置されている。また、チャンバ部42は、CO
2を含むガスG1が、ガス導入部41から第1カソード電極21に導入され、第1カソード電極21内を通過し、電極間空間420に流入した後、下流側流路部44に排出されるように構成された流路構造421を有する構成とすることができる。この構成によれば、CO
2還元セル2の第1カソード電極21において先にCO
2の電気化学的な還元反応が進み、その後、電極間空間420において触媒体5の触媒作用によるCO
2の還元反応が進む。そして、これらの還元反応によってCO
2のCO、CO
2+化が進んだところに、水素ポンプセル3を通じて電極間空間420に水素イオンを供給することができる。そして、下流側流路部44には、狙いの化合物を含む反応後のガスG3が排出される。そのため、上記構成によれば、狙いの化合物の生成量を増加させやすい電気化学反応装置1が得られる。
【0075】
本実施形態の電気化学反応装置1は、具体的には、次に示す構成を有することができる。
図4に例示されるように、本実施形態の電気化学反応装置1は、上流側封止部451と、下流側封止部452とを有している。上流側封止部451は、第1カソード電極21におけるガス導入部41側の端面を開口した状態とするとともに、第2カソード電極31および電極間空間420におけるガス導入部41側の端面をガス封止する封止部材である。また、下流側封止部452は、電極間空間420におけるガス導入部41側とは反対側の端面を開口した状態とするとともに、第1カソード電極21および第2カソード電極31におけるガス導入部41側とは反対側の端面をガス封止する封止部材である。電極間空間420におけるガス導入部41側とは反対側の端面は、電極間空間420における下流側流路部44側の端面ということもできる。なお、本実施形態において、第1カソード電極21および第2カソード電極31は、ガス拡散性を確保するため、多孔質に形成されることができる。
【0076】
上記構成によれば、上述した流路構造421を比較的簡単に構成することができるので、狙いの化合物の生成量を増加させやすい電気化学反応装置1を実現しやすい。
【0077】
その他の構成および作用効果については、他の実施形態の記載を適宜参照することができる。
【0078】
(実施形態7)
実施形態7の電気化学反応装置スタックについて、
図6を用いて説明する。
【0079】
図6に例示されるように、本実施形態の電気化学反応装置スタック1Sは、電気化学反応装置1が複数積層された積層構造10を有している。
図6では、第1カソード電極21および第2カソード電極31のうち少なくとも一方に触媒体5が配置されている実施形態3の電気化学反応装置1が複数積層された積層構造10を有する電気化学反応装置スタック1Sが例示されている。なお、積層される電気化学反応装置1は、実施形態3の電気化学反応装置1に限定されるものではなく、その他の実施形態の電気化学反応装置1、これらの組み合わせとすることができる。
【0080】
積層構造10は、隣接する電気化学反応装置1における各水素ポンプセル3の第2アノード電極32同士が互いに隙間101aを挟んだ状態で配置された第1の配置構造101、および、隣接する電気化学反応装置1における各CO
2還元セル2の第1アノード電極22同士が互いに隙間102aを挟んだ状態で配置された第2の配置構造102のうち少なくとも一方を含んでいる。
図6では、積層構造10が、第1の配置構造101および第2の配置構造102の両方を有している例が示されている。なお、積層構造10が、第1の配置構造101、または、第2の配置構造102を有するか、第1の配置構造101および第2の配置構造102の両方を有するかは、電気化学反応装置1の積層順や積層数などによる。
【0081】
電気化学反応装置スタック1Sでは、隣接する電気化学反応装置1の一方から排出されたガスが、隣接する電気化学反応装置1の他方のガス導入部41に導入されるように、隣接する電気化学反応装置1の各ガス流路4が連通されている。したがって、積層方向また、第1の配置構造101における隙間101aには、水素原子を含むガスG2が供給されるように構成されている。なお、本実施形態では、
図6に例示されるように、第2の配置構造102における隙間102aに、外部空気が存在できるように構成されている。
【0082】
本実施形態の電気化学反応装置スタック1Sによれば、電気化学反応装置1から排出された反応後のガスG3が後段に配置された電気化学反応装置1に順次導入されるため、総反応面積が増加し、電気化学反応装置1の作用効果とも相まって、狙いの化合物の生成量をより増加させることができる。
【0083】
その他の構成および作用効果については、他の実施形態の記載を適宜参照することができる。
【0084】
(実験例1)
-CO2還元セル-
8mol%のイットリアを固溶したイットリア安定化ジルコニア(以下、YSZ)粉末(平均粒径:0.3μm)と、ポリビニルブチラール(バインダー)と、2-ブタイソアミルおよびエタノール(混合溶媒)とを含有する酸化物イオン伝導体形成用スラリーを調製した。
【0085】
ドクターブレード法を用いて、調製した酸化物イオン伝導体形成用スラリーをプラスチック基材上に層状に塗工し、乾燥させることにより、焼成により酸化物イオン伝導体になる未焼成シートを作製した。この未焼成シートを1400℃で焼成することにより、酸化物イオン伝導体(厚み480μm)を作製した。
【0086】
Ni粉末(平均粒径:0.5μm)と、YSZ粉末と、溶媒とを含有する電極形成用スラリーを調整した。NiとYSZの体積比は50:50とした。
【0087】
ドクターブレード法を用いて、酸化物イオン伝導体の両面に電極形成用スラリーを層状に塗工した。これをN2フロー下にて1400℃で焼成することにより、酸化物イオン伝導体の一方面に第1カソード電極(厚み20μm)、酸化物イオン伝導体の他方面に第1アノード電極(厚み20μm)を形成した。これにより、CO2還元セルを得た。
【0088】
-水素ポンプセル-
SrZr0.9Yb0.1O3-δ(以下、SZY)粉末(平均粒径:0.5μm)と、ポリビニルブチラール(バインダー)と、2-ブタイソアミルおよびエタノール(混合溶媒)とを含有する水素イオン伝導体形成用スラリーを調製した。
【0089】
ドクターブレード法を用いて、調製した水素イオン伝導体形成用スラリーをプラスチック基材上に層状に塗工し、乾燥させることにより、焼成により水素イオン伝導体になる未焼成シートを作製した。この未焼成シートを1600℃で焼成することにより、水素イオン伝導体(厚み480μm)を作製した。
【0090】
Pt粉末(平均粒径:1μm)と、SZY粉末と、溶媒とを含有する電極形成用スラリーを調整した。PtとSZYの体積比は50:50とした。
【0091】
ドクターブレード法を用いて、水素イオン伝導体の両面に電極形成用スラリーを層状に塗工した。これをN2フロー下にて1450℃で焼成することにより、水素イオン伝導体の一方面に第2カソード電極(厚み20μm)、水素イオン伝導体の他方面に第2アノード電極(厚み20μm)を形成した。これにより、水素ポンプセルを得た。なお、CO2還元セルの第1カソード電極および水素ポンプセルの第2カソード電極の電極面積は同一とした。また、第1アノード電極、第1カソード電極はいずれも多孔質に形成されており、第2アノード電極、第2カソード電極はいずれも多孔質に形成されている。
【0092】
-触媒体-
アルミナ粉末にNi粒子を担持させてなる粉末状の触媒体を準備した。なお、アルミナ粉末に対するNi粒子の担持量は、12質量%とした。
【0093】
-電気化学反応装置-
アルミナ製のガス流路内に、CO2還元セルの第1カソード電極と水素ポンプセルの第2カソード電極とを互い向かいように配置するとともに、第1カソード電極と第2カソード電極との間に形成される電極間空間に触媒体を配置した。なお、第1カソード電極と第2カソード電極とはガス流路内に露出した状態にある。また、CO2還元セルの酸化物イオン伝導体と水素ポンプセルの水素イオン伝導体との間の距離は、6mmとした。以上により、試料1の電気化学反応装置を作製した。
【0094】
試料1の電気化学反応装置の作製において、ガス流路内にて互いに向かい合うように配置された第1カソード電極と第2カソード電極との間に触媒体を配置しなかった以外は同様にして、試料1Rの電気化学反応装置を作製した。なお、試料1Rの電気化学反応装置は、参考例の電気化学反応装置としての意味がある。
【0095】
作製した電気化学反応装置について、CO
2還元セルの第1カソード電極および第1アノード電極に第1電源を電気的に接続するとともに、水素ポンプセルの第2カソード電極および第2アノード電極に第2電源を電気的に接続することにより、CO
2還元セルおよび水素ポンプセルに対しそれぞれ独立して電圧を印加可能とした。そして、500℃の作動温度にて、ガス流路のガス導入部にCO
2を供給するとともに、水素ポンプセルの第2アノード電極にH
2を供給することにより、反応試験を行った。この際、ガス流量は、CO
2:10cc/min、H
2:10cc/minとした。また、CO
2還元セルに対する印加電圧は直流5V、水素ポンプセルに対する印加電圧は直流5Vとした。なお、得られる生成ガスの種類等については、ガスクロマトグラフを用いて分析を行った。上記反応試験により、CH
4生成量(ml)、CO
2転化率(%)を測定した。なお、CO
2転化率(%)は、CH
4生成量(mol)/入力CO
2(mol)×100の式より算出した。その結果を、
図7および
図8に示す。
【0096】
図7および
図8に示されるように、ガス流路内に触媒体のない試料1Rの電気化学反応装置では、CO
2の転化が認められ、選択的にCH
4を生成させることができたが、CH
4生成量は相対的に少なかった。これに対し、ガス流路内に触媒体を配置した試料1の電気化学反応装置では、CO
2転化率が高く、選択的にCH
4を生成させることができ、さらに、CH
4生成量を相対的に増加させることがでできることが確認できた。これは、CO
2の還元を促す触媒体をガス流路内に設けたことにより、触媒体がなければほとんど起きないCO+3H
2→CH
4+H
2Oの反応が触媒体部分において生じたためであると考えられる。なお、図示はしないが、参考例に係る試料1Rの電気化学反応装置において、CO
2還元セルおよび水素ポンプセルのいずれか一方のみに上記電圧を印加した場合には、CO
2転化は確認できたものの、CH
4の生成はほとんどなかった。
【0097】
これらの結果から、本開示の電気化学反応装置によれば、CO2の還元反応による狙いの化合物の選択性を向上させることでき、狙いの化合物の生成量を増加させることが可能になるといえる。
【0098】
(実験例2)
実験例1と同様にして、試料1、試料1Rの電気化学反応装置を作製した。また、実験例1における試料1の電気化学反応装置において、第1カソード電極と第2カソード電極との間に触媒体を配置せず、CO2還元セルの第1カソード電極を、Ni粒子より構成するとともに厚みを500μmとした点、水素ポンプセルの第2カソード電極を、Ni粒子より構成するとともに厚みを20μmとした点以外は同様にして、試料2の電気化学反応装置を作製した。なお、本実験例は、第1カソード電極および第2カソード電極の両方を、電極兼触媒材料より構成した例である。
【0099】
作製した電気化学反応装置について、実験例1と同様にして、CH
4生成量(ml)を測定した。その結果を、
図9に示す。
【0100】
図9に示される試料1の電気化学反応装置および試料2の電気化学反応装置の試験結果の比較から分かるように、ガス流路内に存在する第1カソード電極および第2カソード電極のうち少なくとも一方に触媒体を配置することにより、ガス流路内に存在する第1カソード電極および第2カソード電極の間の電極間空間に触媒体を配置するよりも、CH
4生成量を増加させることができることが確認された。これは、第1カソード電極および/または第2カソード電極において電気化学的な作用と触媒作用とが合わさるため、狙いの化合物の生成量を増加させやすかったためであると考えられる。
【0101】
本発明は、上記各実施形態、各実験例に限定されるものではなく、その要旨を逸脱しない範囲において種々の変更が可能である。また、各実施形態、各実験例に示される各構成は、それぞれ任意に組み合わせることができる。また、出願当初の特許請求の範囲に記載の各請求項同士は、それぞれ任意に組み合わせることができる。
【符号の説明】
【0102】
1 電気化学反応装置
2 CO2還元セル
20 酸化物イオン伝導体
21 第1カソード電極
22 第1アノード電極
3 水素ポンプセル
30 水素イオン伝導体
31 第2カソード電極
32 第2アノード電極
4 ガス流路
41 ガス導入部
5 触媒体
G1 CO2を含むガス
G2 水素原子を含むガス
1S 電気化学反応装置スタック