(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024008939
(43)【公開日】2024-01-19
(54)【発明の名称】サンプル分離のための光学システムおよび方法
(51)【国際特許分類】
G01N 27/447 20060101AFI20240112BHJP
G01N 21/17 20060101ALI20240112BHJP
G01N 21/64 20060101ALI20240112BHJP
【FI】
G01N27/447 331K
G01N27/447 315K
G01N21/17 D
G01N21/64 F
【審査請求】有
【請求項の数】10
【出願形態】OL
(21)【出願番号】P 2023177549
(22)【出願日】2023-10-13
(62)【分割の表示】P 2022080783の分割
【原出願日】2018-02-23
(31)【優先権主張番号】62/463,528
(32)【優先日】2017-02-24
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】502221282
【氏名又は名称】ライフ テクノロジーズ コーポレーション
(74)【代理人】
【識別番号】100094569
【弁理士】
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【弁理士】
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100109070
【弁理士】
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100098475
【弁理士】
【氏名又は名称】倉澤 伊知郎
(74)【代理人】
【識別番号】100130937
【弁理士】
【氏名又は名称】山本 泰史
(74)【代理人】
【識別番号】100144451
【弁理士】
【氏名又は名称】鈴木 博子
(72)【発明者】
【氏名】ワン, シャオホン
(57)【要約】
【課題】毛細管電気泳動装置を提供する。
【解決手段】生体分子を分離するためのシステムは、複数の毛細管(101)と、毛細管マウント(102)と、複数の光ファイバ(145a、145b)と、ファイバマウント(603)と、光検出器(138)と、動作ステージ(606)と、を含む。複数の毛細管(101)は、サンプル中の生体分子を分離するように構成されている。電磁放射を毛細管(101)に通過させるように構成されている、検出部分(121)を備える、各毛細管(101)。複数の毛細管(101)は、検出部分(121)が互いに対して固定的に配置されるように、毛細管マウント(102)に結合される。
【選択図】
図6
【特許請求の範囲】
【請求項1】
生体分子を分離するためのシステムであって、
サンプル中の生体分子を分離するように構成されている複数の毛細管であって、各毛細管が、毛細管内に電磁放射を通過させるように構成されている検出部分を備える、複数の毛細管と、
前記検出部分を照射するように構成されている、電磁放射のソースビームを生成する、放射源と、を備え、
前記ソースビームが、偏光軸に沿って配置された直線偏光を有する、システム。
【請求項2】
前記検出部分内の前記ソースビームの前記偏光軸が、毛細管面に対して垂直である、請求項1に記載のシステム。
【請求項3】
前記放射源は、そこから直接的に前記直線偏光を有する前記ソースビームを生成するように構成されている、請求項1又は2に記載のシステム。
【請求項4】
前記放射源は、1つ以上の偏光光学素子により前記直線偏光を有する前記ソースビームを生成するように構成されている、請求項1又は2に記載のシステム。
【請求項5】
前記複数の毛細管に対応する複数の光ファイバであって、各光ファイバが、前記検出部分のそれぞれ1つからの放出を受容するように構成されている受容端を備える、複数の光ファイバと、
ファイバマウントであって、前記光ファイバは、前記光ファイバの前記受容端が、互いに対して固定的に配置されるように、前記ファイバマウントに結合されている、ファイバマウントと、
前記検出部分からの放出を、前記光ファイバの前記受容端に方向付けるように構成されている、放出光学システムと、を更に備える、請求項1~4のいずれか1項に記載のシステム。
【請求項6】
前記ソースビームの前記偏光軸が、前記放出光学システムの光軸と平行である、請求項5に記載のシステム。
【請求項7】
前記ソースビームの前記直線偏光は、前記システムの使用中に信号対雑音比を高めるように構成されている、請求項6に記載のシステム。
【請求項8】
光検出器であって、前記複数の毛細管のうちの少なくとも1つからの放出が、前記光ファイバのうちのそれぞれ少なくとも1つを通じて、かつ前記光検出器上に伝送されたことに応答して、整合信号を生成するように構成されている、光検出器を更に備える、請求項5~7のいずれか1項に記載のシステム。
【請求項9】
毛細管マウントであって、前記複数の毛細管は、前記検出部分が互いに対して固定的に配置されるように、前記毛細管マウントに結合されている、毛細管マウントを更に備える、請求項5~8のいずれか1項に記載のシステム。
【請求項10】
前記毛細管マウント、前記ファイバマウント、または前記放出光学システムの少なくとも一部分のうちの1つ以上を、複数の位置に移動させるように構成されている、動作ステージを更に備える、請求項9に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
背景
本発明は、一般に、サンプル分離システム、機器、デバイス、および方法に関し、より具体的には、サンプル分離アッセイ、プロセス、試験、または実験を実施するために、複数のサンプル毛細管を利用する光学サンプル分離システム、機器、デバイス、および方法に関する。
【背景技術】
【0002】
毛細管電気泳動デバイスなどのサンプル分離デバイスは、一般に、例えば毛細管チャネルまたはチャネルのアレイ、毛細管を通じて流れる可能性のある媒体(例えば、ポリマー溶液)を提供するための分離媒体源、サンプル注入機構、光検出器システムまたは構成要素、電場を生成するための電極、毛細管の一方の端のアノード緩衝源、および毛細管のもう一方の端のカソード緩衝源を含む、特定の主要構成要素を提供する。毛細管電気泳動デバイスはまた、一般に、前述の構成要素の多くの温度を調整するために様々な加熱構成要素およびゾーンも提供する。これらの構成要素の多くの温度を調整することは、結果の品質を改善させることができる。
【0003】
現在の毛細管電気泳動デバイスは、複数の構造体を使用して、これらの様々な構成要素を収容し、これらの構造体を一緒に接続または結合して、機能する毛細管電気泳動デバイスまたはシステムを提供する。複数の構造体を使用することには欠点がある。したがって、例えば、必要な加熱ゾーンの数を低減し、構造体のユーザの取り扱いを低減し、構成要素の故障の可能性を低減し、気泡およびその他のアーチファクトの装置への導入を低減するために、相互接続された構造体の数が少ない毛細管電気泳動装置を提供することが望ましい。
【発明の概要】
【課題を解決するための手段】
【0004】
本発明の実施形態は、一般に、サンプル分離アッセイ、プロセス、試験、または実験を実施するためのシステム、機器、デバイス、および方法を対象とする。本発明の一態様は、サンプル分離システムまたは機器の様々な構成要素を、サンプル分離アッセイ、プロセス、試験、または実験を事前に実施するためのセットアップを簡素化する方法でシステムまたは機器に有利に装填され得る、共通のカートリッジ、カセット、またはケースに組み込むことを含む。本発明の別の態様は、サンプル分離システムまたは機器への装填時に、有利に簡単で、正確で、かつ安定した様式で光学システムおよび/または検出器に整合され得る、光学セクションを有するサンプル分離カートリッジ、カセット、またはケースを含む。本発明のさらに別の態様では、光学ノイズ、例えば、サンプル分離アッセイ、プロセス、試験、または実験の間、またはそれらの準備の間に使用される1つ以上の毛細管に含まれるサンプル溶液内の水分子によるラマン散乱により生じる光学ノイズを有利に低減する、照射光学構成を備えるサンプル分離システムまたは機器が含まれる。
【図面の簡単な説明】
【0005】
【
図1】毛細管電気泳動または同様のアッセイ、プロセス、試験、または実験を実施するためのシステムまたは機器1000を示す。
【
図2】ビーム調整器115およびビーム分割器118が、ソースビーム155を生成または提供するように構成されてもよく、各ソースビーム155が、楕円形の断面または形状を含むことを示す。
【
図3】アレイ内の毛細管101の直径およびピッチを示す。
【
図4】コンピュータまたは処理システム160は、コンピュータプログラム製品161に含まれる命令コードを実行するように構成され得ることを示す。
【
図5】毛細管電気泳動(CE)機器などのサンプル分離システムまたは機器5000が、生体分子を分離するように、例えば、異なる分子の長さに応じて、サンプルのヌクレオチド分子またはサンプルのアミノ酸分子を分離するように構成されていることを示す。
【
図6】、毛細管電気泳動(CE)機器などのシステムまたは機器6000が、生体分子を分離するように、例えば、異なる分子の長さに応じて、サンプルのヌクレオチド分子またはサンプルのアミノ酸分子を分離するように構成されていることを示す。
【
図7】毛細管101および毛細管マウント602が、支持構造体605およびベース610をさらに含み得る、カートリッジまたはカセット615の一部であり得ることを示す。
【
図8】各毛細管101が、コア材料で作製された毛細管コア801と、毛細管コア801を囲む外側コーティングまたは層802と、を備えることを示す。
【
図9】システム6000が、毛細管マウント602および/または支持構造体605と係合、インターフェース、または嵌合するように構成されている、光学インターフェース、カバー、または鼻650をさらに備えることを示す。
【
図10】システム6000が、毛細管マウント602および/または支持構造体605と係合、インターフェース、または嵌合するように構成されている、光学インターフェース、カバー、または鼻650をさらに備えることを示す。
【発明を実施するための形態】
【0006】
以下の説明は、本発明の実施形態を提供するものであり、一般に、生体サンプルを準備、観察、試験、および/または分析するためのシステム、機器、デバイス、および方法に関する。そのような説明は、本発明の範囲を限定するものではなく、単に実施形態の説明を提供するものである。
【0007】
本文書に記載されている様々な実施形態に関連する例示的な方法およびシステムは、以下の出願に記載されているものを含む。
●2014年3月7日に出願された米国特許出願第15/124,013号。
●2014年3月7日に出願された米国特許出願第15/124,129号。
●2014年3月7日に出願された米国特許出願第15/124,168号。
●2017年1月19日に出願された米国意匠特許出願第29/591,445号。
●2017年1月24日に出願された米国意匠特許出願第29/591,865号。
●2017年1月24日に出願された米国意匠特許出願第29/591,867号。
●2017年2月17日に出願された米国仮特許出願第62/460,700号。
●2017年2月24日に出願された米国仮特許出願第62/463,467号。
●2017年2月24日に出願された米国仮特許出願第62/463,551号。
●2017年2月24日に出願された米国仮特許出願第62/463,528号。
【0008】
本発明の実施形態は、毛細管電気泳動、チップベースの電気泳動、ラボオンチップマイクロフルイディクス、ゲル電気泳動、電気浸透、クロマトグラフィー、フローサイトメトリーなどを含むがこれらに限定されない、様々なサンプル分離システムおよび方法を含み得る。本発明の例示的な実施形態は、毛細管電気泳動システムまたは機器について提示され、チップベースの電気泳動などといった他の分離システムに適用可能な本発明の様々な態様を実証する。
【0009】
本明細書で使用される場合、「放射」または「電磁放射」という用語は、可視光のうちの1つ以上を含み得る特定の電磁プロセスによって放出される放射エネルギー(例えば、400ナノメートル~700ナノメートルもしくは380ナノメートル~800ナノメートルの1つ以上の波長によって特徴付けられる放射エネルギー)、または目に見えない電磁放射(例えば、赤外線、近赤外線、紫外線(UV)、X線、もしくはガンマ線放射など)を意味する。
【0010】
本明細書で使用される場合、「放射源」という用語は、少なくとも1つのサンプル混合物または溶液内に含まれる1つ以上の標的サンプル分子または化合物の存在および/または量を決定するための検出可能な信号を生成するために、少なくとも1つのサンプル混合物または溶液に向けられ得る電磁放射源を意味する。放射源は、単一の光源、例えば、白熱灯、ガス放電ランプ(例えば、ハロゲンランプ、キセノンランプ、アルゴンランプ、クリプトンランプなど)、発光ダイオード(LED)、有機LED(OLED)、レーザ(例えば、化学レーザ、エキシマーレーザ、半導体レーザ、固体レーザ、ヘリウムネオンレーザ、アルゴンレーザ、色素レーザ、ダイオードレーザ、ダイオードポンプレーザ、ファイバレーザ、パルスレーザ、連続レーザ)などを備え得る。代替的に、放射源は、複数の個別の源(例えば、複数のLEDまたはレーザ)を備えてもよい。放射源はまた、ハイパスフィルタ、ローパスフィルタ、またはバンドパスフィルタなどの1つ以上の励起フィルタを含んでもよい。例えば、励起フィルタは、色付きフィルタおよび/または二色性フィルタを備える。放射源は連続的でもパルス状でもよく、単一のビーム、または空間的および/もしくは時間的に分離された複数のビームのいずれかを含んでもよい。放射源は、主に可視光範囲、近赤外線範囲、赤外線範囲、紫外線範囲、または電磁スペクトル内の他の範囲内にある電磁放射によって特徴付けられてもよい(例えば、400ナノメートル~700ナノメートルの範囲、または380ナノメートル~800ナノメートルの範囲の波長内の電磁放射を放出する「光源」)。
【0011】
図1を参照すると、本発明の特定の実施形態は、毛細管電気泳動または同様のアッセイ、プロセス、試験、または実験を実施するためのシステムまたは機器1000を備える。システム1000は、毛細管ハウジング、ホルダ、またはマウント102の上または中に配置された、1つ以上の毛細管、チューブ、またはチャネル101(
図1には4つが示されている)を備える。各毛細管は、電磁放射を毛細管に出入りさせるように構成された検出部を備えてもよい。図示の実施形態では、毛細管アレイ105は4つの毛細管101を備える。しかしながら、例えば、より高いスループットまたはより短いアッセイ実行を提供するために、毛細管アレイ105は、4つより多い毛細管を含んでもよい。機器1000の構成は、1、2、4、8、10、12、16、24、32、48、65、96、128、256、384、または384を超える毛細管101を含み得る。
【0012】
システム1000は、放射源112、ビーム整形器もしくは調整器115、ビーム分割器118、および/またはビームスプリッタもしくはミラー120のいずれか、またはすべてを備える照射または励起光学システム111を備える、光学システム110をさらに備える。放射源112は、システム1000の光学検出アクセスもしくは光学検出ゾーン121、および/または電磁放射(例えば、光、近赤外線、または紫外線)が、標的、較正、もしくは関心のある他の分子を検出もしくは測定するために、1つ以上の毛細管101の検出部分に出入りすることができる毛細管101を照射するように構成されている。光学システム110は、レンズ122および放出光学システム125をさらに備えてもよい。放出光学システム125は、レンズ122、レンズ130、放出フィルタ135、および検出システム136を備えてもよい。放射源112は、本明細書で上述した放射源のタイプのうちの1つ以上を備えることができる。特定の実施形態では、放射源112は、505ナノメートルの波長を有するダイオード励起固体(DPSS)レーザを含む。
【0013】
検出システム136は、毛細管101の光学検出ゾーン121からの放射を受容するように、例えば、標的または関心のある他の分子に付着した蛍光色素、プローブ、またはマーカーによって生成される蛍光放射を受容するように構成される検出器138を備える。検出器138は、フォトダイオード、光電子増倍管、ボロメータ、極低温検出器、量子ドット、発光ダイオード(LED)、半導体検出器、HgCdTe検出器などを含むがこれらに限定されない、1つ以上の個別の光検出器を備える光検出器であり得る。追加的または代替的に、検出器138は、センサまたはピクセルのアレイを含むアレイセンサを備える、光検出器であってもよい。アレイセンサは、相補型金属酸化物半導体センサ(CMOS)、電荷結合素子(CCD)センサ、複数のフォトダイオード検出器、複数の光電子増倍管などのうちの1つ以上を備えてもよい。特定の実施形態では、検出器138は、2つ以上のアレイセンサを備える。
【0014】
放出光学システム125などの光学システムを使用して、各毛細管101からの放出を収集することができる。
図1に示す実施形態では、レンズ122は、1つ以上の毛細管101の各々からの放出光を収集するように構成されているダブレットレンズであり、レンズ130は、1つ以上の毛細管101の各々からの放射を、放出光学システム125の画像平面内のスポットまたは焦点に再結像するように構成されているダブレットレンズである。しかしながら、当技術分野で知られている他の光学構成を、これらの目的のために使用してもよい。
【0015】
1つ以上の毛細管101の各々で異なる波長の複数の放射が生成される用途の場合、検出システム136は、異なる蛍光信号に含まれるスペクトル成分を、検出器138の異なる部分(例えば、ピクセルの異なるグループ)に拡散する、1つ以上のスペクトル分散要素139をさらに備え得る。
図1に示す実施形態では、4つのスペクトル分散要素139は、分光計140に組み込まれている(
図1では2つのスペクトル分散要素139が見えており、さらに2つのスペクトル分散要素139が、その
図1に見える2つの背後に配置されている)。分光計140は、検出器138をさらに備えてもよい。検出システム136は、ハウジングまたはエンクロージャ141内に配置されてもよい。
【0016】
分光計140は、1つ以上のファイバまたは光ファイバ145を介して、毛細管101および/または放出光学システム125に光学的に結合されてもよい。図示の実施形態では、光ファイバ145aの第1の対または束は、毛細管アレイ105の第1および第2の毛細管101から放出光を受容するように構成されており、光ファイバの第2の対または束145bは、毛細管アレイ105の第3および第4の毛細管101から放出光を受容するように構成されている。追加的または代替的に、光ファイバ145は、単一のファイバ束に一緒にグループ化されてもよく、または各ファイバ145は、残りの光ファイバ145から分離されてもよい。分光計140は、1つ以上のスペクトル分散要素139および検出器138をさらに備えてもよく、ここにおいて、各スペクトル分散要素139は、毛細管101の異なるものからの放出光を、検出器138の異なる領域に方向付けるように構成されている。スペクトル分散要素139は、1つ以上のプリズム、回折光学要素、ホログラフィック光学要素などを備えてもよい。スペクトル分散素子139は、反射または透過光学素子を備えてもよい。光ファイバ145の使用は、本明細書で後述するように、多蛍光波長用途のために検出器138の整合および較正を有利に単純化することが発見された。
【0017】
特定の実施形態では、光学システム110、1つ以上の毛細管101、および毛細管マウント102は、共通のハウジングまたはエンクロージャ150の内側に配置され、分光計140は、ハウジング141内でハウジング150の外側に配置される。代替的に、分光計140および/もしくはハウジング141は、ハウジング150内に配置されるか、またはハウジング150に直接取り付けられてもよい。ハウジング141は、毛細管101から分光計140への放射または光の伝達を可能にする、開口部またはポートを含むことができる。分光計140は、
図1に示されるように別個のハウジングに収容されるか、または光学システムと同様の機器ハウジング内に含まれてもよい。
図1に示される実施形態とは対照的に、1つ以上の毛細管101および/または関連するハードウェアのいくつかは、ハウジング150の外側に配置されてもよく、その場合、システム1000とのインターフェースは、ハウジング150の開口部またはポートを介して提供され得る。
【0018】
特定の実施形態では、光ファイバ145は、分光計140の一部である。代替的に、光ファイバ145は、分光計140から分離されていてもよく、光ファイバ145は、光カプラ(図示せず)を使用して、分光計140に取り付けられている。図示された実施形態では、スペクトル分散要素139は、光ファイバ145から受容した入射放出を検出器138に分散および集束するように有利に構成されている。
【0019】
使用中、毛細管101は、電界または電流を支持するように構成されている、ポリマーまたは同様の溶液を含んでもよい。ポリマーまたは同様の溶液は、1つ以上の蛍光色素、プローブ、マーカーなどを含み得る1つ以上のサンプルの伝達または移動を可能にするように構成されている。蛍光色素、プローブ、マーカーなどは、使用中に、光学検出ゾーン121内の所定の時間に存在する1つ以上の標的分子または分子の配列の存在または量と相関し得る、蛍光信号を生成するように選択され得る。毛細管101のいずれかまたはすべての中で生成される蛍光信号(複数可)、光、または放射は、分光計140によって受容されるように、レンズ122およびミラーを通って戻るように方向付けられてもよい。
【0020】
再び
図1を参照すると、特定の実施形態では、システム1000は調整器115を備えてもよく、放射源112からの放射は調整器115を通過する。調整器115は、例えば、異なる色もしくは波長の放射源を混合し、および/または出力ビームのより均一な照射断面を提供するように構成されている、ホモジナイザーを備えてもよい。追加的または代替的に、システム1000は分割器118を備えてもよい。追加的または代替的に、放射源112から放出された放射は、ビーム分割器118を通過して、複数の励起、サンプル、照射、またはソースビーム155を提供することができ、各ソースビーム155は、1つ以上のビーム径、断面形状(例えば、正方形、円形、または楕円形)、所定の強度、またはパワープロファイル(例えば、一定、シルクハット、ガウスなど)のうちの1つ以上によって特徴付けられる。
【0021】
図2に示すように、ビーム調整器115およびビーム分割器118は、ソースビーム155を生成または提供するように構成されてもよく、各ソースビーム155は、楕円形の断面または形状を含む。ビーム調整器115は、例えば、楕円断面を有するビームを生成するように構成されている1つ以上の円柱状のレンズを備えるアナモルフィックビーム整形器を備えてもよく、ここにおいて、ビーム断面は、他の垂直軸よりも一方の軸が広い。代替的に、ビーム調整器115は、例えば、ビームの断面にわたる強度またはパワーが、均一またはほぼ均一である、線焦点および/または楕円ビーム断面を提供するように構成されているパウエルレンズを備えてもよい。加えて、ビーム調整器115は、ビームのいずれの直径も、ビーム調整器115に入るビームの直径よりも大きくまたは小さくなるように構成されてもよい。図示の実施形態では、ビーム調整器115を出るビームは、平行化される。ソースビーム155の各々の楕円断面は、長軸または寸法が、関連付けられた毛細管101の軸に対して垂直、またはほぼ垂直に配向されるように配向され得る。各ソースビーム155のこの配向およびその焦点は、毛細管アレイ105のビームに対する整合の感度を有利に低減させることが見出されている。
図2に示されている図示された実施形態では、ビーム焦点の長径は、個々の毛細管101の内径よりも小さい。代替的に、
図3に示すように、集束ソースビーム155の長径は、個々の毛細管101の内径よりも大きくてもよい。
図3はまた、特定の実施形態について、アレイ内の毛細管101の直径およびピッチを示す。
図3に見られるように、各毛細管101の内径は、50マイクロメートルであり、集束ビームは、約100マイクロメートルの直径を有する。
【0022】
再び
図1を参照すると、調整器115からの励起ビームは、ビーム分割器118に入り、単一の入力ビームからビーム分割器118への複数の同一または類似のソースビーム155を生成するように構成され得る。一例として、ビーム分割器118は、
図1~
図3に見られるように、4つの毛細管101の各々を照射するための4つの楕円ビームを生成または提供するように構成されている、1つ以上の回折光学素子、ホログラフィック光学素子などを備え得る。4つのソースビーム155は、同じまたは類似の断面を有し、各ビームは、システムの光軸または光伝搬の一般的な方向に対して異なる角度で発散する。代替的に、ビーム分割器118は、互いに対して平行であるか、または互いに相対的に収束する、複数のビームを生成するように構成されてもよい。図示の実施形態では、ビーム分割器118からのビームは平行化される。しかしながら、ビームのいくつかまたはすべては、ビーム分割器118を出るときに、代替的に収束または発散する可能性がある。ビーム分割器118から発生するソースビーム155は、レンズ122に入射するときに各々平行化されるが、互いに発散する場合がある。そのような実施形態では、レンズ122は、
図1の拡大図に示すように、ソースビーム155の各々を、それぞれの毛細管101に、またはその近くの位置に集束させるように構成され得る。さらに、レンズ122およびビーム分割器118からのソースビーム155は、個々のビーム155が各々互いに平行化されるように構成されてもよい(例えば、
図1の4つのビームはすべて、レンズ122を出た後に、互いに対して平行に移動してもよい)。
【0023】
図1のビーム分割器118からのソースビーム155は、ミラー120によって反射され、毛細管101に方向付けられ得る。例えば、パッケージングの制約を満たすために、4つのビームを毛細管101に方向付けるために、必要に応じて追加のミラーおよび/または回折要素を含めることができる。ビーム分割器118からのビームは、ミラーで反射した後、レンズ122で受容されるまで発散を続ける。ミラー120は、所定の波長での光または所定の波長範囲にわたる光を反射し、一方で、所定の波長または波長範囲外の光または他の電磁放射を伝送するように構成され得る、ダイクロイックミラーなどであり得る。いくつかの実施形態では、例えば、放射源が1つより多い別個の波長または波長範囲を含む場合、ミラー120は、1つより多い所定の波長または波長範囲を有するダイクロイックミラーを備える。図示された実施形態では、ビーム分割器118からのソースビーム155は、ミラー120によって反射され、一方で、光学検出ゾーン121から放出された放射は、ミラー120によって伝送されるか、またはその大部分が伝送される。代替的に、毛細管101の位置をビーム分割器118の光軸に沿って配置してもよく、ミラー120は、光学検出ゾーン121からの放出を反射しながら、励起ビームを伝送するか、またはその大部分を伝送するように構成され得る。
【0024】
放出フィルタ135は、レンズ122とレンズ130との間に配置されてもよく、放射源からの光を遮断または減衰するように構成され、それにより、分光計140が受容する放射源からの光をほぼ除去または低減することができる。特定の実施形態では、レンズ122、130の焦点距離は、1つとは異なる毛細管101の拡大、または毛細管101からの放出放射の拡大を生成する(例えば、拡大または縮小画像を生成する)ように選択される。例えば、レンズ122は、レンズ130のNAの2倍である開口数(NA)を有するように選択されてもよく、その結果、システム倍率は2になる。特定の実施形態では、レンズ122、130は0.4のNAを有し、レンズ130は0.2のNAを有する。いくつかの実施形態では、レンズ122、130の焦点距離またはNAは、(1)所定のサイズまたは直径を有する毛細管アレイ105またはその近くに焦点スポットまたは焦点を提供し、(2)分光計140のNAおよび/または光を分光計140に伝達するために使用される光ファイバシステムのNAに一致する、NAを同時に提供するように選択されてもよい。
【0025】
ソースビーム155は、毛細管101の各々の光学検出ゾーン121内のサンプルを照射して、それぞれの放出、例えば、標的分子または関心のある分子に付着した蛍光色素、プローブ、またはマーカーによって生成される蛍光放出を生成するように構成されている。放出は、標的分子または関心のある分子の存在または量を示すように構成されてもよい。放出は、レンズ122、130または他の何らかの好適な放出光学システムを使用して、平面に焦点を合わせられるか、または再画像化され得る。放出フィルタ135は、放射源112によって生成される励起光などの不要な放射を除去するように構成されてもよい。代替的に、
図1に示されるように、毛細管101からの放出光は、光ファイバ145の入力端または受容端に焦点を合わせられるか、または再画像化され、その後、光ファイバ145によって分光計140に伝搬され得る。各ファイバ145は、毛細管101の対応するものと関連付けられ得る(例えば、そこから放射線を受容する)。次に、光ファイバ145を使用して、毛細管101からの放射は、分光計140に伝達され、そこで波長によって検出器138に分散される。図示された実施形態では、光ファイバ145aからの放出放射は、分光計140の一方の側に入り、光ファイバ145bからの放射は、分光計140の他方の側に入る。このようにして、ファイバ140(または毛細管101)の各々からのスペクトルは、検出器138の異なる部分に方向付けられる。この構成により、複数の毛細管101の各々からのスペクトルを、単一または低減された数のアレイ検出器138で同時に生成および検出できることが有利であることがわかった。検出器138は、毛細管101に含まれるサンプルから放射を受容し、さらに処理され得る放射信号を生成するように構成され得る。例えば、分光計140は、異なる蛍光色素、プローブ、またはマーカーによって形成された信号、例えば、異なるDNAまたはRNA塩基(例えば、アデニン、チミン(またはウラシル)、シトシン、およびグアニン)に対応する色素またはプローブ、マーカーによって形成された信号を分離するように構成されてもよい。
【0026】
システム1000は、データ処理システムを含むコンピュータまたは処理システム160、処理システム160をプログラムするように構成されたコンピュータプログラム製品161、およびディスプレイまたは他の出力デバイス162をさらに備えてもよい。処理システム160を使用して、システム1000からのデータを制御または取得することができ、例えば、1つ以上の電気パラメータ(例えば、放射源電力、検出器供給電力、カソード/アノード電圧、または各毛細管101または毛細管101のグループのうちの1つ以上を通る電流)を監視および/もしくは制御し、または温度もしくは圧力(例えば、システムまたは毛細管101の温度、毛細管101をポリマー溶液で充填するためのポンプまたはシリンジの圧力など)などの様々な実行もしくはプロセスパラメータを測定もしくは制御することができる。処理システム160は、検出システム136に結合されて、例えば、読み取り検出蛍光信号を提供することができる。特定の実施形態では、検出システム136は、検出システム136によって走査された様々な波長で受容された放出の強度に対応する信号を、処理システム160に渡す。コンピュータプログラム製品161は、例えば、米国仮特許出願62/460,700に開示されているように、機器1000の実行中に、機器1000を較正するか、またはスペクトル誤差を補正するために使用され得る、検出システム136から受信したスペクトルデータを処理するように処理システム160を構成するために使用され得る。ディスプレイまたは他の出力デバイス162は、処理システム160に結合され得、例えば、米国仮特許出願第62/463,551号に開示されているように、実行パラメータ値、スペクトルデータ、実行条件データ、実行品質データ、警告フラグなどといったアッセイ、プロセス、試験、または実験に関連するデータを表示または報告するために使用され得る。
【0027】
図4を参照すると、コンピュータまたは処理システム160は、コンピュータプログラム製品161に含まれる命令コードを実行するように構成され得る。コンピュータプログラム製品161は、コンピュータまたは処理システム160などの1つ以上のコンピュータに、本明細書で説明する実施形態によって実行される例示的な方法ステップを達成する処理を実行するように指示する、電子的に読み取り可能な媒体に実行可能コードを備えることができる。電子的に読み取り可能な媒体は、情報を電子的に保存する任意の非一時的な媒体であってもよく、例えば、ネットワーク接続を介して、ローカルまたはリモートでアクセスされてもよい。代替実施形態では、媒体は一時的であってもよい。媒体は、実行可能コードの異なる部分を、異なる位置におよび/または異なる時間で記憶するように各々構成されている、複数の地理的に分散した媒体を含んでもよい。電子的に読み取り可能な媒体内の実行可能な命令コードは、示されたコンピュータまたは処理システム160に、本明細書で説明されている様々な例示的なタスクを実行するように指示する。本明細書で説明するタスクの実行を指示するための実行可能コードは、通常、ソフトウェアまたはファームウェアで実現される。しかしながら、コンピュータまたは他の電子デバイスは、本発明から逸脱することなく、識別されたタスクの多くまたはすべてを実行するために、ハードウェアで実現されるコードを利用できることを当業者は理解するであろう。当業者は、本発明の趣旨および範囲内で例示的な方法を実施する実行可能コードに関する多くの変形形態が見出され得ることを理解するであろう。
【0028】
コンピュータプログラム製品161に含まれるコードまたはコードのコピーは、プロセッサ420による実行のために永続ストレージデバイス470および/またはメモリ410にロードおよび記憶するために、コンピュータまたは処理システム160に通信可能に結合される1つ以上のストレージ永続メディア(別個に図示せず)に常駐していてもよい。コンピュータまたは処理システム160はまた、I/Oサブシステム430および周辺デバイス440(例えば、ディスプレイまたは出力デバイス162)を含む。I/Oサブシステム430、周辺デバイス440、プロセッサ420、メモリ410、および永続ストレージデバイス470は、共通バス450を介して結合されてもよい。永続ストレージデバイス470およびコンピュータプログラム製品161を含み得る他の永続ストレージデバイスのように、メモリ410は、(典型的な揮発性コンピュータメモリデバイスとして実装される場合でも)非一時的な媒体であってもよい。さらに、本明細書で説明する処理を実行するためのコンピュータプログラム製品161を格納することに加えて、メモリ410および/または永続ストレージデバイス470は、本明細書で開示または参照および例示される様々なデータ要素を格納するように構成され得ることを当業者は理解するであろう。
【0029】
当業者は、コンピュータまたは処理システム160が、本発明の実施形態によるコンピュータプログラム製品を実施することができるシステムの一例を示すだけであることを理解するであろう。代替実施形態の一例を挙げると、本発明の実施形態によるコンピュータプログラム製品に含まれる命令の実行は、例えば、分散コンピューティングネットワークのコンピュータなどの複数のコンピュータにわたって分散されてもよい。
【0030】
図5を参照すると、特定の実施形態では、毛細管電気泳動(CE)機器などのサンプル分離システムまたは機器5000は、生体分子を分離するように、例えば、異なる分子の長さに応じて、サンプルのヌクレオチド分子またはサンプルのアミノ酸分子を分離するように構成されている。可能な場合、システム5000の実施形態、ならびにシステム5000と関連付けられた方法、要素、および/またはパラメータ値は、システム1000の実施形態、ならびにシステム1000と関連付けられた方法、要素、および/またはパラメータ値に組み込むことができる。逆に言えば、可能な場合、システム1000の実施形態、ならびにシステム1000と関連付けられた方法、要素、および/またはパラメータ値は、システム5000の実施形態、ならびにシステム5000と関連付けられた方法、要素、および/またはパラメータ値に組み込むことができる。
【0031】
システム5000は、1つ以上の毛細管101、電子または電圧供給部502、1つ以上のカソード503、1つ以上のアノード504、サンプルソース容器505、サンプル宛先容器506、放射源112、検出システム136、ならびにコンピュータプログラム製品161およびディスプレイまたは出力デバイス162によって構成されているデータ処理システムを含む、処理システム160を備える。機器5000は、複数の毛細管101(例えば、
図1に示されるような4つの毛細管101)を含み得る。しかしながら、簡単にするために、
図5には1つの毛細管101のみが示されている。機器5000の構成は、1、2、4、8、10、12、16、24、32、48、65、96、128、256、384、または384を超える毛細管を含み得る。サンプルの分離は、ラボオンチップ上などの、ゲル電気泳動およびマイクロフルイディクスを使用する他の手段でも実行することができる。
【0032】
システム5000は、毛細管電気泳動もしくはその他のサンプル分離アッセイ、実験、またはプロセスを実行するために使用され得る。様々なサンプルまたはサンプル分子515aを含むサンプル混合物または溶液515は、最初にサンプルソース容器505内で調製または送達される。続いて、サンプル混合物515の少なくとも一部分を、例えば、ポンプまたはシリンジを使用して、または毛細管101に電荷または電場を印加することによって、毛細管101のカソード503端にロードする。毛細管101のアノード端部にロードすると、電圧供給部502は、カソード503とアノード504との間に電圧差を生じさせる。電圧差により、負の電荷をもつ色素標識サンプル515aが、サンプルソース容器505からサンプル宛先容器506に移動する。アッセイ、プロセス、試験、または実験中に、様々なサンプル(例えば、ヌクレオチドまたはアミノ酸分子)が、光学検出ゾーン516を通過し、放射源112によって照射されて、それぞれの放出、例えば、標的分子または関心のある分子に取り付けられた蛍光色素、プローブ、またはマーカー蛍光色素によって生成される蛍光放出が生成される。放出は、標的分子または関心のある分子の存在または量を示すように構成されてもよい。より長いおよび/またはより少ない電荷の色素標識サンプル515aは、より短いおよび/またはより高い電荷の色素標識サンプルよりも遅い速度で毛細管101を移動し、それにより、様々な長さおよび電荷のサンプル間にいくらかの分離が生じる。サンプル515aの各々が放射源112によって生成された励起ビームを通過すると、サンプル515aの先頭要素(先頭要素は、例えば、ヌクレオチドであり得る)上の色素は、検出システム136によって検出される蛍光を示す。検出システム136は、検出された蛍光に応答して、処理システム160に信号を提供するために結合されてもよい。特に、検出システム136は、検出システム136によって走査された様々な波長で受容された放出の強度に対応する信号を、処理システム160に渡す。コンピュータプログラム製品161は、受信したスペクトルデータを処理するようにデータ処理システム160を構成し、例えば、米国仮特許出願第62/460,700号に開示されているように、例えば、機器5000の実行中に機器5000を較正して、スペクトル誤差を補正することができる。ディスプレイまたは他の出力デバイス162は、処理システム160に結合され得、例えば、米国仮特許出願第62/463,551号に開示されているように、実行パラメータ値、スペクトルデータ、実行条件データ、実行品質データ、警告フラグなどといったアッセイ、プロセス、試験、または実験に関連するデータを表示または報告するために使用され得る。
【0033】
特定の実施形態では、システム5000は、ポリマーまたはポリマー溶液523を含むポリマーリザーバ522、ポリマーバルブ525、ならびにポリマーリザーバ522からポリマー523を受容するまたは引き出すように、およびポリマー523を毛細管101にポンプまたはロードするように構成されている、ポンプ528(例えば、シリンジ)を備える、送達システム520を備える。送達システム520は、緩衝溶液532を含む緩衝液リザーバ530、および緩衝バルブ535をさらに備える。図示された実施形態では、緩衝リザーバは、1つ以上のアノード504を含む。特定の実施形態では、送達システム520の構成要素の全部または一部は、毛細管101をさらに備えることができるカセットまたはカートリッジ538の一部であり、カートリッジ538はまた、1つ以上のカソード503(例えば、複数の毛細管101の各々に対する1つのカソード503)を備え得る。本発明の実施形態とともに使用するために好適なカセットまたはカートリッジの実施例は、米国仮特許出願第62/463,467号に開示されている。
【0034】
特定の実施形態において、サンプル分離アッセイ、プロセス、試験、または実験は、以下の活動を含む。
●毛細管101のカソード503端を、洗浄/廃棄緩衝溶液541を含む洗浄/廃棄緩衝液容器540に配置する。
●緩衝バルブ535を閉じて、ポリマーバルブ525を開ける。
●ポリマー溶液523を、ポリマーリザーバ522からシリンジ528に吸引する(引き出す)。
●ポリマーバルブ525を閉じる(緩衝バルブ535は閉じたままである)。
●シリンジ528を使用して、ポリマー523を毛細管101に分配(送達)する。
●毛細管101のカソード503端を、サンプルソース容器505内に配置する。
●カソード503からアノード504への電流の流れを誘導することにより、毛細管101のカソード503端にサンプル溶液515の少なくとも一部を引き出す(動電学的注入と称される)。
●毛細管101のカソード503の端を、実行緩衝溶液546を含む実行緩衝液容器545に配置する。
●アノード504と毛細管101との間の電気的結合を提供するために、緩衝バルブ535を開ける(ポリマーバルブ525は閉じたままである)。
●毛細管電気泳動アッセイ、プロセス、試験、または実験を実行する。
●毛細管101のカソード503端を、洗浄/廃棄緩衝容器540に配置する。
●緩衝バルブ535を閉じる。
●任意選択的に、ポリマーバルブ525を開ける。
●任意選択的に、ポリマー溶液523を、ポリマーリザーバ522からシリンジ528に吸引する(引き出す)。
●任意選択的に、ポリマーバルブ525が開いている場合は、閉じる。
●シリンジ528を使用して、ポリマー523を毛細管101に分配(送達)することにより、毛細管101を洗浄する。
●新しい分離アッセイ、プロセス、試験、または実験について上記の手順を繰り返す。
【0035】
図6を参照すると、特定の実施形態では、毛細管電気泳動(CE)機器などのシステムまたは機器6000は、生体分子を分離するように、例えば、異なる分子の長さに応じて、サンプルのヌクレオチド分子またはサンプルのアミノ酸分子を分離するように構成されている。可能な場合、システム6000の実施形態、ならびにシステム1000、5000と関連付けられた方法、要素、および/またはパラメータ値は、システム1000、5000の実施形態、ならびにシステム1000、5000と関連付けられた方法、要素、および/またはパラメータ値に組み込まれ得る。逆に言えば、可能な場合、システム1000、5000の実施形態、ならびにシステム6000と関連付けられた方法、要素、および/またはパラメータ値は、システム6000の実施形態、ならびにシステム6000と関連付けられた方法、要素、および/またはパラメータ値に組み込まれ得る。
【0036】
システム6000は、ハウジングまたはエンクロージャ600と、ハウジング600内に配置され得る
図1に示される検出システム136と、を備える。検出システム136は、複数の光ファイバ145を備え、その受容端は、光ファイバマウント603に結合されているか、装着されているか、または取り付けられている。光ファイバ145の受容端は、毛細管101のそれぞれ1つの光学検出ゾーン121からの放射を受容するように構成されている。システム6000はまた、コンピュータ処理システム160、コンピュータプログラム製品161、およびディスプレイまたは他の出力デバイス162を備える。システム6000は、毛細管マウント602に結合されているか、装着されているか、または取り付けられている光学検出ゾーン121を備える、複数の毛細管101をさらに備える。特定の実施形態では、毛細管マウント602は、支持構造体605によって保持または支持されてもよく、支持構造体605は、ベース610に装着され、または取り付けられる。
【0037】
システム6000は、放出光学システム125と、放射源612のいずれかまたはすべてを備える励起光学システム611と、をさらに備える。放出光学システム125は、毛細管101と光ファイバ145の入射端との間の光軸または経路613に沿って配置された、レンズ122、130を備える。レンズ122は、毛細管101の各々からの放出光を収集するように構成されており、レンズ130は、1つ以上の毛細管101の各々からの放出を、光ファイバ145の入力端または受容端にある、またはその近くにある放出光学システム125の画像平面のスポットまたは焦点に再結像するように構成されている。しかしながら、当技術分野で知られている他の光学構成を、これらの目的のために使用してもよい。
【0038】
図7をさらに参照すると、毛細管101および毛細管マウント602は、支持構造体605およびベース610をさらに含み得る、カートリッジまたはカセット615の一部であり得る。ベース610は、カートリッジ615に装着または取り付けられてもよい。カートリッジ615は、システム6000から取り外され、
図6および
図7に示されるカートリッジ615と同じまたは類似するように構成されている、別のカートリッジ615’(図示せず)と交換されてもよい。特定の実施形態では、カートリッジ615’(図示せず)は、同じまたは類似の形態を有するが、カートリッジ615とは変更された要素または異なる要素を含んでもよい。例えば、カートリッジ615’(図示せず)は、カートリッジ615の4つの毛細管101、例えば、1、2、または8つの毛細管101よりも多いまたは少ない毛細管101を有してもよい。
【0039】
毛細管101は、光学検出ゾーン121内の毛細管の部分が互いに対して固定的に配置されるように、毛細管マウント602に結合され、装着され、または取り付けられてもよい。毛細管101と同様の方法で、光ファイバ145は、光ファイバ145の入力端または受容端が互いに対して固定的に配置されるように、光ファイバマウント603に結合され、装着され、または取り付けられてもよい。毛細管101と光ファイバ145の受容端とを固定的に装着すると、光ファイバ145とそれぞれの毛細管101との整合が有利に単純化されることが発見された。この構成は、光ファイバ145と毛細管101との間の整合の精度と耐久性を改善することもわかっている。
【0040】
図6および
図8を参照すると、特定の実施形態では、各毛細管101は、コア材料で作製された毛細管コア801と、毛細管コア801を囲む外側コーティングまたは層802と、を備える。例えば、毛細管コア801は溶融シリカを含んでもよく、外層802はポリイミドコーティングを含んでもよい。毛細管コア801の中心部分は、チャネル803を備え、サンプル溶液および分子が、それを通じて含まれる。そのような実施形態では、例えば、外層802が光学的に不透明または半透明の材料を含む場合、チャネル803に配置される材料への光学アクセスは、光学ゾーン121内の毛細管101の部分に沿って外層802を除去することによって、提供され得る。
図8および
図6の拡大図に示すように、特定の実施形態では、毛細管101は、隣接する毛細管101の外層802が互いに接触または接するように、毛細管マウント602に装着されている。このようにして、チャネル間の間隔を簡単かつ正確に提供および維持できることが発見された。代替的に、所定の厚さのスペーサを、光学検出ゾーン121の各側の少なくとも2つの隣接する毛細管の間に配置してもよい。例えば、異なる厚さのスペーサを隣接する毛細管の異なるセットの間に配置して、隣接する毛細管101間の間隔の精度を高め、かつ/または隣接する毛細管101間に所定の間隔を設けることができる。他の実施形態では、毛細管101は、Vブロックなどの固定具に配置されて、隣接する毛細管101間に所定の間隔を設けることができる。
【0041】
毛細管101の外径は、360マイクロメートルに等しいか、または例えば、363±10マイクロメートルなどの約360マイクロメートルであってもよい。特定の実施形態では、毛細管101の外径は、100マイクロメートル~1000マイクロメートル、例えば、200マイクロメートル~500マイクロメートルである。そのような実施形態では、チャネル803の直径は、2マイクロメートル~700マイクロメートル、例えば、25マイクロメートル~100マイクロメートルであってもよい。特定の実施形態では、外層802の厚さは、12マイクロメートル~24マイクロメートル、例えば、16マイクロメートル~24マイクロメートルである。特定の実施形態では、各毛細管101の外径は、363±10マイクロメートルであり、チャネル803の直径は、50±3マイクロメートルであり、外層802の厚さは、20マイクロメートルである。
【0042】
特定の実施形態では、光ファイバマウント603は、動作または並進ステージ606に結合され、装着され、または取り付けられる。使用中、毛細管101は、以下を含む整合方法を使用して、容易に整合され得る。
●光学検出ゾーン内の毛細管101のうちの1つ以上からの放出を、光ファイバ145のうちのそれぞれ1つ以上を通じて、かつ検出器138に伝達することによって、検出器138からの第1の整合信号を生成する。
●並進ステージ606を使用して、光ファイバマウント603を1回以上、毛細管マウントまたはファイバマウントの1つ以上の異なる位置に移動させる。
●1つ以上の位置の各々において、光学検出ゾーン121内の1つ以上の毛細管101からの放出を、1つ以上の光ファイバ145を通じて検出器138に伝達することによって、検出器138からのそれぞれの整合信号を生成する。
●並進ステージ606を使用して、整合信号に基づいて、毛細管101を複数の毛細管の受容端に整合させる。
【0043】
特定の実施形態では、整合信号は、毛細管101のうちの単一のものからの放出に基づく検出器138からの測定信号を含む。追加的または代替的に、整合信号は、毛細管101のうちの2つ以上からの放出に基づく、例えば、毛細管101のすべてまたは一部からのアベレージ放出に基づく、検出器138からの測定信号を含む。
【0044】
この整合方法は、すべての毛細管が、それぞれの光ファイバ145に同時に整合されること、ならびに、その結果、整合方法が実行されるたびに、検出器138上の同じ対応領域に同時に整合されることを有利に可能にするということが発見された。各毛細管101からの放出が度毎に検出器138上の同じ対応する領域を照射する理由は、各光ファイバ145の出力(または放出または遠位)端が、検出器138に対して固定位置にあるためである。したがって、光ファイバ145の出力端から放出された放出は、度毎に検出器138まで同じ経路を進む。毛細管101を毛細管101の新しいセットと交換する必要があり、かつ整合方法が再実行されると、新しい毛細管101は、毛細管101の古いセットと同じまたはほぼ同じ毛細管間の間隔を有する。したがって、開示された整合方法が再び実行されるとき、検出器138で受容された毛細管101からの放出は、光ファイバ145の同じ出力端から通過する放出のみである。毛細管放出を直接再結像する従来技術のシステム(すなわち、本明細書に開示された光ファイバ構成を使用しないシステム)では、毛細管の新しい交換セットのわずかな変化により、毛細管の新しいセットからの放出が、検出器のわずかに異なる部分上に再結像される。このため、非光ファイバベースのシステムでは、検出器自体を度毎に再較正する必要があり、これは、CCDまたはCMOSアレイ検出器の異なる領域、または例えば、ピクセルの感度が異なるためである。したがって、毛細管101および光ファイバ145の固定装着構成と組み合わせた光ファイバ145の本発明の使用により、毛細管101の交換セットが使用される場合、検出器138の再較正は不要である。
【0045】
図6に示されている例示の実施形態では、並進ステージ606は、上記の整合方法中に光ファイバ145の入力端を横方向に並進または移動させるために使用される。追加的または代替的に、毛細管マウント602は、動作または並進ステージに取り付けられ、並進ステージ606の代わりに、またはそれに加えて移動され得る。他の実施形態では、毛細管101と光ファイバ145との間の相対動作は、放出光学システム125に変更を加えることにより、上記の整合方法中に達成され得る。例えば、方向転換ミラーまたは追加の屈折要素を、毛細管101および光ファイバ145からの光路に配置することができる。次に、方向転換ミラーまたは追加の屈折要素の調整を使用して、毛細管101からの再結像された放出を移動させ、再結像された放出を光ファイバ145の受容端に整合することができる。他の実施形態では、例えば、再結像された放出を、光ファイバ145の入力端に向かってまたは遠ざかるように移動するために、並進ステージ606で上述した横方向の動きの代わりに、またはそれに加えて縦方向の動きを使用して、整合方法を実装し、それにより、光ファイバ145に入る放出の量を増加させることができる。さらに他の実施形態では、放出光学システム125は、例えば、システム6000で使用される毛細管101の異なるセット間の間隔のわずかな変化に対応するために、毛細管101からの再結像された放出の倍率を変更するように構成されている、ズームレンズまたは他の光学要素を備える。
【0046】
特定の実施形態では、上記の整合方法で使用される整合信号は、毛細管101のチャネル803のうちの1つ以上内の水分子、例えば、毛細管電気泳動アッセイ、プロセス、試験、または実験を行うのに使用されるポリマー溶液に含まれる水分子のラマン散乱により生成される。通常はノイズの原因である水分子からのラマン散乱の使用は、この信号が経時的に一定であり、例えば、毛細管101が毛細管電気泳動におけるポリマー溶液の使用で異なる充填の間で一定であるため、上記の整合方法に好適であることが予想外に発見された。この信号源の安定性により、ラマン散乱を使用して検出器138を較正し、ならびに毛細管101と光ファイバ145との間の整合を行うこともできる。そのような実施形態では、ラマン散乱によって生成される信号は、整合方法中またはその後に測定され得、次に、検出器は、検出器138からの測定信号の値に基づいて較正され得る。さらに、水分子からのラマン散乱を使用することにより、システム6000を使用した毛細管電気泳動の実行またはその他のサンプル分離アッセイ、プロセス、試験、または実験のために、サンプルを毛細管101に取り入れる前またはその後に、整合方法を実行することができる。他の実施形態において、整合方法は、サンプル分離アッセイ、プロセス、試験、または実験中に実施され得る。そのような実施形態では、毛細管101のうちの1つ以上からの放出を使用して、アッセイ、プロセス、試験、または実験中の整合を調節することができる。
【0047】
図6、
図9、および
図10を参照すると、特定の実施形態では、システム6000は、毛細管マウント602および/または支持構造体605と係合、インターフェース、または嵌合するように構成されている、光学インターフェース、カバー、または鼻650をさらに備える。
図9に見られるように、ベース610は、ばね901を備えてもよく、それにより、毛細管マウント602および/または支持構造体605は、カートリッジ615がシステム6000内に配置または整合されるときのばね901の圧縮の量によって決定される接触力によって、光学インターフェース650に対して保持され、それに装着され、またはそれと係合され得る。光学インターフェース650は、励起光学システム611の一部である方向転換ミラー652および/または方向転換ミラー654を備えていてもよい。
【0048】
ミラー652、654は、放射源612から毛細管101を通じて、かつビームダンプ658へと、ソース、光源、照射、または励起ビーム655を導くように構成されてもよい。励起光学システム611は、
図6に示されていない他の光学要素、例えば、レンズ、プリズム、偏光子、追加のミラーなどをさらに備えていてもよい。例えば、放射源612と毛細管101の間の光路に沿って1つ以上のレンズを配置して、ソースビーム655を調整し、複数の毛細管101を通過する際に所定の照射特性を提供することができる。
【0049】
経時的な温度変化に起因する毛細管マウント602および/または支持構造体605の光軸613に沿った任意の膨張または収縮が、光軸613の方向への方向転換ミラー652の同じまたはほぼ同じ動作に対して補正されることにより、方向転換ミラー652を光学インターフェース650に装着すると、毛細管101に対するソースビーム655のより安定した整合が有利に提供されることが発見された。したがって、毛細管101を通じるソースビーム655の位置は、温度変化による毛細管のその動きに応じて一定または非常に安定したままである。例えば、ソースビーム655が、放射源612から毛細管101に直接的に(すなわち、最初に方向転換ミラー652で反射することなく)移動した場合、光軸613に対して平行な方向の毛細管101を通じるソースビーム655の位置は、毛細管マウント602および/または支持構造体605の温度変動により毛細管101の位置が変化することに起因して変化する。
【0050】
特定の実施形態において、ソースビーム655は、放射源612から直接的に出ること、または1つ以上の偏光光学素子の使用のいずれかである、直線偏光を含む。サンプル分離アッセイ、プロセス、試験、または実験で使用されるポリマー溶液からの散乱は、(1)毛細管101の長さに対して垂直なソースビーム655の偏光軸、および(2)放出光学システム125の光学軸613が、ソースビーム655の偏光軸に対して平行であるときに、低減または最小化される可能性があることが発見された。ラマン散乱は、望ましくなく、サンプル分離アッセイ、プロセス、試験、または実験中に、サンプルからの蛍光信号にノイズを追加する。通常、サンプルからの蛍光信号は、一般的に偏光感度が低くなる。したがって、偏光基準の検出により、システム6000の使用中に信号対雑音比を高めることができる。
【0051】
本発明の選択された実施形態は、以下を含み得るが、これらに限定されない。
1.実施形態1は、生体分子を分離するためのシステムであって、
サンプル中の生体分子を分離するように構成されている複数の毛細管であって、各毛細管が、毛細管内に電磁放射を通過させるように構成されている検出部分を備える、複数の毛細管と、
毛細管マウントであって、複数の毛細管は、検出部分が互いに対して固定的に配置されるように、毛細管マウントに結合されている、毛細管マウントと、
複数の毛細管に対応する複数の光ファイバであって、各光ファイバが、検出部分のそれぞれ1つからの放出を受容するように構成されている受容端を備える、複数の光ファイバと、
ファイバマウントであって、光ファイバは、光ファイバの受容端が、互いに対して固定的に配置されるように、ファイバマウントに結合されている、ファイバマウントと、
検出部分からの放出を、光ファイバの受容端に方向付けるように構成されている、放出光学システムと、
光検出器であって、複数の毛細管のうちの少なくとも1つからの放出が、光ファイバのうちのそれぞれ少なくとも1つを通じて、かつ光検出器上に伝送されたときに、整合信号を生成するように構成されている、光検出器と、
毛細管マウント、ファイバマウント、または放出光学システムの少なくとも一部分のうちの1つ以上を、複数の位置に移動させるように構成されている、動作ステージと、を備え、
動作ステージが、複数の位置での整合信号の値に基づいて、光ファイバの受容端を、検出部分に整合させるように構成されている、システムを含む。
【0052】
2.放出光学システムは、検出部分と受容端との間の光路に沿って配置された1つ以上のレンズを備える、実施形態1。
【0053】
3.動作ステージは、光ファイバの受容端に対して平行な、および/または検出部分を通過する平面に対して平行な平面内で、動作ステージを並進させるように構成されている、並進ステージを備える、実施形態1または2。
【0054】
4.プロセッサと、
メモリであって、
動作ステージを、複数の位置に移動させ、
各位置について、光検出器からの整合信号のうちの1つ以上のそれぞれの値を捕捉し、
それぞれの値に基づいて、整合位置を決定し、
検出部分が、光ファイバの受容端に整合されるように、動作ステージを整合位置に移動させるための命令でエンコードされたメモリと、をさらに備える、実施形態1~3のいずれか。
【0055】
5.整合信号の値の各々は、
毛細管のうちの少なくとも2つについての光検出器からのアベレージ信号、
毛細管のうちの少なくとも3つについての光検出器からの平均信号、および
毛細管のうちの少なくとも2つの間からの最大放出に対応する、光検出器からの信号、のうちの1つ以上を含む、実施形態4。
【0056】
6.メモリは、毛細管のうちの1つ以上からの放出に対応する光検出器からの信号が、ノイズ信号および/または水分子からのラマン散乱によって生成されない信号であるかどうかを評価するように、さらにエンコードされている、請求項4に記載のシステム。
【0057】
7.第1の電極および第2の電極をさらに備え、電極は、毛細管にわたって電位を生成するように構成されている、実施形態1~6のいずれか。
【0058】
8.各光ファイバは、受容端で光ファイバを囲む外側コーティングを備え、光ファイバの外側コーティングは、放出信号からの光を反射および/または吸収するように構成されており、外側コーティングは、各光ファイバの検出部分内に存在しない、実施形態1~7のいずれか。
【0059】
9.毛細管は、各毛細管が、検出部分の外側の一部分に沿って、複数の毛細管の隣接する毛細管に接触するように、毛細管マウントに結合されている、実施形態1~8のいずれか。
【0060】
10.実施形態10は、生体分子を分離するためのシステムであって、
サンプル中の生体分子を分離するように構成されている複数の毛細管であって、各毛細管が、毛細管内に電磁放射を通過させるように構成されている検出部分を備える、複数の毛細管と、
毛細管マウントであって、毛細管は、検出部分が互いに対して固定的に配置されるように、毛細管マウントに結合されている、毛細管マウントと、
検出部分を照射するように構成されている、電磁放射のソースビームを生成する、放射源と、
毛細管マウントを受容するように構成されているベースであって、ベースが、ソースビームを反射するように、かつ複数の毛細管を通じてソースビームを方向付けるように構成されている、ミラーを備える、ベースと、を備える、システムを含む。
【0061】
11.光検出器と、
複数の毛細管からの放出信号を受容するように、かつ放出信号を、光検出器に方向付けるように構成されている、放出光学システムと、をさらに備える、実施形態10。
【0062】
12.分散光学素子および光検出器を備える、分光計と、
複数の毛細管からの放出信号を受容するように、かつ放出信号を、光検出器に方向付けるように構成されている、放出光学システムと、をさらに備える、実施形態10。
【0063】
13.実施形態13は、生体分子を分離するためのシステムであって、
サンプル中の生体分子を分離するように構成されている複数の毛細管であって、各毛細管が、毛細管内に電磁放射を通過させるように構成されている検出部分を備える、複数の毛細管と、
検出部分を照射するように構成されている、電磁放射のソースビームを生成する、放射源と、を備え、
ソースビームは、偏光軸に沿って配置された直線偏光を有し、
検出部分内のソースビームの偏光軸は、毛細管面に対して垂直である、システムを含む。
【0064】
14.実施形態14は、生体分子を分離するための方法であって、
複数の毛細管を提供することであって、各毛細管が、検出部分を備え、毛細管は、検出部分が互いに対して固定的に配置されるように、毛細管マウントに結合されている、提供することと、
複数の毛細管のそれぞれ1つに対応する複数の光ファイバを提供することであって、各光ファイバが、検出部分のそれぞれ1つからの放出を受容するように構成されている、受容端を備え、光ファイバは、受容端が互いに対して固定的に配置されるように、ファイバマウントに結合されている、提供することと、
毛細管のうちの少なくとも1つの検出部分内の放出を、光ファイバのうちのそれぞれ少なくとも1つを通じて、かつ光検出器に伝達することによって、光検出器からの整合信号の値を生成することと、
毛細管マウントまたはファイバマウントを、1つ以上の異なる位置に1回以上移動させることと、
1つ以上の位置の各々において、少なくとも1つの毛細管の検出部分内の放出を、少なくとも1つの光ファイバを通じて、光検出器に伝達することによって、光検出器からの整合信号のそれぞれの値を生成することと、
整合信号の値に基づいて、毛細管を、複数の光ファイバの受容端に整合させることと、を含む、方法を含む。
【0065】
15.検出部分の各々からの放出を、それぞれの光ファイバの受容端に方向付けるように構成されている、放出光学システムを提供することと、
毛細管マウントもしくはファイバマウント、または放出光学システムのうちの少なくとも1つを、1つ以上の位置に1回以上移動させることと、をさらに含む、実施形態14。
【0066】
16.整合信号の値は、毛細管に含まれるポリマー溶液内の水分子からのラマン散乱放出によって生成される、実施形態14または15。
【0067】
17.整合信号の値は、単一の1つの毛細管からの放出を含む、実施形態14~16のいずれか。
【0068】
18.整合信号の値は、毛細管のうちの2つ以上からの放出のアベレージを含む、実施形態14~17のいずれか。
【0069】
19.蛍光分子を含む1つ以上のサンプルを、複数の毛細管にロードすることと、
毛細管にわたって電位を生成することによって、毛細管を通じて1つ以上のサンプルを伝搬することと、
各検出部分を、電磁放射のソースビームで照射して、検出部分の各々からの複数の放出信号を生成することと、
複数の放出信号に基づいて、分子のヌクレオチド配列を決定することと、をさらに含む、実施形態14~18のいずれか。
【0070】
21.実施形態21は、生体分子を分離するためのシステムであって、
サンプル中の生体分子を分離するように構成されている複数の毛細管であって、毛細管が、光学検出ゾーンを備える、複数の毛細管と、
毛細管マウントであって、毛細管は、光学検出ゾーン内の毛細管の部分が互いに対して固定的に配置されるように、毛細管マウントに結合されている、毛細管マウントと、
複数の毛細管に対応する複数の光ファイバであって、各光ファイバが、光学検出ゾーン内のそれぞれの毛細管からの放出を受容するように構成されている受容端を備える、複数の光ファイバと、
ファイバマウントであって、光ファイバは、光ファイバの受容端が、互いに対して固定的に配置されるように、ファイバマウントに結合されている、ファイバマウントと、
任意選択的に、光学検出ゾーン内の各毛細管からの放出を、それぞれの光ファイバの受容端に方向付けるように構成されている、放出光学システムと、
光検出器であって、毛細管のうちの少なくとも1つからの放出が、光ファイバのうちのそれぞれ少なくとも1つを通じて、かつ光検出器上に伝送されたときに、整合信号を生成するように構成されている、光検出器と、
毛細管マウント、ファイバマウント、または任意の放出光学システムの少なくとも一部分のうちの1つ以上に結合されている、動作ステージと、を備え、
動作ステージおよび光検出器は、動作ステージの複数の位置での整合信号の値に基づいて、光ファイバの受容端を、毛細管に整合させるように構成されている、システムを含む。
【0071】
22.放出光学システムは、光学検出ゾーンと受容端との間の光路に沿って配置された1つ以上のレンズを備える、実施形態21。
【0072】
23.動作ステージは、光ファイバの受容端に対して平行な、および/または光学検出ゾーン内の毛細管の各々を通過する平面に対して平行な平面内で、動作ステージを並進させるように構成されている、並進ステージを備える、実施形態21または22。
【0073】
24.プロセッサと、
メモリであって、
少なくとも1つの毛細管から光学検出ゾーン内への放出のために、光検出器からの第1の整合信号を捕捉し、
動作ステージを、1つ以上の異なる位置に移動させ、
1つ以上の異なる位置の各々について、少なくとも1つの毛細管から光学検出ゾーン内への放出のために、光検出器から1つ以上のそれぞれの整合信号を捕捉し、
整合信号に基づいて、整合位置を決定し、
光学検出ゾーン内の毛細管が、複数の毛細管の受容端に整合されるように、動作ステージを整合位置に移動させるための命令でエンコードされたメモリと、をさらに備える、実施形態21~23のいずれか。
【0074】
25.整合信号は、
毛細管のうちの少なくとも2つについての光検出器からのアベレージ信号、
毛細管のうちの少なくとも3つについての光検出器からの平均信号、および
毛細管のうちの少なくとも2つの間からの最大放出に対応する、光検出器からの信号、のうちの1つ以上を含む、実施形態24。
【0075】
26.メモリは、毛細管のうちの1つ以上からの放出に対応する光検出器からの信号が、ノイズ信号および/または水分子からのラマン散乱によって生成されない信号であるかどうかを評価するように、さらにエンコードされている、請求項24に記載のシステム。
【0076】
27.第1の電極および第2の電極をさらに備え、電極は、毛細管にわたって電位を生成するように構成されている、実施形態21~26のいずれか。
【0077】
28.各光ファイバは、受容端で光ファイバを囲む外側コーティングを備え、光ファイバの外側コーティングは、放出信号からの光を反射および/または吸収するように構成されている、実施形態21~27のいずれか。
【0078】
29.毛細管は、各毛細管が、光学検出ゾーンの外側の一部分に沿って、複数の毛細管の隣接する毛細管に接触するように、毛細管マウントに結合されている、実施形態21~28のいずれか。
【0079】
30.実施形態30は、生体分子を分離するためのシステムであって、
サンプル中の生体分子を分離するように構成されている複数の毛細管であって、各毛細管が、光学検出ゾーンを備える、複数の毛細管と、
毛細管マウントであって、複数の毛細管が、毛細管マウントに固定的に取り付けられている、毛細管マウントと、
光学検出ゾーン内の複数の毛細管を照射するように構成されている、電磁放射のソースビームを生成する、光源と、
毛細管マウントを受容するように構成されているベースであって、ベースが、ソースビームを反射するように、かつ複数の毛細管を通じてソースビームを方向付けるように構成されている、ミラーを備える、ベースと、を備える、システムを含む。
【0080】
31.光検出器と、
複数の毛細管からの放出信号を受容するように、かつ放出信号を、光検出器に方向付けるように構成されている、放出光学システムと、をさらに備える、実施形態30。
【0081】
32.分散光学素子および光検出器を備える、分光計と、
複数の毛細管からの放出信号を受容するように、かつ放出信号を、光検出器に方向付けるように構成されている、放出光学システムと、をさらに備える、実施形態30。
【0082】
33.実施形態33は、生体分子を分離するためのシステムであって、
サンプル中の生体分子を分離するように構成されている複数の毛細管であって、毛細管が、毛細管面を画定する光学検出ゾーンを備える、複数の毛細管と、
光学検出ゾーン内の複数の毛細管を照射するように構成されている、電磁放射のソースビームを生成する、光源と、を備え、
ソースビームの各々は、偏光軸に沿って配置された直線偏光を有し、
光学検出ゾーン内のソースビームの偏光軸は、毛細管面に対して垂直である、システムを含む。
【0083】
34.実施形態34は、生体分子を分離するための方法であって、
光学検出ゾーンを備える複数の毛細管を提供することであって、毛細管は、光学検出ゾーン内の毛細管の部分が互いに対して固定的に配置されるように、毛細管マウントに結合されている、提供することと、
複数の毛細管に対応する複数の光ファイバを提供することであって、各光ファイバが、光学検出ゾーン内のそれぞれの毛細管からの放出を受容するように構成されている、受容端を備え、光ファイバは、受容端が互いに対して固定的に配置されるように、ファイバマウントに結合されている、提供することと、
毛細管のうちの少なくとも1つから光学検出ゾーン内への放出を、光ファイバのうちのそれぞれ少なくとも1つを通じて、かつ光検出器に伝達することによって、光検出器からの第1の整合信号を生成することと、
毛細管マウントまたはファイバマウントのうちの少なくとも1つを、1つ以上の異なる位置に1回以上移動させることと、
1つ以上の位置の各々において、少なくとも1つの毛細管から光学検出ゾーン内への放出を、少なくとも1つの光ファイバを通じて、光検出器に伝達することによって、光検出器からのそれぞれの整合信号を生成することと、
整合信号に基づいて、毛細管を、複数の毛細管の受容端に整合させることと、を含む、方法を含む。
【0084】
35. 光学検出ゾーン内の毛細管の各々からの放出を、それぞれの光ファイバの受容端に方向付けるように構成されている、放出光学システムを提供することと、
毛細管マウントもしくはファイバマウント、または放出光学システムのうちの少なくとも1つを、1つ以上の位置に1回以上移動させることと、をさらに含む、実施形態34または35。
【0085】
36.整合信号は、毛細管に含まれるポリマー溶液内の水分子からのラマン散乱放出によって生成される、実施形態34または35。
【0086】
37.整合信号は、単一の1つの毛細管からの放出を含む、実施形態34~36のいずれか。
【0087】
38.整合信号は、毛細管のうちの2つ以上からの放出のアベレージを含む、実施形態34~37のいずれか。
【0088】
39. 蛍光分子を含む1つ以上のサンプルを、複数の毛細管にロードすることと、
毛細管にわたって電位を生成することによって、毛細管を通じて1つ以上のサンプルを伝搬することと、
光学検出ゾーン内の各毛細管を、電磁放射のソースビームで照射して、毛細管の各々からの放出信号を生成することと、
少なくとも1つのスポットから、光ファイバのうちの少なくとも1つ内への放出信号を受容することと、をさらに含む、実施形態34~38のいずれか。
【0089】
上記は、本発明を実行するように企図されている最良の形態ならびにこれを作成および使用する様式および過程の説明を、当業者が本発明を作成および使用することを可能にするのに十分に明瞭、簡潔、かつ正確な用語で提示している。しかしながら、本発明は、完全に均等である、上述されているものからの変更および代替の構成を受け入れる余地がある。したがって、本発明を、開示されている特定の実施形態に限定することは意図されていない。逆に、本発明は、本発明の主題を特に指摘し明瞭に特許請求する添付の特許請求の範囲によって全体的に表されているような本発明の精神および範囲内に入る変更および代替の構成をカバーするように意図されている。