IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エタックエンジニアリング株式会社の特許一覧

特開2024-85607環境形成装置及び環境形成装置用プログラム
<>
  • 特開-環境形成装置及び環境形成装置用プログラム 図1
  • 特開-環境形成装置及び環境形成装置用プログラム 図2
  • 特開-環境形成装置及び環境形成装置用プログラム 図3
  • 特開-環境形成装置及び環境形成装置用プログラム 図4
  • 特開-環境形成装置及び環境形成装置用プログラム 図5
  • 特開-環境形成装置及び環境形成装置用プログラム 図6
  • 特開-環境形成装置及び環境形成装置用プログラム 図7
  • 特開-環境形成装置及び環境形成装置用プログラム 図8
  • 特開-環境形成装置及び環境形成装置用プログラム 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024085607
(43)【公開日】2024-06-27
(54)【発明の名称】環境形成装置及び環境形成装置用プログラム
(51)【国際特許分類】
   G01N 3/60 20060101AFI20240620BHJP
   G01N 17/00 20060101ALI20240620BHJP
   G05D 23/00 20060101ALI20240620BHJP
【FI】
G01N3/60 B
G01N17/00
G05D23/00 D
G05D23/00 H
【審査請求】有
【請求項の数】5
【出願形態】OL
(21)【出願番号】P 2022200204
(22)【出願日】2022-12-15
(11)【特許番号】
(45)【特許公報発行日】2023-04-27
(71)【出願人】
【識別番号】596034931
【氏名又は名称】エタックエンジニアリング株式会社
(74)【代理人】
【識別番号】110002468
【氏名又は名称】弁理士法人後藤特許事務所
(72)【発明者】
【氏名】下重 高史
(72)【発明者】
【氏名】三品 政和
【テーマコード(参考)】
2G050
5H323
【Fターム(参考)】
2G050BA10
2G050DA03
2G050EA01
2G050EA05
2G050EC03
5H323AA29
5H323AA38
5H323BB04
5H323CA08
5H323CB02
5H323CB42
5H323EE02
5H323EE19
5H323FF06
5H323GG02
5H323GG03
5H323KK05
5H323KK07
5H323MM06
(57)【要約】
【課題】収容される対象物の状態を考慮した温度制御を可能とする。
【解決手段】環境形成装置は、対象物が収容される環境形成室の室内温度を目標温度にする環境形成装置であって、前記環境形成室内を所定の冷却能力で冷却しつつ前記環境形成室内を加熱する加熱部の出力を調整して前記室内温度が仮目標温度になるように制御する温度制御手段と、前記室内温度が前記仮目標温度となるように制御された状態において前記仮目標温度が前記目標温度に近づくように前記仮目標温度を前記加熱部の前記出力に基づいて変更する変更手段と、を備える。
【選択図】図4
【特許請求の範囲】
【請求項1】
対象物が収容される環境形成室の室内温度を目標温度にする環境形成装置であって、
前記環境形成室内を所定の冷却能力で冷却しつつ前記環境形成室内を加熱する加熱部の出力を調整して前記室内温度が仮目標温度になるように制御する温度制御手段と、
前記室内温度が前記仮目標温度となるように制御された状態において前記仮目標温度が前記目標温度に近づくように前記仮目標温度を前記加熱部の前記出力に基づいて変更する変更手段と、
を備える環境形成装置。
【請求項2】
請求項1に記載の環境形成装置であって、
前記室内温度が前記仮目標温度に達した状態において前記目標温度と前記仮目標温度との温度差を取得する温度差取得手段と、
前記室内温度が前記仮目標温度に達した状態において前記温度差に前記加熱部が有する加熱能力に対して前記出力が占める割合を乗算した乗算値を前記温度差から減算して演算値を取得する演算値取得手段と、
をさらに備え、
前記変更手段は、
前記目標温度が前記仮目標温度よりも高い場合に、前記目標温度から前記演算値を減算した値に基づいて前記仮目標温度を変更し、
前記目標温度が前記仮目標温度よりも低い場合に、前記目標温度に前記演算値を加算した値に基づいて前記仮目標温度を変更する、
環境形成装置。
【請求項3】
請求項1に記載の環境形成装置であって、
前記変更手段は、前記室内温度が前記目標温度に基づいて定められた温度範囲内に達するまで前記仮目標温度の変更を繰り返す、
環境形成装置。
【請求項4】
請求項3に記載の環境形成装置であって、
前記変更手段が前記仮目標温度を変更した後に、前記室内温度が前記仮目標温度に達するまで前記変更手段による変更を禁止する変更禁止手段をさらに備える、
環境形成装置。
【請求項5】
対象物が収容される環境形成室の室内温度を目標温度にする環境形成装置に用いる環境形成装置用プログラムにおいて、
コンピュータに、
前記環境形成室内を所定の冷却能力で冷却しつつ前記環境形成室内を加熱する加熱部の出力を調整して前記室内温度が仮目標温度になるように制御し、
前記室内温度が前記仮目標温度となるように制御された状態において前記仮目標温度が前記目標温度に近づくように前記仮目標温度を前記加熱部の前記出力に基づいて変更する手順を実行させる、
環境形成装置用プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、環境形成装置及び環境形成装置用プログラムに関する。
【背景技術】
【0002】
従来、低温試験を行う際に低温試験目標温度よりも高い予冷目標温度の冷気を試験槽へ送った後、試験槽の温度を低温試験目標温度にする環境試験装置が知られている(特許文献1)。
【0003】
この環境試験装置は、試験槽の温度を低温試験目標温度にする制御を開始してから試験槽の温度が低温試験目標温度に達するまでの実時間と、予め想定していた予測時間との差から予冷目標温度を調整する機能を有する。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2020-134277号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、予冷目標温度から低温試験目標温度に達するまでの時間は、試験槽に収容される対象物によって変化する。
【0006】
具体的に説明すると、熱容量が大きい対象物と熱容量が小さい対象物とでは、予冷目標温度から低温試験目標温度に達するまでの時間が異なる。また、発熱が生ずる通電試験が行われる対象物と、非通電で試験が行われる対象物とでは、予冷目標温度から低温試験目標温度に達するまでの時間が異なる。
【0007】
このため、前の試験で調整された予冷目標温度を用いて次の試験を行っても、試験対象となる対象物の状態が変わった場合、これに対応することができないという問題があった。
【0008】
本発明は、このような事情に鑑みてなされたものであり、収容される対象物の状態を考慮した温度制御を可能とすることを目的とする。
【課題を解決するための手段】
【0009】
本発明のある態様の環境形成装置は、対象物が収容される環境形成室の室内温度を目標温度にする環境形成装置であって、前記環境形成室内を所定の冷却能力で冷却しつつ前記環境形成室内を加熱する加熱部の出力を調整して前記室内温度が仮目標温度になるように制御する温度制御手段と、前記室内温度が前記仮目標温度となるように制御された状態において前記仮目標温度が前記目標温度に近づくように前記仮目標温度を前記加熱部の前記出力に基づいて変更する変更手段と、を備える。
【発明の効果】
【0010】
上記態様によれば、環境形成室に収容された対象物に応じて変化する加熱部の出力に基づいて仮目標温度を変更するので、収容される対象物の状態を考慮した温度制御が可能となる。
【図面の簡単な説明】
【0011】
図1図1は、本実施形態による環境形成装置の斜視図である。
図2図2は、本実施形態による環境形成装置の全体構成を説明する図である。
図3図3は、本実施形態による環境形成装置で行う試験の一例を説明する図である。
図4図4は、本実施形態による環境形成装置の機能ブロック図である。
図5図5は、本実施形態による環境形成装置の動作を示すフローチャートである。
図6図6は、本実施形態による環境形成装置の動作の一例を示す図であり、試験室の温度を低下させる制御において、さらし温度が予冷温度よりも高い場合を示す説明図である。
図7図7は、本実施形態による環境形成装置の動作の一例を示す図であり、試験室の温度を上昇させる制御において、さらし温度が予冷温度よりも低い場合を示す説明図である。
図8図8は、本実施形態による環境形成装置の動作の一例を示す図であり、試験室の温度を低下させる制御において、さらし温度が予冷温度よりも低い場合を示す説明図である。
図9図9は、本実施形態による環境形成装置の動作の一例を示す図であり、試験室の温度を上昇させる制御において、さらし温度が予冷温度よりも高い場合を示す説明図である。
【発明を実施するための形態】
【0012】
以下、図面を参照して、本実施形態の環境形成装置10について説明する。
【0013】
環境形成装置10は、試験対象となる対象物12が収容される環境形成室としての試験室14の室内温度PVを目標温度としてのさらし温度SVにする装置である。環境形成装置10は、対象物12が晒される周囲環境(さらし温度SV)を試験室14内に形成する。
【0014】
環境形成装置10は、試験室14の室内温度PVをさらし温度SVにする過程において、室内温度PVが仮目標温度としての予冷温度SVnとなるように制御する。予冷温度SVnは、段階的に変更される。これにより、環境形成装置10は、試験室14の室内温度PVを徐々にさらし温度SVに近づける。
【0015】
ここで、予冷温度SVnは段階的に変更される。このため、予冷温度SVnの「n」には、異なる値の予冷温度SVn毎に異なる数字が代入される。
【0016】
図1は、本実施形態による環境形成装置10の斜視図である。
【0017】
図1に示すように、環境形成装置10は、本体としての筐体16を備える。筐体16には、高温室18と、環境形成室としての試験室14と、低温室20とが上部から順に形成されている(図2参照)。
【0018】
試験室14の前面には、筐体16に支持された開閉扉22が設けられている。開閉扉22は、試験室14の前面開口部を開閉する。開閉扉22の側部には、前面パネル24が設けられている。前面パネル24には、電源スイッチ26及び表示パネル28が設けられている。
【0019】
表示パネル28は、タッチパネルで構成されている。表示パネル28は、表示機能と入力機能を有し、表示パネル28に表示された表示内容を指でタッチすることで入力が行える。表示パネル28は、後述するコントローラ40に接続される。
【0020】
次に、図2を参照して環境形成装置10の構成をより詳細に説明する。図2は、本実施形態による環境形成装置10の全体構成を説明する図である。
【0021】
筐体16には、内面に沿って断熱材が設けられている。また、高温室18と試験室14とを区画する上部区画壁30及び試験室14と低温室20とを区画する下部区画壁32には、断熱材が設けられている。そして、環境形成装置10には、コンピュータを構成するコントローラ40が設けられている。
【0022】
(高温室)
高温室18は、試験室14に供給する為の高温の空気を形成する。
【0023】
高温室18には、高温室排気口42と高温室吸気口44とが設けられている。高温室吸気口44は、高温室給気切替弁46を介して高温室給気ファン48が接続されている。
【0024】
高温室給気ファン48は、コントローラ40からの高温室給気ファンモータ出力を受けて作動する。高温室給気切替弁46は、コントローラ40からの高温室給気切替弁出力を受けて作動し、高温室給気ファン48から送られた外気を高温室18へ供給する。外気が供給されて内圧が高まった高温室18内の空気は、高温室排気口42から外部へ排出される。これにより、高温室18内の温度を低下することができる。
【0025】
また、高温室18には、蓄熱材50と高温室ヒータ52と高温室ファン54と高温室センサ56とが設けられている。
【0026】
高温室ヒータ52は、コントローラ40からの高温室ヒータ出力を受けて発熱し、高温室18内の空気を加熱する。蓄熱材50は、高温室18内の空気で温められて蓄熱する。
【0027】
高温室ファン54は、高温室ファンモータ58によって回転され、高温室18内の空気を攪拌する。高温室ファンモータ58は、コントローラ40からの高温室ファンモータ出力を受けて作動し、高温室ファン54を回転する。高温室センサ56は、高温室18の温度を示す高温室センサ入力をコントローラ40に出力する。
【0028】
(試験室)
試験室14は、対象物12が収容される空間を有する。試験室14には、室内温度PVを測定する為の試験室センサ60が設けられている。試験室センサ60は、試験室14の温度を示す試験室センサ入力をコントローラ40に出力する。
【0029】
(低温室)
低温室20は、試験室14に供給する為の低温の空気を形成する。
【0030】
低温室20には、エバポレータ62と低温室ヒータ64と低温室ファン66と低温室センサ68とが設けられている。
【0031】
エバポレータ62は、二元冷凍機ユニット69との間で冷媒を遣り取りして低温室20の空気を冷却する。二元冷凍機ユニット69は、コントローラ40からの二元冷凍機動作出力を受けて作動する。低温室ヒータ64は、コントローラ40からの低温室ヒータ出力DHnを受けて発熱し、エバポレータ62で冷却された低温室20内の空気を加熱して低温室20の空気の温度を調整する。
【0032】
低温室ファン66は、低温室ファンモータ70によって回転され、低温室20内の空気を攪拌する。低温室ファンモータ70は、コントローラ40からの低温室ファンモータ出力を受けて作動し、低温室ファン66を回転する。低温室センサ68は、低温室20の温度を示す低温室センサ入力をコントローラ40に出力する。
【0033】
上部区画壁30の端部には、高温室18と試験室14とを連通する第一高温通路80と第二高温通路82とが設けられている。上部区画壁30の下面には、第一高温通路80を開閉する第一上部開閉部84と、第二高温通路82を開閉する第二上部開閉部86とが設けられている。第一上部開閉部84及び第二上部開閉部86は、コントローラ40からの高温室ダンパ出力を受けて動作し、第一高温通路80及び第二高温通路82を開閉する。
【0034】
下部区画壁32の端部には、試験室14と低温室20とを連通する第一低温通路90と第二低温通路92とが設けられている。下部区画壁32の上面には、第一低温通路90を開閉する第一下部開閉部94と、第二低温通路92を開閉する第二下部開閉部96とが設けられている。第一下部開閉部94及び第二下部開閉部96は、コントローラ40からの低温室ダンパ出力を受けて動作し、第一低温通路90及び第二低温通路92を開閉する。
【0035】
コントローラ40は、コンピュータを構成するプロセッサ100を中心に構成される。プロセッサ100には、記憶部102及びインターフェース回路104が接続されている。
【0036】
記憶部102は、不揮発性メモリ(ROM:Read Only Memory)、及び揮発性メモリ(RAM:Random Access Memory)などにより構成される。不揮発性メモリには、環境形成装置用プログラムが記憶される。不揮発性メモリは、環境形成装置用プログラムを記憶する記憶媒体を構成する。
【0037】
揮発性メモリには、プロセッサ100が環境形成装置用プログラムに従って動作する際に使用されるデータが読み書き可能に記憶される。揮発性メモリに記憶されるデータとしては、表示パネル28から入力されたデータ、各試験で用いられるさらし温度SV、及び予冷温度SVnなどが挙げられる。揮発性メモリに記憶されるさらし温度SV及び予冷温度SVnは、表示パネル28から入力された試験内容に応じて定められる。
【0038】
インターフェース回路104は、プロセッサ100と、各センサ56、60、68等のデバイスとの間で遣り取りされる信号を中継する。これにより、プロセッサ100は、インターフェース回路104を介して、デバイスとしての各センサ56、60、68からのセンサ入力を入力するとともに、デバイスとしての各モータ58、70等へ制御信号等を出力する。
【0039】
(複合試験例)
図3を用いて、環境形成装置10で実施可能な試験について説明する。図3は、本実施形態による環境形成装置10で行う試験の一例を説明する図である。図3中、実線は、試験室14の室内温度PVを示す。破線は、高温室18内の温度110を示す。二点鎖線は、低温室20内の温度112を示す。
【0040】
図3に示すように、環境形成装置10は、試験室14の室内温度PVを交互に低温及び高温にする温度サイクル試験120と、試験室14の室内温度PVをプログラムに従って変化させるプログラム試験122とを実施することができる。
【0041】
環境形成装置10は、温度サイクル試験120及びプログラム試験122を、それぞれ独立して実施することができる。また、環境形成装置10は、温度サイクル試験120の後にプログラム試験122を行う複合試験を実施することができる。
【0042】
温度サイクル試験120の後にプログラム試験122を行う複合試験について具体例を挙げて説明する。
【0043】
環境形成装置10は、複合試験の温度サイクル試験120において、各低温通路90、92を開放して低温室20で予め冷却された「-65℃」の空気を試験室14に導入し、対象物12が収容された試験室14の室内温度PVを「-40℃」にする。次に、環境形成装置10は、各低温通路90、92を閉鎖するとともに各高温通路80、82を開放し、高温室18で予め加熱された「150℃」の空気を試験室14に導入して試験室14の室内温度PVを「+125℃」にする。そして、環境形成装置10は、試験室14の室内温度PVを「-40℃」にして「+125℃」にするサイクルを複数繰り返す。
【0044】
また、環境形成装置10は、複合試験のプログラム試験122において各高温通路80、82を閉鎖するとともに各低温通路90、92を開放する。これにより、環境形成装置10は、低温室20で予め冷却された「-65℃」の空気を試験室14に導入して試験室14の室内温度PVを「-40℃」に制御する。環境形成装置10は、室内温度PVを「-40℃」に所定時間(例えば30分)保持した後、二元冷凍機ユニット69及び低温室ヒータ64を制御して低温室20及び低温室20と連通する試験室14の室内温度PVを「-20℃」に制御する。そして、環境形成装置10は、低温室20及び試験室14の室内温度PVを予め設定されたプログラムに従って上昇する。
【0045】
試験室14の室内温度PVを常温より高くする際には、各低温通路90、92を閉鎖するとともに各高温通路80、82を開放し、高温室18で予め加熱された「+100℃」の空気を試験室14に導入して試験室14の室内温度PVを「+80℃」に制御する。環境形成装置10は、室内温度PVを「+80℃」にして所定時間(例えば30分)保持する。その後、環境形成装置10は、高温室ヒータ52、高温室給気ファン48、及び高温室給気切替弁46を制御して高温室18及び高温室18と連通する試験室14の室内温度PVを「+125℃」に制御する。そして、環境形成装置10は、高温室18及び試験室14の温度を予め設定されたプログラムに従って上昇する。
【0046】
これにより、環境形成装置10は、温度サイクル試験120の後にプログラム試験122を行う複合試験を実施することができる。
【0047】
[機能ブロック]
次に、図4を参照しながら環境形成装置10の機能について詳しく説明する。
【0048】
図4は、本実施形態による環境形成装置10の機能ブロック図であり、図4は、環境形成装置10のコントローラ40に設けられたプロセッサ100の制御によって実現される機能の一例を示す図である。
【0049】
図4に示すように、環境形成装置10は、温度制御手段としての温度制御部130と、変更手段としての変更部132と、温度差取得手段としての温度差取得部134とを備える。また、環境形成装置10は、演算値取得手段としての演算値取得部135と、変更禁止手段としての変更禁止部136とを備える。各部の機能は、環境形成装置10のプロセッサ100が記憶部102から読み込んだ環境形成装置用プログラムを実行することで実現される。
【0050】
(温度制御部)
温度制御部130は、環境形成室としての試験室14内を所定の冷却能力で冷却しつつ試験室14内を加熱する加熱部としての低温室ヒータ64の出力を調整して、試験室14の室内温度PVが仮目標温度としての予冷温度SVnになるように制御する。
【0051】
具体的に説明すると、プロセッサ100は、各開閉部84、86、94、96を作動して各高温通路80、82を閉鎖するとともに各低温通路90、92を開放する。そして、プロセッサ100は、二元冷凍機ユニット69及び低温室ヒータ64を制御して低温室20及び低温室20と連通した試験室14の室内温度PVが予冷温度SVnになるように制御する。これにより、プロセッサ100は、温度制御部130としての機能を実現する。
【0052】
二元冷凍機ユニット69による冷却能力は、さらし温度SVに基づいて定められる。二元冷凍機ユニット69による冷却能力は、低温室20及び試験室14をさらし温度SVよりも若干低い温度にすることが可能な所定の能力に設定される。
【0053】
低温室ヒータ64の出力は、二元冷凍機ユニット69で冷却された低温室20及び試験室14の室内温度PVが予冷温度SVnとなるような値に制御される。低温室ヒータ64の出力の制御には、PID制御が用いられる。
【0054】
低温室ヒータ64の出力は、低温室ヒータ64の最大加熱能力を100%としたときの割合で示される。例えば、低温室ヒータ64の出力を低温室ヒータ64の最大加熱能力の1/4とする場合、低温室ヒータ64の出力を示す低温室ヒータ出力DHnは、25%とされる。
【0055】
ここで、低温室ヒータ出力DHnは段階的に変化する。このため、低温室ヒータ出力DHnの「n」には、異なる値の低温室ヒータ出力DHn毎に異なる数字が代入される。
【0056】
(温度差取得部)
温度差取得部134は、試験室14の室内温度PVが予冷温度SVnに達した状態において予冷温度SVnとさらし温度SVとの温度差Xnを取得する。
【0057】
この計算式を次の(式1)に示す。
【0058】
温度差Xn=(予冷温度SVn-さらし温度SV)の絶対値 ・・・ (式1)
【0059】
ここで、温度差Xnは段階的に変化する。このため、温度差Xnの「n」には、異なる値の温度差Xn毎に異なる数字が代入される。
【0060】
また、さらし温度SVは、試験において対象物12が所定時間晒される温度を示す。予冷温度SVnは、試験室14の室内温度PVをさらし温度SVに近づける過程において制御目標とされる室内温度PVの仮目標温度であり、予冷温度SVnは段階的に変更される。この予冷温度SVnを段階的に変更することで、室内温度PVを徐々にさらし温度SVに近づける。
【0061】
具体的に説明すると、コントローラ40のプロセッサ100は、試験室14の室内温度PVが予冷温度SVnに達した状態において、現在設定されているさらし温度SV及び予冷温度SVnを記憶部102から読み出す。そして、プロセッサ100は、読み出した予冷温度SVnとさらし温度SVとの温度差Xnを演算して取得する。
【0062】
例えば、さらし温度SVが-40℃で予冷温度SVnが-41℃の場合、さらし温度SV(-40℃)と予冷温度SVn(-41℃)との温度差Xnは、1℃となる。また、さらし温度SVが-40℃で予冷温度SVnが-39℃の場合、さらし温度SV(-40℃)と予冷温度SVn(-39℃)との温度差Xnは、1℃となる。
【0063】
そして、プロセッサ100は、取得した温度差Xnを、記憶部102に記憶する。これにより、プロセッサ100は、温度差取得部134としての機能を実現する。
【0064】
(演算値取得部)
演算値取得部135は、試験室14の室内温度PVが予冷温度SVnに達した状態において、温度差取得部134で取得した温度差Xnに加熱部としての低温室ヒータ64が有する加熱能力に対して低温室ヒータ64の出力が占める割合を乗算して乗算値を求める。そして、この乗算値を前述した温度差Xnから減算して演算値Ynを取得する。
【0065】
ここで、演算値Ynは、温度差取得部134で取得した温度差Xn等に応じて段階的に変化する。このため、演算値Ynの「n」には、異なる値の演算値Yn毎に異なる数字が代入される。
【0066】
具体的に説明すると、コントローラ40のプロセッサ100は、試験室14の室内温度PVが予冷温度SVnに達した状態において、低温室ヒータ64へ出力する低温室ヒータ出力DHnから低温室ヒータ64が有する加熱能力に対して低温室ヒータ64の出力の占める割合を取得する。例えば、低温室ヒータ64の出力が低温室ヒータ64の最大加熱能力の1/4の場合、低温室ヒータ64に出力される低温室ヒータ出力DHnは、25%として取得される。これにより、プロセッサ100は、この低温室ヒータ出力DHnに基づいて25%(0.25)を取得する。
【0067】
そして、プロセッサ100は、温度差取得部134で取得した温度差Xnに低温室ヒータ出力DHnに基づいて取得した25%(0.25)を乗算して乗算値を取得し、この乗算値を温度差取得部134で取得した温度差Xnから減算して演算値Ynを取得する。
【0068】
この計算式を次の(式2)に示す。
【0069】
演算値Yn={温度差Xn-(温度差Xn×低温室ヒータ出力DHn)} ・・・ (式2)
【0070】
例えば、温度差取得部134で取得した温度差Xnが1℃であり、低温室ヒータ出力DHnに基づく低温室ヒータ64の出力が25%(0.25)の場合、演算値Ynは{温度差Xn(1℃)-(温度差Xn(1℃)×低温室ヒータ出力DHn(0.25))}から、0.75となる。
【0071】
そして、プロセッサ100は、取得した演算値Ynを、記憶部102に記憶する。これにより、プロセッサ100は、演算値取得部135としての機能を実現する。
【0072】
(変更部)
変更部132は、試験室14の室内温度PVが仮目標温度としての予冷温度SVnとなるように制御された状態で、予冷温度SVnが目標温度であるさらし温度SVに近づくように、予冷温度SVnを加熱部としての低温室ヒータ64の出力に基づいて変更する。
【0073】
ここで、さらし温度SVが予冷温度SVnよりも高い場合には、室内温度PVを段階的に上昇してさらし温度SVに近づけることとなる。また、さらし温度SVが予冷温度SVnよりも低い場合には、室内温度PVを段階的に低下してさらし温度SVに近づけることとなる。このため、さらし温度SVが予冷温度SVnよりも高い場合と、さらし温度SVが予冷温度SVnよりも低い場合とに分けて、予冷温度SVnの変更について説明する。
【0074】
さらし温度SVが予冷温度SVnよりも高い場合(さらし温度SV>予冷温度SVn)、目標温度としてのさらし温度SVから演算値取得部135で取得した演算値Ynを減算した値に基づいて仮目標温度としての予冷温度SVnを変更する。
【0075】
具体的に説明すると、プロセッサ100は、記憶部102に記憶されたさらし温度SV及び予冷温度SVnを読み出してさらし温度SVと予冷温度SVnとを比較する。プロセッサ100は、さらし温度SVが予冷温度SVnよりも高いと判断した場合、さらし温度SVから演算値取得部135で取得した演算値Ynを減算した値に基づいて予冷温度SVnを変更する。
【0076】
この計算式を次の(式3)に示す。
【0077】
変更後の予冷温度SVn=さらし温度SV-演算値Yn=さらし温度SV-{温度差Xn-(温度差Xn×低温室ヒータ出力DHn)} ・・・ (式3)
【0078】
例えば、さらし温度SVが-40℃であり、予冷温度SVnが-41℃の場合、プロセッサ100は、さらし温度SV(-40℃)が予冷温度SVn(-41℃)よりも高いと判断する。そして、演算値取得部135で取得した演算値Ynが「0.75」の場合、さらし温度SV(-40℃)から演算値Yn(0.75)を減算した値(-40.75℃)に基づいて予冷温度SVnを変更する。ここで、本実施形態では、さらし温度SV(-40℃)から演算値Yn(0.75)を減算した値(-40.75℃)を予冷温度SVn(-40.75℃)とする。
【0079】
目標温度としてのさらし温度SVが仮目標温度としての予冷温度SVnよりも低い場合(さらし温度SV<予冷温度SVn)、変更部132は、さらし温度SVに演算値取得部135で取得した演算値Ynを加算した値に基づいて予冷温度SVnを変更する。
【0080】
具体的に説明すると、プロセッサ100は、記憶部102に記憶されたさらし温度SV及び予冷温度SVnを読み出してさらし温度SVと予冷温度SVnとを比較する。プロセッサ100は、さらし温度SVが予冷温度SVnよりも低いと判断した場合、さらし温度SVに演算値取得部135で取得した演算値Ynを加算した値に基づいて予冷温度SVnを変更する。
【0081】
この計算式を次の(式4)に示す。
【0082】
変更豪の予冷温度SVn=さらし温度SV+演算値Yn=さらし温度SV+{温度差Xn-(温度差Xn×低温室ヒータ出力DHn)} ・・・ (式4)
【0083】
例えば、さらし温度SVが-40℃で予冷温度SVnが-39℃の場合、プロセッサ100は、さらし温度SV(-40℃)が予冷温度SVn(-39℃)よりも低いと判断する。そして、演算値取得部135で取得した演算値Ynが0.75の場合、さらし温度SV(-40℃)に演算値Yn(0.75)を加算した値(-39.25℃)に基づいて予冷温度SVnを変更する。ここで、本実施形態では、さらし温度SV(-40℃)に演算値Yn(0.75)を加算した値(-39.25℃)を予冷温度SVn(-39.25℃)とする。
【0084】
また、変更部132は、試験室14の室内温度PVがさらし温度SVに基づいて定められた温度範囲内に達するまで予冷温度SVnの変更を繰り返す。
【0085】
具体的に説明すると、プロセッサ100は、試験室センサ60からの試験室センサ入力が示す室内温度PVが、さらし温度SV(-40℃)±0.3℃の温度範囲内(-40.3以上-39.7℃以下の範囲内)に達するまで予冷温度SVnの変更を繰り返す。これにより、プロセッサ100は、変更部132としての機能を実現する。ここで、前述した温度範囲は、さらし温度SV(-40℃)±0.3℃の範囲に限定されるものではなく、変更可能である。
【0086】
(変更禁止部)
変更禁止部136は、変更部132が予冷温度SVnを変更した後に、試験室14の室内温度PVが予冷温度SVnに達するまで変更部132による変更を禁止する。
【0087】
具体的に説明すると、プロセッサ100は、変更部132が予冷温度SVnを変更した後に、試験室センサ60からの試験室センサ入力によって試験室14の室内温度PVを取得する。そして、プロセッサ100は、試験室14の室内温度PVが予冷温度SVnに達するまで変更部132による変更を禁止し、変更部132による予冷温度SVnの変更を行わない。これにより、プロセッサ100は、変更禁止部136としての機能を実現する。
【0088】
一方、プロセッサ100は、変更部132が予冷温度SVnを変更した後に、試験室14の室内温度PVが予冷温度SVnに達した際には、変更部132による予冷温度SVnの変更を許容する。
【0089】
(動作説明)
環境形成装置10でプログラム試験122を行う一例を、図5から図9を用いるとともに、コントローラ40のプロセッサ100が実行する処理手順に従って説明する。
【0090】
図5は、本実施形態による環境形成装置10の動作を示すフローチャートである。図6は、本実施形態による環境形成装置10の動作の一例を示す図であり、試験室14の温度を低下させる制御において、さらし温度SVが予冷温度SVnよりも高い場合を示す説明図である。また、図7は、本実施形態による環境形成装置10の動作の一例を示す図であり、試験室14の温度を上昇させる制御において、さらし温度SVが予冷温度SVnよりも低い場合を示す説明図である。
【0091】
図8は、本実施形態による環境形成装置10の動作の一例を示す図であり、試験室14の温度を低下させる制御において、さらし温度SVが予冷温度SVnよりも低い場合を示す説明図である。図9は、本実施形態による環境形成装置10の動作の一例を示す図であり、試験室14の温度を上昇させる制御において、さらし温度SVが予冷温度SVnよりも高い場合を示す説明図である。
【0092】
ここで、図6には、試験室14の室内温度PVを一旦さらし温度SVよりも低い予冷温度SV1にしてから室内温度PVを上昇させながらさらし温度SVに近づける例が示されている。これにより、室内温度PVがさらし温度SVに達するまでの時間を短縮する。
【0093】
図7には、試験室14の室内温度PVを一旦さらし温度SVよりも高い予冷温度SV1にしてから室内温度PVを低下させながらさらし温度SVに近づける例が示されている。これにより、室内温度PVがさらし温度SVに達するまでの時間を短縮する。
【0094】
図8には、試験室14の室内温度PVを一旦さらし温度SVよりも高い予冷温度SV1にしてから室内温度PVを低下させながらさらし温度SVに近づける例が示されている。これにより、室内温度PVを緩やかにさらし温度SVに近づける。
【0095】
図9は、試験室14の室内温度PVを一旦さらし温度SVよりも低い予冷温度SV1にしてから室内温度PVを上昇させながらさらし温度SVに近づける例が示されている。これにより、室内温度PVを緩やかにさらし温度SVに近づける。
【0096】
そして、図6及び図9は、さらし温度SVが予冷温度SV1よりも高い点で一致し、図6及び図9では、同様の温度制御が行われる。また、図7及び図8は、さらし温度SVが予冷温度SV1よりも低い点で一致し、図6及び図9では、同様の温度制御が行われる。
【0097】
環境形成装置10は、プログラム試験122を開始すると、試験室14が予め設定されたさらし温度SVとなるように制御する。さらし温度SVは、常温よりも低い温度とし、各開閉部84、86、94、96によって各高温通路80、82は閉鎖されるとともに各低温通路90、92は開放されるものとする。この状態において、二元冷凍機ユニット69及び低温室ヒータ64によって低温室20及び試験室14の室内温度PVが制御されるものとする。
【0098】
図5に示すように、コントローラ40のプロセッサ100が記憶部102に記憶された環境形成装置用プログラムを実行すると、メインルーチンからプログラム試験が呼び出される。すると、プロセッサ100は、目標温度であるさらし温度SVと仮目標温度である予冷温度SV1(初期値)とを記憶部102から読み込む(ステップS10)。
【0099】
そして、プロセッサ100は、予冷温度SVnとさらし温度SVとが同じであるか否かを判断する(ステップS12)。
【0100】
ステップS12で予冷温度SVnとさらし温度SVとが同じと判断した場合、プロセッサ100は、ステップS50へ分岐して、通常の温度制御を実行する。一方、予冷温度SVnとさらし温度SVとが異なると判断した場合、プロセッサ100は、予冷温度SV1(初期値)への制御を開始する(ステップS14)。
【0101】
ここで、例えば、図6及び図9に示すように、さらし温度SVが-40℃に設定されており、予冷温度SV1が-41℃に設定されている場合、プロセッサ100は、予冷温度SV1とさらし温度SVとが異なると判断し、予冷温度SV1への制御を開始する。
【0102】
この予冷温度SV1への制御において、プロセッサ100は、予冷温度SV1に基づいて二元冷凍機ユニット69による冷却能力を所定値に保つとともに、低温室ヒータ64をPID制御して試験室14の室内温度PVが予冷温度SV1となるように制御する。
【0103】
そして、プロセッサ100は、室内温度PVが予冷温度SV1に到達したか否かを判断し(ステップS16)、室内温度PVが予冷温度SV1に達するまで待機する。
【0104】
ステップS16で室内温度PVが予冷温度SV1に達したと判断した場合、プロセッサ100は、室内温度PVを予冷温度SV1に保持する(ステップS18)。そして、プロセッサ100は、予冷保持時間t2のカウントを開始するとともに(ステップS20)、予冷保持時間t2が経過したか否かを判断する(ステップS22)。予冷保持時間t2は、例えば10分に設定されている。なお、この予冷保持時間t2は、10分に限定されるものでなく、予冷保持時間t2は、例えば30分等の他の時間に設定してもよい。
【0105】
ステップS22で、予冷保持時間t2が経過したと判断した場合、プロセッサ100は、さらし温度SVと予冷温度SVnとの温度差Xnを計算して取得する(ステップS24)。
【0106】
具体的に前述した(式1)を用いて説明すると、温度差X1(1℃)=(予冷温度SV1(-41℃)-さらし温度SV(-40℃))の絶対値となる。このように、プロセッサ100は、さらし温度SV(-40℃)と予冷温度SV1(-41℃)との温度差X1(1℃)を取得する。
【0107】
また、プロセッサ100は、室内温度PVを予冷温度SVn(-41℃)に保持した状態において、PID制御された低温室ヒータ64への低温室ヒータ出力DHnを取得する。これにより、プロセッサ100は、低温室ヒータ64が有する加熱能力に対して低温室ヒータ64の出力が占める割合を計算する(ステップS26)。具体的に説明すると、低温室ヒータ64への低温室ヒータ出力DH1が25%の場合、プロセッサ100は、25%(0.25)を取得する。
【0108】
ここで、試験室14の室内温度PVは、二元冷凍機ユニット69からの冷却能力と、低温室ヒータ64の加熱能力と、対象物12から放出される熱とによって定まる。対象物12から放出される熱は、対象物12に蓄積された熱と、例えば通電試験において対象物12で発生する熱が挙げられる。
【0109】
対象物12に蓄積された熱が室内温度PVよりも高い場合には、対象物12に蓄積された熱が室内温度PVを高める。対象物12に蓄積された熱が室内温度PVよりも低い場合には、対象物12に蓄積された熱が室内温度PVを低下する。対象物12に蓄積される熱は、対象物12の熱容量によって定まる。また、対象物12で発熱した熱は、室内温度PVを高める。
【0110】
このように、二元冷凍機ユニット69で冷却される試験室14の室内温度PVは、試験室14に収容された対象物12の状態によって変化するが、PID制御される低温室ヒータ64からの熱によって室内温度PVは、予冷温度SV1に保たれる。
【0111】
このため、低温室ヒータ64からの熱は、対象物12から放出される熱に応じて変化する。これにより、低温室ヒータ64からの出力には、対象物12からの熱の放出状態が反映される。
【0112】
また、プロセッサ100は、さらし温度SVと予冷温度SVnとの温度差Xnに低温室ヒータ出力DHnを乗算した乗算値を、温度差Xnから減算して演算値Ynを求める(ステップS28)。
【0113】
具体的に前述した(式2)を用いて説明すると、演算値Y1(0.75)=温度差X1(1℃)-{温度差X1(1℃)×低温室ヒータ出力DH1(0.25)}となる。このように、プロセッサ100は、さらし温度SV(-40℃)と予冷温度SV1(-41℃)との温度差X1(1℃)に低温室ヒータ出力DH1(25%:0.25)を乗算した乗算値を、温度差X1(1℃)から減算して演算値Ynを取得する。
【0114】
ここで、室内温度PVが予冷温度SV1に維持された状態において、低温室ヒータ64の出力を示す低温室ヒータ出力DH1が25%の場合、低温室ヒータ64の出力は、75%の余力がある想定できる。このため、さらし温度SVと予冷温度SV1との温度差X1から、温度差X1に25%を乗算した乗算値を減算して演算値Y1を求める。そして、この演算値Y1を用いて予冷温度SV2を算出することで、低温室ヒータ64の余力に基づいて予冷温度SV2を取得することが可能となる。
【0115】
そして、プロセッサ100は、さらし温度SVが予冷温度SVnよりも高いか否かを判断する(ステップS30)。
【0116】
ここで、図6及び図9では、さらし温度SVよりも低い予冷温度SV1から室内温度PVを上昇して室内温度PVをさらし温度SVに近づける。このため、ステップS30において、さらし温度SVは予冷温度SVnよりも高い(さらし温度SV>予冷温度SVn)、と判断される。
【0117】
この場合、プロセッサ100は、さらし温度SVからステップS28で取得した演算値Ynを減算した値に基づいて予冷温度SVnを変更する(ステップS32)。
【0118】
一例として、さらし温度SVは、-40℃である。予冷温度SV1は、-41℃である。さらし温度SVと予冷温度SV1との温度差X1は、1℃である。低温室ヒータ出力DH1は、25%(0.25)である(図6及び図9参照)。
【0119】
この場合、現在の予冷温度SV1である「-41℃」は、変更後の予冷温度SV2である「40.75℃」に変更される(図6及び図9参照)。
【0120】
具体的に前述した(式3)を用いて説明すると、変更後の予冷温度SV2(-40.75℃)=さらし温度SV(-40℃)-演算値Y1(0.75)=さらし温度SV(-40℃)-{温度差X1(1℃)-(温度差X1(1℃)×低温室ヒータ出力DH1(0.25))}となる。
【0121】
このように、変更後の予冷温度SV2は、低温室ヒータ64の出力に基づいて定められるので、変更される予冷温度SV2には、収容された対象物12の状態が反映される。
【0122】
このとき、変更後の予冷温度SV2(-40.75℃)は、変更前の予冷温度SV1(-41℃)よりも高い。このため、室内温度PVを上昇するために低温室ヒータ64の低温室ヒータ出力DHnは、一旦100%になる(図6及び図9参照)。
【0123】
一方、図7及び図8では、さらし温度SVよりも高い予冷温度SV1から室内温度PVを低下して室内温度PVをさらし温度SVに近づける。このため、ステップS30において、さらし温度SVは予冷温度SVnよりも低い(さらし温度SV<予冷温度SVn)、と判断される。
【0124】
この場合、プロセッサ100は、さらし温度SVにステップS28で取得した演算値Ynを加算した値に基づいて予冷温度SVnを変更する(ステップS34)。
【0125】
一例として、さらし温度SVは、-40℃である。予冷温度SV1は、-39℃である。さらし温度SVと予冷温度SV1との温度差X1は、1℃である。低温室ヒータ出力DH1は、25%(0.25)である(図7及び図8参照)。
【0126】
この場合、現在の予冷温度SV1である「-39℃」は、変更後の予冷温度SV2である「-39.25℃」に変更される(図7及び図8参照)。
【0127】
具体的に前述した(式4)を用いて説明すると、変更後の予冷温度SV2(-39.25℃)=さらし温度SV(-40℃)+演算値Y1(0.75℃)=さらし温度SV(-40℃)+{温度差X1(1℃)-(温度差X1(1℃)×低温室ヒータ出力DH1(0.25))}となる。
【0128】
このように、変更後の予冷温度SV2は、低温室ヒータ64の出力に基づいて定められるので、変更される予冷温度SV2には、収容された対象物12の状態が反映される。
【0129】
このとき、変更後の予冷温度SV2(-39.25℃)は、変更前の予冷温度SV1(-39℃)よりも低い。このため、室内温度PVを低下するために低温室ヒータ64の低温室ヒータ出力DHnは、一旦0%になる(図7及び図8参照)。
【0130】
そして、プロセッサ100は、室内温度PVが予冷温度SVnに到達するまで待機する(ステップS36)。
【0131】
ステップS36で室内温度PVが予冷温度SVnに達したと判断した場合、プロセッサ100は、室内温度PVがさらし温度SVに基づいて定められた温度範囲内に達したか否かを判断する(ステップS38)。具体的に説明すると、室内温度PVがさらし温度SV(-40℃)の±0.3℃の温度範囲内(-40.3℃以上-39.7℃以下)に達したか否かを判断する。
【0132】
ステップS38で室内温度PVが温度範囲内に達していないと判断した場合、プロセッサ100は、ステップS24へ分岐して、室内温度PVが温度範囲内に達するまで予冷温度SVnの変更を繰り返す。
【0133】
図6を例に挙げて説明すると、さらし温度SVは、-40℃であり、予冷温度SV2は、-40.75℃である。前述した(式1)を用いて説明すると、温度差X2(0.75)=(予冷温度SV2(-40.75)-さらし温度SV(-40℃))の絶対値となる。また、室内温度PVが予冷温度SV2(-40.75℃)に保持された状態において、低温室ヒータ64へ低温室ヒータ出力DH2は、60%(0.6)である(ステップS26)。
【0134】
そして、さらし温度SV(-40℃)と予冷温度SV2(-40.75℃)との温度差X2(0.75℃)に低温室ヒータ出力DH2(60%:0.6)を乗算した乗算値を、温度差X2(0.75℃)から減算した演算値Y2は、0.3である(ステップS28)。前述した(式2)を用いて説明すると、演算値Y2(0.3)={温度差X2(0.75℃)-(温度差X2(0.75℃)×低温室ヒータ出力DH2(0.6))}となる。
【0135】
そして、さらし温度SV(-40℃)は予冷温度SV2(-40.75℃)よりも高いので(ステップS30)、前述した(式3)を用いて、変更後の予冷温度SV3を求める(ステップS32)。
【0136】
前述した(式3)を用いて説明すると、変更後の予冷温度SV3(-40.3℃)=さらし温度SV(-40℃)-演算値Y2(0.3)=さらし温度SV(-40℃)-{温度差X2(0.75℃)-(温度差X2(0.75℃)×低温室ヒータ出力DH2(0.6))}となる。
【0137】
そして、プロセッサ100は、室内温度PVが予冷温度SV3に到達するまで待機する(ステップS36)。その後、プロセッサ100は、室内温度PVがさらし温度SV(-40℃)の±0.3℃の温度範囲内(-40.3℃以上-39.7℃以下)に達するまで(ステップS38)、各ステップを繰り返す。
【0138】
一方、ステップS38で室内温度PVが温度範囲内に達していると判断した場合、プロセッサ100は、室内温度PVがさらし温度SVになるように制御目標を変更し(ステップS40)、さらし温度SVへの制御を開始する(ステップS50)。
【0139】
具体的に説明すると、プロセッサ100は、さらし温度SVに基づいて二元冷凍機ユニット69による冷却能力を所定値に保つとともに、低温室ヒータ64をPID制御して試験室14の室内温度PVがさらし温度SVとなるように制御する。
【0140】
そして、プロセッサ100は、試験室センサ入力が示す室内温度PVがさらし温度SVに到達するまで待機する(ステップS52)。
【0141】
ステップS52で室内温度PVがさらし温度SVに達したと判断した場合、プロセッサ100は、室内温度PVをさらし温度SVに保持する(ステップS54)。そして、プロセッサ100は、予め設定されたさらし保持時間t1のカウントを開始するとともに(ステップS56)、さらし保持時間t1が経過したか否かを判断する(ステップS58)。さらし保持時間t1は、例えば30分に設定されている。
【0142】
ステップS58でさらし保持時間t1が経過したと判断した場合、プロセッサ100は、プログラム試験122において予め設定された総てのさらしステップが終了したか否かを判断する(ステップS60)。
【0143】
ステップS60で総てのさらしステップが終了していないと判断した場合、プロセッサ100は、ステップS10へ分岐する。そして、プロセッサ100は、プログラム試験122において次のさらしステップとして記憶部102に記憶されたさらし温度SVを予冷温度SV1(次のさらしステップの初期値)と共に読み込んで(ステップS10)、以後の各ステップを実施する。
【0144】
一方、ステップS60で総てのさらしステップが終了した判断した場合、プロセッサ100は、試験開始処理を終了して、当該試験開始処理を呼び出したルーチンへ戻る。
【0145】
(作用及び効果)
以上説明した本実施形態にかかる環境形成装置10によれば、以下の作用効果を奏する。
【0146】
本実施形態の環境形成装置10は、対象物12が収容される環境形成室としての試験室14の室内温度PVを目標温度としてのさらし温度SVにする。環境形成装置10は、試験室14内を所定の冷却能力で冷却しつつ試験室14内を加熱する加熱部である低温室ヒータ64の出力を調整して室内温度PVが仮目標温度である予冷温度SVnになるように制御する温度制御手段である温度制御部130を備える。環境形成装置10は、室内温度PVが予冷温度SVnとなるように制御された状態において予冷温度SVnがさらし温度SVに近づくように予冷温度SVnを低温室ヒータ64の出力に基づいて変更する変更手段である変更部132を備える。
【0147】
このような環境形成装置10によれば、環境形成室としての試験室14に収容された対象物12に応じて変化する加熱部としての低温室ヒータ64の出力に基づいて仮目標温度としての予冷温度SVnを変更する。このため、環境形成装置10は、収容される対象物12の状態を考慮した温度制御が可能となる。
【0148】
このため、試験室14に収容される対象物12の状態を予測して予冷温度を想定し、想定した予冷温度を試験開始前に環境形成装置10に入力しなければならない場合と比較して、試験前の準備作業の簡素化が可能となる。
【0149】
また、対象物12に応じて変化する低温室ヒータ64の出力に基づいて予冷温度SVnが変更される。このため、環境形成装置10は、対象物12の状態を予測して予冷温度を設定する場合のように、対象物12の熱容量又は発熱量等を考慮した複雑な計算を行うことなく、予冷温度SVnの変更が可能となる。
【0150】
そして、前の試験結果に基づいて調整された予冷温度を用いて次の試験を行う場合と比較して、試験対象となる対象物12を変更した場合であって、変更された対象物12に応じた予冷温度SVnの設定が可能となる。
【0151】
また、本実施形態の環境形成装置10は、室内温度PVが仮目標温度である予冷温度SVnに達した状態において目標温度であるさらし温度SVと予冷温度SVnとの温度差Xnを取得する温度差取得手段としての温度差取得部134を備える。環境形成装置10は、室内温度PVが予冷温度SVnに達した状態において温度差Xnに加熱部としての低温室ヒータ64が有する加熱能力に対して低温室ヒータ64の出力が占める割合を乗算した乗算値を温度差Xnから減算して演算値Ynを取得する演算値取得手段としての演算値取得部135を備える。変更手段としての変更部132は、さらし温度SVが予冷温度SVnよりも高い場合に、さらし温度SVから演算値Ynを減算した値に基づいて予冷温度SVnを変更する。変更部132は、さらし温度SVが予冷温度SVnよりも低い場合に、さらし温度SVに演算値Ynを加算した値に基づいて予冷温度SVnを変更する。
【0152】
このような環境形成装置10によれば、演算によって予冷温度SVnを変更できるので、データテーブル等を用いて予冷温度SVnを変更する場合と比較して、データテーブル等で使用する記憶部102の記憶領域を削減することが可能となる。
【0153】
そして、さらし温度SVが予冷温度SVnよりも高い場合であっても、さらし温度SVが予冷温度SVnよりも低い場合であっても、予冷温度SVnを変更することができる。このため、室内温度PVを上昇させながらさらし温度SVに近づける場合と、室内温度PVを低下させながらさらし温度SVに近づける場合との両者において、収容される対象物12の状態を考慮した温度制御が可能となる。
【0154】
また、本実施形態の環境形成装置10において、変更手段である変更部132は、室内温度PVがさらし温度SVに基づいて定められた温度範囲内に達するまで予冷温度SVnの変更を繰り返す。
【0155】
このような環境形成装置10によれば、予冷温度SVnを段階的に変更しながら室内温度PVをさらし温度SVに近づけることができる。このため、室内温度PVを一度でさらし温度SVにする場合と比較して、さらし温度SVに到達した際に生じ得る室内温度PVのオーバシュート及びアンダーシュートを抑制することが可能となる。
【0156】
また、本実施形態の環境形成装置10は、変更手段である変更部132が予冷温度SVnを変更した後に、室内温度PVが予冷温度SVnに達するまで変更部132による変更を禁止する変更禁止手段としての変更禁止部136をさらに備える。
【0157】
このような環境形成装置10によれば、室内温度PVが予冷温度SVnに達するまで予冷温度SVnの変更が禁止される。このため、予冷温度SVn変更後に大きく変化し得る低温室ヒータ出力DHnの影響を受けることなく、予冷温度SVnを変更することが可能となる。
【0158】
以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
【0159】
例えば、上記実施形態における環境形成装置10のコントローラ40の各ハードウェア構成及びソフトウェア構成は一態様であり、本発明の技術的範囲に含まれる範囲で任意に変更が可能である。一例として、コントローラ40の各ハードウェア構成及び各ソフトウェア構成は、一台のコンピュータで実現されても良いし、ネットワーク上などで適宜複数台のコンピュータの機能を統合させたシステムとして実現するようにしても良い。
【0160】
また、上記実施形態では、高温室18と試験室14と低温室20とを備えた環境形成装置10を例に挙げて説明したが、本実施形態は、これに限定されるものではない。例えば、環境形成装置10は、一つの試験室14のみを備えた装置であってもよい。
【0161】
一つの試験室14のみを備えた環境形成装置10で構成する場合、環境形成装置10が備える温度制御装置によって試験室14の室内温度PVを現在温度から次の予冷または予熱温度へ変更することができる。このため、環境形成装置10は、図5のフローチャートに従って動作することで、図6から図9に示した温度制御を実現することができる。
【0162】
上記実施形態の構成は、論理的に矛盾しない範囲で相互に組み合わせることが可能である。
【0163】
また、コンピュータとしてのプロセッサ100に、環境形成室である試験室14内を所定の冷却能力で冷却しつつ試験室14内を加熱する加熱部としての低温室ヒータ64の出力を調整して室内温度PVが仮目標温度としての予冷温度SVnになるように制御させる。また、プロセッサ100に、室内温度PVが予冷温度SVnとなるように制御された状態において予冷温度SVnがさらし温度SVに近づくように予冷温度SVnを低温室ヒータ64の出力に基づいて変更させる。このようなプロセッサ100を備えた環境形成装置10に用いる環境形成装置用プログラムも、出願時の本願の明細書等に開示された事項の範囲に含まれる。
【符号の説明】
【0164】
10 環境形成装置
12 対象物
14 試験室
40 コントローラ
60 試験室センサ
64 低温室ヒータ
69 二元冷凍機ユニット
70 低温室ファンモータ
100 プロセッサ
122 プログラム試験
130 温度制御部
132 変更部
134 温度差取得部
135 演算値取得部
136 変更禁止部
SV さらし温度
PV 室内温度
SVn 予冷温度
Xn 温度差
図1
図2
図3
図4
図5
図6
図7
図8
図9