(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024084019
(43)【公開日】2024-06-24
(54)【発明の名称】レンズ駆動装置、レンズユニット、及びカメラ
(51)【国際特許分類】
G02B 7/04 20210101AFI20240617BHJP
G03B 5/00 20210101ALI20240617BHJP
H04N 23/54 20230101ALI20240617BHJP
【FI】
G02B7/04 E
G03B5/00 J
H04N23/54
【審査請求】未請求
【請求項の数】6
【出願形態】OL
(21)【出願番号】P 2022198176
(22)【出願日】2022-12-12
(71)【出願人】
【識別番号】000133227
【氏名又は名称】株式会社タムロン
(74)【代理人】
【識別番号】110000338
【氏名又は名称】弁理士法人 HARAKENZO WORLD PATENT & TRADEMARK
(72)【発明者】
【氏名】加々見 諒
【テーマコード(参考)】
2H044
2K005
5C122
【Fターム(参考)】
2H044BE02
2H044BE10
2K005BA53
2K005CA02
2K005CA14
2K005CA23
2K005CA43
2K005CA52
5C122EA55
5C122FB03
5C122FB08
5C122GE06
5C122GE11
5C122GE17
5C122HA82
(57)【要約】
【課題】リニアアクチュエータにマグネットを用いることなく、リニアアクチュエータのローレンツ力を十分に確保する。
【解決手段】駆動コイル(38)は、ヨーク(36)に対して相対的に所定方向へ移動可能である。ヨーク(36)に、駆動コイル(38)に対向する環状の磁石コイル(40)が設けられ、ヨーク(36)における磁石コイル(40)の内側に鉄心(42)が設けられている。
【選択図】
図3
【特許請求の範囲】
【請求項1】
レンズ鏡筒内にレンズの光軸方向又はそれに直交する方向である所定方向へ移動可能に設けられ、前記レンズを保持するレンズホルダと、
前記レンズホルダを前記所定方向へ移動させるためのリニアアクチュエータと、を備え、
前記リニアアクチュエータは、
前記レンズ鏡筒の内壁側及び前記レンズホルダの外壁側のうちの一方に連結されたヨークと、
前記レンズ鏡筒の内壁側及び前記レンズホルダの外壁側のうちの他方に連結され、前記ヨークに対して相対的に前記所定方向へ移動可能な駆動コイルと、
前記ヨークに設けられ、前記駆動コイルに対向する環状の磁石コイルと、
前記ヨークにおける前記磁石コイルの内側に設けられた鉄心と、を有するレンズ駆動装置。
【請求項2】
前記ヨークは、箱型に形成されており、前記駆動コイルの少なくとも一部は、前記ヨーク内に挿通している、請求項1に記載のレンズ駆動装置。
【請求項3】
前記駆動コイルは、環状に形成され、互いに対向する第1部位と第2部位を有し、
前記磁石コイルは、前記駆動コイルの前記第1部位に対向する環状の第1磁石コイルと、前記駆動コイルの前記第2部位に対向する環状の第2磁石コイルとからなり、
前記鉄心は、前記ヨークにおける前記第1磁石コイルの内側に設けられた第1鉄心と、前記ヨークにおける前記第2磁石コイルの内側に設けられた第2鉄心とからなる、請求項1に記載のレンズ駆動装置。
【請求項4】
前記鉄心の厚みは、前記磁石コイルの厚みの0.8~1.2倍に設定されている、請求項1に記載のレンズ駆動装置。
【請求項5】
レンズ鏡筒と、
該レンズ鏡筒内に設けられたレンズと、
請求項1から4のいずれか1項に記載のレンズ駆動装置と、を備え、
前記レンズ駆動装置は、前記レンズを前記所定方向へ移動させる、レンズユニット。
【請求項6】
カメラボディと、
該カメラボディに設けられた請求項5に記載のレンズユニットと、を備えるカメラ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、レンズを光軸方向又はそれに直交する方向である所定方向へ移動させるレンズ駆動装置、レンズユニット、及びカメラに関する。
【背景技術】
【0002】
レンズ駆動装置の先行技術として特許文献1に示すものがある。その先行技術に係るレンズ駆動装置は、レンズを保持するレンズホルダ(特許文献1ではレンズ枠と称される)を備えており、レンズホルダは、レンズ鏡筒内に所定方向としての光軸方向へ移動可能に設けられている。レンズ駆動装置は、レンズホルダを光軸方向へ移動させるためのリニアアクチュエータを備えている。
【0003】
リニアアクチュエータは、レンズ鏡筒の内壁側に設けられた箱型のヨークと、ヨークの内側面に設けられたマグネット(永久磁石)と、レンズホルダの外壁側に設けられた駆動コイル(特許文献1では電磁コイルと称される)とを有している。駆動コイルは、マグネットに対向しており、ヨーク内に光軸方向へ移動可能に挿通されている。リニアアクチュエータにおいて、ヨークは、マグネットの磁場を駆動コイルに導くように構成されており、ヨークとマグネットは、磁気回路を形成する。
【0004】
従って、リニアアクチュエータにおいて、駆動コイルに電流が供給されると、磁気回路の作用によって光軸方向のローレンツ力(推力)が発生して、駆動コイルが光軸方向へ移動する。これにより、レンズ及びレンズホルダを駆動コイルと一体的に光軸方向へ移動させることができる。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
ところで、先行技術に係るレンズ駆動装置のリニアアクチュエータは、有限資源のレアアースを構成材料とするマグネット(永久磁石)を用いているため、将来的にマグネットの流通性が悪化し、レンズ駆動装置に莫大な製造コストがかかることが予想される。
【0007】
そこで、本発明の一態様は、リニアアクチュエータにマグネットを用いることなく、リニアアクチュエータのローレンツ力を十分に確保することを目的とする。
【課題を解決するための手段】
【0008】
前述の問題を解決するため、本発明の一態様に係るレンズ駆動装置は、レンズ鏡筒内にレンズの光軸方向又はそれに直交する方向である所定方向へ移動可能に設けられ、前記レンズを保持するレンズホルダと、前記レンズホルダを前記所定方向へ移動させるためのリニアアクチュエータと、を備える。前記リニアアクチュエータは、前記レンズ鏡筒の内壁側及び前記レンズホルダの外壁側のうちの一方に連結されたヨークと、前記レンズ鏡筒の内壁側及び前記レンズホルダの外壁側のうちの他方に連結され、前記ヨークに対して相対的に前記所定方向へ移動可能な駆動コイルと、前記ヨークに設けられ、前記駆動コイルに対向する環状の磁石コイルと、前記ヨークにおける前記磁石コイルの内側に設けられた鉄心と、を有する。
【0009】
本発明の一態様に係るレンズユニットは、レンズ鏡筒と、該レンズ鏡筒内に設けられたレンズと、本発明の一態様に係るレンズ駆動装置と、を備える。前記レンズ駆動装置は、前記レンズを前記所定方向へ移動させる。
【0010】
本発明の一態様に係るカメラは、カメラボディと、該カメラボディに設けられた本発明の一態様に係るレンズユニットと、を備える。
【発明の効果】
【0011】
本発明の一態様によれば、リニアアクチュエータにマグネットを用いることなく、リニアアクチュエータのローレンツ力を十分に確保することができる。
【図面の簡単な説明】
【0012】
【
図1】第1実施形態に係るカメラの模式的な側面図である。
【
図2】第1実施形態に係るレンズ駆動装置の模式的な斜視図である。
【
図3】第1実施形態に係るレンズ駆動装置の模式的な分解斜視図である。
【
図4】第1実施形態に係るレンズ駆動装置のリニアアクチュエータの模式的な分解斜視図である。
【
図5】第1実施形態に係るレンズ駆動装置のリニアアクチュエータの模式的な断面図である。
【
図6】第2実施形態に係るカメラの模式的な側面図である。
【
図7】第2実施形態に係るレンズ駆動装置の模式的な斜視図である。
【
図8】第2実施形態に係るレンズ駆動装置の模式的な分解斜視図である。
【
図9】第2実施形態に係るレンズ駆動装置のYリニアアクチュエータ又はZリニアアクチュエータの模式的な分解斜視図である。
【
図10】第2実施形態に係るレンズ駆動装置のYリニアアクチュエータ又はZリニアクチュエータの模式的な断面図である。
【
図11】実施例に係るリニアアクチュエータ及び比較例に係るリニアアクチュエータからの漏れ磁束の解析結果を示す図である。
【発明を実施するための形態】
【0013】
以下、本実施形態について図面を参照して説明する。「光軸方向」とは、フォーカス用レンズ等のレンズの光軸の方向又はレンズユニットの光軸の方向ことをいい、本実施形態においては、X方向のことである。「径方向」とは、レンズの半径方向又はレンズ鏡筒の半径方向のことをいう。Y方向とは、光軸方向であるX方向に直交する方向の1つである。Z方向とは、光軸方向であるX方向及びY方向に直交する方向のことである。YZ方向とは、Y方向及びZ方向のことをいう。
【0014】
〔第1実施形態〕
図1を参照して、第1実施形態に係るカメラ10の概要について説明する。
図1は、第1実施形態に係るカメラ10の模式的な側面図である。
【0015】
(カメラ10の概要)
図1に示すように、第1実施形態に係るカメラ10は、カメラボディ12と、カメラボディ12に設けられたレンズユニット14とを備えている。レンズユニット14は、入射した光をカメラボディ12内のフィルム面(撮像素子面)Fに結像する。
【0016】
レンズユニット14は、カメラボディ12に設けられたレンズ鏡筒16を備えている。レンズ鏡筒16内には、複数の撮像用レンズ18が設けられている。レンズ鏡筒16内には、フォーカス調整するためのフォーカス用レンズ20が光軸方向(X方向)へ移動可能に設けられている。また、レンズユニット14は、フォーカス用レンズ20を光軸方向へ移動させるレンズ駆動装置22を備えている。
【0017】
レンズ鏡筒16の外壁には、フォーカス用レンズ20の移動量を手動で操作するためのフォーカスリング24が回動可能に設けられている。撮影者がフォーカスリング24を回動操作すると、レンズ駆動装置22は、その操作量に基づいてフォーカス用レンズ20を光軸方向へ移動させる。
【0018】
カメラボディ12の外壁には、自動フォーカスによる焦点合わせを行うためのレリーズボタン26が設けられている。カメラボディ12には、レンズ駆動装置22を制御するフォーカス制御部28が内蔵されている。そして、撮影者がレリーズボタン26を半押しすると、レンズ駆動装置22は、フォーカス制御部28からの制御信号に基づいて、被写体の像がフィルムFに合焦するようにフォーカス用レンズ20を光軸方向へ移動させる。
【0019】
続いて、
図2から
図5を参照して、本実施形態に係るレンズ駆動装置22の構成について説明する。
図2は、第1実施形態に係るレンズ駆動装置22の模式的な斜視図である。
図3は、第1実施形態に係るレンズ駆動装置22の模式的な分解斜視図である。
図4は、第1実施形態に係るレンズ駆動装置22のリニアアクチュエータ34の模式的な分解斜視図である。
図5は、第1実施形態に係るレンズ駆動装置22のリニアアクチュエータ34の模式的な断面図である。
【0020】
(レンズ駆動装置22の概要、レンズホルダ30、リニアアクチュエータ34)
図2及び
図3に示すように、第1実施形態に係るレンズ駆動装置22は、前述のように、フォーカス用レンズ20を光軸方向(X方向)へ移動させる装置である。レンズ駆動装置22は、フォーカス用レンズ20を保持するレンズホルダ30を備えている。レンズホルダ30は、一対のガイドロッド32を介してレンズ鏡筒16内に光軸方向へ移動可能に設けられている。レンズ駆動装置22は、レンズホルダ30を光軸方向へ移動させるための一対のリニアアクチュエータ34を備えている。
【0021】
(ヨーク36)
図2から
図5に示すように、各リニアアクチュエータ34は、レンズ鏡筒16の内壁側に連結された箱型のヨーク36を有している。ヨーク36における径方向に直交する方向の両側は、それぞれ開口されている。ヨーク36は、例えば鉄等の磁性材料により構成されている。ヨーク36は、その周方向に沿って分割された複数のヨークセグメント36a,36b,36c,36dにより構成されている。
【0022】
(駆動コイル38)
図2から
図5に示すように、各リニアアクチュエータ34は、レンズホルダ30の外壁側に連結された環状の駆動コイル38を有しており、駆動コイル38は、ヨーク36に対して相対的に光軸方向へ移動可能である。駆動コイル38の巻線は、光軸方向に平行な軸回りに巻回されている。駆動コイル38の一部は、ヨーク36内に挿通している。換言すれば、ヨーク36のヨークセグメント36aは、駆動コイル38内に挿通している。
【0023】
(磁石コイル40、鉄心42)
図2から
図5に示すように、各リニアアクチュエータ34は、ヨーク36のヨークセグメント36cに設けられた環状の磁石コイル40を有しており、磁石コイル40は、駆動コイル38に対向する。磁石コイル40の巻線は、径方向に平行な軸回りに巻回されている。また、各リニアアクチュエータ34は、ヨーク36のヨークセグメント36cにおける磁石コイル40の内側に設けられた鉄心42を有している。
【0024】
図4及び
図5に示すように、鉄心42の厚みは、磁石コイル40の厚みの0.8~1.2倍に設定されている。鉄心42の厚みを磁石コイル40の厚みの0.8倍以上にしたのは、磁石コイル40の厚みの0.8倍未満であると、磁石コイル40の磁場を十分に強化することが困難になるからである。鉄心42の厚みを磁石コイル40の厚みの1.2倍以下にしたのは、磁石コイル40の厚みの1.2倍を超えると、リニアアクチュエータ34が径方向に拡大して、リニアアクチュエータ34のコンパクト化を図ることが困難になるからである。なお、鉄心42の厚みとは、鉄心42の光軸方向に直交する方向の長さのことである。磁石コイル40の厚みとは。磁石コイル40の光軸方向に直交する方向の長さのことである。
【0025】
(作用効果)
第1実施形態の作用効果について説明する。
【0026】
各リニアアクチュエータ34において、磁石コイル40に電流が供給されると、磁石コイル40が磁場を発生し、鉄心42によって磁石コイル40の磁場が強化される。また、ヨーク36は、磁石コイル40の磁場を駆動コイル38側に導くように構成されており、ヨーク36と磁石コイル40は、磁気回路を形成する。そのため、磁石コイル40に電流を供給した状態で、駆動コイル38に電流が供給されると、磁気回路の作用によって十分なローレンツ力(推力)が発生して、駆動コイル38が光軸方向(X方向)の一方側へ移動する。また、駆動コイル38に対する電流の供給方向又は磁石コイル40に対する電流の供給方向を変えることにより、駆動コイル38が光軸方向の他方側へ移動する。これにより、フォーカス用レンズ20及びレンズホルダ30を各リニアアクチュエータ34の駆動コイル38と一体的に光軸方向へ移動させることができる。
【0027】
つまり、第1実施形態によれば、各リニアアクチュエータ34にマグネット(永久磁石)を用いることなく、各リニアアクチュエータ34のローレンツ力を十分に確保することができる。特に、各リニアアクチュエータ34のヨーク36が箱型に構成されているため、磁石コイル40がより強い磁場を発生して、各リニアアクチュエータ34のローレンツ力を高めることができる。
【0028】
また、前述のように、各リニアアクチュエータ34において、鉄心42の厚みが磁石コイル40の厚みの0.8~1.2倍に設定されている。そのため、第1実施形態によれば、各リニアアクチュエータ34のコンパクト化を図りつつ、磁石コイル40の磁場を十分に強化して、各リニアアクチュエータ34のローレンツ力をより高めることができる。
【0029】
更に、リニアアクチュエータ34が磁石コイル40及び鉄心42を用いているため、マグネットを用いる場合に比べて、リニアアクチュエータ34からの漏れ磁束を低減することができる(後述の実施例参照)。これにより、第1実施形態によれば、レンズ鏡筒16内に配置されるイメージャー等の周辺センサが磁束の影響を受け難くなる。
【0030】
(第1実施形態の他の態様)
ヨーク36をレンズ鏡筒16の内壁側に連結する代わりに、レンズホルダ30の外壁側に連結してもよい。この場合には、駆動コイル38は、レンズ鏡筒16の内壁側に連結される。また、前述のレンズ駆動装置22の構成を、ズーム調整を行うためのズーム用レンズ(不図示)を所定方向としての光軸方向へ移動させる他のレンズ駆動装置(不図示)に適用してもよい。
【0031】
図6を参照して、第2実施形態に係るカメラ44の概要について説明する。
図6は、第2実施形態に係るカメラ44の模式的な側面図である。
【0032】
(カメラ44の概要)
図1に示すように、第2実施形態に係るカメラ44は、カメラボディ46と、カメラボディ46に設けられたレンズユニット48とを備えている。レンズユニット48は、入射した光をカメラボディ46内のフィルム面(撮像素子面)Fに結像する。
【0033】
レンズユニット48は、カメラボディ46に設けられたレンズ鏡筒50を備えている。レンズ鏡筒50内には、複数の撮像用レンズ52が設けられている。レンズ鏡筒50内には、被写体の像の振れを防止するための像振れ防止用レンズ54が光軸方向に直交するYZ方向へ移動可能に設けられている。また、レンズユニット48は、像振れ防止用レンズ54を光軸方向へ移動させるレンズ駆動装置56を備えている。
【0034】
レンズユニット48は、レンズ鏡筒50の振動を検出するジャイロ58を備えている。また、カメラボディ46には、ジャイロ58の検出値に基づいてレンズ駆動装置56を制御する像振れ防止制御部60が内蔵されている。そして、レンズ駆動装置56は、像振れ防止制御部60からの制御信号に基づいて、像振れ防止用レンズ54を光軸方向に直交するYZ方向へ移動させて、フィルム面Fに合焦される被写体の像を安定させる。
【0035】
続いて、
図7から
図10を参照して、第2実施形態に係るレンズ駆動装置56の構成について説明する。
図7は、第2実施形態に係るレンズ駆動装置56の模式的な斜視図である。
図8は、第2実施形態に係るレンズ駆動装置56の模式的な分解斜視図である。
図9は、第2実施形態に係るレンズ駆動装置56のYリニアアクチュエータ72又はZリニアアクチュエータ74の模式的な分解斜視図である。
図10は、第2実施形態に係るレンズ駆動装置56のYリニアアクチュエータ72又はZリニアアクチュエータ74の模式的な断面図である。
【0036】
(レンズ駆動装置56の概要、ベース枠62、可動枠66、レンズホルダ70)
図7及び
図8に示すように、第2実施形態に係るレンズ駆動装置56は、前述のように、像振れ防止用レンズ54を光軸方向に直交するYZ方向へ移動させる装置である。レンズ駆動装置56は、レンズ鏡筒50内に設けられた環状のベース枠62と、ベース枠62に一対のYガイドロッド64を介してY方向へ移動可能に設けられた環状の可動枠66とを有している。レンズ駆動装置56は、可動枠66に一対のZガイドロッド68を介してZ方向に移動可能に設けられかつ像振れ防止用レンズ54を保持するレンズホルダ70を有している。レンズホルダ70は、ベース枠62、一対のYガイドロッド64、可動枠66、及び一対のZガイドロッド68を介してレンズ鏡筒16に対してYZ方向へ移動可能である。
【0037】
(Yリニアアクチュエータ72、Zリニアアクチュエータ74)
図7及び
図8に示すように、レンズ駆動装置56は、レンズホルダ70をレンズ鏡筒16(ベース枠62)に対してY方向へ移動させるためのYリニアアクチュエータ72を有している。レンズ駆動装置56は、レンズホルダ70をレンズ鏡筒16に対してZ方向へ移動させるためのZリニアアクチュエータ74を有している。そして、Yリニアアクチュエータ72及びZリニアアクチュエータ74の具体的な構成は、次の通りである。
【0038】
(ヨーク76、対向ヨーク78)
図7から
図10に示すように、Yリニアアクチュエータ72は、可動枠66の外壁側に連結された平板状のヨーク76を有している。ヨーク76は、可動枠66を介してレンズホルダ70の外壁側に連結されている。ヨーク76は、例えば鉄等の磁性材料により構成されている。また、Yリニアアクチュエータ72は、ベース枠62に連結された平板状の対向ヨーク78を有しており、対向ヨーク78は、ヨーク76とX方向に対向する。対向ヨーク78は、ベース枠62を介してレンズ鏡筒50の内壁側に連結されている。対向ヨーク78は、例えば鉄等の磁性材料により構成されている。
【0039】
(駆動コイル80)
図7から
図10に示すように、Yリニアアクチュエータ72は、対向ヨーク78に設けられた環状の駆動コイル80を有している。駆動コイル80は、対向ヨーク78及びベース枠62を介してレンズ鏡筒50の内壁側に連結されている。駆動コイル80は、ヨーク76に対して相対的にY方向へ移動可能である。駆動コイル80の巻線は、光軸方向(X方向)に平行な軸回りに巻回されている。駆動コイル80は、Y方向に互いに対向する第1部位80aと第2部位80bを有している。
【0040】
(第1磁石コイル82、第2磁石コイル84、第1鉄心86、第2鉄心88)
図7から
図10に示すように、Yリニアアクチュエータ72は、ヨーク76に設けられかつ駆動コイル80の第1部位80aに対向する第1磁石コイル82を有している。第1磁石コイル82の巻線は、光軸方向に平行な軸回りに巻回されている。また、Yリニアアクチュエータ72は、ヨーク76に第1磁石コイル82に隣接して設けられかつ駆動コイル80の第2部位80bに対向する第2磁石コイル84を有している。第2磁石コイル84の巻線は、光軸方向に平行な軸回りに巻回されている。更に、Yリニアアクチュエータ72は、ヨーク76における第1磁石コイル82の内側に設けられた第1鉄心86と、ヨーク76における第2磁石コイル84の内側に設けられた第2鉄心88とを有している。
【0041】
図9及び
図10に示すように、第1磁石コイル82及び第2磁石コイル84の厚みは、同じ厚みに設定されている。第1鉄心86及び第2鉄心88の厚みは、同じ厚みに設定されている。なお、第1磁石コイル82の厚みは、第1磁石コイル82の光軸方向の長さのことであり、第2磁石コイル84の厚みは、第2磁石コイル84の光軸方向の長さのことである。第1鉄心86の厚みは、第1鉄心86の光軸方向の長さのことであり、第2鉄心88の厚みは、第2鉄心88の光軸方向の長さのことである。
【0042】
第1鉄心86及び第2鉄心88の厚みは、それぞれ、第1磁石コイル82及び第2磁石コイル84の厚みの0.8~1.2倍に設定されている。第1鉄心86及び第2鉄心88の厚みを第1磁石コイル82及び第2磁石コイル84の厚みの0.8倍以上にしたのは、第1磁石コイル82及び第2磁石コイル84の厚みの0.8倍未満であると、第1磁石コイル82及び第2磁石コイル84の磁場を十分に強化することが困難になるからである。第1鉄心86及び第2鉄心88の厚みを第1磁石コイル82及び第2磁石コイル84の厚みの1.2倍以下にしたのは、第1磁石コイル82及び第2磁石コイル84の厚みの1.2倍を超えると、Yリニアアクチュエータ72が光軸方向に拡大して、Yリニアアクチュエータ72のコンパクト化を図ることが困難になるからである。
【0043】
(ヨーク90、対向ヨーク92)
図7から
図10に示すように、Zリニアアクチュエータ74は、レンズホルダ70の外壁側に連結された平板状のヨーク90を有している。ヨーク90は、例えば鉄等の磁性材料により構成されている。また、Zリニアアクチュエータ74は、ベース枠62に連結された平板状の対向ヨーク92を有しており、対向ヨーク92は、ヨーク90とX方向に対向する。対向ヨーク92は、ベース枠62を介してレンズ鏡筒50の内壁側に連結されている。対向ヨーク92は、例えば鉄等の磁性材料により構成されている。
【0044】
(駆動コイル94)
図7から
図10に示すように、Zリニアアクチュエータ74は、対向ヨーク92に設けられた環状の駆動コイル94を有している。駆動コイル94は、対向ヨーク92及びベース枠62を介してレンズ鏡筒50の内壁側に連結されている。駆動コイル94は、ヨーク90に対して相対的にZ方向へ移動可能である。駆動コイル94の巻線は、光軸方向(X方向)に平行な軸回りに巻回されている。駆動コイル94は、Z方向に互いに対向する第1部位94aと第2部位94bを有している。
【0045】
(第1磁石コイル96、第2磁石コイル98、第1鉄心100、第2鉄心102)
図7から
図10に示すように、Zリニアアクチュエータ74は、ヨーク90に設けられかつ駆動コイル94の第1部位94aに対向する第1磁石コイル96を有している。第1磁石コイル96の巻線は、光軸方向に平行な軸回りに巻回されている。また、Zリニアアクチュエータ74は、ヨーク90に第1磁石コイル96に隣接して設けられかつ駆動コイル94の第2部位94bに対向する第2磁石コイル98を有している。第2磁石コイル98の巻線は、光軸方向に平行な軸回りに巻回されている。更に、Zリニアアクチュエータ74は、ヨーク90における第1磁石コイル96の内側に設けられた第1鉄心100と、ヨーク90における第2磁石コイル98の内側に設けられた第2鉄心102とを有している。
【0046】
図9及び
図10に示すように、第1磁石コイル96及び第2磁石コイル98の厚みは、同じ厚みに設定されている。第1鉄心100及び第2鉄心102の厚みは、同じ厚みに設定されている。なお、第1磁石コイル96の厚みは、第1磁石コイル96の光軸方向の長さのことであり、第2磁石コイル98の厚みは、第2磁石コイル98の光軸方向の長さのことである。第1鉄心100の厚みは、第1鉄心100の光軸方向の長さのことであり、第2鉄心102の厚みは、第2鉄心102の光軸方向の長さのことである。
【0047】
第1鉄心100及び第2鉄心102の厚みは、それぞれ、第1磁石コイル96及び第2磁石コイル98の厚みの0.8~1.2倍に設定されている。第1鉄心100及び第2鉄心102の厚みを第1磁石コイル96及び第2磁石コイル98の厚みの0.8倍以上にしたのは、第1磁石コイル96及び第2磁石コイル98の厚みの0.8倍未満であると、第1磁石コイル96及び第2磁石コイル98の磁場を十分に強化することが困難になるからである。第1鉄心100及び第2鉄心102の厚みを第1磁石コイル96及び第2磁石コイル98の厚みの1.2倍以下にしたのは、第1磁石コイル96及び第2磁石コイル98の厚みの1.2倍を超えると、Zリニアアクチュエータ74が光軸方向に拡大して、Zリニアアクチュエータ74のコンパクト化を図ることが困難になるからである。
【0048】
(作用効果)
続いて、第2実施形態の作用効果について説明する。
【0049】
Yリニアアクチュエータ72において、第1磁石コイル82に電流が供給されると、第1磁石コイル82が磁場を発生し、第1鉄心86によって第1磁石コイル82の磁場が強化される。第2磁石コイル84に電流が供給されると、第2磁石コイル84が磁場を発生し、第2鉄心88によって第2磁石コイル84の磁場が強化される。また、ヨーク76及び対向ヨーク78は、第1磁石コイル82の磁場を駆動コイル80の第1部位80a側に導くと共に、第2磁石コイル84の磁場を駆動コイル80の第2部位80b側に導くように構成されている。ヨーク76と対向ヨーク78と第1磁石コイル82と第2磁石コイル84は、磁気回路を形成する。
【0050】
そのため、第1磁石コイル82及び第2磁石コイル84に電流を異なる方向(時計回り方向と反時計回り方向)に供給した状態で、駆動コイル80に電流が供給されると、磁気回路の作用によって十分なローレンツ力が発生して、駆動コイル80がY方向の一方側へ移動する。また、駆動コイル80に対する電流の供給方向、又は2つの磁石コイル(第1磁石コイル82及び第2磁石コイル84)に対する電流の供給方向を変えることにより、駆動コイル80がY方向の他方側へ移動する。これにより、像振れ防止用レンズ54及びレンズホルダ70を駆動コイル80と一体的にY方向へ移動させることができる。
【0051】
同様に、Zリニアアクチュエータ74において、第1磁石コイル96に電流が供給されると、第1磁石コイル96が磁場を発生し、第1鉄心100によって第1磁石コイル96の磁場が強化される。第2磁石コイル98に電流が供給されると、第2磁石コイル98が磁場を発生し、第2鉄心102によって第2磁石コイル98の磁場が強化される。また、ヨーク90及び対向ヨーク92は、第1磁石コイル96の磁場を駆動コイル94の第1部位94a側に導くと共に、第2磁石コイル98の磁場を駆動コイル94の第2部位94b側に導くように構成されている。ヨーク76と対向ヨーク78と第1磁石コイル82と第2磁石コイル84は、磁気回路を形成する。
【0052】
そのため、第1磁石コイル96及び第2磁石コイル98に電流を異なる方向に供給した状態で、駆動コイル94に電流が供給されると、磁気回路の作用によって十分なローレンツ力が発生して、駆動コイル94がY方向の一方側へ移動する。また、駆動コイル94に対する電流の供給方向、又は2つの磁石コイル(第1磁石コイル96及び第2磁石コイル98)に対する電流の供給方向を変えることにより、駆動コイル94がZ方向の他方側へ移動する。これにより、像振れ防止用レンズ54及びレンズホルダ70を駆動コイル94と一体的にZ方向へ移動させることができる。
【0053】
つまり、第2実施形態によれば、Yリニアアクチュエータ72及びZリニアアクチュエータ74にマグネット(永久磁石)を用いることなく、Yリニアアクチュエータ72及びZリニアアクチュエータ74のローレンツ力を十分に確保することができる。
【0054】
また、前述のように、Yリニアアクチュエータ72において、第1鉄心86及び第2鉄心88の厚みが第1磁石コイル82及び第2磁石コイル84の厚みの0.8~1.2倍に設定されている。そのため、第2実施形態によれば、Yリニアアクチュエータ72のコンパクト化を図りつつ、第1磁石コイル82及び第2磁石コイル84の磁場を十分に強化して、Yリニアアクチュエータ72のローレンツ力をより高めることができる。
【0055】
同様に、Zリニアアクチュエータ74において、第1鉄心100及び第2鉄心102の厚みが第1磁石コイル96及び第2磁石コイル98の厚みの0.8~1.2倍に設定されている。そのため、第2実施形態によれば、Zリニアアクチュエータ74のコンパクト化を図りつつ、第1磁石コイル96及び第2磁石コイル98の磁場を十分に強化して、Zリニアアクチュエータ74のローレンツ力をより高めることができる。
【0056】
更に、Yリニアアクチュエータ72が第1磁石コイル82、第2磁石コイル84、第1鉄心86、及び第2鉄心88を用いているため、マグネットを用いる場合に比べて、Yリニアアクチュエータ72からの漏れ磁束を低減することができる。Zリニアアクチュエータ74が第1磁石コイル96、第2磁石コイル98、第1鉄心100、及び第2鉄心102を用いているため、マグネットを用いる場合に比べて、Zリニアアクチュエータ74からの漏れ磁束を低減することができる(後述の実施例参照)。これにより、第2実施形態によれば、レンズ鏡筒50内に配置されるイメージャー等の周辺センサが磁束の影響を受け難くなる。
【0057】
(第2実施形態の他の態様)
Yリニアアクチュエータ72において、ヨーク76をレンズホルダ70の外壁側に可動枠66を介して連結する代わりに、レンズ鏡筒50の内壁側にベース枠62を介して連結してもよい。この場合には、駆動コイル80は、レンズホルダ70の外壁側に可動枠66を介して連結される。
【0058】
また、Zリニアアクチュエータ74において、ヨーク90をレンズホルダ70の外壁側に連結する代わりに、レンズ鏡筒50の内壁側にベース枠62を介して連結してもよい。この場合には、駆動コイル94は、レンズホルダ70の外壁側に連結される。
【0059】
〔まとめ〕
本発明の態様1に係るレンズ駆動装置は、レンズ鏡筒内にレンズの光軸方向又はそれに直交する方向である所定方向へ移動可能に設けられ、前記レンズを保持するレンズホルダと、前記レンズホルダを前記所定方向へ移動させるためのリニアアクチュエータと、を備える。前記リニアアクチュエータは、前記レンズ鏡筒の内壁側及び前記レンズホルダの外壁側のうちの一方に連結されたヨークと、前記レンズ鏡筒の内壁側及び前記レンズホルダの外壁側のうちの他方に連結され、前記ヨークに対して相対的に前記所定方向へ移動可能な駆動コイルと、前記ヨークに設けられ、前記駆動コイルに対向する環状の磁石コイルと、前記ヨークにおける前記磁石コイルの内側に設けられた鉄心と、を有する。
【0060】
前記の構成によれば、前記磁石コイルに電流が供給されると、前記磁石コイルが磁場(磁気)を発生し、前記鉄心によって前記磁石コイルの磁場が強化される。また、前記ヨークは、前記磁石コイルの磁場を前記駆動コイル側に導くように構成されており、前記ヨークと前記磁石コイルは、磁気回路を形成する。そのため、前記磁石コイルに電流を供給した状態で、前記駆動コイルに電流が供給されると、磁気回路の作用によって十分なローレンツ力(推力)が発生して、前記駆動コイルが前記所定方向の一方側へ移動する。また、前記駆動コイルに対する電流の供給方向又は前記磁石コイルに対する電流の供給方向を変えることにより、前記駆動コイルが前記所定方向の他方側へ移動する。これにより、前記レンズ及び前記レンズホルダを前記駆動コイルと一体的に前記所定方向へ移動させることができる。つまり、前記リニアアクチュエータにマグネット(永久磁石)を用いることなく、前記リニアアクチュエータのローレンツ力を十分に確保することができる。
【0061】
本発明の態様2に係るレンズ駆動装置は、前記態様1において、前記ヨークは、箱型に形成されており、前記駆動コイルの少なくとも一部は、前記ヨーク内に挿通してもよい。
【0062】
前記の構成により、前記ヨークが箱型に構成されているため、前記磁石コイルがより強い磁場を発生して、前記リニアアクチュエータのローレンツ力を高めることができる。
【0063】
本発明の態様3に係るレンズ駆動装置は、前記態様1において、前記駆動コイルは、環状に形成され、互いに対向する第1部位と第2部位を有し、前記磁石コイルは、前記駆動コイルの前記第1部位に対向する環状の第1磁石コイルと、前記駆動コイルの前記第2部位に対向する環状の第2磁石コイルとからなり、前記鉄心は、前記ヨークにおける前記第1磁石コイルの内側に設けられた第1鉄心と、前記ヨークにおける前記第2磁石コイルの内側に設けられた第2鉄心とからなってもよい。
【0064】
前記の構成により、前第1磁石コイルに電流が供給されると、前記第1磁石コイルが磁場を発生し、前記第1鉄心によって前記第1磁石コイルの磁場が強化される。前第2磁石コイルに電流が供給されると、前記第2磁石コイルが磁場を発生し、前記第2鉄心によって前記第2磁石コイルの磁場が強化される。また、前記ヨークは、前記第1磁石コイルの磁場を前記駆動コイルの前記第1部位側に導くと共に、前記第2磁石コイルの磁場を前記駆動コイルの前記第2部位側に導くように構成されている。前記ヨークと前記第1磁石コイルと前記第2磁石コイルは、磁気回路を形成する。そのため、前記第1磁石コイル及び第2磁石コイルに電流を異なる方向(時計回り方向と反時計回り方向)に供給した状態で、前記駆動コイルに電流が供給されると、磁気回路の作用によって十分なローレンツ力が発生して、前記駆動コイルが前記所定方向の一方側へ移動する。また、前記駆動コイルに対する電流の供給方向、又は2つの磁石コイル(前記第1磁石コイル及び前記第2磁石コイル)に対する電流の供給方向を変えることにより、前記駆動コイルが前記所定方向の他方側へ移動する。これにより、前記レンズ及び前記レンズホルダを前記駆動コイルと一体的に前記所定方向へ移動させることができる。
【0065】
本発明の態様4に係るレンズ駆動装置は、前記態様1から3のいずれかにおいて、前記鉄心の厚みは、前記駆動コイルの厚みの0.8~1.2倍に設定されてもよい。
【0066】
前記の構成によれば、前記リニアアクチュエータのコンパクト化を図りつつ、前記磁石コイルの磁場を十分に強化して、前記リニアアクチュエータのローレンツ力を高めることができる。
【0067】
本発明の態様5に係るレンズユニットは、レンズ鏡筒と、該レンズ鏡筒内に設けられたレンズと、前記態様1から4のいずれかのレンズ駆動装置と、を備え、前記レンズ駆動装置は、前記レンズを前記所定方向へ移動させる。
【0068】
前記の構成よれば、前記レンズ駆動装置のリニアアクチュエータにマグネットを用いることなく、前記リニアアクチュエータのローレンツ力を十分に確保することができる。
【0069】
本発明の態様6に係るカメラは、カメラボディと、該カメラボディに設けられた本発明の態様5に係るレンズユニットと、を備える。
【0070】
前記の構成によれば、前記レンズユニットのリニアアクチュエータにマグネットを用いることなく、前記リニアアクチュエータのローレンツ力を十分に確保することができる。
【0071】
〔付記的事項〕
本発明は、前述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。
【実施例0072】
図11を参照して、本発明の実施例について説明する。
図11は、実施例に係るリニアアクチュエータ及び比較例に係るリニアアクチュエータからの漏れ磁束の解析結果を示す図である。
【0073】
図11のXIAに示すように、実施例に係るリニアアクチュエータは、駆動コイル38に対向する環状の磁石コイル40と、ヨーク36における磁石コイル40の内側に設けられた鉄心42とを備える。
図11のXIBに示すように、比較例に係るリニアアクチュエータは、ヨーク36に設けられかつ駆動コイル38に対向するマグネット(永久磁石)104を備える。
【0074】
そして、実施例に係るリニアアクチュエータ及び比較例に係るリニアアクチュエータからの漏れ磁束について解析を行った。
図11のXIAに示すように、実施例に係るリニアアクチュエータについては、20mT以上の漏れ磁束が確認されなかった。それに対して、
図11のXIBに示すように、比較例に係るリニアアクチュエータについては、点ハッチングを施した領域に20mT以上の漏れ磁束が確認された。
【0075】
つまり、リニアアクチュエータが磁石コイル40及び鉄心42を用いている場合には、マグネット104を用いる場合に比べて、リニアアクチュエータからの漏れ磁束を低減することが分かった。