(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024008426
(43)【公開日】2024-01-19
(54)【発明の名称】沸騰冷却装置
(51)【国際特許分類】
H01L 23/427 20060101AFI20240112BHJP
F28D 15/02 20060101ALI20240112BHJP
【FI】
H01L23/46 A
F28D15/02 M
F28D15/02 102A
【審査請求】未請求
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2022110297
(22)【出願日】2022-07-08
(71)【出願人】
【識別番号】000005234
【氏名又は名称】富士電機株式会社
(74)【代理人】
【識別番号】110003177
【氏名又は名称】弁理士法人旺知国際特許事務所
(72)【発明者】
【氏名】田中 孝典
(72)【発明者】
【氏名】柴田 修平
(72)【発明者】
【氏名】中村 淳
【テーマコード(参考)】
5F136
【Fターム(参考)】
5F136BA03
5F136CC35
5F136CC40
5F136DA27
5F136FA02
5F136FA03
(57)【要約】
【課題】異物に閉塞され難く、伝熱性能の向上を図ることができる簡素な構造の伝熱面を有する沸騰冷却装置を提供する。
【解決手段】沸騰冷却装置は、液状の冷媒と、発熱体からの熱により前記冷媒を沸騰させる伝熱面FTを有する伝熱部材5と、を備え、伝熱面FTは、鉛直線に沿って配置されており、第1面51と、第1面51よりも鉛直上方に配置され、第1面51よりも凹む第2面52と、を有し、第2面52の深さH3は、平面での冷媒の沸騰により生じる気泡の離脱気泡径よりも大きい。また、伝熱面FTは、第2面52よりも鉛直上方に配置され、第2面52よりも凹む第3面53、をさらに有することが好ましい。
【選択図】
図5
【特許請求の範囲】
【請求項1】
液状の冷媒と、
発熱体からの熱により前記冷媒を沸騰させる伝熱面を有する伝熱部材と、を備え、
前記伝熱面は、鉛直線に沿って配置されており、
第1面と、前記第1面よりも鉛直上方に配置され、前記第1面よりも凹む第2面と、を有し、
前記第2面の深さは、平面での前記冷媒の沸騰により生じる気泡の離脱気泡径よりも大きい、
ことを特徴とする沸騰冷却装置。
【請求項2】
前記伝熱面は、前記第2面よりも鉛直上方に配置され、前記第2面よりも凹む第3面、をさらに有する、
請求項1に記載の沸騰冷却装置。
【請求項3】
液状の冷媒と、
発熱体からの熱により前記冷媒を沸騰させる伝熱面を有する伝熱部材と、を備え、
前記伝熱面は、
鉛直線に沿って配置されており、
第1面と、前記第1面よりも鉛直上方に配置され、前記第1面よりも凹む第2面と、前記第2面よりも鉛直上方に配置され、前記第2面よりも凹む第3面と、前記第1面と前記第2面とを接続する第1段差面と、前記第2面と前記第3面とを接続する第2段差面と、を有し、
前記第1面と前記第1段差面との第1接続部分から前記第2面と前記第2段差面との第2接続部分までの水平面に沿った距離は、平面での前記冷媒の沸騰により生じる気泡の離脱気泡径よりも大きい、
ことを特徴とする沸騰冷却装置。
【請求項4】
液状の冷媒と、
発熱体からの熱により前記冷媒を沸騰させる伝熱面を有する伝熱部材と、を備え、
前記伝熱面は、鉛直線に沿って配置されており、
複数の第1凹部を有する第1領域と、前記第1領域よりも鉛直上方に配置され複数の第2凹部を有する第2領域と、を有し、
前記複数の第1凹部のそれぞれの鉛直線に沿った第1開口幅は、前記複数の第2凹部のそれぞれの鉛直線に沿った第2開口幅よりも大きい、
ことを特徴とする沸騰冷却装置。
【請求項5】
前記第1開口幅と、前記第2開口幅とは、平面での前記冷媒の沸騰により生じる気泡の離脱気泡径よりも小さい、
請求項4に記載の沸騰冷却装置。
【請求項6】
前記複数の第1凹部は、互いに平行に配列される複数の溝であり、
前記複数の第2凹部は、互いに平行に配列される複数の溝である、
請求項4または5に記載の沸騰冷却装置。
【請求項7】
前記第2領域は、前記第1領域よりも凹んでいる、
請求項4または5に記載の沸騰冷却装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、沸騰冷却装置に関する。
【背景技術】
【0002】
冷媒の沸騰に伴う潜熱による熱輸送を利用して発熱体を冷却する沸騰冷却装置が知られている。当該装置として、例えば特許文献1に記載の沸騰冷却装置が挙げられる。
【0003】
特許文献1に記載の沸騰冷却装置は、冷媒に浸漬される沸騰伝熱面を有する沸騰伝熱部材を備える。この沸騰冷却装置は、発熱体からの熱を沸騰伝熱面で冷媒に伝えることにより、当該冷媒を沸騰させる。
【0004】
また、特許文献1では、内周面が粗面である複数の穴を沸騰伝熱面に設けて、発熱体の冷却効率を向上させている。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかし、伝熱性能の更なる向上のために、伝熱面の形状を複雑で微細にすると、長期使用時に異物による閉塞が生じるおそれがある。また、複雑で微細な形状の伝熱面を加工することは難しく、コストがかかる。それゆえ、異物に閉塞され難く、伝熱性能の向上を図ることができる簡素な構造の伝熱面が望まれている。
【課題を解決するための手段】
【0007】
以上の課題を解決するために、本開示の好適な態様に係る沸騰冷却装置は、液状の冷媒と、発熱体からの熱により前記冷媒を沸騰させる伝熱面を有する伝熱部材と、を備え、前記伝熱面は、鉛直線に沿って配置されており、第1面と、前記第1面よりも鉛直上方に配置され、前記第1面よりも凹む第2面と、を有し、前記第2面の深さは、平面での前記冷媒の沸騰により生じる気泡の離脱気泡径よりも大きい。
【0008】
また、本開示の好適な態様に係る沸騰冷却装置は、液状の冷媒と、発熱体からの熱により前記冷媒を沸騰させる伝熱面を有する伝熱部材と、を備え、前記伝熱面は、鉛直線に沿って配置されており、第1面と、前記第1面よりも鉛直上方に配置され、前記第1面よりも凹む第2面と、前記第2面よりも鉛直上方に配置され、前記第2面よりも凹む第3面と、前記第1面と前記第2面とを接続する第1段差面と、前記第2面と前記第3面とを接続する第2段差面と、を有し、前記第1面と前記第1段差面との第1接続部分から前記第2面と前記第2段差面との第2接続部分までの水平面に沿った距離は、平面での前記冷媒の沸騰により生じる気泡の離脱気泡径よりも大きい。
【0009】
また、本開示の好適な態様に係る沸騰冷却装置は、液状の冷媒と、発熱体からの熱により前記冷媒を沸騰させる伝熱面を有する伝熱部材と、を備え、前記伝熱面は、鉛直線に沿って配置されており、複数の第1凹部を有する第1領域と、前記第1領域よりも鉛直上方に配置され複数の第2凹部を有する第2領域と、を有し、前記複数の第1凹部のそれぞれの鉛直線に沿った第1開口幅は、前記複数の第2凹部のそれぞれの鉛直線に沿った第2開口幅よりも大きい。
【図面の簡単な説明】
【0010】
【
図1】第1実施形態に係る沸騰冷却装置の概略構成を示す斜視図である。
【
図6】伝熱面における気泡の合体の抑制を説明するための図である。
【
図7】従来の伝熱面における気泡の挙動を説明するための図である。
【
図8】従来の伝熱面における気泡の挙動を説明するための図である。
【
図18】伝熱面での気泡の発生を説明するための図である。
【
図19】伝熱面での気泡の成長を説明するための図である。
【
図20】伝熱面での気泡の成長を説明するための図である。
【
図21】伝熱面からの気泡の離脱を説明するための図である。
【
図22】伝熱面の第1領域で発生する気泡の作用を説明するための図である。
【発明を実施するための形態】
【0011】
以下、添付図面を参照しながら本開示に係る好適な実施形態を説明する。なお、図面において各部の寸法および縮尺は実際と適宜に異なり、理解を容易にするために模式的に示している部分もある。また、本開示の範囲は、以下の説明において特に本開示を限定する旨の記載がない限り、これらの形態に限られない。
【0012】
1.第1実施形態
1-1.沸騰冷却装置の概要
図1は、第1実施形態に係る沸騰冷却装置1の概略構成を示す斜視図である。以下の説明は、便宜上、互いに直交するX軸、Y軸およびZ軸を適宜に用いて行う。また、以下では、X軸に沿う一方向がX1方向であり、X1方向とは反対の方向がX2方向である。Y軸に沿う一方向がY1方向であり、Y1方向とは反対の方向がY2方向である。Z軸に沿う一方向がZ1方向であり、Z1方向とは反対の方向がZ2方向である。また、XY平面は、水平面に平行である。また、Z軸は、鉛直線に平行であり、Z1方向が鉛直上方に相当し、Z2方向が鉛直下方に相当する。なお、実空間でのZ軸の向きは、沸騰冷却装置1の設置姿勢に応じて決められる。Z軸は、鉛直線に対して45°以下の範囲内で傾斜してもよい。また、「鉛直線に沿う方向」とは、完全に鉛直線に平行な方向に加え、本明細書に記載の発明を逸脱しない範囲で鉛直線に対して若干傾斜している方向も含む。また、本明細書において「等しい」とは、厳密に等しい場合だけでなく、製造誤差等の範囲内を含む。
【0013】
沸騰冷却装置1は、
図1中に二点鎖線で示す発熱体100を冷却する。発熱体100は、例えば、ダイオードまたはIGBT(Insulated Gate Bipolar Transistor)等のパワー半導体素子である。パワー半導体素子は、例えば、鉄道車両、自動車または家庭用電気機械等に搭載されるインバーターまたは整流器等のパワーエレクトロニクス製品に搭載される。
【0014】
図1に示す例では、発熱体100は、XZ平面に沿う扁平形状をなす。なお、
図1では、発熱体100の外形が概略的に示される。発熱体100の
図1に示す形状は一例であり、適宜所望の形状とすることができる。なお、発熱体100の数は、1個に限定されず、2個以上でもよい。発熱体100の数が2個である場合、例えば、当該2個の発熱体100は、沸騰冷却装置1を挟むように、Y軸に沿う方向に並んで配置される。また、発熱体100は、パワー半導体素子に限定されず、冷却を必要とするのであれば、駆動または通電等により発熱する他の電気部品または電子部品でもよい。
【0015】
図2は、
図1に示す沸騰冷却装置1の断面図である。
図2に示す沸騰冷却装置1は、気化した冷媒REと液化した冷媒REとの密度差を利用したループ型サーモサイフォンの冷却器である。沸騰冷却装置1は、受熱部10と放熱部20と第1管部30と第2管部40とを有する。
【0016】
1―1a.受熱部10
受熱部10は、箱状の容器11を有する。容器11は、冷媒REを収容する収容室S10を内部空間として有する。受熱部10は、発熱体100からの熱によって冷媒REを加熱し、冷媒REを気化せて気相冷媒を生成する。
【0017】
図示の例では、容器11は、底板111と天板112と側壁113とを有する。底板111と天板112と側壁113とで囲まれた空間が収容室S10である。また、容器11は、発熱体100から熱を受ける伝熱部材5を有する。
【0018】
底板111および天板112のそれぞれは、XY平面に沿って広がる平板である。底板111および天板112は、互いに平行となるように配置されており、天板112は、底板111に対してZ1方向に配置される。また、天板112には、第1管部30および第2管部40との接続のための孔が設けられる。底板111と天板112との間には、側壁113が配置される。
【0019】
側壁113は、底板111および天板112の外周同士を全周にわたって連結する。側壁113の外周面には、発熱体100が接触する。
図1に示す例では、側壁113は、角筒であり、4つの平板状の部材で構成される。4つの平板状の部材のうち、発熱体100に接触する平板状の部材が、伝熱部材5である。なお、発熱体100と容器11との間には、他の部材、または接着剤等が介在していてもよい。
【0020】
伝熱部材5は、Z軸に沿って配置される。伝熱部材5は、伝熱面FTを有する。伝熱面FTは、容器11の内壁面の一部を構成している。伝熱面FTは、容器11の内部に露出しており、冷媒REと接触する。また、伝熱面FTは、Z軸に沿って配置される。伝熱面FTは、発熱体100から伝熱部材5を介して冷媒REに熱を伝える。伝熱面FTの近傍の冷媒REが沸点以上の温度に過熱されることにより、伝熱面FTに複数の気泡Bが発生する。
【0021】
伝熱部材5は、熱伝導率に優れる材料により形成される。具体的には、伝熱部材5の材料は、例えば、アルミニウムおよび銅等の金属、または当該金属を含む合金等である。また、容器11のうち伝熱部材5を除く部分の材料は、特に限定されないが、伝熱部材5の材料と同様に、例えば、アルミニウムおよび銅等の金属、または当該金属を含む合金等である。
【0022】
なお、
図1に示す例では、伝熱部材5は、容器11の容器の一部であるが、容器11と別体であってもよい。また、伝熱部材5は、1部材で構成されてもよいし、複数の部材で構成されてもよい。また、
図1に示す容器11の形状は一例であり、適宜所望の形状とすることができる。また、
図2に示す例では伝熱部材5は平板状であるが、他の形状でもよく、例えばブロック状でもよい。また、収容室S10の形状は、四角柱であるが、この形状は一例であり、適宜所望の形状とすることができる。
【0023】
1―1b.放熱部20
図2に示す放熱部20は、受熱部10に対してZ1方向に配置される。放熱部20は、容器21と複数の放熱フィン22とを有する。容器21は、冷媒REを気化した状態から凝縮液化させる凝縮室S20を内部空間として有する。放熱部20では、受熱部10で生成された気相冷媒が凝縮されることにより液相冷媒が生成される。
【0024】
図示の例では、容器21は、底板211と天板212と側壁213とを有する。底板211と天板212と側壁213とで囲まれた空間が凝縮室S20である。
【0025】
底板211および天板212のそれぞれは、XY平面に沿って広がる平板である。底板211および天板212は、互いに平行となるように配置されており、底板211は、天板212に対してZ2方向に配置される。また、底板211には、第1管部30および第2管部40との接続のための孔が設けられる。底板211と天板212との間には、側壁13が配置される。側壁213は、底板211および天板212の外周同士を全周にわたって連結する。なお、
図1に示す容器21の形状は一例であり、適宜所望の形状とすることができる。また、側壁213は円筒状であり、凝縮室S20は円柱状であるが、これらの形状は一例であり、適宜所望の形状とすることができる。
【0026】
容器21は、熱伝導性に優れる材料により形成される。容器21の具体的な材料としては、例えば、銅、アルミニウムまたはこれらのいずれかの合金等の金属材料が挙げられる。
【0027】
各放熱フィン22は、容器21に熱的に接続される。各放熱フィン22は、平板状の部材である。複数の放熱フィン22は、互いに厚さ方向に離間している。各放熱フィン22は、熱伝導性に優れる材料により形成される。放熱フィン22の材料は、例えば、銅、アルミニウムまたはこれらのいずれかの合金等の金属材料である。また、各放熱フィン22には、容器21を挿入するための孔が設けられる。放熱フィン22は、例えば、容器21に対して拡管、圧入、接着剤、ネジ止め、ロウ付けまたは溶接等により固定される。なお、各放熱フィン22と容器21との間には、他の部材、または接着剤等が介在していてもよい。
【0028】
また、放熱フィン22の形状は、
図1に示す例に限定されず、適宜所望の形状とすることができる。また、放熱フィン22は、必要に応じて設ければよく、省略してもよい。ただし、放熱部20が複数の放熱フィン22を有することにより、気相冷媒を効率的に凝縮液化させることができる。
【0029】
1―1c.第1管部30
第1管部30は、受熱部10および放熱部20のそれぞれに接続される直線状の蒸気管である。第1管部30は、第1流路S30を内部空間として有する。第1流路S30は、受熱部10で冷媒REが気化されることにより生成された気相冷媒を放熱部20に輸送する。図示の例では、第1管部30の一端は、収容室S10内の冷媒REに接触しておらず、第1管部30の他端は、底板211から凝縮室S20内に突出している。また、第1流路S30の幅は一定であり、第1流路S30の断面積は一定であるが、これらは一定でなくてもよい。また、第1流路S30の横断面の形状は、円形であるが、これは一例であり、適宜所望の形状とすることができる。
【0030】
第1管部30の材料は、例えば、銅、アルミニウムまたはこれらのいずれかの合金等の金属材料である。なお、第1管部30の材料は、金属材料に限定されず、例えば、セラミックス材料または樹脂材料等でもよい。また、第1管部30は、天板112および底板211に対してロウ付け等により固定される。
【0031】
1―1d.第2管部40
第2管部40は、受熱部10および放熱部20のそれぞれに接続される直線状の液管である。第2管部40は、第2流路S40を内部空間として有する。第2流路S40は、放熱部20で気相冷媒が凝縮されることにより生成された液相冷媒を受熱部10に輸送する。第2管部40の一端は、凝縮室S20内に露出しておらず、第2管部40の他端は、収容室S10内に露出しており、かつ冷媒REに接触している。また、第2流路S40の幅は一定であり、第2流路S40の断面積は一定であるが、これらは一定でなくてもよい。また、第2流路S40の横断面の形状は、円形であるが、これは一例であり、適宜所望の形状とすることができる。
【0032】
第2管部40の材料は、例えば、銅、アルミニウムまたはこれらのいずれかの合金等の金属材料である。なお、第2管部40の材料は、金属材料に限定されず、例えば、セラミックス材料または樹脂材料等でもよい。また、第2管部40は、天板112および底板211に対してロウ付け等により固定される。
【0033】
かかる沸騰冷却装置1では、発熱体100の熱が伝熱部材5を介して容器11内の冷媒REに伝わることにより、冷媒REが伝熱面FT近傍で沸騰する。この結果、伝熱面FTには、気泡Bが発生する。発生した気泡Bは、浮力により伝熱面FTから離脱した後、冷媒REの液面よりも上方で気体状の冷媒REとなる。当該気体状の冷媒REは、受熱部10から第1管部30を介して放熱部20に輸送される。放熱部20に輸送された気体状の冷媒REは、放熱部20で凝縮されることにより液状の冷媒REに戻る。当該液状の冷媒REは、放熱部20から第2管部40を介して受熱部10に輸送される。
【0034】
沸騰冷却装置1では、伝熱面FT近傍の冷媒REの相変化により、伝熱部材5を介して発熱体100を冷却させることができる。また、冷媒REの受熱部10での気化と放熱部20での液化とが繰り返されることにより、発熱体100を継続的かつ安定的に冷却することができる。
【0035】
なお、沸騰冷却装置1は、
図1に示す構成に限定されず、例えば、受熱部10、放熱部20、第1管部30および第2管部40が一体で構成されるサーモサイフォンであってもよい。また、沸騰冷却装置1は、プール沸騰式でもよいし、冷媒REの流れを強制的に生じさせる強制対流沸騰式であってもよい。強制対流沸騰式である場合、例えば、第1管部30に、図示しないポンプが接続される。
【0036】
1-2.冷媒RE
冷媒REは、溶媒と界面活性剤とを含む。溶媒は、冷媒REの主成分であり、典型的には所定圧力のもと常温で液状となる媒体である。当該溶媒の具体例としては、特に限定されないが、例えば、水、メタノールまたはエタノール等のアルコール類、アセトン等のケトン類、エチレングリコール等のグリコール類、フロリナート等のフッ化炭素類、HFC134a等のフロン類、およびブタン等の炭化水素類が挙げられる。これらのうち、1種を単独でまたは2種以上を混合液等の態様で組み合わせて用いることができる。
【0037】
界面活性剤は、例えば気泡B同士の合体の抑制ために用いられる。界面活性剤は、非イオン性界面活性剤でもよいし、陰イオン界面活性剤または陽イオン界面活性剤等のイオン性界面活性剤でもよい。陰イオン界面活性剤または陽イオン界面活性剤を用いることで、例えば界面活性剤のクーロン力に基づく反発力によって、気泡B同士の合体が抑制される。また、非イオン性界面活性剤を用いることで、例えば非イオン性界面活性剤の立体障害によって、気泡B同士の合体が抑制される。
【0038】
界面活性剤の具体例としては、フッ素系界面活性剤、シリコーン系界面活性剤、および炭化水素系界面活性剤等が挙げられる。冷媒REに含まれる溶媒が水である場合、水に対する溶解性に優れる炭化水素系界面活性剤を用いることが好ましい。
【0039】
冷媒REが界面活性剤を含むことにより、冷媒REの表面張力γを小さくすることができる。このため、気泡Bの内外の圧力差Δpおよび過熱度ΔTを小さくすることができる。この結果、気泡Bが成長し易くなる。また、冷媒REの表面張力が小さくなることにより、伝熱面FTに対する気泡Bの付着力を小さくすることができる。このため、気泡Bが伝熱面FTから離脱するための浮力が小さくて済むので、伝熱面FTからの離脱時の気泡Bの径を小さくすることができる。
【0040】
また、前述のように、冷媒REが界面活性剤を含むことにより、隣り合う気泡B同士の合体が抑制される。このため、伝熱面FTで発生した各気泡Bが小さな径のまま離脱し易くなる。この結果、気泡Bの発生周期を短くすることができる。すなわち、単位時間あたりの気泡Bの発生数を多くすることができる。さらに、隣り合う気泡B同士の合体が抑制されることで、1個あたりの気泡Bに接する伝熱面FTの面積の大型化を抑制することができる。このため、伝熱に寄与しない乾いた領域で伝熱面FTが長時間覆われることが抑制される。よって、界面活性剤を含むことにより、含まない場合に比べ、伝熱面FTの伝熱特性の向上を図ることができる。それゆえ、沸騰冷却装置1の冷却性能を向上させることができる。
【0041】
なお、界面活性剤は省略してもよい。また、冷媒REは、溶媒および界面活性剤以外の添加剤等の物質を含んでもよい。ただし、この場合、当該物質は、冷媒REの作用に悪影響を与えない範囲内の含有率で冷媒REに含まれる。
【0042】
1-3.伝熱部材5
図3は、
図1に示す伝熱部材5の平面図である。
図4は、
図3に示す伝熱部材5の側面図である。
図3および
図4に示すように、伝熱部材5の伝熱面FTは、高低差を有する。具体的には、伝熱面FTは、階段状になっている。
【0043】
伝熱面FTは、Z軸に沿って配置される複数の鉛直面51と、XY平面に沿って配置される平行な複数の段差面52と、有する。なお、各鉛直面51は、完全に鉛直線に沿って配置される場合に加え、本明細書に記載の発明を逸脱しない範囲で鉛直線に対して若干傾斜している場合も含む。同様に、各段差面52は、完全に水平面に沿って配置される場合に加え、本明細書に記載の発明を逸脱しない範囲で水平面に対して若干傾斜している場合も含む。
【0044】
また、
図3に示すように、各鉛直面51は、X軸に沿って延びる。同様に、各段差面52は、X軸に沿って延びる。また、
図4に示すように、各鉛直面51は、下方に位置する鉛直面51に対してY2方向に凹んでいる。
【0045】
図5は、
図4に示す伝熱部材5の部分拡大図である。
図5に示すように、伝熱部材5の伝熱面FTは、第1面511と、第2面512と、第3面513と、第1段差面521と、第2段差面522と、第3段差面523とを有する。なお、第1面511、第2面512および第3面513は、複数の鉛直面51の一部である。第1段差面521、第2段差面522および第3段差面523は、複数の段差面52の一部である。
【0046】
第1面511、第2面512および第3面513は、互いに平行であり、Z軸に沿って配置される。第2面512は、第1面511よりもZ1方向に配置され、第3面513は、第2面512よりもZ1方向に配置される。また、第2面512は、第1面511よりもY2方向に凹んでおり、第3面513は、第2面512よりもY2方向に凹んでいる。それゆえ、第1面511、第2面512および第3面513は、XY平面での位置、特にY軸での位置が互いに異なる。また、図示の例では、第1面511のZ軸に沿った長さW1と、第2面512のZ軸に沿った長さW2と、第3面513のZ軸に沿った長さW3とは、互いに等しい。
【0047】
第1段差面521、第2段差面522および第3段差面523は、互いに平行であり、XY平面に沿って配置される。第1段差面521は、第1面511と第2面512とを接続する。第2段差面522は、第2面512と第3面513とを接続する。また、第1段差面521、第2段差面522および第3段差面523は、XY平面での位置、特にY軸での位置が互いに異なる。第2段差面522は、第1段差面521に対してY2方向に位置し、第3段差面523は、第2段差面522に対してY2方向に位置する。
【0048】
第2面512と第2段差面522との第2接続部分502は、第1面511と第1段差面521との第1接続部分501よりもY2方向に位置する。第3面513と第3段差面523との第3接続部分503は、第2接続部分502よりもY2方向に位置する。
【0049】
また、図示の例では、第2面512の深さH2と、第3面513の深さH3とは、互いに等しい。深さH2は、第2段差面522のY軸に沿った長さでもある。深さH3は、第3段差面523のY軸に沿った長さでもある。また別の見方をすると、深さH2は、第1接続部分501から第2接続部分502までの水平面に沿った距離でもある。深さH3は、第2接続部分502から第3接続部分503までの水平面に沿った距離でもある。
【0050】
深さH2および深さH3のそれぞれは、平面での冷媒REの沸騰により生じる気泡Bの離脱気泡径Dbaseよりも大きい。具体的には、深さH2および深さH3のそれぞれは、数mm程度である。深さH2およびH3のそれぞれが、離脱気泡径Dbaseよりも大きいことで、気泡Bの合体を効果的に抑制することができる。それゆえ、伝熱部材5の伝熱性能の向上を図ることができる。
【0051】
離脱気泡径Dbaseは、伝熱面FTから離脱する際における気泡Bの直径である。離脱気泡径Dbaseは、例えば、減圧場での純水に対するCole and Rohsenowの式を用いた計算により求められる。当該式は、以下の式(1)で表される。
Dbase=1.5×10-4√(σ/g(ρL-ρV))×Ja5/4 ・・・(1)
Ja=ρLcPLTsat/ρVhfg
Tsatは飽和温度であり、σは表面張力であり、ρLは液密度であり、ρVは蒸気密度であり、cPLは液比熱であり、hfgは蒸発潜熱であり、gは重力加速度である。
【0052】
例えば、圧力50kPaでの純水の離脱気泡径Dbaseを求める場合、
飽和温度Tsat:355[K]
表面張力σ:62.4[mN/m]
液密度ρL:971[kg/m3]
蒸気密度ρV:0.309[kg/m3]
液比熱cPL:4.20[kJ/kg・K]
蒸発潜熱hfg:2305[kJ/kg]
重力加速度g=9.81[m/s2]
であり、式(1)を用いて計算すると、離脱気泡径Dbaseは、5.24[mm]である。
【0053】
なお、前述のように、冷媒REへの界面活性剤の添加により冷媒REの表面張力が低下する。このため、例えば、表面張力σを26.5[mN/m]とすると、離脱気泡径Dbaseは、3.41[mm]となる。
【0054】
また、離脱気泡径Dbaseは、例えば、カメラ等の撮像装置を用いて計測してもよい。この場合、離脱気泡径Dbaseは、冷媒REに強制対流が生じていない状態で計測される。
【0055】
図6は、伝熱面FTにおける気泡Bの合体の抑制を説明するための図である。
図6に示すように、例えば、第1面511では気泡B01が発生する。その後、気泡B01は、第1面511から離脱し、気泡B1として浮力によってZ1方向に順次上昇する。同様に、第2面512では気泡B02が発生する。その後、気泡B02は、第2面512から離脱し、気泡B2として浮力によってZ1方向に順次上昇する。また、第3面513で気泡B03が発生する。その後、気泡B03は、第3面513から離脱し、気泡B3として浮力によってZ1方向に順次上昇する。なお、気泡B01の第1面511との接触部分は、伝熱に寄与しない乾いた領域S1である。同様に、気泡B02の第2面512との接触部分は、伝熱に寄与しない乾いた領域S2である。気泡B03の第3面513との接触部分は、伝熱に寄与しない乾いた領域S3である。
【0056】
前述のように、第2面512は、第1面511よりもY2方向に凹んでおり、第3面513は、第2面512よりもY2方向に凹んでいる。このため、第1面511、第2面512および第3面513は、互いにY軸での位置が異なる。そして、前述のように、深さH2およびH3のそれぞれは、離脱気泡径Dbaseよりも大きい。このため、気泡B01、B02およびB03が互いに接触しないよう、これらを離間させることができる。それゆえ、気泡B01、B02およびB03の合体を抑制することができる。この結果、伝熱に寄与しない乾いた領域S1、S2およびS3が拡大することが抑制される。よって、伝熱性能の向上を図ることができる。
【0057】
また、第1面511、第2面512および第3面513のY軸での位置が互いに異なることで、気泡B01、B02およびB03は、Y軸の異なる位置から浮力によりZ1方向に上昇する。このため、気泡B1は、気泡B02に対して距離d1離間する。同様に、気泡B2は、気泡B03に対して距離d2離間する。よって、気泡B1が浮上する際、気泡B1の気泡B02への接触を抑制することができる。同様に、気泡B2が浮上する際、気泡B2の気泡B03への接触を抑制することができる。それゆえ、気泡B1、B2およびB3が気泡B01、B02およびB03と合体することが抑制される。この結果、乾いた領域S1、S2およびS3が拡大することが抑制される。よって、伝熱性能の向上を図ることができる。
【0058】
さらに、気泡B01、B02およびB03は、Y軸の異なる位置から浮上する。このため、気泡B01は気泡B02に対して距離d11離間しつつ浮上し、気泡B02は気泡B03に対して距離d12離間しつつ浮上する。それゆえ、伝熱面FTの上部に気泡B1、B2およびB3が充満することが抑制される。よって、浮上した気泡B1、B2およびB3が、例えば最も鉛直上方に位置する気泡B03に近接することが抑制される。したがって、伝熱面FT上の気泡Bの大型化が抑制されるので、乾いた領域S1、S2およびS3が拡大することが抑制される。それゆえ、伝熱性能の向上を図ることができる。
【0059】
また、前述のように、深さH2およびH3は、離脱気泡径Dbaseよりも大きく、具体的には、数mm程度である。数mm程度の高低差を設けるという簡素な構造であれば、複雑で微細な構造に対してコストの増大および異物の閉塞を抑制することができる。それゆえ、簡単な構成で、長期にわたって伝熱特性の向上を図ることができる。
【0060】
図7および
図8のそれぞれは、従来の伝熱面FTxにおける気泡Bの挙動を説明するための図である。
図7および
図8に示すように、伝熱面FTxは、高低差を持つ構造を有さない。この場合、気泡B同士が合体し易く、伝熱に寄与しない乾いた領域Sxが拡大し易い。具体的には、伝熱面FTxが鉛直方向に沿って配置される場合、気泡Bは、伝熱面FTxから離脱する過程で、伝熱面FTxに沿って浮上する。このため、
図7に示すように、伝熱面FTxの上部は、気泡Bが充満した状態になる。さらに、気泡Bは、伝熱面FTxから離脱する過程で伝熱面FTxの近傍を通過するため、当該気泡Bよりも伝熱面FTxの鉛直上方で形成された気泡Bに接触し易い。このようなことから、伝熱面FTxの上部では、近接した気泡B同士が合体し易い。この結果、気泡B同士が容易に合体し、
図8に示すように、伝熱面FTに大きな乾いた領域Sxが形成される。乾いた領域Sxは伝熱に寄与しないため、結果として伝熱特性が劣化する。
【0061】
これに対し、前述のように、
図4に示す伝熱面FTは、高低差を設けた構造を有するため、気泡Bの合体が抑制される。よって、伝熱特性の向上を図ることができる。
【0062】
また、前述の長さW1は、離脱気泡径Dbaseよりも小さいことが好ましい。長さW1が離脱気泡径Dbaseよりも小さいことで、大きい場合に比べ、第1面511の鉛直線に沿った方向において気泡B同士が合体することが抑制される。また、同様の観点から、長さW2は、離脱気泡径Dbaseよりも小さいことが好ましく、長さW3は、離脱気泡径Dbaseよりも小さいことが好ましい。
【0063】
また、前述のように、第1面511および第2面512に加え、第3面513を有する。鉛直面51の数を増加させることで、各鉛直面51のZ軸に沿った長さを小さくすることができる。このため、鉛直面51の数が多いほど、長さW1を離脱気泡径D
baseよりも小さいし易くなる。よって、各鉛直面51内での気泡B同士の合体を抑制し易くなる。なお、
図4に示す例では、鉛直面51の数は、7個であるが、当該数は、2個以上であれば、いくつでもよい。
【0064】
なお、前述の各鉛直面51および各段差面52は、平坦面であるが、これに限定されず、凹凸または曲面を有していてもよい。
【0065】
2.変形例
前述の第1実施形態は、例えば、以下に述べる各種の変形が可能である。また、各変形例を適宜組み合わせてもよい。
【0066】
2―1.第1変形例
図9は、第1変形例の伝熱部材5aを示す図である。
図9に示す伝熱部材5aが有する伝熱面FTaでは、深さH2およびH3が、互いに異なる。
図9に示す例では、深さH2およびH3の関係は、H3<H2である。なお、図示はしないが、深さH2およびH3の関係がH2<H3であってもよい。
【0067】
以上の第1変形例によっても、前述の第1実施形態と同様、簡素な構造で、異物の閉塞を抑制することができ、長期にわたって伝熱特性の向上を図ることができる。
【0068】
2―2.第2変形例
図10は、第2変形例の伝熱部材5bを示す図である。
図10に示す伝熱部材5baが有する伝熱面FTbでは、長さW1、W2およびW3が、互いに異なる。
図9に示す例では、長さW1、長さW2および長さW3の関係は、W3<W2<W1である。したがって、第2変形例では、鉛直上方に向かうに従って鉛直面51の鉛直線に沿った長さが短くなる。
【0069】
以上の第2変形例によっても、前述の第1実施形態と同様、簡素な構造で、異物の閉塞を抑制することができ、長期にわたって伝熱特性の向上を図ることができる。
【0070】
2―3.第3変形例
図11は、第3変形例の伝熱部材5cを示す図である。
図11に示す伝熱部材5cが有する伝熱面FTcでは、長さW1、W2およびW3が、互いに異なる。
図11に示す例では、長さW1、長さW2および長さW3の関係は、W1<W2<W3である。したがって、第3変形例では、例えば、鉛直上方に向かうに従って鉛直面51の鉛直線に沿った長さが長くなる。
【0071】
なお、長さW1、長さW2および長さW3の関係は、第2変形例および第3変形例に示す関係に限定されない。例えば、長さW2が最も長くてもよいし、最も短くてもよい。したがって、伝熱面FTが有する複数の鉛直面51は互いに長さが異なっていてもよい。
【0072】
以上の第3変形例によっても、前述の第1実施形態と同様、簡素な構造で、異物の閉塞を抑制することができ、長期にわたって伝熱特性の向上を図ることができる。
【0073】
2―4.第4変形例
図12は、第4変形例の伝熱部材5dを示す図である。
図12の伝熱部材5dが有する伝熱面FTdでは、第1段差面521、第2段差面522および第3段差面523が、それぞれXY平面に対して傾斜している。具体的には、第1面511と第1段差面521とのなす角度が鈍角になるよう、第1段差面521はXY平面に対して傾斜している。同様に、第2面512と第2段差面522とのなす角度が鈍角になるよう、第2段差面522はXY平面に対して傾斜している。第3面513と第3段差面523とのなす角度が鈍角になるよう、第3段差面523はXY平面に対して傾斜している。
【0074】
なお、第1段差面521、第2段差面522および第3段差面523のXY平面に対する各傾斜角度は、互いに等しくても異なっていてもよい。また、当該各傾斜角度は、特に限定されないが、伝熱面FTdが鉛直線に沿って配置される伝熱部材5dにおいて、本明細書に記載の発明を逸脱しない範囲内にある。
【0075】
以上の第4変形例によっても、前述の第1実施形態と同様、簡素な構造で、異物の閉塞を抑制することができ、長期にわたって伝熱特性の向上を図ることができる。
【0076】
2―5.第5変形例
図13は、第5変形例の伝熱部材5eを示す図である。
図13の伝熱部材5eが有する伝熱面FTeは、第1面511、第2面512および第3面513が、それぞれZ軸に対して傾斜している。具体的には、第1面511と第1段差面521とのなす角度が鈍角になるよう、第1面511はZ軸に対して傾斜している。同様に、第2面512と第2段差面522とのなす角度が鈍角になるよう、第2面512はZ軸に対して傾斜している。第3面513と第3段差面523とのなす角度が鈍角になるよう、第3面513はZ軸に対して傾斜している。
【0077】
なお、第1面511、第2面512および第3面513のZ軸に対する各傾斜角度は、互いに等しくても異なっていてもよい。また、当該各傾斜角度は、特に限定されないが、伝熱面FTeが鉛直線に沿って配置される伝熱部材5eにおいて、本明細書に記載の発明を逸脱しない範囲内にある。
【0078】
以上の第5変形例によっても、前述の第1実施形態と同様、簡素な構造で、異物の閉塞を抑制することができ、長期にわたって伝熱特性の向上を図ることができる。
【0079】
2―6.第6変形例
図14は、第6変形例の伝熱部材5fを示す図である。
図14の伝熱部材5fが有する伝熱面FTfは、第1面511、第2面512および第3面513が、それぞれZ軸に対して傾斜している。また、第1段差面521、第2段差面522および第3段差面523が、それぞれXY平面に対して傾斜している。具体的には、第1面511と第1段差面521とのなす角度が鋭角になるよう、第1面511および第1段差面521は傾斜している。同様に、第2面512と第2段差面522とのなす角度が鋭角になるよう、第2面512および第2段差面522は傾斜している。第3面513と第3段差面523とのなす角度が鋭角になるよう、第3面513および第3段差面523は傾斜している。
【0080】
なお、第1面511、第2面512および第3面513のZ軸に対する各傾斜角度は、互いに等しくても異なっていてもよい。同様に、第1段差面521、第2段差面522および第3段差面523のXY平面に対する各傾斜角度は、互いに等しくても異なっていてもよい。また、各傾斜角度は、特に限定されないが、伝熱面FTeが鉛直線に沿って配置される伝熱部材5fにおいて、本明細書に記載の発明を逸脱しない範囲内にある。
【0081】
また、本変形例では、深さH2とは、第1接続部分501と第2接続部分502とのXY平面に沿った距離に相当する。深さH3とは、第2接続部分502と第3接続部分503とのXY平面に沿った距離に相当する。
【0082】
本変形例においても第1実施形態と同様に、第1接続部分501から第2接続部分502までの水平面に沿った距離は、離脱気泡径D
baseよりも大きい。また、第2接続部分502から第3接続部分503までの水平面に沿った距離は、離脱気泡径D
baseよりも大きい。このため、本変形例においても、第1実施形態と同様に、気泡Bの合体を抑制することができる。それゆえ、伝熱性能の低下を抑制することができる。また、伝熱面FTfは、簡素な構造であるため、複雑で微細な構造に対してコストの増大および異物の閉塞を抑制することができる。それゆえ、簡単な構成で、長期にわたって伝熱特性の向上を図ることができる。また、第1面511、第2面512および第3面513が
図14に示すように傾斜していると、各面で発生した気泡Bは特に接触し難く、よって気泡B同士の合体が抑制され易い。
【0083】
以上の第6変形例によっても、前述の第1実施形態と同様、簡素な構造で、異物の閉塞を抑制することができ、長期にわたって伝熱特性の向上を図ることができる。
【0084】
3.第2実施形態
以下、本開示の第2実施形態について説明する。以下に例示する形態において作用や機能が前述の実施形態と同様である要素については、前述の実施形態の説明で使用した符号を流用して各々の詳細な説明を適宜に省略する。
【0085】
3-1.伝熱部材5A
図15は、第2実施形態の伝熱部材5Aの平面図である。
図16は、
図15示す伝熱部材5Aの側面図である。なお、伝熱部材5Aは、Z軸に沿って配置される。また、伝熱部材5Aが有する伝熱面FTAは、Z軸方向に沿って配置される。また、
図15では後述の底部621および622の図示が省略される。
【0086】
図15および
図16に示すように、伝熱面FTAは、複数の第1凹部610を有する第1領域61と、複数の第2凹部620を有する第2領域62とを有する。第2領域62は、第1領域61よりもZ1方向に配置される。
【0087】
各第1凹部610は、X軸に沿って延びる溝である。複数の第1凹部610は、Z軸に沿って並んでおり、互いに平行に等ピッチで配置される。なお、「等ピッチ」とは、厳密に等ピッチである場合だけでなく、製造誤差等の範囲内を含む。また、各第2凹部620は、X軸に沿って延びる溝である。複数の第2凹部620は、Z軸に沿って並んでおり、互いに平行に等ピッチで配置される。
【0088】
図16に示す例では、各第1凹部610の断面形状は、V字形状である。同様に、各第2凹部620の断面形状は、V字形状である。複数の第1凹部610および複数の第2凹部620は、例えば、切削加工等の機械加工により形成される。
【0089】
図17は、
図16に示す伝熱部材5Aの部分拡大図である。
図17に示すように、各第1凹部610は、底部611を有する。各第1凹部610の幅は、底部611に向かうに従って連続的に縮小する。また、隣接する2つの第1凹部610の接続部分は、頂点612である。第1領域61では、底部611と頂点612とが、Z1方向に交互に並ぶ。同様に、各第2凹部620は、底部621を有する。各第2凹部620の幅は、底部621に向かうに従って連続的に縮小する。また、隣り合う2つの第2凹部620の接続部分が、頂点622である。第2領域62では、底部621と頂点622とが、Z1方向に交互に並ぶ。
【0090】
図示の例では、各第1凹部610の第1深さh1は、各第2凹部620の第2深さh2よりも大きい。第1深さh1は、底部611から頂点612までのXY平面に沿った距離でもある。同様に、第2深さh2は、底部621から頂点622までのXY平面に沿った距離でもある。
【0091】
また、各第1凹部610の鉛直線に沿った第1開口幅w1は、各第2凹部620の鉛直線に沿った第2開口幅w2よりも大きい。第1開口幅w1は、隣接する2つの頂点612の間のZ軸に沿った距離でもある。同様に、第2開口幅w2は、隣接する2つの頂点622の間のZ軸に沿った距離でもある。また、第1開口幅w1は、離脱気泡径Dbaseよりも小さいことが好ましい。同様に、第2開口幅w2は、離脱気泡径Dbaseよりも小さいことが好ましい。
【0092】
3-2.気泡の挙動
図18は、伝熱面FTAでの気泡Bの発生を説明するための図である。以下では、複数の第1凹部610のうちの任意の1個の第1凹部610が第1凹部610_1であり、第1凹部610_1に対して隣接する2つの第1凹部610のうち、一方の第1凹部610が第1凹部610_2であり、他方の第1凹部610が第1凹部610_3である。同様に、複数の第2凹部620のうちの任意の1個の第2凹部620が第2凹部620_1であり、第2凹部620_1に対して隣接する2つの第2凹部620のうち、一方の第2凹部620が第2凹部620_2であり、他方の第2凹部620が第2凹部620_3である。また、
図18、19、20および21では、理解を容易にするため、鉛直線に沿った浮力について考慮せずに説明する。
【0093】
気泡Bは、第1凹部610_1の最深位置である底部611、および第2凹部620_1の最深位置である底部621で発生する。具体的には、まず、
図18に示すように、第1凹部610_1の底部611で、核気泡Bn1が発生する。同様に、第2凹部620_1の底部621で、核気泡Bn2が発生する。
【0094】
核気泡Bnの曲率は、溝の幅とほぼ同程度である。したがって、前述のように、第1開口幅w1は第2開口幅w2よりも大きいので、核気泡Bn1は、核気泡Bn2よりも大きい。よって、溝の幅を制御することにより、核気泡Bnのサイズを制御することができる。このため、伝熱面FTAから離脱する気泡Bの発生周期を制御することができる。
【0095】
図19は、伝熱面FTでの気泡Bの成長を説明するための図である。
図19に示すように、核気泡Bn1から成長した気泡B1_1は、第1凹部610_1によりZ軸に沿う方向での接触線の成長が制限される。このため、壁面への付着力が制限され気泡B1_1の離脱サイズが制限される。同様に、核気泡Bn2から成長した気泡B2_1は、第2凹部620_1によりZ軸に沿う方向での接触線の成長が制限される。このため、壁面への付着力が制限され気泡B2_1の離脱サイズが制限される。
【0096】
図20は、伝熱面FTAでの気泡Bの成長を説明するための図である。
図20では、気泡B1_1の発生の後に、気泡B1_2およびB1_3が発生した場合の状態が示される。
図20に示すように、気泡B1_1、B1_2、B1_3のそれぞれの成長が進行すると、Z1方向での気泡B1_1の成長が気泡B1_2、B1_3により制限される。これは、界面活性剤の作用により気泡B1_1と気泡B1_2および気泡B1_2のそれぞれとの合体が抑制されるからである。Z軸に沿う方向での気泡B1_1の成長が制限されることにより、気泡B1_1が伝熱面FTAから離れる方向に成長し易くなる。そして、成長する気泡B1_2と気泡B1_3との間に挟まれた、気泡B1_1はくびれた形状に変形する。
【0097】
同様に、
図20では、気泡B2_1の発生の後に、気泡B2_2およびB2_3が発生した場合の状態が示される。界面活性剤の作用により、Z軸に沿う方向での気泡B2_1の成長が気泡B2_2、B2_3により制限され、気泡B2_1は伝熱面FTAから離れる方向に成長し易くなる。そして、成長する気泡B2_2と気泡B2_3との間に挟まれた、気泡B2_1はくびれた形状に変形する。
【0098】
このように、伝熱面FTAが第1凹部610および第2凹部620を有することに加え、冷媒REが界面活性剤を含むことにより、気泡Bは、伝熱面FTAから離れる方向により成長し易くなる。
【0099】
また、前述のように、第1開口幅w1は、離脱気泡径Dbaseよりも小さいことが好ましい。第1開口幅w1が離脱気泡径Dbaseよりも小さいことで、大きい場合に比べ、気泡B1_1は隣り合う気泡B1_2およびB1_3の影響により伝熱面FTAから離れる方向に向かって成長し易い。このため、気泡B1_1は伝熱面FTAから離脱し易くなり、よって、伝熱性能を高めることができる。同様に、第2開口幅w2は、離脱気泡径Dbaseよりも小さいことが好ましい。第2開口幅w2が離脱気泡径Dbaseよりも小さいことで、大きい場合に比べ、気泡B2_1は隣り合う気泡B2_2およびB2_3の影響により伝熱面FTAから離れる方向に向かって成長し易い。このため、気泡B2_1は伝熱面FTAから離脱し易くなり、よって、伝熱性能を高めることができる。
【0100】
図21は、伝熱面FTAからの気泡Bの離脱を説明するための図である。
図21に示すように、気泡B1_1、B1_2、B1_3のそれぞれの成長が進行すると、気泡B1_1は、伝熱面FTAから離脱し、気泡B1aと気泡B1bとに分離する。前述のように、気泡B1_1がくびれることで、気泡B1_1は、気泡B1aと気泡B1bに分裂し易くなる。そして、気泡B1aは、伝熱面FTAから離脱し、気泡B1bは、気泡B1_1の一部が第1凹部610_1内に残留する残留気泡として伝熱面FTA上に残り易くなる。その後、気泡B1bは、新たな気泡B1_1の発生のための核として機能する。同様に、気泡B2_1、B2_2、B2_3のそれぞれの成長が進行すると、気泡B2_1は、伝熱面FTAから離脱し、気泡B2aと気泡B2bとに分離する。そして、気泡B2bは、新たな気泡B2_1の発生のための核として機能する。
【0101】
気泡B1bおよび気泡B2bが伝熱面FTA上に残ることにより、気泡B1_1およびB2_1の発生周期を短くすることができる。このため、単位時間あたりに離脱する気泡数を増加させることができる。よって、気泡Bの発生周期を短くすることができる。それゆえ、沸騰冷却装置1の冷却性能を向上させることができる。
【0102】
図22は、伝熱面FTの第1領域61で発生する気泡Bの作用を説明するための図である。前述のように、第2開口幅w2は第1開口幅w1よりも小さい。このため、複数の第2凹部620で発生する各気泡B2は、複数の第1凹部610で発生する各気泡B1よりも小さい。よって、複数の第2凹部620が設けられていることで、多くの気泡B2を伝熱面FTAから効率良く離脱させることができる。このため、単位時間あたりの気泡B2の発生数を多くすることができ、よって伝熱性能を高めることができる。
【0103】
また、前述のように、伝熱面FTが鉛直線に沿って配置される構成において、第1凹部610が設けられる第1領域61は、第2凹部620が設けられる第2領域62よりも鉛直下方に位置する。そして、第1凹部610の第1開口幅w1は第2凹部620の第2開口幅w2よりも大きい。このため、第2凹部620では、大型な気泡B2が発生し、第1凹部610では、小型な気泡が発生する。大型な気泡B2は小型な気泡B1に比べて浮上速度が速い。よって、大型の気泡B2は、小型な気泡B1に比べて、大きな浮力によって高速で上昇する。この大型の気泡B2の上昇運動に随伴して周囲の液体が移動する際に対流が生じる。当該対流は、第1凹部610よりも鉛直上方に位置する第2凹部620で発生した小型な気泡B2を伝熱面FTAから引き剥がす作用を示す。よって、気泡B2の離脱を促進することができる。また、当該対流によって、伝熱面FTAの上部での気泡Bの充満が抑制される。このようなことから、伝熱面FTAの上部における気泡Bの合体を抑制することができ、さらに小型の気泡B2の発生周期を短くすることができる。その結果、伝熱部材5の伝熱性能を高めることができる。
【0104】
また、伝熱面FTAは、第1凹部610および第2凹部620を設けるこという簡単な構造である。このため、複雑で微細な構造に対してコストの増大および異物の閉塞を抑制することができる。それゆえ、簡単な構成で、長期にわたって伝熱特性の向上を図ることができる。
【0105】
また、複数の第1凹部610は、互いに平行に配列される複数の溝であり、複数の第2凹部620は、互いに平行に配列される複数の溝である。溝は、前述のように、機械加工等により容易に形成可能である。よって、第1凹部610および第2凹部620が溝であることで、特に簡単な構成で、かつ低コストで、長期にわたって伝熱特性の向上を図ることができる。
【0106】
また、前述のように、各第1凹部610の断面形状は、V字形状であり、各第2凹部620の断面形状は、V字形状である。このため、第1凹部610内および第2凹部620内に異物が入り込んでしまっても、第1凹部610および第2凹部620に沿って当該異物が移動し易い。それゆえ、第1凹部610および第2凹部620から当該異物が除去され易い。よって、沸騰冷却装置1を長期にわたり使用しても、沸騰冷却装置1の冷却性能の低下を抑制することができる。
【0107】
また、前述のように、複数の第1凹部610は、等ピッチで配列され、複数の第2凹部620は、等ピッチで配列される。このため、伝熱面FTAでの気泡B1およびB2の発生分布を均一化することができる。また、複数の溝が等ピッチでない構成に比べて、溝の形成も容易である。
【0108】
また、第2領域62は、第1領域61よりもY2方向に凹んでいる。このため、第1実施形態と同様に、気泡B1の浮上の際、気泡B1は、気泡B2と接触し難い。よって、気泡B1と気泡B2との合体が抑制される。また、伝熱面FTAの上部に気泡B1およびB2が充満することが抑制される。
【0109】
また、第1深さh1は、第2深さh2よりも深く、第1深さh1と第2深さh2との差は、離脱気泡径Dbaseよりも大きい。第1深さh1と第2深さh2との差が離脱気泡径Dbaseよりも大きいことで、第1実施形態と同様に、気泡B2の生成時および離脱時において、気泡B1と気泡B2との合体が抑制される。このため、伝熱性能の更なる向上を図ることができる。なお、第1深さh1と第2深さh2との差は、頂点612と頂点622とのXY平面に沿った距離でもある。したがって、当該距離は、離脱気泡径Dbaseよりも大きい。
【0110】
また、第1領域61と第2領域62との比率は、特に限定されないが、第2領域62の方が第1領域61よりも大きいことで、単位時間あたりの気泡B2の発生数を多くすることができる。一方、第1凹部610は前述の対流による作用を示すことができればよく、第1領域61の方が第2領域62よりも小さいことで、気泡B2の発生数の低下が抑制される。
【0111】
4.変形例
前述の第2実施形態は、例えば、以下に述べる各種の変形が可能である。また、各変形例を適宜組み合わせてもよい。
【0112】
4―1.第7変形例
図23は、第7変形例の伝熱部材5gを示す図である。
図23に示す伝熱部材5gの伝熱面FTgは、第1領域61および第2領域62に加え、第3領域63を有する。第3領域63は、第2領域62に対してZ1方向に配置される。第3領域63は、複数の第3凹部630を有する。各第3凹部630は、X軸に沿って延びる溝である。複数の第3凹部630は、Z軸に沿って並んでおり、互いに平行に等ピッチで配置される。また、各第3凹部630の断面形状は、V字形状である。
【0113】
各第3凹部630は、底部631を有する。各第3凹部630の幅は、底部631に向かうに従って連続的に縮小する。また、隣接する2つの第3凹部630の接続部分は、頂点632である。第3領域63では、底部631と頂点632とが、Z1方向に交互に並ぶ。
【0114】
各第3凹部630の第3深さh3は、第2深さh2よりも小さい。第3深さh3は、底部631から頂点632までのXY平面に沿った距離である。また、各第3凹部630の鉛直線に沿った第3開口幅w3は、第2開口幅w2と等しい。
【0115】
また、第3領域63は、第2領域62よりもY2方向に凹んでいる。このため、第1実施形態と同様に、第2領域62で発生した気泡B2の浮上の際、気泡B2が、第3領域63で発生した気泡B3と接触し難い。よって、気泡B2と気泡B3との合体が抑制される。また、伝熱面FTgの上部に気泡B1、B2およびB3が充満することが抑制される。
【0116】
また、第2深さh2と第3深さh3との差は、離脱気泡径Dbaseよりも大きい。第2深さh2と第3深さh3との差が離脱気泡径Dbaseよりも大きいことで、第1実施形態と同様に、気泡B3の生成時および離脱時において、気泡B3と気泡B2との合体が抑制される。このため、伝熱性能の更なる向上を図ることができる。
【0117】
以上の第7変形例によっても、前述の第2実施形態と同様、簡素な構造で、異物の閉塞を抑制することができ、長期にわたって伝熱特性の向上を図ることができる。
【0118】
なお、第1開口幅w1と第2開口幅w2と第3開口幅w3は、互いに等しくても異なっていてもよい。また、「伝熱面」が有する領域の数は特に限定されず、「第1領域」、「第2領域」および「第3領域」に加え、さらに他の領域が設けられていてもよい。
【0119】
4―2.第8変形例
図24は、第8変形例の伝熱部材5hを示す図である。
図24に示す伝熱部材5hの伝熱面FThでは、複数の第1凹部610hの断面形状が矩形である。したがって、各第1凹部610hの幅は、一定である。また、複数の第2凹部620hの断面形状は、矩形である。したがって、各第2凹部620hの幅は、一定である。
【0120】
また、隣接する2つの第1凹部610hの接続部分は、平坦な頂面614である。同様に、隣接する2つの第2凹部620hの接続部分は、平坦な頂面624である。第1領域61では、底面613と頂面614とが、Z1方向に交互に並ぶ。同様に、第2領域62では、底面623と頂面624とが、Z1方向に交互に並ぶ。
【0121】
以上の第8変形例によっても、前述の第2実施形態と同様、簡素な構造で、異物の閉塞を抑制することができ、長期にわたって伝熱特性の向上を図ることができる。
【0122】
4―3.第9変形例
図25は、第9変形例の伝熱部材5iを示す図である。
図24に示す伝熱部材5iの伝熱面FTiでは、複数の第1凹部610iの断面形状が台形である。また、複数の第2凹部620iの断面形状は、台形である。
【0123】
また、隣接する2つの第1凹部610iの接続部分は、平坦な頂面614である。同様に、隣接する2つの第2凹部620iの接続部分は、平坦な頂面624である。第1領域61では、底面613と頂面614とは、Z1方向に交互に並ぶ。同様に、第2領域62では、底面623と頂面624とが、Z1方向に交互に並ぶ。
【0124】
以上の第9変形例によっても、前述の第2実施形態と同様、簡素な構造で、異物の閉塞を抑制することができ、長期にわたって伝熱特性の向上を図ることができる。
【0125】
なお、「第1凹部」および「第2凹部」の各断面形状は特に限定されず、
図24および
図25に示す各断面形状以外の形状でもよい。また、「第1凹部」および「第2凹部」の各内壁面は、平坦面に限定されず、凹凸または曲面を有していてもよい。なお、「第3凹部」についても同様である。
【0126】
4―4.第10変形例
図26は、第10変形例の伝熱部材5jを示す図である。
図26に示す伝熱部材5jの伝熱面FTjでは、複数の頂点612および複数の頂点622のY軸での位置が同じである。
【0127】
以上の第10変形例によっても、前述の第2実施形態と同様、簡素な構造で、異物の閉塞を抑制することができ、長期にわたって伝熱特性の向上を図ることができる。
【0128】
4―5.第11変形例
図27は、第11変形例の伝熱部材5kを示す図である。本変形例では、第7変形例との相違点を中心に説明する。
図27に示す伝熱部材5kの伝熱面FTkでは、複数の頂点612、複数の頂点622および頂点632のY軸での位置が同じである。
【0129】
以上の第11変形例によっても、前述の第2実施形態および第7変形例と同様、簡素な構造で、異物の閉塞を抑制することができ、長期にわたって伝熱特性の向上を図ることができる。
【0130】
4―6.第12変形例
図28は、第12変形例の伝熱部材5lを示す図である。本変形例では、第7変形例との相違点を中心に説明する。
図28に示す伝熱部材5lの伝熱面FTlでは、第1深さh1、第2深さh2および第3深さh3が、互いにほぼ等しい。
【0131】
また、頂点612と頂点622とのXY平面に沿った距離は、離脱気泡径Dbaseよりも大きい。同様に、頂点622と頂点632とのXY平面に沿った距離は、離脱気泡径Dbaseよりも大きい。それゆえ、気泡Bの生成時および離脱時において、気泡B同士の合体が抑制される。このため、伝熱性能の更なる向上を図ることができる。
【0132】
以上の第12変形例によっても、前述の第2実施形態と同様、簡素な構造で、異物の閉塞を抑制することができ、長期にわたって伝熱特性の向上を図ることができる。
【0133】
4―7.第13変形例
図29は、第13変形例の伝熱部材5mを示す図である。本変形例では、第7変形例との相違点を中心に説明する。
図29に示す伝熱部材5mの伝熱面FTmでは、第1深さh1、第2深さh2および第3深さh3が、互いにほぼ等しい。また、複数の頂点612、複数の頂点622および複数の頂点632のY軸での位置は、互いに等しい。また、複数の底部611、複数の底部621および複数の底部631のY軸での位置は、互いに等しい。
【0134】
以上の第13変形例によっても、前述の第2実施形態と同様、簡素な構造で、異物の閉塞を抑制することができ、長期にわたって伝熱特性の向上を図ることができる。
【0135】
なお、第1深さh1、第2深さh2および第3深さh3は、互いに異なっていても等しくてもよい。
【0136】
以上、本発明の沸騰冷却装置ついて図示の実施形態に基づいて説明したが、本発明は、これらに限定されるものではない。また、本発明の各部の構成は、前述した実施形態の同様の機能を発揮する任意の構成のものに置換することができ、また、任意の構成を付加することもできる。
【0137】
前述の実施形態では、「第1凹部」、「第2凹部」および「第3凹部」のそれぞれは、溝であったが、溝でなくてもよく、例えば格子状の穴であってもよい。
また、本発明は、パワー半導体素子の冷却装置以外に、沸騰現象による熱伝達を利用する幅広い装置に利用可能である。
【符号の説明】
【0138】
1…沸騰冷却装置、5…伝熱部材、10…受熱部、11…容器、13…側壁、20…放熱部、21…容器、22…放熱フィン、30…第1管部、40…第2管部、51…鉛直面、52…段差面、61…第1領域、62…第2領域、63…第3領域、100…発熱体、111…底板、112…天板、113…側壁、211…底板、212…天板、213…側壁、501…第1接続部分、502…第2接続部分、503…第3接続部分、511…第1面、512…第2面、513…第3面、521…第1段差面、522…第2段差面、523…第3段差面、610…第1凹部、611…底部、612…頂点、613…底面、614…頂面、620…第2凹部、621…底部、622…頂点、623…底面、624…頂面、630…第3凹部、631…底部、632…頂点、B…気泡、Bn1…核気泡、Bn2…核気泡、FT…伝熱面、H2…深さ、H3…深さ、RE…冷媒、S10…収容室、S20…凝縮室、S1…乾いた領域、S2…乾いた領域、S3…乾いた領域、S30…第1流路、S40…第2流路、Sx…乾いた領域、W1…第1開口幅、W2…第2開口幅、d1…距離、d2…距離、d11…距離、d12…距離、h1…第1深さ、h2…第2深さ、h3…第3深さ、w1…第1開口幅、w2…第2開口幅、w3…第3開口幅。