IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ トヨタ自動車株式会社の特許一覧 ▶ 株式会社小松製作所の特許一覧

<>
  • 特開-運行管理システム 図1
  • 特開-運行管理システム 図2
  • 特開-運行管理システム 図3
  • 特開-運行管理システム 図4
  • 特開-運行管理システム 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024080804
(43)【公開日】2024-06-17
(54)【発明の名称】運行管理システム
(51)【国際特許分類】
   G08G 1/09 20060101AFI20240610BHJP
   G08G 1/00 20060101ALI20240610BHJP
   G08G 1/16 20060101ALI20240610BHJP
【FI】
G08G1/09 Q
G08G1/00 X
G08G1/16 A
【審査請求】未請求
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2022194041
(22)【出願日】2022-12-05
(71)【出願人】
【識別番号】000003207
【氏名又は名称】トヨタ自動車株式会社
(71)【出願人】
【識別番号】000001236
【氏名又は名称】株式会社小松製作所
(74)【代理人】
【識別番号】110000969
【氏名又は名称】弁理士法人中部国際特許事務所
(72)【発明者】
【氏名】野澤 優介
(72)【発明者】
【氏名】溝尾 駿
(72)【発明者】
【氏名】高島 亨
(72)【発明者】
【氏名】岡野 隆宏
(72)【発明者】
【氏名】長川 研太
(72)【発明者】
【氏名】平中 貴士
(72)【発明者】
【氏名】小西 翔太
【テーマコード(参考)】
5H181
【Fターム(参考)】
5H181AA01
5H181AA07
5H181AA27
5H181BB04
5H181CC03
5H181CC04
5H181CC12
5H181CC14
5H181FF04
5H181FF13
5H181FF14
5H181LL01
5H181LL02
5H181LL04
(57)【要約】

【課題】安全性を確保しつつ、大型重機の不要な停止を抑制することができる運行管理システムを提供する。
【解決手段】本発明において、コントローラ12は、各登録モビリティから位置情報及び周辺情報を取得する情報取得処理S1と、情報取得処理S1で取得した車両の位置情報及び周辺情報に基づいて、地図情報に含まれる道路に対して設定された区間ごとに、区間の安全性の高さを示す安全レベルを判定する判定処理S2と、判定処理S2の判定結果を地図情報と関連付けて記憶装置11に記憶する記憶処理S3と、判定処理S2で判定された区間である判定済区間を自動運転により走行中又は走行予定の大型重機に搭載された周辺監視装置4に対して、判定済区間の安全レベルに基づいて障害物の検出感度を変更する感度変更処理S4と、を実行する。
【選択図】図2
【特許請求の範囲】
【請求項1】
位置情報を取得可能に構成された複数の登録モビリティの運行を管理するように、各前記登録モビリティと通信可能に構成された運行管理システムであって、
地図情報を記憶する記憶装置と、
1つ以上のプロセッサを含むコントローラと、
を備え、
各前記登録モビリティには、自身の周辺の障害物に関する情報である周辺情報を取得する周辺監視装置が搭載され、
複数の前記登録モビリティは、1種類以上の車両と、前記車両よりも大きい1種類以上の大型重機とを含み、
前記コントローラは、
各前記登録モビリティから前記位置情報及び前記周辺情報を取得する情報取得処理と、
前記情報取得処理で取得した前記車両の前記位置情報及び前記周辺情報に基づいて、前記地図情報に含まれる道路に対して設定された区間ごとに、前記区間の安全性の高さを示す安全レベルを判定する判定処理と、
前記判定処理の判定結果を前記地図情報と関連付けて前記記憶装置に記憶する記憶処理と、
前記判定処理で判定された前記区間である判定済区間を自動運転により走行中又は走行予定の前記大型重機に搭載された前記周辺監視装置に対して、前記判定済区間の前記安全レベルに基づいて前記障害物の検出感度を変更する感度変更処理と、
を実行するように構成されている、
運行管理システム。
【請求項2】
前記コントローラは、前記感度変更処理において、前記安全レベルが高いほど、前記周辺監視装置による前記障害物の検出感度を低くする、
請求項1に記載の運行管理システム。
【請求項3】
前記コントローラは、前記判定処理において、設定した前記安全レベルに基づいて、前記大型重機の種類毎に種別安全レベルを設定する、
請求項1に記載の運行管理システム。
【請求項4】
前記コントローラは、前記情報取得処理と前記判定処理との間に、重み設定処理を実行するように構成され、
前記重み設定処理は、取得した前記周辺情報に対して、所定の重み設定ルールに基づいて重みを設定する処理であり、
前記コントローラは、前記判定処理において、前記重み設定処理で設定された前記重みに基づいて、前記安全レベルを判定する、
請求項1に記載の運行管理システム。
【請求項5】
前記重み設定ルールは、前記周辺情報が新しいほど前記重みを大きくするように設定されている、
請求項4に記載の運行管理システム。
【請求項6】
前記コントローラは、前記登録モビリティ又はインターネットから取得した天候情報に基づいて、前記判定済区間の前記安全レベルをリセットする、
請求項1に記載の運行管理システム。
【請求項7】
前記周辺監視装置は、ステレオカメラ及びライダーの少なくとも一方を含んで構成されている、
請求項1~6の何れか一項に記載の運行管理システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、運行管理システムに関する。
【背景技術】
【0002】
例えば鉱山で用いられるダンプトラック等の大型重機には、自律走行又は運転支援等のために、ステレオカメラやライダー(LiDAR)等の周辺監視装置が搭載されている。例えば特開2016-35707号公報には、ステレオカメラで取得した前方の障害物情報を、後続車両に対して表示する表示装置を備えた鉱山用ダンプトラックが開示されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2016-35707号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
例えば、無人の自動運転走行である自律走行が実行されるダンプトラックは、安全確保の観点から、周辺監視装置により所定の障害物が検出されると、停止するように構成されている。しかしながら、ダンプトラック等の大型重機は、構造上、周辺監視装置の搭載位置が一般的な車両よりも高い位置となる。したがって、大型重機に搭載された周辺監視装置の検出精度は、車両に搭載された周辺監視装置の検出精度よりも低くなりやすい。これにより、停止対象でない障害物、例えば小石や轍等が停止対象の障害物と誤検出されて、大型重機が不要に停止することがある。大型重機が不要に停止すると、生産性、例えば鉱山での運搬効率は低下してしまう。
【0005】
本発明の目的は、安全性を確保しつつ、大型重機の不要な停止を抑制することができる運行管理システムを提供することである。
【課題を解決するための手段】
【0006】
本発明の運行管理システムは、位置情報を取得可能に構成された複数の登録モビリティの運行を管理するように、各前記登録モビリティと通信可能に構成された運行管理システムであって、地図情報を記憶する記憶装置と、1つ以上のプロセッサを含むコントローラと、を備えている。各前記登録モビリティには、自身の周辺の障害物に関する情報である周辺情報を取得する周辺監視装置が搭載されている。複数の前記登録モビリティは、1種類以上の車両と、前記車両よりも大きい1種類以上の大型重機とを含んでいる。前記コントローラは、情報取得処理と、判定処理と、記憶処理と、感度変更処理と、を実行するように構成されている。前記情報取得処理は、各前記登録モビリティから前記位置情報及び前記周辺情報を取得する処理である。前記判定処理は、前記情報取得処理で取得した前記車両の前記位置情報及び前記周辺情報に基づいて、前記地図情報に含まれる道路に対して設定された区間ごとに、前記区間の安全性の高さを示す安全レベルを判定する処理である。前記記憶処理は、前記判定処理の判定結果を前記地図情報と関連付けて前記記憶装置に記憶する処理である。前記感度変更処理は、前記判定処理で判定された前記区間である判定済区間を自動運転により走行中又は走行予定の前記大型重機に搭載された前記周辺監視装置に対して、前記判定済区間の前記安全レベルに基づいて前記障害物の検出感度を変更する処理である。
【発明の効果】
【0007】
本発明によれば、大型重機の走行区間の安全レベルに応じて、その大型重機に搭載されている周辺監視装置の感度を変更することができる。安全な区間では、比較的小さな障害物が検出されないように、周辺監視装置の検出感度を下げることができる。これにより、障害物の誤検出又は過検出による大型重機の不要な停止を抑制することができる。また、コントローラは、周辺監視装置の感度を下げる場合、周辺監視装置の検出感度を、安全走行に対する必要最低限の感度以上に設定することができる。このように、本発明によれば、安全性を確保しつつ、大型重機の不要な停止を抑制することができる。
【図面の簡単な説明】
【0008】
図1】本実施形態の運行管理システムの構成図である。
図2】本実施形態の運行管理システムの処理の流れを示すフローチャートである。
図3】本実施形態の運行管理システムの処理を説明するための概念図である。
図4】本実施形態の運行管理システムの情報の流れを示す概念図である。
図5】本実施形態の変形態様に係る運行管理システムの処理の流れを示すフローチャートである。
【発明を実施するための形態】
【0009】
以下、本発明を実施するための形態として、本発明の一実施形態である運行管理システム1を、図を参照しつつ詳しく説明する。なお、本発明は、下記実施例の他、当業者の知識に基づいて種々の変更、改良を施した種々の形態で実施することができる。
【0010】
本実施形態の運行管理システム1は、位置情報を取得可能に構成された複数の登録モビリティの運行を管理するように、各登録モビリティと通信可能に構成されたシステムである。登録モビリティとは、予め運行管理システム1に登録されているモビリティのことである。モビリティは、路面を走行する移動体である。複数の登録モビリティは、1種類以上の車両と、車両よりも大きい1種類以上の大型重機とを含んでいる。すなわち、運行管理システム1には、登録モビリティとして、1種類以上の車両と、1種類以上の大型重機が登録されている。より具体的に、車両は、例えば乗用車やピックアップトラック等のライトビークルである。大型重機は、例えば鉱山等で運搬作業に用いられるダンプトラックである。
【0011】
大型重機は、例えば総重量が11t以上の作業用モビリティである。例えば、鉱山用ダンプトラックの重量は、100t以上である。大型重機である鉱山用ダンプトラックのタイヤの外径は、例えば、2m以上である。鉱山用ダンプトラックの高さは、ライトビークルの高さの数倍である。したがって、鉱山用ダンプトラックの周辺監視装置4の設置位置は、ライトビークルの周辺監視装置4の設置位置よりも高い位置となる。本実施形態の運行管理システム1には、車両としてライトビークルが登録され、大型重機として鉱山用ダンプトラック(以下、単にダンプトラックという)が登録されている。登録モビリティの情報は、例えば、後述する記憶装置11に記憶されている。
【0012】
運行管理システム1は、複数の登録モビリティの運行を管理する。運行管理システム1の機能は、管制システム9及び登録モビリティ内のシステムのうちの少なくとも一方に搭載される。本実施形態の運行管理システム1は、管制システム9の一部であり、無線通信装置を持つ施設内に設置されている。
【0013】
より具体的に、運行管理システム1は、記憶装置11と、コントローラ12と、を備えている。記憶装置11は、1つ以上のメモリで構成されている。記憶装置11には、地図情報が記憶されている。記憶装置11は、コントローラ12と通信可能に接続され、コントローラ12の内部又は外部に配置されている。
【0014】
コントローラ12は、1つ以上のプロセッサ12aと1つ以上のメモリ(図示略)を備える電子制御ユニット(ECU)又はコンピュータにより構成されている。メモリには、各種プログラムや各種データが記憶されている。プロセッサ12aは、メモリからプログラムを読み出して実行し、各種演算・制御を実行する。コントローラ12のメモリは、記憶装置11であってもよい。つまり、記憶装置11はコントローラ12内に配置されてもよい。モビリティ内の通信は、例えば、CAN(car area network or controllable area network)によって行われる。
【0015】
コントローラ12は、無線機(図示略)及び通信ネットワークを介して、各登録モビリティと通信可能に構成されている。コントローラ12は、各登録モビリティから識別情報、位置情報、及びセンサ検出情報等の各種情報を受信する。コントローラ12は、目標ルートの設定対象の登録モビリティである対象モビリティの目標ルートを設定するように構成されている。例えば、運行管理システム1から目標ルートを受信した対象モビリティは、目標ルートに基づいて自動運転を実行する。また、コントローラ12は、対象モビリティに対して、走行速度等の走行条件を指令することもできる。
【0016】
図1に示すように、各登録モビリティには、例えばGNSS(Global Navigation Satellite System:全球測位衛星システム)の受信機2、及び自動運転制御を実行する自動運転ECU3が設けられている。また、各登録モビリティには、運行管理システム1と通信するための無線機(図示略)が設けられている。各登録モビリティは、自身の識別情報、受信機2で演算されたGNSSの測位データに基づく位置情報、及び登録モビリティに搭載された各種センサの検出値に基づくセンサ検出情報を運行管理システム1に送信する。図示しないが、各登録モビリティに搭載されるセンサは、例えば、車輪速度センサ、前後加速度センサ、上下加速度センサ、横加速度センサ、ヨーレートセンサ、ピッチレートセンサ、ロールレートセンサ、及び車高センサ等である。走行速度は、例えば車輪速度から演算できる。
【0017】
このように、運行管理システム1は、各登録モビリティから、識別情報、位置情報、及びセンサ検出情報を受信する。登録モビリティの自動運転ECU3は、運行管理システム1から受信した目標ルート及び走行条件(走行速度等)に基づいて、自動運転制御を実行する。自動運転ECU3は、目標ルート及び走行条件に基づいて、モビリティ内の駆動系ECU、制動系ECU、及び/又はそれらのアクチュエータ7に指示を送る(図4参照)。
【0018】
また、各登録モビリティには、外界センサとして周辺監視装置4が搭載されている。周辺監視装置4は、自モビリティの周辺を監視(認識)する装置である。周辺監視装置4は、例えば、ライダー(LiDAR:Light Detection and Ranging, or Laser Imaging Detection and Ranging)4a及びステレオカメラ4bの少なくとも一方を含んで構成されている。本実施形態の周辺監視装置4は、1つ以上のライダー4a、及び自モビリティの周辺を撮像する1セット以上のステレオカメラ4bを含んで構成されている(図4参照)。周辺監視装置4は、自モビリティと自モビリティ周辺の物体との距離を測定する1つ以上のミリ波レーダをさらに備えてもよい。周辺監視装置4は、自身の周辺の障害物に関する情報である周辺情報を取得する装置である。周辺監視装置4の検出結果である周辺情報は、センサ検出情報として、運行管理システム1に送信される。
【0019】
自動運転ECU3は、例えば、ライダーの検出結果と3次元地図データとに基づいて、精度の良い周辺状況及び自己位置の認識が可能となる。自動運転ECU3は、周辺監視装置4の検出結果に基づいて、局所的な目標ルートの修正を実行可能に構成されている。周辺監視装置4には、周辺監視装置4の検出感度(以下、単に「感度」ともいう)を調整するための感度調整装置41が接続されている。感度調整装置41は、例えば、登録モビリティに搭載されているECU(例えば自動運転ECU3等)で構成されている。
【0020】
(感度変更制御)
コントローラ12は、周辺監視装置4の感度を変更する制御である感度変更制御を実行するように構成されている。詳細に、図2に示すように、コントローラ12は、感度変更制御として、情報取得処理S1、判定処理S2、記憶処理S3、及び感度変更処理S4を実行するように構成されている。情報取得処理S1は、各登録モビリティから位置情報及び周辺情報を取得する処理である。記憶装置11は、位置情報と周辺情報とを関連付けて(紐付けして)記憶する。周辺情報には、障害物に関する情報が含まれている。
【0021】
判定処理S2は、情報取得処理S1で取得した車両の位置情報及び周辺情報に基づいて、地図情報に含まれる道路に対して設定された区間ごとに、安全レベルを判定する処理である。コントローラ12の処理において、地図情報に含まれる道路は、所定距離ごとに区画されている(図3のA、B、C参照)。つまり、地図情報内の道路は、複数の区間(エリア)に区画されている。コントローラ12は、区間ごとに安全レベルを判定する。安全レベルは、区間の安全性の高さを示す。安全レベルが高いほど、安全性が高い。安全レベルは、区間内に位置する障害物の大きさ及び種類に基づいて判定される。
【0022】
自動運転ECU3は、周辺監視装置4の検出結果に基づいて、区間内における障害物の有無、障害物の大きさ、及び障害物の種類(属性)を判定する。障害物の大きさは、例えば障害物の高さで規定される。自動運転ECU3は、障害物に関する判定結果を、周辺情報としてコントローラ12に送信する。なお、これら障害物に関する判定は、コントローラ12又は周辺監視装置4で行われてもよい。また、自動運転ECU3により、周辺監視装置4の検出結果に応じて、停車又は目標ルートの局所的な変更が可能となる。
【0023】
安全レベルが高い区間は、安全性が高く、登録モビリティが停止する必要性が低い区間である。例えば、障害物が大きいほど、登録モビリティが障害物を乗り越えにくくなる。このため、その障害物がある区間を走行する登録モビリティは当該障害物に対して停止又は回避する必要がある。したがって、そのような障害物がある区間の安全レベルは、低くなる。
【0024】
また、例えば、障害物が、動物(人を含む)、大型建機、又は停車車両である場合、障害物の大小にかかわらず、障害物に対する衝突や乗り越えを防止する必要がある。この場合も、登録モビリティは障害物に対して停止又は回避の必要性がある。したがって、その区間の安全レベルは低くなる。このように、衝突禁止属性に分類される障害物(例えば動物、大型建機、又は停車車両)が存在する区間では、障害物の大小にかかわらず、安全レベルは低く判定される。
【0025】
一方、障害物が、例えば、小さな轍、小さな土砂の塊、又は小さな岩等の小さな自然構造物である場合、大型重機はその障害物を容易に乗り越える又は踏み潰して進むことができる。また、障害物の乗り越えによる大型重機への悪影響は小さい。したがって、その区間の安全レベルは高くなる。例えば鉱山では未舗装路が多く、自然構造物が形成される可能性は高い。また、区間内に障害物が存在しない場合、その区間の安全レベルは最高値となる。安全レベルとしては、2つ以上のレベルが設定される。なお、轍は、タイヤにより形成される溝と、溝の両サイドに盛り上がって形成される凸部とで構成される。轍の高さは、凸部の高さといえる。
【0026】
安全レベルに関する設定の一例について説明する。本実施形態において、安全レベルは、高レベル、中レベル、及び低レベルの3つのレベルに分類されている。1つでも衝突禁止属性に分類される障害物又は所定高さ以上の自然構造物が検出されている場合、安全性は低く、安全レベルは低レベルと判定される。検出された1つ以上の障害物すべてが所定高さ未満の自然構造物である場合、安全レベルは中レベルと判定される。障害物が検出されていない場合、安全性は高く、安全レベルは高レベルと判定される。
【0027】
判定処理S2において、コントローラ12は、登録モビリティである車両の位置情報と周辺情報とに基づいて、車両の位置と重なる区間に対して、安全レベルを判定する。コントローラ12は、例えば、定期的に、又は位置情報と周辺情報とを取得する毎に、判定処理S2を実行する。
【0028】
図3に示すように、ライトビークルが区間A、B、Cを走行した場合、区間A、B、Cのそれぞれについて安全レベルが判定される。図3の例では、区間Aの安全レベルが低レベルと判定され、区間Bの安全レベルが中レベルと判定され、区間Cの安全レベルが高レベルと判定されている。この例では、ライトビークルに搭載された周辺監視装置4によって、区間Aで所定高さ以上の自然構造物81が検出されており、区間Bで所定高さ未満の自然構造物82が検出されており、区間Cでは障害物が検出されていない。周辺情報には、例えば、障害物の有無、障害物の大きさ、及び障害物の種類・属性に関する情報が含まれている。なお、周辺情報は、安全レベルのように、抽象的なレベルや値の情報であってもよい。
【0029】
記憶処理S3は、判定処理S2の判定結果を地図情報と関連付けて記憶装置11に記憶する処理である。コントローラ12は、様々な場所を走行する複数の車両から送信された周辺情報を、地図情報と紐付けして記憶装置11に記憶させ、情報を集約する。コントローラ12は、判定処理S2の実行毎に、判定された区間の安全レベルを更新する。記憶装置11に記憶された各区間の安全レベルは、最新のものとなる。図3の例において、記憶装置11には、区間Aの安全レベルが低レベル、区間Bの安全レベルが中レベル、区間Cの安全レベルが高レベルと記憶されている。
【0030】
感度変更処理S4は、判定処理S2で判定された区間である判定済区間を自動運転により走行中又は走行予定の大型重機に搭載された周辺監視装置4に対して、判定済区間の安全レベルに基づいて障害物の検出感度を変更する処理である。コントローラ12は、自動運転中の大型重機の目標ルートに基づいて、大型重機が判定済区間を走行するか否かを判定する。大型重機が判定済区間を走行する場合、コントローラ12は、判定済区間の安全レベルに基づいて、大型重機に搭載された周辺監視装置4の感度変更が必要であるか否かを判定する。大型重機が安全レベルが判定されていない区間(未判定区間)を走行する場合、コントローラ12は、その大型重機の周辺監視装置4の感度を初期設定に設定する。
【0031】
本実施形態において、初期設定の周辺監視装置4の感度は、安全走行に必要な最低限の感度(以下、必要感度ともいう)よりも高い感度に設定されている。つまり、周辺監視装置4の初期の感度は、安全確保の観点で十分に高感度に設定されている。この場合、安全レベルが低レベルの区間を大型重機が走行するにあたり、コントローラ12は、その大型重機の周辺監視装置4の感度を初期設定から変更しない。つまり、安全レベルが低い区間では、高い感度で周辺監視装置4が運用される。なお、安全レベルが低レベルの区間を大型重機が走行する場合、コントローラ12は、その大型重機の周辺監視装置4の感度を初期設定よりも高くしてもよい。
【0032】
安全レベルが中レベルの区間を大型重機が走行する場合、コントローラ12は、その大型重機の周辺監視装置4の感度を初期設定よりも低くする。より詳細に、この場合、コントローラ12は、周辺監視装置4の感度を、必要感度以上で、且つ安全レベルが低レベルでの感度未満に設定する。
【0033】
安全レベルが高レベルの区間を大型重機が走行する場合、コントローラ12は、その大型重機の周辺監視装置4の感度を中レベルでの感度よりも低くする。この場合の周辺監視装置4の感度は、必要感度以上に設定されることが好ましい。なお、この場合の周辺監視装置4の感度は、必要感度未満に設定されてもよい。例えば、周辺監視装置4が何も検出しない状態に設定されてもよい。このように、この例の運行管理システム1では、周辺監視装置4の感度として、低レベル用感度(ここでは初期設定の感度)、中レベル用感度、及び高レベル用感度が設定されている(低レベル用感度>中レベル用感度>高レベル用感度≧必要感度)。
【0034】
周辺監視装置4の感度は、例えば、障害物として検出できる物体の大きさ等に相当する。周辺監視装置4の感度と、検出可能な障害物の大きさとが対応している。周辺監視装置4の感度は、例えば検出可能な最小体積又は最低高さで規定できる。例えば、周辺監視装置4は、感度が高いほど、小さい物体を障害物として検出する。また、周辺監視装置4は、感度が高いほど、小さい障害物の種類・属性を判定できる。周辺監視装置4の感度が低く設定されると、検出可能な障害物の大きさが小さくなり、小さい障害物が検出されず、大きな障害物のみが検出される。周辺監視装置4の感度の変更は、例えば、ステレオカメラやライダー等の外界センサ自体の感度を変更すること、又は外界センサの検出データから障害物に関して分析する分析性能を変更すること等で実現できる。
【0035】
ステレオカメラの感度が低いほど、例えば、ステレオカメラの画質が低く、障害物検出可能な離間距離は小さくなる。つまり、ステレオカメラの感度が低く設定されると、路面付近の小さい障害物は検出されにくくなる。また、ライダーの感度が低いほど、例えば、レーダの照射間隔が大きく、取得する点群データの点群数が小さく、又はレーダの出力レベルが小さくなる。つまり、ライダーの感度が低く設定されると、障害物と特定できる物体が限定的となり、路面付近の小さい障害物は検出されにくくなる。このように、センサの感度を低くすることは、センサの有効検出範囲(例えば検出距離)を小さくすることに相当する。
【0036】
コントローラ12は、上記のように、周辺監視装置4の感度の変更が必要な場合にのみ感度変更指令を送信するように設定されてもよい。また、コントローラ12は、大型重機の走行区間が変わる毎に、走行対象区間の安全レベルに応じた感度レベルの情報を感度変更指令として送信してもよい。この場合、感度が変更されない場合でも、感度変更指令が送信される。
【0037】
図3の例において、コントローラ12は、区間Aの安全レベルが低レベルであるため、区間Aを走行しようとするダンプトラックに対して、周辺監視装置4の感度を初期設定とする感度変更指令を送信する。感度変更指令を受信したダンプトラックの感度調整装置41は、周辺監視装置4の感度を指令内容の感度に変更する。なお、例えばダンプトラックが区間Aに進入する直前の周辺監視装置4の感度が初期設定の状態である場合、コントローラ12は、そのダンプトラックに感度変更指令を送信しなくてもよい。この場合、区間Aを走行するダンプトラックの周辺監視装置4の感度は、初期設定の高感度のまま維持される。
【0038】
ダンプトラックが区間Aから区間Bに入る際、安全レベルは低レベルから中レベルに変わる。したがって、コントローラ12は、そのダンプトラックに対して周辺監視装置4の感度を下げるための感度変更指令を送信する。これにより、ダンプトラックの周辺監視装置4の感度は、初期設定(低レベル用感度)から中レベル用感度に変更される。
【0039】
ダンプトラックが区間Bから区間Cに入る際、安全レベルは中レベルから高レベルに変わる。したがって、コントローラ12は、そのダンプトラックに対して周辺監視装置4の感度を下げるための感度変更指令を送信する。これにより、ダンプトラックの周辺監視装置4の感度は、中レベル用感度から高レベル用感度に変更される。
【0040】
また、例えば、ダンプトラックが区間Cから区間Bに入る場合、コントローラ12は、そのダンプトラックに対して周辺監視装置4の感度を上げるための感度変更指令を送信する。これにより、ダンプトラックの周辺監視装置4の感度は、高レベル用感度から中レベル用感度に変更される。
【0041】
このように、コントローラ12の制御により、大型重機の走行区間に応じて、安全レベルが低レベルのときは周辺監視装置4の感度が高レベルとなり、安全レベルが中レベルのときは周辺監視装置4の感度が中レベルとなり、安全レベルが高レベルのときは周辺監視装置4の感度が低レベルとなる。このように、コントローラ12は、感度変更処理S4において、安全レベルが高いほど、周辺監視装置4による障害物の検出感度を低くする。
【0042】
図4に示すように、コントローラ12は、大型重機の目標ルートをその大型重機の自動運転ECU3に送信する。自動運転ECU3は、目標ルート等に基づいて、大型重機の各種アクチュエータ7を制御する。自動運転ECU3によるアクチュエータ7の制御は、アクチュエータ7に対応するECUを介して実行されてもよい。周辺監視装置4の検出結果は、自動運転に利用される。
【0043】
また、一方で、管制システム9のコントローラ12は、複数の車両から位置情報と周辺情報とを取得する。コントローラ12は、位置情報及び周辺情報に基づいて、各車両が走行した区間の安全レベルを判定する。コントローラ12は、大型重機の位置情報及び目標ルートに基づいて、大型重機が走行している区間及び走行予定の区間における安全レベルを把握する。
【0044】
コントローラ12は、大型重機の感度調整装置41に対して、走行区間に応じた感度変更指令を送信する。この際、コントローラ12は、感度変更指令に、走行予定の区間に対する感度変更指令を予め送信してもよい。大型重機の感度調整装置41は、大型重機が対象区間に進入した際に、予め受信した感度変更指令に基づいて周辺監視装置4の感度を変更する。
【0045】
本実施形態によれば、大型重機の走行区間の安全レベルに応じて、その大型重機に搭載されている周辺監視装置4の感度を変更することができる。安全な区間では、比較的小さな障害物が検出されないように、周辺監視装置4の感度を下げることができる。これにより、障害物の誤検出又は過検出による大型重機の不要な停止を抑制することができる。また、コントローラ12は、周辺監視装置4の感度を下げる場合、周辺監視装置4の感度を、安全走行に対する必要最低限の感度以上に設定することができる。このように、本実施形態によれば、安全性を確保しつつ、大型重機の不要な停止を抑制することができる。
【0046】
(その他)
本発明は、上記実施形態に限られない。例えば、登録モビリティの中に複数種類の大型重機が存在する場合、安全レベルは、大型重機の種類毎に設定されてもよい。つまり、コントローラ12は、判定処理S2において、設定した安全レベルに基づいて、大型重機の種類毎に種別安全レベルを設定してもよい。この場合、例えば、コントローラ12は、上記のように区間に対して基準となる安全レベルを設定した後に、大型重機の種類毎に、安全レベルに基づいて種別安全レベルを設定する。仕様が異なる2以上の大型重機が登録モビリティとして登録されている場合、それら種類が互いに異なる大型重機同士で比較すると、両者の大きさやタイヤ径などが異なる場合がある。記憶装置11には、登録モビリティの種類毎に、諸元情報が記憶されている。
【0047】
モビリティの大きさ又はタイヤ径が異なれば、安全に乗り越えられる障害物又は踏み潰すことができる障害物の大きさが異なる可能性がある。したがって、大型重機の種類毎に、基準として設定された安全レベルに基づいて、種別安全レベルが設定されてもよい。種別安全レベルは、例えば、障害物を乗り越えた際に大型重機にダメージがあるか否かの観点で設定されてもよい。ダメージの有無は、路面と大型重機のボディとの干渉の有無に基づいて演算されてもよい。ダメージの大小は、例えば、障害物の大きさ、大型重機のタイヤ径、及びボディの最低地上高に基づいて演算することができる。
【0048】
また、安全レベルは、車両から送信された最新の周辺情報に基づいて判定されているが、蓄積された周辺情報の重みに基づいて判定されてもよい。この場合、コントローラ12は、例えば、取得した周辺情報に対して、所定の重み設定ルールに基づいて重みを設定する。情報は、重みが大きいほど信頼性が高いことを意味する。コントローラ12は、重みが最も大きい周辺情報を安全レベルの判定要素として採用してもよい。一例として、図5に示すように、コントローラ12は、情報取得処理S1と判定処理S2との間で、重み設定処理S11を実行するように構成されている。重み設定処理S11は、情報取得処理S1で取得した周辺情報に対して、所定の重み設定ルールに基づいて重みを設定する処理である。コントローラ12は、判定処理S2において、重み設定処理S11で設定された重みに基づいて、安全レベルを判定する。これにより、柔軟で状況に応じた判定が可能となる。
【0049】
重み設定ルールは、例えば、周辺情報が新しいほど重みを大きくするように設定されてもよい。新しい情報ほど、現状に合っていると推測できる。大型重機が区間を走行する直前に、その区間を走行したライトビークルから取得した周辺情報は、最もその区間の現状を表していると考えられる。したがって、コントローラ12は、このような最新情報を安全レベルの判定要素として優先的に用いてもよい。
【0050】
また、重み設定ルールは、例えば、周辺監視装置4の取得情報が高精度となりやすい車両が取得した周辺情報に対して、相対的に重みを大きくするように設定されてもよい。取得情報が高精度である要因は、周辺監視装置4自体が高精度であってもよいし、周辺監視装置4の車両への取り付け位置が路面に近い等であってもよい。重み設定ルールは、カメラ等の画像センサの性能や、画像分析処理の性能が高いほど、取得される情報の重みが大きくなるように設定されてもよい。コントローラ12は、高精度な周辺監視装置4からの周辺情報の重みを大きくし、その周辺情報を優先して安全レベルの判定要素として用いてもよい。
【0051】
また、例えば、コントローラ12が、車両又はインターネット等から、天候悪化などの環境外乱の情報を取得した場合、環境外乱を受けた区間の安全レベルをリセットしてもよい。これは、環境外乱により路面状況が大きく変わる可能性があり、過去の周辺情報の信頼度が下がるためである。このように、コントローラ12は、登録モビリティ又はインターネットから取得した天候情報に基づいて、判定済区間の安全レベルをリセットしてもよい。また、周辺情報の取得時刻からの経過時間が所定時間以上となった場合、その周辺情報に基づいて判定された安全レベルはリセットされてもよい。これは、周辺情報の取得からの経過時間が大きい場合、周辺状況が大きく変化している可能性があるためである。
【0052】
また、例えば、大型重機が区間Cを走行する直前に車両が区間Cを走行し、コントローラ12がその車両から周辺情報を取得している場合、周辺情報の信頼度は非常に高いと推測できる。区間Cの安全レベルが高レベルであり、且つ、その判定要素となった周辺情報の取得時刻と大型重機の区間Cの走行開始時刻との差が所定時間内である場合、その大型重機の周辺監視装置4をマスク(検出しない状態)してもよい。
【0053】
また、乗員を乗せた状態で大型重機が自動運転されている場合、コントローラ12は、乗員の乗り心地を考慮して、大型重機の走行速度を設定してもよい。管制システム9は、大型重機が有人自動運転中であるか又は無人自動運転中であるかの情報を持っている。コントローラ12は、踏み潰しても大型重機にダメージがない小さい轍等のような小さい自然構造物しかない走行区間において、その区間を走る大型重機が有人自動運転中である場合、走行速度を下げて乗り心地を向上させてもよい。
【0054】
また、例えば、車両の周辺監視装置4により動物や他車両が検出された場合、次にその区間の周辺情報が取得されるまで、その区間を中心に複数区間の安全レベルを低レベルに設定されてもよい。例えば、図3の区間Bで作業者が検出された場合、コントローラ12は、区間Bの両隣の区間である区間Aと区間Cも区間B同様に安全レベルを低レベルに設定してもよい。作業者、動物、及び他車両等は、移動する可能性があるため、コントローラ12は、その検出結果を広範囲の安全レベルに影響させてもよい。なお、検出時刻からの経過時間が所定時間未満である場合、その区間の安全レベルは低レベルとして、その区間以外の区間に対しては通常の判定を実行してもよい。
【0055】
また、コントローラ12は、「複数のECU」、「複数のコンピュータ」、又は「1つ以上のECUと1つ以上コンピュータ」により構成されてもよい。また、コントローラ12は、車両の位置情報(例えば時系列データ)に基づいて車両の走行軌跡を演算し、走行軌跡に基づいて安全レベルの判定対象区間を決定してもよい。また、管制システム9が安全レベルの情報を大型重機に送信し、大型重機のECU(例えば自動運転ECU3)が感度変更処理S4を実行してもよい。例えば、大型重機のECUが安全レベルの情報に基づいて、感度変更指令を感度調整装置41に送信してもよい。
【0056】
また、本開示の運行管理システム1は、以下のように記載することもできる。運行管理システム1は、情報取得処理S1を実行する情報取得部と、判定処理S2を実行する判定部と、記憶処理S3を実行する記憶処理部と、感度変更処理S4を実行する感度変更部と、を備えている。これによっても、本実施形態同様の効果が発揮される。
【符号の説明】
【0057】
1…運行管理システム、11…記憶装置、12…コントローラ、12a…プロセッサ、
図1
図2
図3
図4
図5