(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024089390
(43)【公開日】2024-07-03
(54)【発明の名称】電力変換装置、プログラム
(51)【国際特許分類】
H02M 7/12 20060101AFI20240626BHJP
【FI】
H02M7/12 A
H02M7/12 601A
【審査請求】未請求
【請求項の数】6
【出願形態】OL
(21)【出願番号】P 2022204730
(22)【出願日】2022-12-21
(71)【出願人】
【識別番号】000004695
【氏名又は名称】株式会社SOKEN
(71)【出願人】
【識別番号】000004260
【氏名又は名称】株式会社デンソー
(74)【代理人】
【識別番号】100121821
【弁理士】
【氏名又は名称】山田 強
(74)【代理人】
【識別番号】100139480
【弁理士】
【氏名又は名称】日野 京子
(74)【代理人】
【識別番号】100125575
【弁理士】
【氏名又は名称】松田 洋
(74)【代理人】
【識別番号】100175134
【弁理士】
【氏名又は名称】北 裕介
(74)【代理人】
【識別番号】100207859
【弁理士】
【氏名又は名称】塩谷 尚人
(72)【発明者】
【氏名】伊藤 悠二
(72)【発明者】
【氏名】越智 健次
(72)【発明者】
【氏名】金 寛烈
(72)【発明者】
【氏名】中村 公計
【テーマコード(参考)】
5H006
【Fターム(参考)】
5H006CA02
5H006CB01
5H006CC01
5H006DA02
5H006DA04
5H006DB01
5H006DC02
5H006DC05
(57)【要約】
【課題】体格増加の抑制を図った電力変換装置及び電力変換装置のスイッチング制御を行うためのプログラムを提供する。
【解決手段】電力変換装置10は、各上アームスイッチS1H~S4H、各下アームスイッチS1L~S4L、直流側コンデンサ50及び第1~第3インダクタ61~63を備えている。電力変換装置10は、各直流端子TdcH,TdcLから出力される直流電力の脈動を低減するための補償用コンデンサ70と、直流側コンデンサ50に対する補償用コンデンサ70の並列接続の有無を切り替えるバイパススイッチ80とを備えている。
【選択図】
図1
【特許請求の範囲】
【請求項1】
複数相の交流端子(Tac1~Tac4)と、
高電位側直流端子(TdcH)及び低電位側直流端子(TdcL)と、
を備え、
複数相の交流電流を流す複数相交流部(43)又は単相交流電流を流す単相交流部(41)が前記交流端子に接続可能に構成された電力変換装置(10)において、
各相に対応して設けられた上,下アームスイッチ(S1H~S3L)と、
各相の前記上アームスイッチの高電位側端子及び前記高電位側直流端子を接続する高電位側経路(LH)と、
各相の前記下アームスイッチの低電位側端子及び前記低電位側直流端子を接続する低電位側経路(LL)と、
前記高電位側経路及び前記低電位側経路を接続する直流側蓄電部(50)と、
各相に対応して設けられ、前記上アームスイッチ及び前記下アームスイッチの接続点と前記交流端子とを接続する電気経路(51~53)と、
各相の前記電気経路に設けられたインダクタ(61~63)と、
前記交流端子に前記単相交流部が接続されている場合において、前記高電位側直流端子及び前記低電位側直流端子から出力される直流電流の脈動を低減する補償用蓄電部(70,170,270,370)と、
前記直流側蓄電部に対する前記補償用蓄電部の並列接続の有無を切り替えるバイパススイッチ(80,181,182,280,380)と、
を備える、電力変換装置。
【請求項2】
前記交流端子として、第1交流端子(Tac1)、第2交流端子(Tac2)、第3交流端子(Tac3)及び第4交流端子(Tac4)が備えられ、
前記第1交流端子、前記第2交流端子及び前記第3交流端子に、前記複数相交流部としての3相交流部が接続可能であり、前記第1交流端子及び前記第4交流端子に前記単相交流部が接続可能なように前記電力変換装置が構成されており、
前記上,下アームスイッチとして、
第1上アームスイッチ(S1H)及び第1下アームスイッチ(S1L)と、
第2上アームスイッチ(S2H)及び第2下アームスイッチ(S2L)と、
第3上アームスイッチ(S3H)及び第3下アームスイッチ(S3L)と、
が備えられ、
前記電気経路として、
前記第1上アームスイッチ及び前記第1下アームスイッチの接続点と前記第1交流端子とを接続する第1経路(51)と、
前記第2上アームスイッチ及び前記第2下アームスイッチの接続点と前記第2交流端子とを接続する第2経路(52)と、
前記第3上アームスイッチ及び前記第3下アームスイッチの接続点と前記第3交流端子とを接続する第3経路(53)と、
が備えられ、
前記インダクタとして、
前記第1経路に設けられた第1インダクタ(61)と、
前記第2経路に設けられた第2インダクタ(62)と、
前記第3経路に設けられた第3インダクタ(63)と、
が備えられ、
第4上アームスイッチ(S4H)及び第4下アームスイッチ(S4L)と、
接続経路(54)と、
前記接続経路に設けられた単相充電スイッチ(55)と、
補償用スイッチ(71)と、
を備え、
前記第4上アームスイッチの高電位側端子は、前記高電位側経路に接続されており、
前記第4下アームスイッチの低電位側端子は、前記低電位側経路に接続されており、
前記接続経路は、前記第4上アームスイッチ及び前記第4下アームスイッチの接続点と前記第4交流端子とを接続し、
前記第3経路のうち前記第3インダクタよりも前記第3交流端子側の部分には、前記補償用スイッチを介して前記補償用蓄電部(70)の第1端が接続されており、
前記補償用蓄電部の第2端には、前記低電位側経路又は前記高電位側経路が接続されており、
前記低電位側経路及び前記高電位側経路のうち前記補償用蓄電部が接続されていない方の経路と、前記補償用蓄電部及び前記補償用スイッチの接続点とが前記バイパススイッチ(80)により接続されている、請求項1に記載の電力変換装置。
【請求項3】
前記直流側蓄電部の容量は、前記補償用蓄電部の容量よりも小さい、請求項2に記載の電力変換装置。
【請求項4】
制御部(100)を備え、
前記制御部は、
前記第1交流端子及び前記第4交流端子に前記単相交流部が接続されていると判定した場合、前記単相充電スイッチ及び前記補償用スイッチをオンするとともに、前記バイパススイッチをオフし、
前記第1交流端子、前記第2交流端子及び前記第3交流端子に前記3相交流部が接続されていると判定した場合、前記単相充電スイッチ及び前記補償用スイッチをオフするとともに、前記バイパススイッチをオンする、請求項2又は3に記載の電力変換装置。
【請求項5】
前記制御部は、
前記第1交流端子、前記第2交流端子及び前記第3交流端子に前記3相交流部が接続されているとともに、前記高電位側直流端子及び前記低電位側直流端子から入力された直流電力を交流電力に変換して前記第1交流端子、前記第2交流端子及び前記第3交流端子から出力する状況であると判定した場合、前記単相充電スイッチ及び前記補償用スイッチをオフするとともに、前記バイパススイッチをオンし、
前記第1交流端子、前記第2交流端子及び前記第3交流端子に前記3相交流部が接続されているとともに、前記第1交流端子、前記第2交流端子及び前記第3交流端子から入力された交流電力を直流電力に変換して前記高電位側直流端子及び前記低電位側直流端子から出力する状況であると判定した場合、前記単相充電スイッチ、前記補償用スイッチ及び前記バイパススイッチをオフする、請求項4に記載の電力変換装置。
【請求項6】
第1交流端子(Tac1)、第2交流端子(Tac2)、第3交流端子(Tac3)及び第4交流端子(Tac4)と、
高電位側直流端子(TdcH)及び低電位側直流端子(TdcL)と、
コンピュータ(101)と、
を備え、
3相交流電流を流す3相交流部(43)が前記第1交流端子、前記第2交流端子及び前記第3交流端子に接続可能であり、単相交流電流を流す単相交流部(41)が前記第1交流端子及び前記第4交流端子に接続可能なように構成された電力変換装置(10)に適用されるプログラムにおいて、
前記電力変換装置は、
第1上アームスイッチ(S1H)及び第1下アームスイッチ(S1L)と、
第2上アームスイッチ(S2H)及び第2下アームスイッチ(S2L)と、
第3上アームスイッチ(S3H)及び第3下アームスイッチ(S3L)と、
第4上アームスイッチ(S4H)及び第4下アームスイッチ(S4L)と、
前記第1,第2,第3上アームスイッチの高電位側端子及び前記高電位側直流端子を接続する高電位側経路(LH)と、
前記第1,第2,第3下アームスイッチの低電位側端子及び前記低電位側直流端子を接続する低電位側経路(LL)と、
前記高電位側経路及び前記低電位側経路を接続する直流側蓄電部(50)と、
前記第1上アームスイッチ及び前記第1下アームスイッチの接続点と前記第1交流端子とを接続する第1経路(51)と、
前記第2上アームスイッチ及び前記第2下アームスイッチの接続点と前記第2交流端子とを接続する第2経路(52)と、
前記第3上アームスイッチ及び前記第3下アームスイッチの接続点と前記第3交流端子とを接続する第3経路(53)と、
前記第1経路に設けられた第1インダクタ(61)と、
前記第2経路に設けられた第2インダクタ(62)と、
前記第3経路に設けられた第3インダクタ(63)と、
補償用蓄電部(70)と、
接続経路(54)と、
前記接続経路に設けられた単相充電スイッチ(55)と、
補償用スイッチ(71)と、
バイパススイッチ(80)と、
を備え、
前記第4上アームスイッチの高電位側端子は、前記高電位側経路に接続されており、
前記第4下アームスイッチの低電位側端子は、前記低電位側経路に接続されており、
前記接続経路は、前記第4上アームスイッチ及び前記第4下アームスイッチの接続点と前記第4交流端子とを接続し、
前記第3経路のうち前記第3インダクタよりも前記第3交流端子側の部分には、前記補償用スイッチを介して前記補償用蓄電部の第1端が接続されており、
前記補償用蓄電部の第2端には、前記低電位側経路又は前記高電位側経路が接続されており、
前記低電位側経路及び前記高電位側経路のうち前記補償用蓄電部が接続されていない方の経路と、前記補償用蓄電部及び前記補償用スイッチの接続点とが前記バイパススイッチにより接続されており、
前記コンピュータに、
前記第1交流端子及び前記第4交流端子に前記単相交流部が接続されていると判定した場合、前記単相充電スイッチ及び前記補償用スイッチをオンするとともに、前記バイパススイッチをオフする処理と、
前記第1交流端子、前記第2交流端子及び前記第3交流端子に前記3相交流部接続されていると判定した場合、前記単相充電スイッチ及び前記補償用スイッチをオフするとともに、前記バイパススイッチをオンする処理と、
を実行させる、プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電力変換装置及びプログラムに関する。
【背景技術】
【0002】
従来、特許文献1に記載されているように、3相交流電源及び単相交流電源の双方に対応した電力変換装置が知られている。この電力変換装置は、3相それぞれに対応して設けられた上,下アームスイッチを備えている。各相の上アームスイッチの高電位側端子は、高電位側直流端子に接続され、各相の下アームスイッチの低電位側端子は、低電位側直流端子に接続されている。高電位側経路及び低電位側経路は直流側コンデンサによって接続されている。
【0003】
電力変換装置は、各相に対応して設けられたインダクタと、1相に対応して設けられた補償用コンデンサ及び切替スイッチとを備えている。切替スイッチの操作により、補償用コンデンサは、1相分のインダクタ及び下アームスイッチの直列接続体に並列接続されたり、この直列接続体から切り離されたりする。
【0004】
入力側となる交流端子に単相交流電源が電気的に接続される場合、インダクタ及び下アームスイッチの直列接続体に補償用コンデンサが並列接続されるように切替スイッチが操作される。この操作状態において、補償用コンデンサが接続された相の上,下アームスイッチのスイッチング制御が行われる。その結果、交流端子から入力された交流電力を直流電力に変換して直流端子から出力する場合において、直流端子から出力される直流電力の脈動を低減できる。これにより、直流側コンデンサの静電容量を低減でき、直流側コンデンサの小型化を図っている。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
交流端子に3相交流電源が電気的に接続される場合、インダクタ及び下アームスイッチの直列接続体から補償用コンデンサが切り離されるように切替スイッチが操作される。この場合、直流電力の脈動を低減するために補償用コンデンサを用いることができなくなる。その結果、直流側コンデンサの静電容量を大きくする必要が生じ、電力変換装置の体格が増加し得る。
【0007】
本発明は、電力変換装置の体格増加の抑制を図ることを主たる目的とする。
【課題を解決するための手段】
【0008】
本発明は、複数相の交流端子と、
高電位側直流端子及び低電位側直流端子と、
を備え、
複数相の交流電流を流す複数相交流部(例えば、3相交流電源又は3相交流負荷)又は単相交流電流を流す単相交流部(例えば、単相交流電源又は単相交流負荷)が前記交流端子に接続可能に構成された電力変換装置において、
各相に対応して設けられた上,下アームスイッチと、
各相の前記上アームスイッチの高電位側端子及び前記高電位側直流端子を接続する高電位側経路と、
各相の前記下アームスイッチの低電位側端子及び前記低電位側直流端子を接続する低電位側経路と、
前記高電位側経路及び前記低電位側経路を接続する直流側蓄電部と、
各相に対応して設けられ、前記上アームスイッチ及び前記下アームスイッチの接続点と前記交流端子とを接続する電気経路と、
各相の前記電気経路に設けられたインダクタと、
前記交流端子に前記単相交流部が接続されている場合において、前記高電位側直流端子及び前記低電位側直流端子から出力される直流電流の脈動を低減する補償用蓄電部と、
前記直流側蓄電部に対する前記補償用蓄電部の並列接続の有無を切り替えるバイパススイッチと、
を備える。
【0009】
本発明は、直流側蓄電部に対する補償用蓄電部の並列接続の有無を切り替えるバイパススイッチを備えている。交流端子に複数相交流部が接続されている場合において、直流側蓄電部に対して補償用蓄電部が並列接続されるようにバイパススイッチが操作される。このため、交流端子に単相交流部が接続されている場合に直流電力の脈動を低減するための補償用蓄電部を平滑コンデンサとして用いることができる。その結果、直流側蓄電部の静電容量の増加を抑制することができ、ひいては電力変換装置の体格増加の抑制を図ることができる。
【図面の簡単な説明】
【0010】
【
図1】第1実施形態に係る車載充電器の全体構成図。
【
図2】第1,第2DCDCコンバータの一例を示す図。
【
図3】蓄電池の充放電制御の手順を示すフローチャート。
【
図10】単相充電制御時における電流,電圧等の推移を示すタイムチャート。
【
図11】電流アンバランスの改善効果を示すタイムチャート。
【
図12】各コンデンサの体格低減効果の一例を示す図。
【
図13】第2実施形態に係る蓄電池の充放電制御の手順を示すフローチャート。
【
図14】第3実施形態に係る車載充電器の全体構成図。
【
図15】第4実施形態に係る車載充電器の全体構成図。
【
図16】蓄電池の充放電制御の手順を示すフローチャート。
【
図17】第5実施形態に係る車載充電器の全体構成図。
【
図18】蓄電池の充放電制御の手順を示すフローチャート。
【
図19】単相充放電時における車載充電器を示す図。
【
図20】3相充放電時における車載充電器を示す図。
【
図21】その他の実施形態に係る車載充電器の全体構成図。
【
図22】その他の実施形態に係る車載充電器の全体構成図。
【発明を実施するための形態】
【0011】
図面を参照しながら、複数の実施形態を説明する。複数の実施形態において、機能的に及び/又は構造的に対応する部分及び/又は関連付けられる部分には同一の参照符号、又は百以上の位が異なる参照符号が付される場合がある。対応する部分及び/又は関連付けられる部分については、他の実施形態の説明を参照することができる。
【0012】
<第1実施形態>
以下、本発明に係る電力変換装置を具体化した第1実施形態について、図面を参照しつつ説明する。本実施形態に係る電力変換装置は、電気自動車などの車両に備えられ、具体的には車載充電器を構成するAC-DCコンバータである。車載充電器は、オンボードチャージャとも呼ばれる。
【0013】
電力変換装置は、交流端子及び直流端子を備えている。電力変換装置は、車両外部の交流電源に接続された交流端子を介して入力された交流電力を直流電力に変換して直流端子から出力する機能を備えている。直流端子から出力された直流電力は、車両に備えられた蓄電池に供給される。また、電力変換装置は、直流端子から入力された直流電力を交流電力に変換して交流端子から出力する機能を備えている。交流端子から出力された交流電力は、外部の交流電源を介して外部の電力系統に供給される。電力変換装置は、3相交流電源又は単相交流電源に接続可能である。
【0014】
図1に示すように、電力変換装置10は、交流端子として第1交流端子Tac1、第2交流端子Tac2、第3交流端子Tac3及び第4交流端子Tac4を備えている。第1~第4交流端子Tac1~Tac4のうち第1~第3交流端子Tac1~Tac3は、
図4に示すように、外部の3相交流電源43に接続可能である。第1~第4交流端子Tac1~Tac4のうち第1,第4交流端子Tac1,Tac4は、
図5に示すように、外部の単相交流電源41に接続可能である。
【0015】
電力変換装置10は、直流端子として高電位側直流端子TdcH及び低電位側直流端子TdcLを備えている。高電位側直流端子TdcH及び低電位側直流端子TdcLは、車載充電器を構成する第1DCDCコンバータ20に接続されている。第1DCDCコンバータ20は、車載充電器を構成する第2DCDCコンバータ30に接続されている。第2DCDCコンバータ30は、車両に搭載された充放電可能な蓄電池40に接続されている。
【0016】
第1DCDCコンバータ20は、高電位側直流端子TdcH及び低電位側直流端子TdcLから入力された直流電圧を変圧し、変圧した直流電圧を第2DCDCコンバータ30に出力する。また、第1DCDCコンバータ20は、第2DCDCコンバータ30から入力された直流電圧を変圧し、変圧した直流電圧を高電位側直流端子TdcH及び低電位側直流端子TdcLに出力する。第1DCDCコンバータ20は、例えば、
図2に示すように、絶縁型のDCDCコンバータである。
図2に示す例では、第1DCDCコンバータ20は、DAB(Dual Active Bridge)方式のものであり、第1フルブリッジ回路21と、第2フルブリッジ回路23と、各フルブリッジ回路21,23の間の電力伝達を行うトランス22とを備えている。トランス22は、第1フルブリッジ回路21に接続された第1コイル22A、第2フルブリッジ回路23に接続された第2コイル22B、及び各コイル22A,22Bと磁気結合するコア22Cを備えている。なお、第1DCDCコンバータ20は、他の方式(例えばLLC方式)のものであってもよい。
【0017】
図2に示す例では、第2DCDCコンバータ30は、上,下アーム変圧用スイッチ31H,31L、第1コンデンサ32、インダクタ33及び第2コンデンサ34を備えている。第2DCDCコンバータ30は、第1DCDCコンバータ20から入力された直流電圧を降圧し、降圧した直流電圧を蓄電池40に出力する。また、第2DCDCコンバータ30は、蓄電池40から入力された直流電圧を昇圧し、昇圧した直流電圧を第2DCDCコンバータ30に出力する。
【0018】
図1の説明に戻り、電力変換装置10は、4相分の上,下アームスイッチとして、第1上アームスイッチS1H及び第1下アームスイッチS1Lの直列接続体と、第2上アームスイッチS2H及び第2下アームスイッチS2Lの直列接続体と、第3上アームスイッチS3H及び第3下アームスイッチS3Lの直列接続体と、第4上アームスイッチS4H及び第4下アームスイッチS4Lの直列接続体とを備えている。本実施形態において、各上,下アームスイッチS1H~S4Lは、ボディダイオードを有するNチャネルMOSFETである。このため、各上,下アームスイッチS1H~S4Lにおいて、高電位側端子はドレインであり、低電位側端子はソースである。第1~第3相のうち、例えば、第1相がU相であり、第2相がV相であり、第3相がW相である。
【0019】
電力変換装置10は、第1,第2,第3,第4上アームスイッチS1H,S2H,S3H,S4Hの高電位側端子と高電位側直流端子TdcHとを接続する電気経路である高電位側経路LHと、第1,第2,第3,第4下アームスイッチS1L,S2L,S3L,S4Lの低電位側端子と低電位側直流端子TdcLとを接続する電気経路である低電位側経路LLとを備えている。高電位側経路LH及び低電位側経路LLは、例えばバスバー等の導電部材である。
【0020】
電力変換装置10は、高電位側経路LHと低電位側経路LLとを接続する直流側コンデンサ50(「直流側蓄電部」に相当)を備えている。直流側コンデンサ50は、平滑コンデンサとして機能し、例えば電解コンデンサである。
【0021】
電力変換装置10は、第1経路51、第2経路52及び第3経路53を備えている。第1経路51は、第1上アームスイッチS1Hの低電位側端子及び第1下アームスイッチS1Lの高電位側端子と、第1交流端子Tac1とを接続する電気経路である。第2経路52は、第2上アームスイッチS2Hの低電位側端子及び第2下アームスイッチS2Lの高電位側端子と、第2交流端子Tac2とを接続する電気経路である。第3経路53は、第3上アームスイッチS3Hの低電位側端子及び第3下アームスイッチS3Lの高電位側端子と、第3交流端子Tac3とを接続する電気経路である。
【0022】
電力変換装置10は、第1経路51に設けられた第1インダクタ61、第2経路52に設けられた第2インダクタ62、及び第3経路53に設けられた第3インダクタ63を備えている。なお、各インダクタ61~63のインダクタンス値が同じ値であってもよく、各インダクタ61~63の定格電流(具体的には、温度上昇定格電流)が同じ値であってもよい。
【0023】
電力変換装置10は、第4上アームスイッチS4Hの低電位側端子及び第4下アームスイッチS4Lの高電位側端子と、第4交流端子Tac4とを接続する電気経路である接続経路54を備えている。電力変換装置10は、接続経路54に設けられた第1単相充電スイッチ55を備えている。第1単相充電スイッチ55は、オンされている場合に双方向の電流の流通を許可し、オフされている場合に双方向の電流の流通を阻止する。
【0024】
電力変換装置10は、第2単相充電スイッチ56を備えている。第2単相充電スイッチ56は、第1経路51のうち第1インダクタ61よりも第1交流端子Tac1側の部分と、第2経路52のうち第2インダクタ62よりも第2交流端子Tac2側の部分とを接続する。第2単相充電スイッチ56は、オンされている場合に双方向の電流の流通を許可し、オフされている場合に双方向の電流の流通を阻止する。
【0025】
電力変換装置10は、第1遮断スイッチ57、第2遮断スイッチ58及び第3遮断スイッチ59を備えている。第1遮断スイッチ57は、第1経路51のうち、第2単相充電スイッチ56との接続点と、第1交流端子Tac1との間に設けられている。第2遮断スイッチ58は、第2経路52のうち、第2単相充電スイッチ56との接続点と、第2交流端子Tac2との間に設けられている。第3遮断スイッチ59は、第3経路53のうち、第3インダクタ63と第3交流端子Tac3との間に設けられている。各遮断スイッチ57,58,59は、オンされている場合に双方向の電流の流通を許可し、オフされている場合に双方向の電流の流通を阻止する。
【0026】
電力変換装置10は、各直流端子TdcH,TdcLから出力される直流電力の脈動を低減するための構成として、補償用コンデンサ70(「補償用蓄電部」に相当)及び補償用スイッチ71の直列接続体を備えている。第3経路53のうち第3遮断スイッチ59よりも第3インダクタ63側の部分には、補償用スイッチ71が接続されている。補償用スイッチ71には、補償用コンデンサ70の第1端が接続され、補償用コンデンサ70の第2端には、低電位側経路LLが接続されている。補償用コンデンサ70は、例えばフィルムコンデンサである。補償用スイッチ71は、オンされている場合に双方向の電流の流通を許可し、オフされている場合に双方向の電流の流通を阻止する。
【0027】
電力変換装置10は、直流側コンデンサ50に対して補償用コンデンサ70を並列接続するためのバイパススイッチ80を備えている。バイパススイッチ80は、補償用スイッチ71及び補償用コンデンサ70を接続する電気経路と、高電位側経路LHとを接続する。バイパススイッチ80は、オンされている場合に双方向の電流の流通を許可し、オフされている場合に双方向の電流の流通を阻止する。
【0028】
電力変換装置10は、直流側電圧センサ90、交流側電圧センサ91及び補償用電圧センサ92を備えている。直流側電圧センサ90は、直流側コンデンサ50の端子電圧を検出し、交流側電圧センサ91は、第1交流端子Tac1と第4交流端子Tac4との電圧差を検出し、補償用電圧センサ92は、補償用コンデンサ70の端子電圧を検出する。
【0029】
電力変換装置10は、第1~第3電流センサ93A~93Cを備えている。第1電流センサ93Aは、第1インダクタ61に流れる電流を検出し、第2電流センサ93Bは、第2インダクタ62に流れる電流を検出し、第3電流センサ93Cは、第3インダクタ63に流れる電流を検出する。各センサ90~92,93A~93Cの検出値は、電力変換装置10が備える制御部としての制御装置100に入力される。
【0030】
制御装置100は、マイコン101を主体として構成され、マイコン101は、CPUを備えている。マイコン101が提供する機能は、実体的なメモリ装置に記録されたソフトウェア及びそれを実行するコンピュータ、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの組合せによって提供することができる。例えば、マイコン101がハードウェアである電子回路によって提供される場合、それは多数の論理回路を含むデジタル回路、又はアナログ回路によって提供することができる。例えば、マイコン101は、自身が備える記憶部としての非遷移的実体的記録媒体(non-transitory tangible storage medium)に格納されたプログラムを実行する。プログラムには、例えば、後述する
図3,6~9等に示す処理のプログラムが含まれる。プログラムが実行されることにより、プログラムに対応する方法が実行される。記憶部は、例えば不揮発性メモリである。なお、記憶部に記憶されたプログラムは、例えばOTA(Over The Air)等、インターネット等の通信ネットワークを介して更新可能である。
【0031】
制御装置100は、交流端子からの入力電力を電力変換装置10、第1DCDCコンバータ20及び第2DCDCコンバータ30を介して蓄電池40に供給する充電制御、又は蓄電池40からの入力電力を第2DCDCコンバータ30、第1DCDCコンバータ20及び電力変換装置10を介して交流端子から出力する放電制御を行う。この際、第1DCDCコンバータ20及び第2DCDCコンバータ30は、制御装置100によりスイッチング制御される。なお、電力変換装置10、第1DCDCコンバータ20及び第2DCDCコンバータ30のそれぞれは、個別の制御装置により制御され得る。ただし、個別に制御されることは要部ではないため、
図1には、電力変換装置10、第1DCDCコンバータ20及び第2DCDCコンバータ30を制御する制御装置100が1つ示されている。
【0032】
図4に示すように、第1~第3交流端子Tac1~Tac3には、EVSE(Electric Vehicle Service Equipment)42を介して3相交流電源43(「複数相交流部,3相交流部」に相当)が電気的に接続可能である。3相交流電源43は、例えば系統電源である。3相交流電源43において、3相の出力電圧の振幅及び周波数は同じであり、出力電圧及び出力電流の位相は各相で120°ずつずれている。図示しないが、第1~第3交流端子Tac1~Tac3には、EVSE42を介して3相交流負荷(「3相交流部」に相当)が電気的に接続可能である。なお、
図4では、3相交流電源43の中性点が第4交流端子Tac4に接続されているが、中性点が第4交流端子Tac4に接続されていなくてもよい。
【0033】
図5に示すように、第1交流端子Tac1及び第4交流端子Tac4には、EVSE42を介して単相交流電源41(「単相交流部」に相当)が電気的に接続可能である。本実施形態において、単相交流電源41の出力電圧の振幅は3相交流電源43の出力電圧の振幅と同じである。また、単相交流電源41の出力電圧の周波数は3相交流電源43の出力電圧の周波数と同じである。図示しないが、第1交流端子Tac1及び第4交流端子Tac4には、EVSE42を介して単相交流負荷(「単相交流部」に相当)が電気的に接続可能である。
【0034】
制御装置100は、3相/単相充電制御又は3相/単相放電制御を行う。以下、
図3のフローチャートを用いて、この制御について説明する。
【0035】
ステップS10では、3相充電制御又は3相放電制御の指示がなされているか否かを判定する。例えば、EVSE42が備える処理部(例えばマイコン)からCAN通信等を介して送信される指示に基づいて、3相充電制御又は3相放電制御の指示がなされているか否かを判定すればよい。
【0036】
3相充電制御は、電力変換装置10、第1DCDCコンバータ20及び第2DCDCコンバータ30それぞれのスイッチング制御により、3相交流電源43からの電力を蓄電池40に充電する制御である。
【0037】
3相放電制御は、第2DCDCコンバータ30、第1DCDCコンバータ20及び電力変換装置10それぞれのスイッチング制御により、蓄電池40からの電力を車両外部の系統電源である3相交流電源43に供給する制御である。この制御は、V2G(Vehicle to Grid)とも呼ばれる。また、3相放電制御は、第2DCDCコンバータ30、第1DCDCコンバータ20及び電力変換装置10それぞれのスイッチング制御により、蓄電池40からの電力を3相交流負荷に供給する制御である。3相交流負荷が住居等の建物の電気機器の場合、この制御は、V2H(Vehicle to Home)とも呼ばれる。
【0038】
ステップS10において否定判定した場合には、ステップS11に進み、単相充電制御又は単相放電制御の指示がなされているか否かを判定する。例えば、EVSE42の処理部から送信される指示に基づいて、単相充電制御又は単相放電制御の指示がなされているか否かを判定すればよい。
【0039】
単相充電制御は、電力変換装置10、第1DCDCコンバータ20及び第2DCDCコンバータ30それぞれのスイッチング制御により、単相交流電源41からの電力を蓄電池40に充電する制御である。
【0040】
単相放電制御は、第2DCDCコンバータ30、第1DCDCコンバータ20及び電力変換装置10それぞれのスイッチング制御により、蓄電池40からの電力を単相交流負荷に供給する制御である。単相交流負荷が住居等の建物の電気機器の場合、この制御は、V2Hとも呼ばれる。
【0041】
ステップS11において肯定判定した場合には、ステップS12に進み、
図5に示すように、第1単相充電スイッチ55、第2単相充電スイッチ56、第1遮断スイッチ57及び補償用スイッチ71をオンにする。また、第2遮断スイッチ58、第3遮断スイッチ59及びバイパススイッチ80をオフにする。
【0042】
ステップS13では、単相充電制御又は単相放電制御を行う。まず、単相充電制御について説明すると、第1交流端子Tac1及び第4交流端子Tac4から入力された交流電力を直流電力に変換して高電位側直流端子TdcH及び低電位側直流端子TdcLから出力すべく、第1上アームスイッチS1H、第1下アームスイッチS1L、第2上アームスイッチS2H及び第2下アームスイッチS2Lのスイッチング制御を行う。各相において、上アームスイッチと下アームスイッチとは、デッドタイムを挟みつつ、同期して交互にオンされる。各相において、上,下アームスイッチの1スイッチング周期は同じであり、3相充電制御時の1スイッチング周期と同じである。
【0043】
また、高電位側直流端子TdcH及び低電位側直流端子TdcLから出力される直流電力の脈動を低減すべく、第3上アームスイッチS3H及び第3下アームスイッチS3Lのスイッチング制御を行う。第3上アームスイッチS3Hと第3下アームスイッチS3Lとは、デッドタイムを挟みつつ交互にオンされる。第3上,下アームスイッチS3H,S3Lの1スイッチング周期は同じであり、第1,第2上、下アームスイッチS1H,S1L,S2H,S2Lの1スイッチング周期と同じである。
【0044】
また、単相充電制御において、第4交流端子Tac4から単相交流電源41を介して第1交流端子Tac1へと向かう方向に電流が流れている第1期間において、第4下アームスイッチS4Lをオンするとともに第4上アームスイッチS4Hをオフする。一方、第1交流端子Tac1から単相交流電源41を介して第4交流端子Tac4へと向かう方向に電流が流れている第2期間において、第4上アームスイッチS4Hをオンするとともに第4下アームスイッチS4Lをオフする。現在のタイミングが第1期間及び第2期間のいずれに含まれているかは、例えば、第1電流センサ93Aの検出値に基づいて判定されればよい。
【0045】
なお、第4上,下アームスイッチS4H,S4Lの1スイッチング周期は、単相交流電源41の出力電圧1周期と同じ周期であり、第1,第2,第3上、下アームスイッチS1H,S1L,S2H,S2L,S3H,S3Lの1スイッチング周期よりも長い。これは、第1~第3相については、インダクタ61~63に流れる電流のリプルを低減するための高周波数(例えば、数十kHz~数百kHz)のスイッチングが必要な一方、第4相については、単相交流電源41の出力電圧の基本周波数(例えば、50Hz又は60Hz)と同等の周波数のスイッチングで足りるためである。
【0046】
続いて、単相放電制御について説明すると、高電位側直流端子TdcH及び低電位側直流端子TdcLから入力された直流電力を交流電力に変換して第1交流端子Tac1及び第4交流端子Tac4から出力すべく、第1上アームスイッチS1H、第1下アームスイッチS1L、第2上アームスイッチS2H及び第2下アームスイッチS2Lのスイッチング制御を行う。各相において、上アームスイッチと下アームスイッチとは、デッドタイムを挟みつつ、同期して交互にオンされる。各相において、上,下アームスイッチの1スイッチング周期は同じであり、3相放電制御時の1スイッチング周期と同じである。
【0047】
また、単相放電制御において、第4交流端子Tac4から単相交流電源41を介して第1交流端子Tac1へと向かう方向に電流が流れている第1期間において、第4上アームスイッチS4Hをオンするとともに第4下アームスイッチS4Lをオフする。一方、第1交流端子Tac1から単相交流電源41を介して第4交流端子Tac4へと向かう方向に電流が流れている第2期間において、第4下アームスイッチS4Lをオンするとともに第4上アームスイッチS4Hをオフする。
【0048】
ステップS10において肯定判定した場合には、ステップS14に進み、
図4に示すように、第1遮断スイッチ57、第2遮断スイッチ58、第3遮断スイッチ59及びバイパススイッチ80をオンする。また、第1単相充電スイッチ55、第2単相充電スイッチ56及び補償用スイッチ71をオフにする。なお、第4上アームスイッチS4H及び第4下アームスイッチS4Lもオフにする。
【0049】
ステップS15では、3相充電制御又は3相放電制御を行う。まず、3相充電制御について説明すると、第1交流端子Tac1、第2交流端子Tac2及び第3交流端子Tac3から入力された交流電力を直流電力に変換して高電位側直流端子TdcH及び低電位側直流端子TdcLから出力すべく、第1,第2,第3上アームスイッチS1H,S2H,S3H及び第1,第2,第3下アームスイッチS1L,S2L,S3Lのスイッチング制御を行う。各相において、上アームスイッチと下アームスイッチとはデッドタイムを挟みつつ交互にオンされる。各相において、上,下アームスイッチの1スイッチング周期は同じである。
【0050】
続いて、3相放電制御について説明すると、高電位側直流端子TdcH及び低電位側直流端子TdcLから入力された直流電力を交流電力に変換して第1交流端子Tac1、第2交流端子Tac2及び第3交流端子Tac3から出力すべく、第1,第2,第3上アームスイッチS1H,S2H,S3H及び第1,第2,第3下アームスイッチS1L,S2L,S3Lのスイッチング制御を行う。各相において、上アームスイッチと下アームスイッチとはデッドタイムを挟みつつ交互にオンされる。各相において、上,下アームスイッチの1スイッチング周期は同じである。
【0051】
続いて、3相充電/放電制御について説明する。まず、
図6を用いて、3相充電制御について説明する。
図6は、制御装置100により実行される3相充電制御のブロック図である。電圧制御部110は、直流側電圧センサ90により検出された直流側コンデンサ50の端子電圧(以下、直流電圧検出値Vdcr)を目標直流電圧Vdcrefに制御するためのd軸目標電流Idrefを算出する。詳しくは、電圧制御部110は、電圧偏差算出部111と、電圧フィードバック制御部112とを備えている。電圧偏差算出部111は、目標直流電圧Vdcrefから直流電圧検出値Vdcrを差し引くことにより、電圧偏差ΔVを算出する。目標直流電圧Vdcrefは、例えば、各上,下アームスイッチS1H~S4L及び第1DCDCコンバータ20の定格電圧に基づいて設定されればよい。
【0052】
電圧フィードバック制御部112は、電圧偏差ΔVを0にフィードバック制御するための操作量としてd軸目標電流Idrefを算出する。電圧フィードバック制御部112におけるフィードバック制御は、例えば比例積分制御である。
【0053】
電気角算出部113は、交流側電圧センサ91により検出された電圧(以下、交流電圧検出値V1r)に基づいて、電気角θeを算出する。本実施形態では、交流電圧検出値V1rのゼロクロスタイミング(具体的には例えば、ゼロアップクロスタイミング)の電気角θeを0°とし、次のゼロアップクロスタイミングにおける電気角θeを360°とする。これにより、交流電圧検出値V1rの1周期が電気角1周期(0°~360°)に対応する。本実施形態において、交流電圧検出値V1rは、第4交流端子Tac4の電圧よりも第1交流端子Tac1の電圧が高い場合を正とする。
【0054】
2相変換部114は、第1,第2,第3電流センサ93A,93B,93Cにより検出された電流(以下、第1,第2,第3電流検出値i1r,i2r,i3r)と、電気角θeとに基づいて、3相固定座標系における第1,第2,第3電流検出値i1r,i2r,i3rを、2相回転座標系(dq軸座標系)におけるd,q軸電流Idr,Iqrに変換する。本実施形態において、第1,第2,第3電流検出値i1r,i2r,i3rは、第1,第2,第3交流端子Tac1,Tac2,Tac3側から第1,第2,第3インダクタ61,62,63側に向かって流れる場合を正とする。
【0055】
電流制御部115は、d軸偏差算出部116、d軸フィードバック制御部117、q軸偏差算出部118及びq軸フィードバック制御部119を備えている。
【0056】
d軸偏差算出部116は、d軸目標電流Idrefからd軸電流Idrを差し引くことにより、d軸電流偏差ΔIdを算出する。d軸フィードバック制御部117は、d軸電流偏差ΔIdを0にフィードバック制御するための操作量としてd軸目標電圧Vdrefを算出する。d軸フィードバック制御部117におけるフィードバック制御は、例えば比例積分制御である。
【0057】
q軸偏差算出部118は、q軸目標電流Iqrefからq軸電流Iqrを差し引くことにより、q軸電流偏差ΔIqを算出する。q軸目標電流Iqrefは、無効電流の目標値であり、本実施形態では力率を1にするために0に設定されている。力率を1にするとは、3相交流電源43の第1,第2,第3出力電圧V1,V2,V3と、第1,第2,第3電流検出値i1r,i2r,i3rとの位相差を0にすることである。q軸フィードバック制御部119は、q軸電流偏差ΔIqを0にフィードバック制御するための操作量としてq軸目標電圧Vqrefを算出する。q軸フィードバック制御部119におけるフィードバック制御は、例えば比例積分制御である。
【0058】
3相変換部120は、d,q軸目標電圧Vdref,Vqref及び電気角θeに基づいて、2相回転座標系におけるd,q軸目標電圧Vdref,Vqrefを、3相固定座標系における第1,第2,第3目標電圧Vleg1ref,Vleg2ref,Vleg3refに変換する。第1,第2,第3目標電圧Vleg1ref,Vleg2ref,Vleg3refは、電気角で位相が120°ずつずれており、正弦波状の信号である。正弦波状の信号は、電気角180°毎に0となる信号である。
【0059】
なお、3相変換部120は、第1直流電力P1、第2直流電力P2及び第3直流電力P3が等しくなるように、第1,第2,第3目標電圧Vleg1ref,Vleg2ref,Vleg3refを算出してもよい。第1,第2,第3直流電力P1,P2,P3は、各交流端子Tac1~Tac3と各直流端子TdcH,TdcLとの間を第1,第2,第3インダクタ61,62,63を介して伝達される個別の直流電力である。これにより、第1,第2,第3インダクタ61,62,63に流れる電流の実効値が互いに同等の値(例えば16Arms)になる。
【0060】
PWM生成部121は、第1,第2,第3目標電圧Vleg1ref,Vleg2ref,Vleg3refと、キャリア信号との大小比較に基づくパルス幅変調(PWM)により、第1上,下アームスイッチS1H,S1Lのゲートに供給する第1上,下アーム駆動信号と、第2上,下アームスイッチS2H,S2Lのゲートに供給する第2上,下アーム駆動信号と、第3上,下アームスイッチS3H,S3Lのゲートに供給する第3上,下アーム駆動信号とを生成する。キャリア信号は、例えば三角波信号であり、キャリア信号の1周期は、電気角1周期(0°~360°)よりも十分に短い。電気角1周期において、第1上,下アームスイッチS1H,S1Lのスイッチングパターン、第2上,下アームスイッチS2H,S2Lのスイッチングパターン、及び第3上,下アームスイッチS3H,S3Lのスイッチングパターンは、位相が120°ずつずれている。
【0061】
続いて、
図7を用いて、3相放電制御について説明する。3相放電制御において、直流電圧検出値Vdcrを目標直流電圧Vdcrefに制御する処理は、第1DCDCコンバータ20のスイッチング制御により行われる。このため、3相放電制御のブロック図は、
図7に示すように、
図6の3相充電制御の処理に対して電圧制御部110が設けられないものとなる。3相放電制御においてd軸偏差算出部116に入力されるd軸目標電流Idref(例えば、-16A)は、3相充電制御時のd軸目標電流Idref(例えば、+16A)とは異なる符号の値に設定される。
【0062】
続いて、単相充電/放電制御について説明する。まず、
図8を用いて、単相充電制御について説明する。
図8は、制御装置100により実行される単相充電制御のブロック図である。制御装置100は、電力伝達のための充電制御部100Aと、直流電力の脈動を低減するための脈動低減制御部100Bとを備えている。
【0063】
充電制御部100Aにおいて、フィルタ部130は、直流電圧検出値Vdcrにローパスフィルタ処理を施す。これにより、直流電圧検出値Vdcrに含まれる、単相交流電源41の出力電圧の高調波成分を除去する。高調波成分は、例えば、出力電圧の2次周波数(例えば、100Hz又は120Hz)の成分である。
【0064】
電圧制御部131は、電圧偏差算出部132と、電圧フィードバック制御部133とを備えている。電圧偏差算出部132は、フィルタ部130において高調波成分が除去された目標直流電圧Vdcrefから、直流電圧検出値Vdcrを差し引くことにより、電圧偏差ΔVを算出する。電圧フィードバック制御部133は、電圧偏差ΔVを0にフィードバック制御するための操作量として目標電流振幅Iamprefを算出する。電圧フィードバック制御部133におけるフィードバック制御は、例えば比例積分制御である。
【0065】
電気角算出部113は、交流電圧検出値V1rに基づいて、電気角θeを算出する。正弦波生成部138は、電気角θeに基づいて、正弦波信号「sin×θe」を生成する。
【0066】
電流制御部134は、目標電流算出部135、電流偏差算出部136及び電流フィードバック制御部137を備えている。
【0067】
目標電流算出部135は、目標電流振幅Iamprefに正弦波信号「sin×θe」を乗算することにより、目標電流Iacrefを算出する。目標電流Iacrefは、交流電圧検出値V1rと同じ周期で変動する。
【0068】
電流偏差算出部136は、目標電流Iacrefから、第1電流検出値i1r及び第2電流検出値i2rの加算値を差し引くことにより、電流偏差ΔIを算出する。第1電流検出値i1r及び第2電流検出値i2rの加算値は、電流加算部139において算出される。
【0069】
電流フィードバック制御部137は、電流偏差ΔIを0にフィードバック制御するための操作量として第1,第2目標電圧Vleg1ref,Vleg2refを算出する。電流フィードバック制御部137におけるフィードバック制御は、例えば比例積分制御である。本実施形態において、第1,第2目標電圧Vleg1ref,Vleg2refは、同位相の信号である。本実施形態では、第1直流電力P1及び第2直流電力P2が等しくなるように、第1,第2目標電圧Vleg1ref,Vleg2refが電流フィードバック制御部137において算出される。
【0070】
第1PWM生成部140は、第1,第2目標電圧Vleg1ref,Vleg2refと、キャリア信号との大小比較に基づくパルス幅変調により、第1上,下アームスイッチS1H,S1Lのゲートに供給する第1上,下アーム駆動信号と、第2上,下アームスイッチS2H,S2Lのゲートに供給する第2上,下アーム駆動信号とを生成する。本実施形態では、電気角1周期において、第1上,下アームスイッチS1H,S1Lのスイッチングパターンと、第2上,下アームスイッチS2H,S2Lのスイッチングパターンとの位相差が0°である。つまり、第1上アームスイッチS1Hと第2上アームスイッチS2Hとのオン切替タイミング及びオフ切替タイミングが同期しており、第1下アームスイッチS1Lと第2下アームスイッチS2Lとのオン切替タイミング及びオフ切替タイミングが同期している。
【0071】
続いて、脈動低減制御部100Bについて説明する。
【0072】
脈動低減制御部100Bにおいて、目標補償電圧算出部141は、直流電力Pdcの脈動を低減するための補償用コンデンサ70の端子電圧の目標値である目標補償電圧Vcprefを算出する。具体的には、目標補償電圧算出部141は、脈動補償振幅Ppeakと、電気角θeと、下式(eq1)とに基づいて、目標補償電圧Vcprefを算出する。
【0073】
【数1】
脈動補償振幅Ppeak[W]は、単相交流電源41の出力電圧Vacの振幅に基づいて設定される値であり、具体的には出力電圧Vacの振幅と同等(例えば同じ)の値である。上式(eq1)において、ωは出力電圧Vacの角周波数[rad./sec]を示し、tは出力電圧Vacが負から正に切り替わるゼロアップクロスタイミングからの経過時間[sec.]を示し、電気角θeに基づいて把握することができる。また、「θe=ω×t」の関係がある。Ccprは補償用コンデンサ70の静電容量[F]を示す。Kは、1以上の実数であり、例えば1に設定されている。目標補償電圧算出部141は、脈動補償振幅Ppeak及び電気角θeと紐付けられて目標補償電圧Vcprefが規定されたマップ情報に基づいて、目標補償電圧Vcprefを算出すればよい。
【0074】
電圧制御部142は、補償電圧偏差算出部143と、補償電圧フィードバック制御部144とを備えている。補償電圧偏差算出部143は、目標補償電圧Vcprefから、補償用電圧センサ92により検出された電圧(以下、補償電圧検出値Vcpr)を差し引くことにより、補償電圧偏差ΔVpを算出する。補償電圧フィードバック制御部144は、補償電圧偏差ΔVpを0にフィードバック制御するための操作量として目標フィードバック電流I3fbを算出する。補償電圧フィードバック制御部144におけるフィードバック制御は、例えば比例積分制御である。
【0075】
フィードフォワード電流算出部145は、脈動補償振幅Ppeakと、電気角θeと、下式(eq2)とに基づいて、目標フィードフォワード電流I3ffを算出する。
【0076】
【数2】
フィードフォワード電流算出部145は、脈動補償振幅Ppeak及び電気角θeと紐付けられて目標フィードフォワード電流I3ffが規定されたマップ情報に基づいて、目標フィードフォワード電流I3ffを算出すればよい。
【0077】
電流制御部146は、加算部147と、補償電流偏差算出部148と、補償電流フィードバック制御部149とを備えている。加算部147は、目標フィードバック電流I3fbに目標フィードフォワード電流I3ffを加えることにより、目標補償電流I3refを算出する。なお、フィードフォワード電流算出部145は必須ではない。この場合、「I3ref=I3fb」となる。
【0078】
補償電流偏差算出部148は、目標補償電流I3refから第3電流検出値i3rを差し引くことにより、補償電流偏差ΔIpを算出する。補償電流フィードバック制御部149は、補償電流偏差ΔIpを0にフィードバック制御するための操作量として第3目標電圧Vleg1ref3を算出する。補償電流フィードバック制御部149におけるフィードバック制御は、例えば比例積分制御である。
【0079】
第2PWM生成部150は、第3目標電圧Vleg3refと、キャリア信号との大小比較に基づくパルス幅変調により、第3上,下アームスイッチS3H,S3Lのゲートに供給する第3上,下アーム駆動信号とを生成する。
【0080】
図10に、単相充電制御時における補償電圧検出値Vcpr、単相交流電源41の出力電圧Vac,出力電流iac、補償用コンデンサ70に流れる電流icpr、第1,第2電流検出値i1r,i2r、単相交流電源41の出力電力Pac、補償用コンデンサ70の電力Pcpr(=Vcpr×icpr)、及び各直流端子TdcH,TdcLから出力された直流電力Pdcの推移を示す。補償電圧検出値Vcprは、補償用コンデンサ70の両端のうち、第3経路53側の電圧よりも低電位側経路LL側の電圧が高い場合を正とする。単相交流電源41の出力電圧Vacは、第4交流端子Tac4側の電圧よりも第1交流端子Tac1側の電圧が高い場合を正とする。単相交流電源41の出力電流iacは、第4交流端子Tac4側から第1交流端子Tac1側に向かって流れる場合を正とする。補償用コンデンサ70に流れる電流icprは、補償用コンデンサ70の両端のうち、第3経路53側から低電位側経路LL側に向かって流れる場合を正とする。
【0081】
図10に示す例では、単相交流電源41の出力電圧Vacの周波数が50Hzであり、出力電圧Vacの実効値は230Vrmsであり、目標直流電圧Vdcrefが800Vに設定されている。また、直流電力Pdcが3相充電制御時の直流電力Pdcの2/3の値とされている。
【0082】
第1,第2上,下アームスイッチS1H,S1L,S2H,S2Lの高周波スイッチング制御及び第4上,下アームスイッチS4H,S4Lの50Hzのスイッチング制御により、
図10に示すように、単相交流電源41の出力電圧Vacと、第1,第2電流検出値i1r,i2rとの位相差が0(つまり、力率が1)になるような単相充電制御が実行されている。
【0083】
本実施形態では、単相充電制御時において、第1直流電力P1及び第2直流電力P2が等しくなるように、電流フィードバック制御部128において第1,第2目標電圧Vleg1ref,Vleg2refが算出される。このため、
図10に示す例では、第1,第2インダクタ61,62に流れる電流の実効値が16Armsになっている。
【0084】
図10に示す例では、単相交流電源41の出力電力Pac(つまり、電力変換装置10の入力電力)は、単相交流電412の出力電圧Vacの基本周波数の2倍の周波数で脈動し、また、7360Wを中心として7360Wの振幅にて脈動する。この脈動成分を低減するための目標補償電圧Vcprefに補償電圧検出値Vcprが制御されるように、第3上,下アームスイッチS3H,S3Lがスイッチング制御される。これにより、入力電力の脈動成分が補償用コンデンサ70に無効電力として吸収され、各直流端子TdcH,TdcLへ伝達される直流電力Pdcは、概ね7360Wで一定となる。その結果、直流側コンデンサ50の静電容量を低減でき、直流側コンデンサ50を小型化できる。
【0085】
続いて、
図9を用いて、単相放電制御について説明する。単相放電制御においても、3相放電制御と同様に、直流電圧検出値Vdcrを目標直流電圧Vdcrefに制御する処理は、第1DCDCコンバータ20のスイッチング制御により行われる。このため、単相放電制御の充電制御部100Aには、
図9に示すように、
図8に示した単相充電制御の電圧制御部131が設けられていない。また、単相放電制御の脈動低減制御部100Bにおいて、目標補償電圧算出部141に入力される電気角に関するパラメータは、θに代えて「θ+90°」となる。これは、補償用コンデンサ70の電力Pcpr(=Vcpr×icpr、
図10参照)の正負を反転させるためである。
【0086】
本実施形態では、上述したように、3相充放電制御が行われる場合においてバイパススイッチ80がオンされる。以下、バイパススイッチ80が設けられる理由について説明する。3相放電制御時においては、第1~第3インダクタ61~63を介して各交流端子Tac1~Tac3及び各直流端子TdcH,TdcLの間でやり取りされる電力のアンバランスが発生し得る。アンバランスが発生すると、直流側コンデンサ50の端子電圧Vdcrが大きく変動するため、直流側コンデンサ50の静電容量を大きくすることが要求される。しかしながら、この場合、直流側コンデンサ50の体格が増加してしまう。
【0087】
特に、3相放電制御時においては、上記アンバランスが大きくなる。これは、3相充電制御時においては、車載充電器自体がアンバランスを抑制するように制御可能である一方、3相放電制御時においては、アンバランスを抑制するような制御がしにくい事情があるためである。3相充電制御時においては、例えば、
図6に示す制御を停止して蓄電池40への充電を一時的に中断し、その後
図6に示す制御を再開してアンバランスを抑制するように電力変換装置10のスイッチング制御を行うことができる。蓄電池40への充電を一時的に中断したとしても、ユーザの利便性の大きな低下につながりにくい。これに対し、3相放電制御時においては、3相交流電源43や3相交流負荷への給電を一時的に中断しにくい事情がある。V2Gにおいて、3相交流電源43への給電を一時的に中断してしまうと、系統電源の周波数が一時的に低下してしまう。系統電源に接続される車両の数が多い場合、周波数の低下は大きなものとなってしまう。また、V2Hにおいて、3相交流負荷への給電を一時的に中断してしまうと、電気機器の動作が停止してしまい、ユーザの利便性が大きく低下してしまう。
【0088】
以上説明した理由から、3相充放電制御を継続しながらアンバランスを抑制する必要がある。そこで、本実施形態では、3相充放電制御が行われる場合においてバイパススイッチ80がオンされる。これにより、単相充放電時に用いられる補償用コンデンサ70が直流側コンデンサ50に並列接続され、補償用コンデンサ70が直流側コンデンサ50の双方が平滑コンデンサとして機能する。その結果、直流側コンデンサ50の静電容量の増加を抑制でき、ひいては直流側コンデンサ50の体格の増加を抑制できる。
【0089】
図11には、比較例及び本実施形態における3相交流電源43の電圧V1~V3、第1~第3インダクタ61~63に流れる電流i1~i3、直流側コンデンサ50の端子電圧Vdcr及び補償用コンデンサ70に流れる電流icprの推移を示す。比較例は、上記特許文献1の構成である。
図11に示す例は、第2,第3インダクタ62,63を介してやりとりされる電力に対して、第1インダクタ61を介してやりとりされる電力に-20%のアンバランスを与えた場合の計算結果である。本実施形態によれば、比較例に対して直流側コンデンサ50の端子電圧Vdcrの変動を73%低減できる。その結果、直流側コンデンサ50の静電容量を低減でき、
図12に示すように、直流側コンデンサ50の体格を大きく低減することができる。
【0090】
一般に、コンデンサが吸収できる電力Pとコンデンサの静電容量Cとの関係は、下式(eq3)で表せる。下式(eq3)において、ωacはコンデンサの印加電圧の入力周波数を示し、Vdcはコンデンサの印加電圧の直流成分を示し、ΔVdcはコンデンサの印加電圧の交流成分の変動幅を示す。
【0091】
【数3】
ここで、直流側コンデンサ50の後段の第1DCDCコンバータ20の電圧を安定化させるため、直流側コンデンサ50のΔVdcを大きくできない。一方、補償用コンデンサ70は、第1DCDCコンバータ20等の電圧変換器と隣接していないため、補償用コンデンサ70のΔVdcを大きくできる。このため、上式(eq3)の関係から、単相充放電制御時における電力の脈動を吸収するには、直流側コンデンサ50よりも補償用コンデンサ70のΔVdcを大きくした方がよい。つまり、直流側コンデンサ50よりも補償用コンデンサ70の静電容量を大きくした方がよい。そこで、本実施形態では、直流側コンデンサ50の静電容量が、補償用コンデンサ70の静電容量よりも小さくされている。これにより、直流側コンデンサ50及び補償用コンデンサ70の静電容量の合計値を低減でき、直流側コンデンサ50及び補償用コンデンサ70を合わせた体格を低減できる。
【0092】
<第1実施形態の変形例>
・制御装置100は、単相充放電制御時において、第2単相充電スイッチ56をオフに維持してもよい。この場合、制御装置100は、単相充放電制御時において、第2上,下アームスイッチS2H,S2Lをオフに維持すればよい。
【0093】
・
図1に示す構成から第2単相充電スイッチ56が除かれてもよい。この場合も、制御装置100は、単相充放電制御時において、第2上,下アームスイッチS2H,S2Lをオフに維持すればよい。
【0094】
<第2実施形態>
以下、第2実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態において、制御装置100は、3相放電制御の指示があることを条件として、バイパススイッチ80をオンし、直流側コンデンサ50を補償用コンデンサ70に並列接続する。
【0095】
図13は、制御装置100により実行される3相/単相充電制御又は3相/単相放電制御のフローチャートである。なお、
図13において、ステップS20~S23の処理は、先の
図3のステップS10~S13の処理と同じであり、ステップS27の処理は、ステップS15の処理と同じ処理である。
【0096】
ステップS24の処理の完了後、ステップS25に進み、3相充電制御及び3相放電制御のうち、3相放電制御の指示がなされているか否かを判定する。
【0097】
ステップS25において3相放電制御の指示がなされていると判定した場合には、ステップS26に進み、バイパススイッチ80をオンする。
【0098】
一方、ステップS25において3相充電制御の指示がなされていると判定した場合には、ステップS28に進み、バイパススイッチ80をオフする。これにより、電力のアンバランスが生じにくく、平滑コンデンサの静電容量の増加が不要な3相充電制御時において、バイパススイッチ80に電流を流さない。その結果、バイパススイッチ80(例えばリレー)の抵抗成分における損失を発生させず、電力変換装置10で発生する損失を低減することができる。
【0099】
<第3実施形態>
以下、第3実施形態について、第1,第2実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、
図14に示すように、補償用コンデンサ70の第2端が、低電位側経路LLではなく高電位側経路LHに接続されている。
【0100】
以上説明した本実施形態によれば、第1,第2実施形態と同様の効果を奏することができる。
【0101】
<第4実施形態>
以下、第4実施形態について、第2実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、
図15に示すように、直流側コンデンサ50に対する補償用コンデンサ170の並列接続の有無を切り替える回路構成が変更されている。
【0102】
電力変換装置10は、第1バイパススイッチ181及び第2バイパススイッチ182を備えている。第1バイパススイッチ181は、低電位側経路LLと補償用コンデンサ170の第1端とを接続する。第2バイパススイッチ182は、補償用コンデンサ170の第2端と高電位側経路LHとを接続する。各バイパススイッチ181,182がオンされると、直流側コンデンサ50に対して補償用コンデンサ170が並列接続される。各バイパススイッチ181,182は、オンされている場合に双方向の電流の流通を許可し、オフされている場合に双方向の電流の流通を阻止する。
【0103】
電力変換装置10は、第1補償用スイッチ171及び第2補償用スイッチ172を備えている。第1補償用スイッチ171は、第3経路53のうち第2遮断スイッチ58と第3インダクタ63との間の部分と、補償用コンデンサ170の第2端とを接続する。第2補償用スイッチ172は、第1経路51のうち第1インダクタ61よりも第1交流端子Tac1側の部分と、補償用コンデンサ170の第1端とを接続する。各補償用スイッチ171,172は、オンされている場合に双方向の電流の流通を許可し、オフされている場合に双方向の電流の流通を阻止する。
【0104】
図16は、制御装置100により実行される3相/単相充電制御又は3相/単相放電制御のフローチャートである。なお、
図16において、ステップS30,S31の処理は、先の
図3のステップS10,S11の処理と同じであり、ステップS37の処理は、
図3のステップS15の処理と同じ処理である。
【0105】
ステップS31において単相充電制御又は単相放電制御の指示がなされていると判定した場合には、ステップS32に進み、第1単相充電スイッチ55、第2単相充電スイッチ56及び第1遮断スイッチ57をオンする。また、脈動低減制御を行うために、第1補償用スイッチ171及び第2補償用スイッチ172をオンする。
【0106】
ステップS32では、第2遮断スイッチ58及び第3遮断スイッチ59をオフする。また、直流側コンデンサ50に対する補償用コンデンサ170の並列接続を解除するために、第1バイパススイッチ181及び第2バイパススイッチ182をオフする。
【0107】
ステップS33では、
図3のステップS13と同様に、単相充電制御又は単相放電制御を行う。この場合における第4上,下アームスイッチS4H,S4Lのスイッチング制御も、ステップS13と同様である。
【0108】
また、ステップS13では、単相充電制御時において高電位側直流端子TdcH及び低電位側直流端子TdcLから出力される直流電力の脈動を低減すべく、第3上アームスイッチS3H及び第3下アームスイッチS3Lのスイッチング制御を行う。第3上アームスイッチS3Hと第3下アームスイッチS3Lとは、デッドタイムを挟みつつ交互にオンされる。第3上,下アームスイッチS3H,S3Lの1スイッチング周期は同じであり、第1,第2上、下アームスイッチS1H,S1L,S2H,S2Lの1スイッチング周期と同じである。
【0109】
ステップS30において3相充電制御又は3相放電制御の指示がなされていると判定した場合には、ステップS34に進み、第1遮断スイッチ57、第2遮断スイッチ58及び第3遮断スイッチ59をオンする。また、第1単相充電スイッチ55、第2単相充電スイッチ56、第1補償用スイッチ171及び第2補償用スイッチ172をオフする。
【0110】
ステップS35では、3相充電制御及び3相放電制御のうち、3相放電制御の指示がなされているか否かを判定する。
【0111】
ステップS35において3相放電制御の指示がなされていると判定した場合には、ステップS36に進み、第1バイパススイッチ181及び第2バイパススイッチ182をオンする。
【0112】
一方、ステップS35において3相充電制御の指示がなされていると判定した場合には、ステップS38に進み、第1バイパススイッチ181及び第2バイパススイッチ182をオフする。これにより、第2実施形態と同様に、平滑コンデンサの静電容量の増加が不要な3相充電制御時において、電力変換装置10で発生する損失を低減することができる。
【0113】
<第4実施形態の変形例>
図16に示す処理のうち、ステップS35,S38の処理が無くてもよい。つまり、3相充電制御時にも第1バイパススイッチ181及び第2バイパススイッチ182がオンされていてもよい。
【0114】
<第5実施形態>
以下、第5実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、
図17に示すように、電力変換装置10に、接続経路54、第1単相充電スイッチ55、第2単相充電スイッチ56、バイパススイッチ80及び第4交流端子Tac4等が備えられていない。
【0115】
電力変換装置10は、脈動を低減するための構成として、第4上,下アームスイッチS4H,S4L、補償用コンデンサ270及び補償用インダクタ290を備えている。第4上,下アームスイッチS4H,S4Lの接続点には、補償用インダクタ290の第1端が接続されている。補償用インダクタ290の第2端には、補償用コンデンサ270の第1端が接続され、補償用コンデンサ270の第2端には、低電位側経路LLが接続されている。
【0116】
電力変換装置10は、直流側コンデンサ50に対する補償用コンデンサ270の並列接続の有無を切り替えるための構成として、バイパススイッチ280を備えている。バイパススイッチ280がオンされると、直流側コンデンサ50に対して補償用コンデンサ270が並列接続される。バイパススイッチ280は、オンされている場合に双方向の電流の流通を許可し、オフされている場合に双方向の電流の流通を阻止する。
【0117】
図18は、制御装置100により実行される3相/単相充電制御又は3相/単相放電制御のフローチャートである。なお、
図18において、ステップS40,S41の処理は、先の
図3のステップS10,S11の処理と同じである。
【0118】
ステップS41において単相充電制御又は単相放電制御の指示がなされていると判定した場合には、ステップS42に進み、
図19に示すように、第2遮断スイッチ58をオフし、第1遮断スイッチ57及び第3遮断スイッチ59をオンする。また、バイパススイッチ280及び第2上,下アームスイッチS2H,S2Lをオフする。
【0119】
ステップS43では、単相充電制御又は単相放電制御を行う。まず、単相充電制御について説明すると、第1交流端子Tac1及び第3交流端子Tac3から入力された交流電力を直流電力に変換して高電位側直流端子TdcH及び低電位側直流端子TdcLから出力すべく、第1上アームスイッチS1H、第1下アームスイッチS1L、第3上アームスイッチS3H及び第3下アームスイッチS3Lのスイッチング制御を行う。各相において、上アームスイッチと下アームスイッチとは、デッドタイムを挟みつつ、同期して交互にオンされる。各相において、上,下アームスイッチの1スイッチング周期は同じである。
【0120】
また、高電位側直流端子TdcH及び低電位側直流端子TdcLから出力される直流電力の脈動を低減すべく、第4上アームスイッチS4H及び第4下アームスイッチS4Lのスイッチング制御を行う。第4上アームスイッチS4Hと第4下アームスイッチS4Lとは、デッドタイムを挟みつつ交互にオンされる。第4上,下アームスイッチS3H,S4Lの1スイッチング周期は、例えば、第1,第3上、下アームスイッチS1H,S1L,S3H,S3Lの1スイッチング周期と同じである。
【0121】
続いて、単相放電制御について説明すると、高電位側直流端子TdcH及び低電位側直流端子TdcLから入力された直流電力を交流電力に変換して第1交流端子Tac1及び第3交流端子Tac3から出力すべく、第1上アームスイッチS1H、第1下アームスイッチS1L、第3上アームスイッチS3H及び第3下アームスイッチS3Lのスイッチング制御を行う。各相において、上アームスイッチと下アームスイッチとは、デッドタイムを挟みつつ、同期して交互にオンされる。各相において、上,下アームスイッチの1スイッチング周期は同じである。
【0122】
ステップS40において3相充電制御又は3相放電制御の指示がなされていると判定した場合には、ステップS44に進む。ステップS44では、
図20に示すように、第1遮断スイッチ57、第2遮断スイッチ58及び第3遮断スイッチ59をオンし、第4上,下アームスイッチS4H,S4Lをオフする。また、直流側コンデンサ50に補償用コンデンサ270を並列接続するために、バイパススイッチ280をオンする。
【0123】
ステップS45では、3相充電制御又は3相放電制御を行う。まず、3相充電制御について説明すると、第1交流端子Tac1、第2交流端子Tac2及び第3交流端子Tac3から入力された交流電力を直流電力に変換して高電位側直流端子TdcH及び低電位側直流端子TdcLから出力すべく、第1,第2,第3上アームスイッチS1H,S2H,S3H及び第1,第2,第3下アームスイッチS1L,S2L,S3Lのスイッチング制御を行う。
【0124】
3相放電制御について説明すると、高電位側直流端子TdcH及び低電位側直流端子TdcLから入力された直流電力を交流電力に変換して第1交流端子Tac1、第2交流端子Tac2及び第3交流端子Tac3から出力すべく、第1,第2,第3上アームスイッチS1H,S2H,S3H及び第1,第2,第3下アームスイッチS1L,S2L,S3Lのスイッチング制御を行う。3相放電制御及び3相充電制御では、各相において、上アームスイッチと下アームスイッチとはデッドタイムを挟みつつ交互にオンされる。各相において、上,下アームスイッチの1スイッチング周期は同じである。
【0125】
以上説明した本実施形態によれば、第1実施形態の効果に準じた効果を奏することができる。
【0126】
<その他の実施形態>
なお、上記各実施形態は、以下のように変更して実施してもよい。
【0127】
・第5実施形態の
図17に示した構成のうち、バイパススイッチ280と補償用コンデンサ270との配置位置を
図21に示すように逆にしてもよい。
【0128】
・
図17に示した電力変換装置10が第4上,下アームスイッチS4H,S4L、補償用コンデンサ270、バイパススイッチ280及び補償用インダクタ290を備えていなくてもよい。この場合、電力変換装置10は、脈動を低減するための構成として、
図22に示すように、補償用コンデンサ370、バイパススイッチ380及び切替スイッチ371を備えていればよい。補償用コンデンサ370の第1端には、バイパススイッチ380を介して高電位側経路LHが接続されている。補償用コンデンサ370の第2端には、低電位側経路LLが接続されている。切替スイッチ371は、第3インダクタ63の一端を、第2遮断スイッチ58又は補償用コンデンサ370の第1端のいずれかに接続する。
【0129】
制御装置100は、単相充電制御又は単相放電制御において、第2遮断スイッチ58、バイパススイッチ380及び第2上,下アームスイッチS2H,S2Lをオフし、第1遮断スイッチ57をオンする。また、制御装置100は、第3インダクタ63の一端を補償用コンデンサ370の第1端に接続するように切替スイッチ371を操作する。
【0130】
制御装置100は、単相充電制御において、第1交流端子Tac1及び第2交流端子Tac2から入力された交流電力を直流電力に変換して高電位側直流端子TdcH及び低電位側直流端子TdcLから出力すべく、第1上,下アームスイッチS1H,S1L及び第2上,下アームスイッチS2H,S2Lのスイッチング制御を行う。各相において、上アームスイッチと下アームスイッチとは、デッドタイムを挟みつつ、同期して交互にオンされる。
【0131】
制御装置100は、単相充電制御において、高電位側直流端子TdcH及び低電位側直流端子TdcLから出力される直流電力の脈動を低減すべく、第3上,下アームスイッチS3H,S3Lのスイッチング制御を行う。第3上,下アームスイッチS3H,S3Lは、デッドタイムを挟みつつ交互にオンされる。
【0132】
制御装置100は、単相放電制御において、高電位側直流端子TdcH及び低電位側直流端子TdcLから入力された直流電力を交流電力に変換して第1交流端子Tac1及び第2交流端子Tac2から出力すべく、第1上,下アームスイッチS1H,S1L及び第2上,下アームスイッチS2H,S2Lのスイッチング制御を行う。各相において、上アームスイッチと下アームスイッチとは、デッドタイムを挟みつつ、同期して交互にオンされる。
【0133】
制御装置100は、3相充電制御又は3相放電制御において、第1遮断スイッチ57、第2遮断スイッチ58及び第3遮断スイッチ59をオンする。また、第3インダクタ63の一端を第3遮断スイッチ59に接続するように切替スイッチ371を操作する。また、バイパススイッチ380をオンする。これにより、直流側コンデンサ50に補償用コンデンサ370が並列接続される。
【0134】
制御装置100は、3相充電制御において、第1交流端子Tac1、第2交流端子Tac2及び第3交流端子Tac3から入力された交流電力を直流電力に変換して高電位側直流端子TdcH及び低電位側直流端子TdcLから出力すべく、第1,第2,第3上アームスイッチS1H,S2H,S3H及び第1,第2,第3下アームスイッチS1L,S2L,S3Lのスイッチング制御を行う。
【0135】
制御装置100は、3相放電制御において、高電位側直流端子TdcH及び低電位側直流端子TdcLから入力された直流電力を交流電力に変換して第1交流端子Tac1、第2交流端子Tac2及び第3交流端子Tac3から出力すべく、第1,第2,第3上アームスイッチS1H,S2H,S3H及び第1,第2,第3下アームスイッチS1L,S2L,S3Lのスイッチング制御を行う。
【0136】
・第1上アームスイッチが複数のNチャネルMOSFETの並列接続体で構成されていてもよい。第1下アームスイッチ及び第2~第4上,下アームスイッチについても同様である。
【0137】
・上,下アームスイッチとしては、NチャネルMOSFETに限らず、例えば、フリーホイールダイオードが逆並列接続されたIGBTであってもよい。この場合、IGBTのコレクタが高電位側端子に相当し、エミッタが低電位側端子に相当する。
【0138】
・直流側コンデンサ及び補償用コンデンサに代えて、例えば、充放電可能な小容量の蓄電池が備えられていてもよい。
【0139】
・DCDCコンバータ24の出力部に接続される蓄電部としては、蓄電池に限らず、例えば、大容量の電気二重層キャパシタ、又は蓄電池及び電気二重層キャパシタの双方であってもよい。
【0140】
・例えば第1実施形態において、制御装置100は、単相充電制御時に第1,第2上,下アームスイッチS1H,S1L、S2H,S2Lをインターリーブ駆動してもよい。インターリーブ駆動は、第1上アームスイッチS1Hのオンへの切り替えタイミングと、第2上アームスイッチS2Hのオンへの切り替えタイミングとを電気角で180°ずらすスイッチング制御である。
【0141】
・電力変換装置が搭載される移動体としては、車両に限らず、例えば、航空機又は船舶であってもよい。また、電力変換装置の搭載先は、移動体に限らず、定置式の装置であってもよい。
【0142】
・電力変換装置としては、3相の交流電源及び交流負荷に対応可能なものに限らず、4相以上の交流電源及び交流負荷に対応可能なものであってもよい。
【0143】
・本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
【符号の説明】
【0144】
10…電力変換装置、54…接続経路、55…第1単相充電スイッチ、56…第2単相充電スイッチ、61~63…第1~第3インダクタ、70…補償用コンデンサ、71…補償用スイッチ、80…バイパススイッチ、100…制御装置、S1H,S2H,S3H,S4H…第1~第4上アームスイッチ、S1L,S2L,S3L,S4L…第1~第4下アームスイッチ。