(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024091793
(43)【公開日】2024-07-05
(54)【発明の名称】半導体装置
(51)【国際特許分類】
H01L 29/739 20060101AFI20240628BHJP
H01L 29/78 20060101ALI20240628BHJP
H01L 21/336 20060101ALI20240628BHJP
H01L 29/861 20060101ALI20240628BHJP
H01L 29/06 20060101ALI20240628BHJP
【FI】
H01L29/78 655B
H01L29/78 652G
H01L29/78 652J
H01L29/78 652Q
H01L29/78 653A
H01L29/78 655G
H01L29/78 657A
H01L29/78 657D
H01L29/78 657F
H01L29/78 658A
H01L29/91 C
H01L29/06 301D
H01L29/06 301V
H01L29/78 652H
【審査請求】有
【請求項の数】14
【出願形態】OL
(21)【出願番号】P 2024066963
(22)【出願日】2024-04-17
(62)【分割の表示】P 2023015355の分割
【原出願日】2020-09-08
(31)【優先権主張番号】P 2019187787
(32)【優先日】2019-10-11
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000005234
【氏名又は名称】富士電機株式会社
(74)【代理人】
【識別番号】110000877
【氏名又は名称】弁理士法人RYUKA国際特許事務所
(72)【発明者】
【氏名】阿形 泰典
(57)【要約】
【課題】半導体基板の深さ方向において、広い範囲のドーピング濃度を容易に調整できることが好ましい。
【解決手段】上面および下面を有し、バルク・ドナーを有する半導体基板を備え、半導体基板の深さ方向における水素化学濃度分布が、第1の水素濃度ピークと、第1の水素濃度ピークよりも半導体基板の下面側に配置された第2の水素濃度ピークとを有し、第1の水素濃度ピークと第2の水素濃度ピークとの間の中間領域における中間ドナー濃度が、第1の水素濃度ピークと半導体基板の上面との間の上面側ドナー濃度と、第2の水素濃度ピークと半導体基板の下面との間の下面側ドナー濃度のいずれより低い半導体装置を提供する。
【選択図】
図14
【特許請求の範囲】
【請求項1】
上面および下面を有し、バルク・ドナーを有する半導体基板を備え、
前記半導体基板の深さ方向における水素化学濃度分布が、第1の水素濃度ピークと、前記第1の水素濃度ピークよりも前記半導体基板の前記下面側に配置された第2の水素濃度ピークとを有し、
前記第1の水素濃度ピークと前記第2の水素濃度ピークとの間の中間領域における中間ドナー濃度が、前記第1の水素濃度ピークと前記半導体基板の前記上面との間の上面側ドナー濃度と、前記第2の水素濃度ピークと前記半導体基板の前記下面との間の下面側ドナー濃度のいずれより低い
半導体装置。
【請求項2】
前記半導体基板の深さ方向におけるドナー濃度分布が、前記第1の水素濃度ピークと前記半導体基板の前記上面との間において上面側平坦部分を有する
請求項1に記載の半導体装置。
【請求項3】
上面および下面を有し、バルク・ドナーを有する半導体基板を備え、
前記半導体基板の深さ方向における水素化学濃度分布が、第1の水素濃度ピークと、前記第1の水素濃度ピークよりも前記半導体基板の前記下面側に配置された第2の水素濃度ピークとを有し、
前記第1の水素濃度ピークと前記第2の水素濃度ピークとの間の中間領域における中間ドナー濃度が、前記第1の水素濃度ピークと前記半導体基板の前記上面との間の上面側ドナー濃度と、前記第2の水素濃度ピークと前記半導体基板の前記下面との間の下面側ドナー濃度のいずれよりも高く、
前記半導体基板の深さ方向におけるドナー濃度分布が、前記第1の水素濃度ピークと前記半導体基板の前記上面との間において上面側平坦部分を有する
半導体装置。
【請求項4】
前記上面側ドナー濃度は、バルク・ドナー濃度よりも高い
請求項1から3のいずれか一項に記載の半導体装置。
【請求項5】
前記上面側ドナー濃度は、水素ドナーを含む
請求項1から4のいずれか一項に記載の半導体装置。
【請求項6】
前記下面側ドナー濃度は、バルク・ドナー濃度よりも高い
請求項1から5のいずれか一項に記載の半導体装置。
【請求項7】
前記下面側ドナー濃度は、水素ドナーを含む
請求項1から6のいずれか一項に記載の半導体装置。
【請求項8】
前記半導体基板の深さ方向におけるドナー濃度分布が、前記第2の水素濃度ピークと前記半導体基板の前記下面との間において下面側平坦部分を有する
請求項1から7のいずれか一項に記載の半導体装置。
【請求項9】
前記中間領域の前記中間ドナー濃度の分布が平坦部分を有する
請求項1から8のいずれか一項に記載の半導体装置。
【請求項10】
前記中間領域の前記中間ドナー濃度は前記バルク・ドナーのドナー濃度と同一である
請求項1または2に記載の半導体装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体装置に関する。
【背景技術】
【0002】
従来、半導体基板の所定の深さに水素を注入して拡散させることで、注入深さおよび拡散領域に形成された格子欠陥と水素が結合してドナー化し、ドーピング濃度を高くできる技術が知られている(例えば、特許文献1、2参照)。
[先行技術文献]
[特許文献]
[特許文献1] 特許第5374883号
[特許文献2] WO2017/47285号
【発明の概要】
【発明が解決しようとする課題】
【0003】
半導体基板の深さ方向において、広い範囲のドーピング濃度を容易に調整できることが好ましい。
【課題を解決するための手段】
【0004】
上記課題を解決するために、本発明の第1の態様においては、上面および下面を有し、バルク・ドナーを有する半導体基板を備える半導体装置を提供する。半導体基板の深さ方向における水素化学濃度分布が、第1の水素濃度ピークと、第1の水素濃度ピークよりも半導体基板の下面側に配置された第2の水素濃度ピークとを有してよい。上記いずれかの半導体装置において、第1の水素濃度ピークと第2の水素濃度ピークとの間の中間領域における中間ドナー濃度が、第1の水素濃度ピークと半導体基板の上面との間の上面側ドナー濃度と、第2の水素濃度ピークと半導体基板の下面との間の下面側ドナー濃度のいずれより低くてよい。
【0005】
上記いずれかの半導体装置において、半導体基板の深さ方向におけるドナー濃度分布が、第1の水素濃度ピークと半導体基板の上面との間において上面側平坦部分を有してよい。
【0006】
上記課題を解決するために、本発明の第2の態様においては、上面および下面を有し、バルク・ドナーを有する半導体基板を備える半導体装置を提供する。半導体基板の深さ方向における水素化学濃度分布が、第1の水素濃度ピークと、第1の水素濃度ピークよりも半導体基板の下面側に配置された第2の水素濃度ピークとを有してよい。上記いずれかの半導体装置において、第1の水素濃度ピークと第2の水素濃度ピークとの間の中間領域における中間ドナー濃度が、第1の水素濃度ピークと半導体基板の上面との間の上面側ドナー濃度と、第2の水素濃度ピークと半導体基板の下面との間の下面側ドナー濃度のいずれよりも高くてよい。上記いずれかの半導体装置において、半導体基板の深さ方向におけるドナー濃度分布が、第1の水素濃度ピークと半導体基板の上面との間において上面側平坦部分を有してよい。
【0007】
上記いずれかの半導体装置において、上面側ドナー濃度は、バルク・ドナー濃度よりも高くてよい。
【0008】
上記いずれかの半導体装置において、上面側ドナー濃度は、水素ドナーを含んでよい。
【0009】
上記いずれかの半導体装置において、下面側ドナー濃度は、バルク・ドナー濃度よりも高くてよい。
【0010】
上記いずれかの半導体装置において、下面側ドナー濃度は、水素ドナーを含んでよい。
【0011】
上記いずれかの半導体装置において、半導体基板の深さ方向におけるドナー濃度分布が、第2の水素濃度ピークと半導体基板の下面との間において下面側平坦部分を有してよい。
【0012】
上記いずれかの半導体装置において、中間領域の中間ドナー濃度の分布が平坦部分を有してよい。
【0013】
上記いずれかの半導体装置において、中間領域の中間ドナー濃度はバルク・ドナーのドナー濃度と同一であってよい。
【0014】
なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
【図面の簡単な説明】
【0015】
【
図1】半導体装置100の一例を示す断面図である。
【
図2】
図1のA-A線に示した位置における、深さ方向の水素化学濃度分布およびドナー濃度分布を示している。
【
図3】濃度分布における平坦部分150を説明する図である。
【
図4】
図1のA-A線に示した位置における、深さ方向の水素化学濃度分布およびドナー濃度分布の他の例を示している。
【
図5】
図1のA-A線に示した位置における、深さ方向の水素化学濃度分布およびドナー濃度分布の他の例を示している。
【
図6】
図1のA-A線に示した位置における、深さ方向の水素化学濃度分布およびドナー濃度分布の他の例を示している。
【
図7】
図1のA-A線に示した位置における、深さ方向の水素化学濃度分布およびドナー濃度分布の他の例を示している。
【
図8】
図1のA-A線に示した位置における、深さ方向の水素化学濃度分布およびドナー濃度分布の他の例を示している。
【
図9】半導体装置100の一例を示す上面図である。
【
図12】通過領域106-1および通過領域106-2の他の例を示す図である。
【
図13】
図12におけるD-D線におけるドーピング濃度分布の一例を示す図である。
【
図14】
図13に示した深さ位置Z1および深さ位置Z2の近傍の領域における、水素化学濃度分布およびドナー濃度分布の一例を示す図である。
【
図15】
図1から
図14において説明した半導体装置100の製造方法の一例を示す図である。
【発明を実施するための形態】
【0016】
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
【0017】
本明細書においては半導体基板の深さ方向と平行な方向における一方の側を「上」、他方の側を「下」と称する。基板、層またはその他の部材の2つの主面のうち、一方の面を上面、他方の面を下面と称する。「上」、「下」の方向は、重力方向または半導体装置の実装時における方向に限定されない。
【0018】
本明細書では、X軸、Y軸およびZ軸の直交座標軸を用いて技術的事項を説明する場合がある。直交座標軸は、構成要素の相対位置を特定するに過ぎず、特定の方向を限定するものではない。例えば、Z軸は地面に対する高さ方向を限定して示すものではない。なお、+Z軸方向と-Z軸方向とは互いに逆向きの方向である。正負を記載せず、Z軸方向と記載した場合、+Z軸および-Z軸に平行な方向を意味する。
【0019】
本明細書では、半導体基板の上面および下面に平行な直交軸をX軸およびY軸とする。また、半導体基板の上面および下面と垂直な軸をZ軸とする。本明細書では、Z軸の方向を深さ方向と称する場合がある。また、本明細書では、X軸およびY軸を含めて、半導体基板の上面および下面に平行な方向を、水平方向と称する場合がある。
【0020】
本明細書において「同一」または「等しい」のように称した場合、製造ばらつき等に起因する誤差を有する場合も含んでよい。当該誤差は、例えば10%以内である。
【0021】
本明細書においては、不純物がドーピングされたドーピング領域の導電型をP型またはN型として説明している。本明細書においては、不純物とは、特にN型のドナーまたはP型のアクセプタのいずれかを意味する場合があり、ドーパントと記載する場合がある。本明細書においては、ドーピングとは、半導体基板にドナーまたはアクセプタを導入し、N型の導電型を示す半導体またはP型の導電型を示す半導体とすることを意味する。
【0022】
本明細書においては、ドーピング濃度とは、熱平衡状態におけるドナーの濃度またはアクセプタの濃度を意味する。本明細書においては、ネット・ドーピング濃度とは、ドナー濃度を正イオンの濃度とし、アクセプタ濃度を負イオンの濃度として、電荷の極性を含めて足し合わせた正味の濃度を意味する。一例として、ドナー濃度をND、アクセプタ濃度をNAとすると、任意の位置における正味のネット・ドーピング濃度はND-NAとなる。本明細書では、ネット・ドーピング濃度を単にドーピング濃度と記載する場合がある。
【0023】
ドナーは、半導体に電子を供給する機能を有している。アクセプタは、半導体から電子を受け取る機能を有している。ドナーおよびアクセプタは、不純物自体には限定されない。例えば、半導体中に存在する空孔(V)、酸素(O)および水素(H)が結合したVOH欠陥は、電子を供給するドナーとして機能する。本明細書では、VOH欠陥を水素ドナーと称する場合がある。
【0024】
本明細書においてP+型またはN+型と記載した場合、P型またはN型よりもドーピング濃度が高いことを意味し、P-型またはN-型と記載した場合、P型またはN型よりもドーピング濃度が低いことを意味する。また、本明細書においてP++型またはN++型と記載した場合には、P+型またはN+型よりもドーピング濃度が高いことを意味する。
【0025】
本明細書において化学濃度とは、電気的な活性化の状態によらずに測定される不純物の原子密度を指す。化学濃度は、例えば二次イオン質量分析法(SIMS)により計測できる。上述したネット・ドーピング濃度は、電圧-容量測定法(CV法)により測定できる。また、拡がり抵抗測定法(SR法)により計測されるキャリア濃度を、ネット・ドーピング濃度としてよい。CV法またはSR法により計測されるキャリア濃度は、熱平衡状態における値としてよい。また、N型の領域においては、ドナー濃度がアクセプタ濃度よりも十分大きいので、当該領域におけるキャリア濃度を、ドナー濃度としてもよい。同様に、P型の領域においては、当該領域におけるキャリア濃度を、アクセプタ濃度としてもよい。本明細書では、N型領域のドーピング濃度をドナー濃度と称する場合があり、P型領域のドーピング濃度をアクセプタ濃度と称する場合がある。
【0026】
また、ドナー、アクセプタまたはネット・ドーピングの濃度分布がピークを有する場合、当該ピーク値を当該領域におけるドナー、アクセプタまたはネット・ドーピングの濃度としてよい。ドナー、アクセプタまたはネット・ドーピングの濃度がほぼ均一な場合等においては、当該領域におけるドナー、アクセプタまたはネット・ドーピングの濃度の平均値をドナー、アクセプタまたはネット・ドーピングの濃度としてよい。
【0027】
SR法により計測されるキャリア濃度が、ドナーまたはアクセプタの濃度より低くてもよい。拡がり抵抗を測定する際に電流が流れる範囲において、半導体基板のキャリア移動度が結晶状態の値よりも低い場合がある。キャリア移動度の低下は、格子欠陥等による結晶構造の乱れ(ディスオーダー)により、キャリアが散乱されることで生じる。
【0028】
CV法またはSR法により計測されるキャリア濃度から算出したドナーまたはアクセプタの濃度は、ドナーまたはアクセプタを示す元素の化学濃度よりも低くてよい。一例として、シリコンの半導体においてドナーとなるリンまたはヒ素のドナー濃度、あるいはアクセプタとなるボロン(ホウ素)のアクセプタ濃度は、これらの化学濃度の99%程度である。一方、シリコンの半導体においてドナーとなる水素のドナー濃度は、水素の化学濃度の0.1%から10%程度である。
【0029】
図1は、半導体装置100の一例を示す断面図である。半導体装置100は半導体基板10を備える。半導体基板10は、半導体材料で形成された基板である。一例として半導体基板10はシリコン基板である。
【0030】
半導体基板10には、絶縁ゲート型バイポーラトランジスタ(IGBT)等のトランジスタ素子、および、還流ダイオード(FWD)等のダイオード素子の少なくとも一方が形成されている。
図1においては、トランジスタ素子およびダイオード素子の各電極、半導体基板10の内部に設けられた各領域を省略している。トランジスタ素子およびダイオード素子の構成例は後述する。
【0031】
本例の半導体基板10は、N型のバルク・ドナーが全体に分布している。バルク・ドナーは、半導体基板10の元となるインゴットの製造時に、インゴット内に略一様に含まれたドーパントによるドナーである。本例のバルク・ドナーは、水素以外の元素である。バルク・ドナーのドーパントは、例えばリン、アンチモン、ヒ素、セレンまたは硫黄であるが、これに限定されない。本例のバルク・ドナーは、リンである。バルク・ドナーは、P型の領域にも含まれている。半導体基板10は、半導体のインゴットから切り出したウエハであってよく、ウエハを個片化したチップであってもよい。半導体のインゴットは、チョクラルスキー法(CZ法)、磁場印加型チョクラルスキー法(MCZ法)、フロートゾーン法(FZ法)のいずれかで製造されよい。本例におけるインゴットは、MCZ法で製造されている。バルク・ドナー濃度は、半導体基板10の全体に分布しているバルク・ドナーの化学濃度を用いてよく、当該化学濃度の90%から100%の間の値であってもよい。
【0032】
半導体基板10は、上面21および下面23を有する。上面21および下面23は、半導体基板10の2つの主面である。本明細書では、上面21および下面23と平行な面における直交軸をX軸およびY軸、上面21および下面23と垂直な軸をZ軸とする。
【0033】
半導体基板10には、下面23から深さ位置Z1に水素イオンが注入されている。また、半導体基板10には、上面21から深さ位置Z2に水素イオンが注入されている。水素イオンを所定の深さ位置に注入するとは、水素イオンを、当該深さ位置に対応する加速エネルギーで加速させて注入することを指す。水素イオンは、当該深さ位置だけでなく、当該深さ位置の近傍にも分布する。また、注入面から当該深さ位置までの間の通過領域106にも分布し得る。
【0034】
半導体基板10の深さ方向における水素化学濃度分布は、深さ位置Z1に第1の水素濃度ピーク101を有し、深さ位置Z2に第2の水素濃度ピーク102を有する。
図1においては、水素濃度ピークを模式的にバツ印で示している。
図1においては、上面21と深さ位置Z2との間に深さ位置Z1が配置されているが、深さ位置Z1は、下面23と深さ位置Z2との間に配置されていてもよい。
【0035】
本明細書では、注入された水素イオンが通過した領域を通過領域と称する場合がある。下面23と深さ位置Z1との間の通過領域106-1、および、上面21と深さ位置Z2との間の通過領域106-2には、水素が通過したことにより、単原子空孔(V)、複原子空孔(VV)等の、空孔を主体とする格子欠陥が形成されている。空孔に隣接する原子は、ダングリング・ボンドを有する。格子欠陥には格子間原子や転位等も含まれ、広義ではドナーやアクセプタも含まれ得るが、本明細書では空孔を主体とする格子欠陥を空孔型格子欠陥、空孔型欠陥、あるいは単に格子欠陥と称する場合がある。また、半導体基板10への水素イオン注入により、格子欠陥が多く形成されることで、半導体基板10の結晶性が強く乱れることがある。本明細書では、この結晶性の乱れをディスオーダーと称する場合がある。
【0036】
また、半導体基板10の全体には酸素が含まれる。当該酸素は、半導体のインゴットの製造時において、意図的にまたは意図せずに導入される。半導体基板10の内部では、水素(H)、空孔(V)および酸素(O)が結合し、VOH欠陥が形成される。また、半導体基板10を熱処理することで水素が拡散し、VOH欠陥の形成が促進される。VOH欠陥は、電子を供給するドナーとして機能する。本明細書では、VOH欠陥を単に水素ドナーと称する場合がある。本例の半導体基板10には、水素イオンの通過領域106に水素ドナーが形成される。水素ドナーのドーピング濃度は、水素の化学濃度よりも低い。水素の化学濃度に対する水素ドナーのドーピング濃度の割合を活性化率とすると、活性化率は0.1%~30%の値であってよい。本例では、活性化率は1%~5%である。
【0037】
半導体基板10の通過領域106に水素ドナーを形成することで、半導体基板10の通過領域106におけるドナー濃度を、バルク・ドナー濃度よりも高くできる。通常は、半導体基板10に形成すべき素子の特性、特に定格電圧または耐圧に対応させて、所定のバルク・ドナー濃度を有する半導体基板10を準備しなければならない。これに対して、
図1に示した半導体装置100によれば、水素イオンのドーズ量および注入深さを制御することで、半導体基板10の所定の領域のドナー濃度を調整できる。このため、素子の特性等に対応していないバルク・ドナー濃度の半導体基板を用いて、半導体装置100を製造できる。半導体基板10の製造時におけるバルク・ドナー濃度のバラツキは比較的に大きいが、水素イオンのドーズ量は比較的に高精度に制御できる。このため、水素イオンを注入することで生じる格子欠陥の濃度も高精度に制御でき、通過領域106のドナー濃度を高精度に制御できる。
【0038】
また、半導体装置100においては、上面21および下面23の両方から水素イオンを注入する。このため、広い範囲の通過領域106を容易に形成できる。
図1の例においては、通過領域106-1および通過領域106-2の一部が重なっているので、深さ方向の全体にわたって、通過領域106を形成できる。また、上面21および下面23の一方から半導体基板10を貫通するように水素イオンを注入することで、半導体基板の全体に通過領域を形成することも考えられる。これに対して半導体装置100によれば、上面21および下面23の両方から水素イオンを注入するので、水素イオンが半導体基板10を貫通する場合に比べて、水素イオンの加速エネルギーを小さくできる。このため、ゲート絶縁膜等の素子構造に与えるダメージを小さくできる。
【0039】
図2は、
図1のA-A線に示した位置における、深さ方向の水素化学濃度分布およびドナー濃度分布を示している。
図2の横軸は、下面23からの深さ位置を示しており、縦軸は、単位体積当たりの水素化学濃度およびドナー濃度を対数軸で示している。
図2におけるドナー濃度は、例えばCV法またはSR法で計測される。
図2における水素化学濃度は、例えばSIMS法で計測される水素濃度である。
図2では、水素化学濃度分布を破線で示し、ドナー濃度分布を実線で示している。
図2においては、バルク・ドナー濃度をDbとしている。また、半導体基板10の深さ方向における中央位置をZcとする。
【0040】
水素化学濃度分布は、第1の水素濃度ピーク101と、第2の水素濃度ピーク102とを有する。第2の水素濃度ピーク102は、第1の水素濃度ピーク101よりも半導体基板10の下面23側に配置されている。つまり第2の水素濃度ピーク102は、第1の水素濃度ピーク101と、下面23との間に配置されている。
【0041】
第1の水素濃度ピーク101の深さ方向における位置をZ1、第2の水素濃度ピーク102の深さ方向における位置をZ2とする。濃度ピークの位置とは、濃度が極大値となる位置である。
【0042】
水素化学濃度分布は、第1の上面側裾S1a、第1の下面側裾S1b、第2の上面側裾S2a、および、第2の下面側裾S2bを有する。第1の上面側裾S1aは、水素化学濃度分布において、第1の水素濃度ピーク101から上面21側に向かって水素濃度が減少する部分である。第1の下面側裾S1bは、水素化学濃度分布において、第1の水素濃度ピーク101から下面23側に向かって水素濃度が減少する部分である。第2の上面側裾S2aは、水素化学濃度分布において、第2の水素濃度ピーク102から上面21側に向かって水素濃度が減少する部分である。第2の下面側裾S2bは、水素化学濃度分布において、第2の水素濃度ピーク102から下面23側に向かって水素濃度が減少する部分である。
【0043】
本例の第1の水素濃度ピーク101は、下面23側から注入された水素による濃度ピークである。下面23側から水素を注入した場合、下面23と水素の注入位置との間の通過領域にも水素が分布する。このため、第1の下面側裾S1bは、第1の上面側裾S1aよりも緩やかに水素濃度が減少する。つまり、第1の下面側裾S1bの傾きは、第1の上面側裾S1aの傾きよりも小さい。
【0044】
本例の第2の水素濃度ピーク102は、上面21側から注入された水素による濃度ピークである。上面21側から水素を注入した場合、上面21と水素の注入位置との間の通過領域にも水素が分布する。このため、第2の上面側裾S2aは、第2の下面側裾S2bよりも緩やかに水素濃度が減少する。つまり、第2の上面側裾S2aの傾きは、第2の下面側裾S2bの傾きよりも小さい。本明細書における、濃度分布の裾の傾きは、濃度ピークの位置から所定の距離内における裾の傾きを用いてよい。所定の距離は、5μmであってよく、3μmであってよく、1μmであってもよい。所定の距離は、深さ位置Z1と深さ位置Z2との距離の半分であってよく、1/4であってもよい。また、各裾の傾きは、濃度ピークの位置から、濃度値がピーク値の半分となる位置までの裾の傾きであってもよい。
【0045】
第1の水素濃度ピーク101と、第2の水素濃度ピーク102との間の水素濃度分布を、中間水素分布103とする。また、中間水素分布103の水素化学濃度を、中間水素濃度Hcとする。中間水素濃度Hcは、深さ位置Z1とZ2との間における水素濃度の最小値を用いてよく、平均値を用いてもよい。また、中間水素濃度Hcは、中間水素分布103における平坦部分の平均濃度を用いてもよい。濃度分布における平坦部分とは、濃度が略一定である領域が、深さ方向に所定の長さ連続している部分である。平坦部分の詳細については後述する。
【0046】
第1の水素濃度ピーク101と、半導体基板10の上面21との間の水素濃度分布を、上面側水素分布104とする。また、上面側水素分布104の水素濃度を、上面側水素濃度Hs1とする。上面側水素濃度Hs1は、深さ位置Z1と上面21との間における水素濃度の最小値を用いてよく、平均値を用いてもよい。上面側水素濃度Hs1は、上面側水素分布104における平坦部分のうち、深さ位置Z1に最も近い平坦部分の平均濃度を用いてもよい。
【0047】
第2の水素濃度ピーク102と、半導体基板10の下面23との間の水素濃度分布を、下面側水素分布105とする。また、下面側水素分布105の水素濃度を、下面側水素濃度Hs2とする。下面側水素濃度Hs2は、深さ位置Z2と下面23との間における水素濃度の最小値を用いてよく、平均値を用いてもよい。下面側水素濃度Hs2は、下面側水素分布105における平坦部分のうち、深さ位置Z2に最も近い平坦部分の平均濃度を用いてもよい。
【0048】
中間水素濃度Hcは、上面側水素濃度Hs1と、下面側水素濃度Hs2のいずれとも異なっている。本例においては、深さ位置Z1とZ2の間の領域には、上面21側から注入された水素と、下面23側から注入された水素の両方が存在する。このため、本例の中間水素濃度Hcは、上面側水素濃度Hs1と、下面側水素濃度Hs2のいずれよりも高くなっている。中間水素濃度Hcは、上面側水素濃度Hs1と、下面側水素濃度Hs2のいずれに対しても、1.5倍以上であってよく、2倍以上であってよく、5倍以上であってもよい。
【0049】
ドナー濃度分布は、第1のドナー濃度ピーク111と、第2のドナー濃度ピーク112とを有する。第2のドナー濃度ピーク112は、第1のドナー濃度ピーク111よりも半導体基板10の下面23側に配置されている。第1のドナー濃度ピーク111は、第1の水素濃度ピーク101と同一の深さ位置Z1に配置されている。第2のドナー濃度ピーク112は、第2の水素濃度ピーク102と同一の深さ位置Z2に配置されている。なお、一方のピークの半値幅の範囲に、他方のピークの頂点が含まれている場合も、同一の深さ位置に2つのピークが配置されているとしてよい。
【0050】
ドナー濃度分布は、第3の上面側裾S3a、第3の下面側裾S3b、第4の上面側裾S4a、および、第4の下面側裾S4bを有する。第3の上面側裾S3aは、ドナー濃度分布において、第1のドナー濃度ピーク111から上面21側に向かってドナー濃度が減少する部分である。第3の下面側裾S3bは、ドナー濃度分布において、第1のドナー濃度ピーク111から下面23側に向かってドナー濃度が減少する部分である。第4の上面側裾S4aは、ドナー濃度分布において、第2のドナー濃度ピーク112から上面21側に向かってドナー濃度が減少する部分である。第4の下面側裾S4bは、ドナー濃度分布において、第2のドナー濃度ピーク112から下面23側に向かってドナー濃度が減少する部分である。
【0051】
それぞれのドナー濃度ピークは、対応する水素濃度ピークと類似した形状を有する。本例においては、第3の下面側裾S3bは、第3の上面側裾S3aよりも緩やかにドナー濃度が減少する。つまり、第3の下面側裾S3bの傾きは、第3の上面側裾S3aの傾きよりも小さい。また、第4の上面側裾S4aは、第4の下面側裾S4bよりも緩やかにドナー濃度が減少する。つまり、第4の上面側裾S4aの傾きは、第4の下面側裾S4bの傾きよりも小さい。
【0052】
第1のドナー濃度ピーク111と、第2のドナー濃度ピーク112との間のドナー濃度分布を、中間ドナー分布113とする。また、中間ドナー分布113のドナー濃度を、中間ドナー濃度Dcとする。中間ドナー濃度Dcは、深さ位置Z1とZ2との間におけるドナー濃度の最小値を用いてよく、平均値を用いてもよい。また、中間ドナー濃度Dcは、中間ドナー分布113における平坦部分の平均濃度を用いてもよい。
【0053】
第1のドナー濃度ピーク111と、半導体基板10の上面21との間のドナー濃度分布を、上面側ドナー分布114とする。また、上面側ドナー分布114のドナー濃度を、上面側ドナー濃度Ds1とする。上面側ドナー濃度Ds1は、深さ位置Z1と上面21との間におけるドナー濃度の最小値を用いてよく、平均値を用いてもよい。上面側ドナー濃度Ds1は、上面側ドナー分布114における平坦部分のうち、深さ位置Z1に最も近い平坦部分の平均濃度を用いてもよい。
【0054】
第2のドナー濃度ピーク112と、半導体基板10の下面23との間のドナー濃度分布を、下面側ドナー分布115とする。また、下面側ドナー分布115のドナー濃度を、下面側ドナー濃度Ds2とする。下面側ドナー濃度Ds2は、深さ位置Z2と下面23との間におけるドナー濃度の最小値を用いてよく、平均値を用いてもよい。下面側ドナー濃度Ds2は、下面側ドナー分布115における平坦部分のうち、深さ位置Z2に最も近い平坦部分の平均濃度を用いてもよい。
【0055】
中間ドナー濃度Dcは、上面側ドナー濃度Ds1と、下面側ドナー濃度Ds2のいずれとも異なっている。本例においては、中間ドナー濃度Dcは、上面側ドナー濃度Ds1と、下面側ドナー濃度Ds2のいずれよりも高くなっている。中間ドナー濃度Dcは、上面側ドナー濃度Ds1と、下面側ドナー濃度Ds2のいずれに対しても、1.5倍以上であってよく、2倍以上であってよく、5倍以上であってもよい。
【0056】
本例では、中間ドナー濃度Dc、上面側ドナー濃度Ds1、および、下面側ドナー濃度Ds2のいずれも、バルク・ドナー濃度Dbよりも高い。中間ドナー濃度Dcは、1×1013/cm3以上、1×1015/cm3以下であってよい。中間ドナー濃度Dcは、5×1013/cm3以上であってよく、1×1014/cm3以上であってもよい。中間水素濃度Hcは、中間ドナー濃度Dcの10倍以上であってよく、50倍以上であってよく、100倍以上であってもよい。
【0057】
図1に示したように、通過領域106-1および通過領域106-2が重なるように水素イオンを注入することで、半導体基板10の深さ方向の全体にわたって、ドナー濃度を調整できる。また、上面21および下面23の両方から水素イオンを注入するので、絶縁膜等に与えるダメージを低減できる。また、深さ位置Z1およびZ2を異ならせるので、水素化学濃度およびドナー濃度のピーク値が大きくなりすぎるのを抑制できる。
【0058】
第1の水素濃度ピーク101の水素化学濃度Hp1と、第2の水素濃度ピーク102の水素化学濃度Hp2とは、同一であってよく、異なっていてもよい。第1のドナー濃度ピーク111のドナー濃度Dp1と、第2のドナー濃度ピーク112のドナー濃度Dp2とは、同一であってよく、異なっていてもよい。
【0059】
図2の例では、深さ位置Z1は、半導体基板10の上面21側に配置されている。また、深さ位置Z2は、半導体基板10の下面23側に配置されている。なお上面21側とは、半導体基板10の深さ方向における中央Zcと、上面21との間の領域を指す。下面23側とは、半導体基板10の深さ方向における中央Zcと、下面23との間の領域を指す。また、半導体基板10の下面23側の領域の、深さ方向における中央位置をZc2とする。同様に、上面21側の領域の深さ方向における中央位置をZc1とする。本例の深さ位置Z1は、深さ位置ZcとZc1との間に配置されている。また、深さ位置Z2は、深さ位置ZcとZc2との間に配置されている。ただし、深さ位置Z1、Z2の配置は
図2の例に限定されない。
【0060】
図3は、濃度分布における平坦部分150を説明する図である。
図3においてはドナー濃度分布における平坦部分150を説明するが、水素化学濃度分布における平坦部分も同様の定義を用いてよい。
図3においては、第1のドナー濃度ピーク111および上面側ドナー分布114の一部を拡大している。
【0061】
水素イオンが通過した通過領域106(
図1参照)には、深さ位置Z1およびZ2の近傍を除き、水素が通過することで生じた空孔(V、VV等)が、深さ方向にほぼ一様の濃度で分布すると考えられる。また、半導体基板10の製造時等に注入される酸素(O)も、深さ方向に一様に分布すると考えられる。また、通過領域106には、各水素濃度ピークの水素が拡散するので十分な量の水素が存在する。このため、空孔、酸素および水素により形成されるVOH欠陥が、通過領域106にほぼ均一に存在する。
【0062】
このため、深さ位置Z1およびZ2の近傍以外の通過領域106には、ドナーとして機能するVOH欠陥がほぼ一様に分布した平坦部分150が存在する。平坦部分150におけるドナー濃度は、深さ方向においてほぼ一定である。ドナー濃度が深さ方向においてほぼ一定とは、例えば、ドナー濃度の最大値Dmaxと最小値Dminとの差分がドナー濃度の最大値Dmaxの50%以内である領域が、深さ方向の所定の長さ以上にわたって連続している状態を指してよい。当該差分は、当該領域のドナー濃度の最大値Dmaxの30%以下であってよく、10%以下であってもよい。
【0063】
あるいは、深さ方向の所定範囲におけるドナー濃度分布の平均濃度に対して、ドナー濃度分布の値が、当該ドナー濃度分布の平均濃度の±50%以内にあってよく、±30%以内にあってよく、±10%以内にあってよい。深さ方向の所定の長さは、5μmであってよく、10μmであってよく、15μmであってもよい。
図3の例では、2つの深さ位置ZsおよびZeで規定される区間が5μm以上であり、且つ、当該区間のドナー濃度の最大値Dmaxと最小値Dminとの差分がドナー濃度の最大値Dmaxの50%以内である場合に、当該区間を平坦部分150としている。
【0064】
図3においては、上面側ドナー分布114の平坦部分150を説明した。平坦部分150は、下面側ドナー分布115に配置されてよく、上面側ドナー分布114および下面側ドナー分布115の両方に配置されていてもよい。また、中間ドナー分布113に平坦部分150が配置されていてもよい。
【0065】
図4は、
図1のA-A線に示した位置における、深さ方向の水素化学濃度分布およびドナー濃度分布の他の例を示している。本例においては、深さ位置Z1が深さ位置Zc1と上面21との間に配置され、且つ、深さ位置Z2が深さ位置Zc2と下面23との間に配置されている。つまり、第1の水素濃度ピーク101および第1のドナー濃度ピーク111が深さ位置Zc1と上面21との間に配置され、且つ、第2の水素濃度ピーク102および第2のドナー濃度ピーク112が深さ位置Zc2と下面23との間に配置されている。他の構成は、
図2に示した例と同一である。
【0066】
本例によれば、中間水素分布103および中間ドナー分布113の領域を広く形成できる。つまり、比較的にドナー濃度の高い領域を、深さ方向に広く形成できる。また、第1のドナー濃度ピーク111を、半導体基板10の上面21側に形成されるN型領域の少なくとも一部として機能させ、且つ、第2のドナー濃度ピーク112を、半導体基板10の下面23側に形成されるN型領域の少なくとも一部として機能させることが容易となる。上面21側のN型領域とは、例えば後述する蓄積領域である。下面23側のN型領域とは、例えば後述するバッファ領域である。これにより、半導体基板10の深さ方向の全体にわたってバルク・ドナー濃度Dbよりも高濃度のドナーを形成しつつ、不要なドナー濃度ピークが形成されるのを防ぐことができる。
【0067】
図5は、
図1のA-A線に示した位置における、深さ方向の水素化学濃度分布およびドナー濃度分布の他の例を示している。本例においては、深さ位置Z1および深さ位置Z2が、ともに半導体基板10の上面21側に配置されている。他の構成は、
図2に示した例と同一である。
【0068】
本例によれば、第1のドナー濃度ピーク111および第2のドナー濃度ピーク112を、半導体基板10の上面21側に形成されるN型領域の少なくとも一部として機能させることが容易となる。上面21側のN型領域とは、例えば後述する蓄積領域である。
【0069】
図6は、
図1のA-A線に示した位置における、深さ方向の水素化学濃度分布およびドナー濃度分布の他の例を示している。本例においては、深さ位置Z1および深さ位置Z2が、ともに半導体基板10の下面23側に配置されている。他の構成は、
図2に示した例と同一である。
【0070】
本例によれば、第1のドナー濃度ピーク111および第2のドナー濃度ピーク112を、半導体基板10の下面23側に形成されるN型領域の少なくとも一部として機能させることが容易となる。下面23側のN型領域とは、例えば後述するバッファ領域である。
【0071】
図7は、
図1のA-A線に示した位置における、深さ方向の水素化学濃度分布およびドナー濃度分布の他の例を示している。本例においては、各ピークおよび各分布の濃度が異なる。それぞれのピークの深さ位置は、
図2から
図6において説明したいずれかの態様と同一である。
【0072】
本例の第1の水素濃度ピーク101の水素化学濃度Hp1は、第2の水素濃度ピーク102の水素化学濃度Hp2よりも高い。同様に、第1のドナー濃度ピーク111のドナー濃度Dp1は、第2のドナー濃度ピーク112のドナー濃度Dp2よりも高い。
【0073】
本例では、下面23からの水素イオンのドーズ量が、上面21からの水素イオンのドーズ量よりも高い。このため、下面側水素分布105の水素化学濃度は、上面側水素分布104の水素化学濃度よりも高い。例えば、下面側水素分布105において、第1の水素濃度ピーク101から距離Zx離れた位置における水素化学濃度は、上面側水素分布104において、第2の水素濃度ピーク102から当該距離Zx離れた位置における水素化学濃度よりも高い。距離Zxは、各分布の範囲内における任意の距離である。
【0074】
ドナー濃度分布においても、下面側ドナー分布115のドナー濃度は、上面側ドナー分布114のドナー濃度よりも高い。例えば、下面側ドナー分布115において、第1のドナー濃度ピーク111から距離Zx離れた位置におけるドナー濃度は、上面側ドナー分布114において、第2のドナー濃度ピーク112から当該距離Zx離れた位置におけるドナー濃度よりも高い。
【0075】
図8は、
図1のA-A線に示した位置における、深さ方向の水素化学濃度分布およびドナー濃度分布の他の例を示している。本例においては、各ピークおよび各分布の濃度が異なる。それぞれのピークの深さ位置は、
図2から
図6において説明したいずれかの態様と同一である。
【0076】
本例の第2の水素濃度ピーク102の水素化学濃度Hp2は、第1の水素濃度ピーク101の水素化学濃度Hp1よりも高い。同様に、第2のドナー濃度ピーク112のドナー濃度Dp2は、第1のドナー濃度ピーク111のドナー濃度Dp1よりも高い。
【0077】
本例では、上面21からの水素イオンのドーズ量が、下面23からの水素イオンのドーズ量よりも高い。このため、上面側水素分布104の水素化学濃度は、下面側水素分布105の水素化学濃度よりも高い。例えば、上面側水素分布104において、第2の水素濃度ピーク102から距離Zx離れた位置における水素化学濃度は、下面側水素分布105において、第1の水素濃度ピーク101から当該距離Zx離れた位置における水素化学濃度よりも高い。
【0078】
ドナー濃度分布においても、上面側ドナー分布114のドナー濃度は、下面側ドナー分布115のドナー濃度よりも高い。例えば、上面側ドナー分布114において、第2のドナー濃度ピーク112から距離Zx離れた位置におけるドナー濃度は、下面側ドナー分布115において、第1のドナー濃度ピーク111から当該距離Zx離れた位置におけるドナー濃度よりも高い。
図2から
図8において説明したように、それぞれの水素濃度ピークの位置および濃度を調整することで、半導体基板10の内部におけるドナー濃度分布を適宜調整できる。
【0079】
図9は、半導体装置100の一例を示す上面図である。
図9においては、各部材を半導体基板10の上面に投影した位置を示している。
図9においては、半導体装置100の一部の部材だけを示しており、一部の部材は省略している。
【0080】
半導体装置100は、半導体基板10を備えている。半導体基板10は、
図1から
図8において説明したいずれかの態様の水素化学濃度分布およびドナー濃度分布を有してよい。ただし半導体基板10は、
図1から
図8において説明した各濃度ピークとは異なる他の濃度ピークを更に有していてよい。後述するバッファ領域20のように、水素イオンを注入して半導体基板10におけるN型領域を形成する場合がある。この場合、水素化学濃度分布は、
図1から
図8において説明した水素濃度ピークの他にも、水素濃度ピークを有し得る。また、後述するエミッタ領域12のように、リン等の水素以外のN型不純物を注入して半導体基板10におけるN型領域を形成する場合がある。この場合、ドナー濃度分布は、
図1から
図8において説明したドナー濃度ピークの他にも、ドナー濃度ピークを有し得る。
【0081】
半導体基板10は、上面視において端辺162を有する。本明細書で単に上面視と称した場合、半導体基板10の上面側から見ることを意味している。本例の半導体基板10は、上面視において互いに向かい合う2組の端辺162を有する。
図9においては、X軸およびY軸は、いずれかの端辺162と平行である。またZ軸は、半導体基板10の上面と垂直である。
【0082】
半導体基板10には活性部160が設けられている。活性部160は、半導体装置100が動作した場合に半導体基板10の上面と下面との間で、深さ方向に主電流が流れる領域である。活性部160の上方には、エミッタ電極が設けられているが
図9では省略している。
【0083】
活性部160には、IGBT等のトランジスタ素子を含むトランジスタ部70と、還流ダイオード(FWD)等のダイオード素子を含むダイオード部80の少なくとも一方が設けられている。
図9の例では、トランジスタ部70およびダイオード部80は、半導体基板10の上面における所定の配列方向(本例ではX軸方向)に沿って、交互に配置されている。他の例では、活性部160には、トランジスタ部70およびダイオード部80の一方だけが設けられていてもよい。
【0084】
図9においては、トランジスタ部70が配置される領域には記号「I」を付し、ダイオード部80が配置される領域には記号「F」を付している。本明細書では、上面視において配列方向と垂直な方向を延伸方向(
図9ではY軸方向)と称する場合がある。トランジスタ部70およびダイオード部80は、それぞれ延伸方向に長手を有してよい。つまり、トランジスタ部70のY軸方向における長さは、X軸方向における幅よりも大きい。同様に、ダイオード部80のY軸方向における長さは、X軸方向における幅よりも大きい。トランジスタ部70およびダイオード部80の延伸方向と、後述する各トレンチ部の長手方向とは同一であってよい。
【0085】
ダイオード部80は、半導体基板10の下面と接する領域に、N+型のカソード領域を有する。本明細書では、カソード領域が設けられた領域を、ダイオード部80と称する。つまりダイオード部80は、上面視においてカソード領域と重なる領域である。半導体基板10の下面には、カソード領域以外の領域には、P+型のコレクタ領域が設けられてよい。本明細書では、ダイオード部80を、後述するゲート配線までY軸方向に延長した延長領域81も、ダイオード部80に含める場合がある。延長領域81の下面には、コレクタ領域が設けられている。
【0086】
トランジスタ部70は、半導体基板10の下面と接する領域に、P+型のコレクタ領域を有する。また、トランジスタ部70は、半導体基板10の上面側に、N型のエミッタ領域、P型のベース領域、ゲート導電部およびゲート絶縁膜を有するゲート構造が周期的に配置されている。
【0087】
半導体装置100は、半導体基板10の上方に1つ以上のパッドを有してよい。本例の半導体装置100は、ゲートパッド164を有している。半導体装置100は、アノードパッド、カソードパッドおよび電流検出パッド等のパッドを有してもよい。各パッドは、端辺162の近傍に配置されている。端辺162の近傍とは、上面視における端辺162と、エミッタ電極との間の領域を指す。半導体装置100の実装時において、各パッドは、ワイヤ等の配線を介して外部の回路に接続されてよい。
【0088】
ゲートパッド164には、ゲート電位が印加される。ゲートパッド164は、活性部160のゲートトレンチ部の導電部に電気的に接続される。半導体装置100は、ゲートパッド164とゲートトレンチ部とを接続するゲート配線を備える。
図9においては、ゲート配線に斜線のハッチングを付している。
【0089】
本例のゲート配線は、外周ゲート配線130と、活性側ゲート配線131とを有している。外周ゲート配線130は、上面視において活性部160と半導体基板10の端辺162との間に配置されている。本例の外周ゲート配線130は、上面視において活性部160を囲んでいる。上面視において外周ゲート配線130に囲まれた領域を活性部160としてもよい。また、外周ゲート配線130は、ゲートパッド164と接続されている。外周ゲート配線130は、半導体基板10の上方に配置されている。外周ゲート配線130は、アルミニウム等を含む金属配線であってよい。
【0090】
活性側ゲート配線131は、活性部160に設けられている。活性部160に活性側ゲート配線131を設けることで、半導体基板10の各領域について、ゲートパッド164からの配線長のバラツキを低減できる。
【0091】
活性側ゲート配線131は、活性部160のゲートトレンチ部と接続される。活性側ゲート配線131は、半導体基板10の上方に配置されている。活性側ゲート配線131は、不純物がドープされたポリシリコン等の半導体で形成された配線であってよい。
【0092】
活性側ゲート配線131は、外周ゲート配線130と接続されてよい。本例の活性側ゲート配線131は、Y軸方向の略中央で一方の外周ゲート配線130から他方の外周ゲート配線130まで、活性部160を横切るように、X軸方向に延伸して設けられている。活性側ゲート配線131により活性部160が分割されている場合、それぞれの分割領域において、トランジスタ部70およびダイオード部80がX軸方向に交互に配置されてよい。
【0093】
また、半導体装置100は、ポリシリコン等で形成されたPN接合ダイオードである不図示の温度センス部や、活性部160に設けられたトランジスタ部の動作を模擬する不図示の電流検出部を備えてもよい。
【0094】
本例の半導体装置100は、上面視において、活性部160と端辺162との間に、エッジ終端構造部90を備える。本例のエッジ終端構造部90は、外周ゲート配線130と端辺162との間に配置されている。エッジ終端構造部90は、半導体基板10の上面側の電界集中を緩和する。エッジ終端構造部90は、活性部160を囲んで環状に設けられたガードリング、フィールドプレートおよびリサーフのうちの少なくとも一つを備えていてよい。
【0095】
図10は、
図9における領域Cの拡大図である。領域Cは、トランジスタ部70、ダイオード部80、および、活性側ゲート配線131を含む領域である。本例の半導体装置100は、半導体基板10の上面側の内部に設けられたゲートトレンチ部40、ダミートレンチ部30、ウェル領域11、エミッタ領域12、ベース領域14およびコンタクト領域15を備える。ゲートトレンチ部40およびダミートレンチ部30は、それぞれがトレンチ部の一例である。また、本例の半導体装置100は、半導体基板10の上面の上方に設けられたエミッタ電極52および活性側ゲート配線131を備える。エミッタ電極52および活性側ゲート配線131は互いに分離して設けられる。
【0096】
エミッタ電極52および活性側ゲート配線131と、半導体基板10の上面との間には層間絶縁膜が設けられるが、
図10では省略している。本例の層間絶縁膜には、コンタクトホール54が、当該層間絶縁膜を貫通して設けられる。
図10においては、それぞれのコンタクトホール54に斜線のハッチングを付している。
【0097】
エミッタ電極52は、ゲートトレンチ部40、ダミートレンチ部30、ウェル領域11、エミッタ領域12、ベース領域14およびコンタクト領域15の上方に設けられる。エミッタ電極52は、コンタクトホール54を通って、半導体基板10の上面におけるエミッタ領域12、コンタクト領域15およびベース領域14と接触する。また、エミッタ電極52は、層間絶縁膜に設けられたコンタクトホールを通って、ダミートレンチ部30内のダミー導電部と接続される。エミッタ電極52は、Y軸方向におけるダミートレンチ部30の先端において、ダミートレンチ部30のダミー導電部と接続されてよい。
【0098】
活性側ゲート配線131は、層間絶縁膜に設けられたコンタクトホールを通って、ゲートトレンチ部40と接続する。活性側ゲート配線131は、Y軸方向におけるゲートトレンチ部40の先端部41において、ゲートトレンチ部40のゲート導電部と接続されてよい。活性側ゲート配線131は、ダミートレンチ部30内のダミー導電部とは接続されない。
【0099】
エミッタ電極52は、金属を含む材料で形成される。
図10においては、エミッタ電極52が設けられる範囲を示している。例えば、エミッタ電極52の少なくとも一部の領域はアルミニウムまたはアルミニウム‐シリコン合金、例えばAlSi、AlSiCu等の金属合金で形成される。エミッタ電極52は、アルミニウム等で形成された領域の下層に、チタンやチタン化合物等で形成されたバリアメタルを有してよい。さらにコンタクトホール内において、バリアメタルとアルミニウム等に接するようにタングステン等を埋め込んで形成されたプラグを有してもよい。
【0100】
ウェル領域11は、活性側ゲート配線131と重なって設けられている。ウェル領域11は、活性側ゲート配線131と重ならない範囲にも、所定の幅で延伸して設けられている。本例のウェル領域11は、コンタクトホール54のY軸方向の端から、活性側ゲート配線131側に離れて設けられている。ウェル領域11は、ベース領域14よりもドーピング濃度の高い第2導電型の領域である。本例のベース領域14はP-型であり、ウェル領域11はP+型である。
【0101】
トランジスタ部70およびダイオード部80のそれぞれは、配列方向に複数配列されたトレンチ部を有する。本例のトランジスタ部70には、配列方向に沿って1以上のゲートトレンチ部40と、1以上のダミートレンチ部30とが交互に設けられている。本例のダイオード部80には、複数のダミートレンチ部30が、配列方向に沿って設けられている。本例のダイオード部80には、ゲートトレンチ部40が設けられていない。
【0102】
本例のゲートトレンチ部40は、配列方向と垂直な延伸方向に沿って延伸する2つの直線部分39(延伸方向に沿って直線状であるトレンチの部分)と、2つの直線部分39を接続する先端部41を有してよい。
図10における延伸方向はY軸方向である。
【0103】
先端部41の少なくとも一部は、上面視において曲線状に設けられることが好ましい。2つの直線部分39のY軸方向における端部どうしを先端部41が接続することで、直線部分39の端部における電界集中を緩和できる。
【0104】
トランジスタ部70において、ダミートレンチ部30はゲートトレンチ部40のそれぞれの直線部分39の間に設けられる。それぞれの直線部分39の間には、1本のダミートレンチ部30が設けられてよく、複数本のダミートレンチ部30が設けられていてもよい。ダミートレンチ部30は、延伸方向に延伸する直線形状を有してよく、ゲートトレンチ部40と同様に、直線部分29と先端部31とを有していてもよい。
図10に示した半導体装置100は、先端部31を有さない直線形状のダミートレンチ部30と、先端部31を有するダミートレンチ部30の両方を含んでいる。
【0105】
ウェル領域11の拡散深さは、ゲートトレンチ部40およびダミートレンチ部30の深さよりも深くてよい。ゲートトレンチ部40およびダミートレンチ部30のY軸方向の端部は、上面視においてウェル領域11に設けられる。つまり、各トレンチ部のY軸方向の端部において、各トレンチ部の深さ方向の底部は、ウェル領域11に覆われている。これにより、各トレンチ部の当該底部における電界集中を緩和できる。
【0106】
配列方向において各トレンチ部の間には、メサ部が設けられている。メサ部は、半導体基板10の内部において、トレンチ部に挟まれた領域を指す。一例としてメサ部の上端は半導体基板10の上面である。メサ部の下端の深さ位置は、トレンチ部の下端の深さ位置と同一である。本例のメサ部は、半導体基板10の上面において、トレンチに沿って延伸方向(Y軸方向)に延伸して設けられている。本例では、トランジスタ部70にはメサ部60が設けられ、ダイオード部80にはメサ部61が設けられている。本明細書において単にメサ部と称した場合、メサ部60およびメサ部61のそれぞれを指している。
【0107】
それぞれのメサ部には、ベース領域14が設けられる。メサ部において半導体基板10の上面に露出したベース領域14のうち、活性側ゲート配線131に最も近く配置された領域をベース領域14-eとする。
図10においては、それぞれのメサ部の延伸方向における一方の端部に配置されたベース領域14-eを示しているが、それぞれのメサ部の他方の端部にもベース領域14-eが配置されている。それぞれのメサ部には、上面視においてベース領域14-eに挟まれた領域に、第1導電型のエミッタ領域12および第2導電型のコンタクト領域15の少なくとも一方が設けられてよい。本例のエミッタ領域12はN+型であり、コンタクト領域15はP+型である。エミッタ領域12およびコンタクト領域15は、深さ方向において、ベース領域14と半導体基板10の上面との間に設けられてよい。
【0108】
トランジスタ部70のメサ部60は、半導体基板10の上面に露出したエミッタ領域12を有する。エミッタ領域12は、ゲートトレンチ部40に接して設けられている。ゲートトレンチ部40に接するメサ部60は、半導体基板10の上面に露出したコンタクト領域15が設けられていてよい。
【0109】
メサ部60におけるコンタクト領域15およびエミッタ領域12のそれぞれは、X軸方向における一方のトレンチ部から、他方のトレンチ部まで設けられる。一例として、メサ部60のコンタクト領域15およびエミッタ領域12は、トレンチ部の延伸方向(Y軸方向)に沿って交互に配置されている。
【0110】
他の例においては、メサ部60のコンタクト領域15およびエミッタ領域12は、トレンチ部の延伸方向(Y軸方向)に沿ってストライプ状に設けられていてもよい。例えばトレンチ部に接する領域にエミッタ領域12が設けられ、エミッタ領域12に挟まれた領域にコンタクト領域15が設けられる。
【0111】
ダイオード部80のメサ部61には、エミッタ領域12が設けられていない。メサ部61の上面には、ベース領域14およびコンタクト領域15が設けられてよい。メサ部61の上面においてベース領域14-eに挟まれた領域には、それぞれのベース領域14-eに接してコンタクト領域15が設けられてよい。メサ部61の上面においてコンタクト領域15に挟まれた領域には、ベース領域14が設けられてよい。ベース領域14は、コンタクト領域15に挟まれた領域全体に配置されてよい。
【0112】
それぞれのメサ部の上方には、コンタクトホール54が設けられている。コンタクトホール54は、ベース領域14-eに挟まれた領域に配置されている。本例のコンタクトホール54は、コンタクト領域15、ベース領域14およびエミッタ領域12の各領域の上方に設けられる。コンタクトホール54は、ベース領域14-eおよびウェル領域11に対応する領域には設けられない。コンタクトホール54は、メサ部60の配列方向(X軸方向)における中央に配置されてよい。
【0113】
ダイオード部80において、半導体基板10の下面と隣接する領域には、N+型のカソード領域82が設けられる。半導体基板10の下面において、カソード領域82が設けられていない領域には、P+型のコレクタ領域22が設けられてよい。カソード領域82およびコレクタ領域22は、半導体基板10の下面23と、バッファ領域20との間に設けられている。
図10においては、カソード領域82およびコレクタ領域22の境界を点線で示している。
【0114】
カソード領域82は、Y軸方向においてウェル領域11から離れて配置されている。これにより、比較的にドーピング濃度が高く、且つ、深い位置まで形成されているP型の領域(ウェル領域11)と、カソード領域82との距離を確保して、耐圧を向上できる。本例のカソード領域82のY軸方向における端部は、コンタクトホール54のY軸方向における端部よりも、ウェル領域11から離れて配置されている。他の例では、カソード領域82のY軸方向における端部は、ウェル領域11とコンタクトホール54との間に配置されていてもよい。
【0115】
図11は、
図10におけるb-b断面の一例を示す図である。b-b断面は、エミッタ領域12およびカソード領域82を通過するXZ面である。本例の半導体装置100は、当該断面において、半導体基板10、層間絶縁膜38、エミッタ電極52およびコレクタ電極24を有する。
【0116】
層間絶縁膜38は、半導体基板10の上面に設けられている。層間絶縁膜38は、ホウ素またはリン等の不純物が添加されたシリケートガラス等の絶縁膜、熱酸化膜、および、その他の絶縁膜の少なくとも一層を含む膜である。層間絶縁膜38には、
図10において説明したコンタクトホール54が設けられている。
【0117】
エミッタ電極52は、層間絶縁膜38の上方に設けられる。エミッタ電極52は、層間絶縁膜38のコンタクトホール54を通って、半導体基板10の上面21と接触している。コレクタ電極24は、半導体基板10の下面23に設けられる。エミッタ電極52およびコレクタ電極24は、アルミニウム等の金属材料で形成されている。本明細書において、エミッタ電極52とコレクタ電極24とを結ぶ方向(Z軸方向)を深さ方向と称する。
【0118】
半導体基板10は、N型またはN-型のドリフト領域18を有する。ドリフト領域18は、トランジスタ部70およびダイオード部80のそれぞれに設けられている。
【0119】
トランジスタ部70のメサ部60には、N+型のエミッタ領域12およびP-型のベース領域14が、半導体基板10の上面21側から順番に設けられている。ベース領域14の下方にはドリフト領域18が設けられている。メサ部60には、N+型の蓄積領域16が設けられてもよい。蓄積領域16は、ベース領域14とドリフト領域18との間に配置される。
【0120】
エミッタ領域12は半導体基板10の上面21に露出しており、且つ、ゲートトレンチ部40と接して設けられている。エミッタ領域12は、メサ部60の両側のトレンチ部と接していてよい。エミッタ領域12は、ドリフト領域18よりもドーピング濃度が高い。
【0121】
ベース領域14は、エミッタ領域12の下方に設けられている。本例のベース領域14は、エミッタ領域12と接して設けられている。ベース領域14は、メサ部60の両側のトレンチ部と接していてよい。
【0122】
蓄積領域16は、ベース領域14の下方に設けられている。蓄積領域16は、ドリフト領域18よりもドーピング濃度が高いN+型の領域である。ドリフト領域18とベース領域14との間に高濃度の蓄積領域16を設けることで、キャリア注入促進効果(IE効果)を高めて、オン電圧を低減できる。蓄積領域16は、各メサ部60におけるベース領域14の下面全体を覆うように設けられてよい。
【0123】
ダイオード部80のメサ部61には、半導体基板10の上面21に接して、P-型のベース領域14が設けられている。ベース領域14の下方には、ドリフト領域18が設けられている。メサ部61において、ベース領域14の下方に蓄積領域16が設けられていてもよい。
【0124】
トランジスタ部70およびダイオード部80のそれぞれにおいて、ドリフト領域18の下にはN+型のバッファ領域20が設けられてよい。バッファ領域20のドーピング濃度は、ドリフト領域18のドーピング濃度よりも高い。バッファ領域20は、ドリフト領域18よりもドーピング濃度の高い濃度ピーク25を有する。濃度ピーク25のドーピング濃度とは、濃度ピーク25の頂点におけるドーピング濃度を指す。また、ドリフト領域18のドーピング濃度は、ドーピング濃度分布がほぼ平坦な領域におけるドーピング濃度の平均値を用いてよい。ドリフト領域18のドーピング濃度は、
図3において説明した平坦部分150のドーピング濃度の平均値であってよい。
【0125】
本例のバッファ領域20は、半導体基板10の深さ方向(Z軸方向)において、3つ以上の濃度ピーク25を有する。バッファ領域20の濃度ピーク25は、例えば水素(プロトン)またはリンの濃度ピークと同一の深さ位置に設けられていてよい。バッファ領域20は、ベース領域14の下端から広がる空乏層が、P+型のコレクタ領域22およびN+型のカソード領域82に到達することを防ぐフィールドストップ層として機能してよい。
【0126】
トランジスタ部70において、バッファ領域20の下には、P+型のコレクタ領域22が設けられる。コレクタ領域22のアクセプタ濃度は、ベース領域14のアクセプタ濃度より高い。コレクタ領域22は、ベース領域14と同一のアクセプタを含んでよく、異なるアクセプタを含んでもよい。コレクタ領域22のアクセプタは、例えばボロンである。
【0127】
ダイオード部80において、バッファ領域20の下には、N+型のカソード領域82が設けられる。カソード領域82のドナー濃度は、ドリフト領域18のドナー濃度より高い。カソード領域82のドナーは、例えば水素またはリンである。なお、各領域のドナーおよびアクセプタとなる元素は、上述した例に限定されない。コレクタ領域22およびカソード領域82は、半導体基板10の下面23に露出しており、コレクタ電極24と接続している。コレクタ電極24は、半導体基板10の下面23全体と接触してよい。エミッタ電極52およびコレクタ電極24は、アルミニウム等の金属材料で形成される。
【0128】
半導体基板10の上面21側には、1以上のゲートトレンチ部40、および、1以上のダミートレンチ部30が設けられる。各トレンチ部は、半導体基板10の上面21から、ベース領域14を貫通して、ドリフト領域18に到達している。エミッタ領域12、コンタクト領域15および蓄積領域16の少なくともいずれかが設けられている領域においては、各トレンチ部はこれらのドーピング領域も貫通して、ドリフト領域18に到達している。トレンチ部がドーピング領域を貫通するとは、ドーピング領域を形成してからトレンチ部を形成する順序で製造したものに限定されない。トレンチ部を形成した後に、トレンチ部の間にドーピング領域を形成したものも、トレンチ部がドーピング領域を貫通しているものに含まれる。
【0129】
上述したように、トランジスタ部70には、ゲートトレンチ部40およびダミートレンチ部30が設けられている。ダイオード部80には、ダミートレンチ部30が設けられ、ゲートトレンチ部40が設けられていない。本例においてダイオード部80とトランジスタ部70のX軸方向における境界は、カソード領域82とコレクタ領域22の境界である。
【0130】
ゲートトレンチ部40は、半導体基板10の上面21に設けられたゲートトレンチ、ゲート絶縁膜42およびゲート導電部44を有する。ゲート絶縁膜42は、ゲートトレンチの内壁を覆って設けられる。ゲート絶縁膜42は、ゲートトレンチの内壁の半導体を酸化または窒化して形成してよい。ゲート導電部44は、ゲートトレンチの内部においてゲート絶縁膜42よりも内側に設けられる。つまりゲート絶縁膜42は、ゲート導電部44と半導体基板10とを絶縁する。ゲート導電部44は、ポリシリコン等の導電材料で形成される。
【0131】
ゲート導電部44は、深さ方向において、ベース領域14よりも長く設けられてよい。当該断面におけるゲートトレンチ部40は、半導体基板10の上面21において層間絶縁膜38により覆われる。ゲート導電部44は、ゲート配線に電気的に接続されている。ゲート導電部44に所定のゲート電圧が印加されると、ベース領域14のうちゲートトレンチ部40に接する界面の表層に電子の反転層によるチャネルが形成される。
【0132】
ダミートレンチ部30は、当該断面において、ゲートトレンチ部40と同一の構造を有してよい。ダミートレンチ部30は、半導体基板10の上面21に設けられたダミートレンチ、ダミー絶縁膜32およびダミー導電部34を有する。ダミー導電部34は、エミッタ電極52に電気的に接続されている。ダミー絶縁膜32は、ダミートレンチの内壁を覆って設けられる。ダミー導電部34は、ダミートレンチの内部に設けられ、且つ、ダミー絶縁膜32よりも内側に設けられる。ダミー絶縁膜32は、ダミー導電部34と半導体基板10とを絶縁する。ダミー導電部34は、ゲート導電部44と同一の材料で形成されてよい。例えばダミー導電部34は、ポリシリコン等の導電材料で形成される。ダミー導電部34は、深さ方向においてゲート導電部44と同一の長さを有してよい。
【0133】
本例のゲートトレンチ部40およびダミートレンチ部30は、半導体基板10の上面21において層間絶縁膜38により覆われている。なお、ダミートレンチ部30およびゲートトレンチ部40の底部は、下側に凸の曲面状(断面においては曲線状)であってよい。
【0134】
図1から
図8において説明したように、半導体基板10は、深さ位置Z1に第1の水素濃度ピーク101および第1のドナー濃度ピーク111を有し、深さ位置Z2に第2の水素濃度ピーク102および第2のドナー濃度ピーク112を有する。
【0135】
深さ位置Z1は、蓄積領域16内に配置されてよく、トレンチ部の下端位置Ztとバッファ領域20の上端位置Zfとの間に配置されていてよく、バッファ領域20内に配置されていてもよい。深さ位置Z2も同様に、蓄積領域16内に配置されてよく、トレンチ部の下端位置Ztとバッファ領域20の上端位置Zfとの間に配置されていてよく、バッファ領域20内に配置されていてもよい。
【0136】
図12は、通過領域106-1および通過領域106-2の他の例を示す図である。本例の通過領域106-1および通過領域106-2は、重なっていない。つまり、通過領域106-1および通過領域106-2は、深さ方向において離れて配置されている。
【0137】
本例においては、半導体基板10の深さ位置Z1に、半導体基板10の上面21側から水素イオンを注入する。また、深さ位置Z1よりも下面23側の深さ位置Z2に、半導体基板10の下面23側から水素イオンを注入する。本例の深さ位置Z1およびZ2は、トレンチ部の下端位置Ztと、バッファ領域20の上端位置Zfとの間に配置されている。
【0138】
図13は、
図12におけるD-D線におけるドーピング濃度分布の一例を示す図である。本例では、VOH欠陥によるドナー濃度分布に加えて、それぞれの領域におけるドーピング濃度分布を示している。
【0139】
半導体基板10の全体には、リン等のバルク・ドナーが分布している。エミッタ領域12は、リン等のN型ドーパントを含む。ベース領域14は、ボロン等のP型ドーパントを含む。蓄積領域16は、リンまたは水素等のN型ドーパントを含む。
【0140】
ドリフト領域18は、少なくとも一部の領域において水素を含む。ドリフト領域18には、第1のドナー濃度ピーク111および第2のドナー濃度ピーク112が配置されている。
【0141】
本例のバッファ領域20は、ドーピング濃度分布において、複数の濃度ピーク25-1、25-2、25-3、25-4を有する。それぞれの濃度ピーク25は、水素イオンを注入することで形成されている。コレクタ領域22は、ボロン等のP型ドーパントを含む。
【0142】
図14は、
図13に示した深さ位置Z1および深さ位置Z2の近傍の領域における、水素化学濃度分布およびドナー濃度分布の一例を示す図である。本例においては、深さ位置Z1および深さ位置Z2の間の領域は、水素が通過しない。このため当該領域にはVOH欠陥が形成されない。一方で、深さ位置Z1と上面21との間の領域、および、深さ位置Z2と下面23との間の領域にはVOH欠陥が形成される。
【0143】
本例においては、深さ位置Z1および深さ位置Z2の間の中間ドナー分布113における中間ドナー濃度Dcが、上面側ドナー分布114における上面側ドナー濃度Ds1と、下面側ドナー分布115における下面側ドナー濃度Ds2のいずれよりも低い。中間ドナー濃度Dcは、バルク・ドナー濃度Dbと同一であってよい。上面側ドナー濃度Ds1、および、下面側ドナー濃度Ds2のいずれも、バルク・ドナー濃度Dbよりも高い。上面側ドナー濃度Ds1および下面側ドナー濃度Ds2は、中間ドナー濃度Dcの2倍以上であってよく、3倍以上であってよく、5倍以上であってもよい。
【0144】
本例においても、深さ位置Z1および深さ位置Z2は、
図2から
図8に示した例と同様に配置してよい。ただし、深さ位置Z1およびZ2は、深さ位置ZtおよびZfの間に配置されることが好ましい。例えば
図5に示したように、第1の水素濃度ピーク101と第2の水素濃度ピーク102の両方が、半導体基板10の上面21側に配置されてよい。これにより、比較的にドナー濃度が低い中間ドナー分布113の領域を、半導体基板10の上面21側に配置できる。半導体装置100の構造によっては、上面21側に電界が集中しやすい場合がある。このような場合であっても、中間ドナー分布113を上面21側に配置することで、上面21側における電界集中を緩和できる。
【0145】
図1から
図14に示した各例において、深さ位置Z1およびZ2の深さ方向における距離は、半導体基板10の深さ方向における厚みの1/2以下であってよい。当該距離は、当該厚みの1/4以下であってよく、1/10以下であってもよい。
図13の例においては、当該距離を小さくすることで、深さ方向における広い範囲で、半導体基板10のドナー濃度を調整できる。
【0146】
図15は、
図1から
図14において説明した半導体装置100の製造方法の一例を示す図である。製造方法は、半導体基板10の上面21から第1の深さ位置に水素イオンを注入する上面注入段階と、半導体基板の下面23から第1の深さ位置とは異なる第2の深さ位置に水素イオンを注入する下面注入段階とを含む水素注入段階を備える。
図15において下面注入段階は、段階S1408である。
図15において上面注入段階は、段階S1412、S1413、S1414、S1415のいずれかである。第1の深さ位置は、深さ位置Z1およびZ2の一方であり、第2の深さ位置は、深さ位置Z1およびZ2の他の一方である。
【0147】
本例においては、段階S1400において、半導体装置100の上面構造を形成する。上面構造は、半導体基板10の上面21側に設けられる構造を指し、例えばトレンチ部、エミッタ領域12、ベース領域14、蓄積領域16、層間絶縁膜38、エミッタ電極52、ゲート配線等を含む。
【0148】
次に段階S1402において、半導体基板10の下面23側を研削して、半導体基板10の厚みを調整する。次に、段階S1412において、半導体基板10の上面21側から水素イオンを注入してよい。ただし上面21側からの水素イオンの注入は、後述する他のタイミングで行ってもよい。段階S1412においては、深さ位置Z1または深さ位置Z2の一方の深さ位置に水素イオンを注入する。深さ位置Z2は、深さ位置Z1と、下面23との間に配置されていてよい。
【0149】
図1から
図8の例では、段階S1412において、上面21から深さ位置Z2に水素イオンを注入する。また、
図12から
図14の例では、段階S1412において、上面21から深さ位置Z1に水素イオンを注入する。
【0150】
次に段階S1404で、コレクタ領域22にP型ドーパントを注入する。段階S1404では、カソード領域82にもN型ドーパントを注入してよい。次に、段階S1413で、半導体基板10の上面21側から水素イオンを注入してよい。段階S1413は、段階S1412と同様である。段階S1413を行う場合、段階S1412は行わなくてよい。
【0151】
次に段階S1406で、下面23の近傍の領域にレーザーを照射して、レーザーアニールする。これにより、カソード領域82およびコレクタ領域22を形成する。段階S1406の前に段階S1412または段階S1413を行う場合、段階S1406のレーザーアニールにより、水素イオン注入により形成された過剰な欠陥を回復し得る。特に、段階S1412または段階S1413において、上面21から下面23側の領域に水素イオンを注入する場合、水素イオンの加速エネルギーが高くなるので、過剰な欠陥が形成されやすくなる。この場合、段階S1406により、下面23近傍における過剰な欠陥を回復できる。
【0152】
次に段階S1414において、半導体基板10の上面21側から水素イオンを注入してよい。段階S1414は、段階S1412と同様である。段階S1414を行う場合、段階S1412および段階S1413は行わなくてよい。次に段階S1408において、下面23側から水素イオンを注入する。段階S1408においては、下面23から深さ位置Z1または深さ位置Z2の一方の深さ位置に水素イオンを注入する。上述したように、上面21側から水素イオンを注入する深さ位置と、下面23側から水素イオンを注入する深さ位置とは異なる。
【0153】
図1から
図8の例では、段階S1408において、下面23から深さ位置Z1に水素イオンを注入する。また、
図12から
図14の例では、段階S1408において、下面23から深さ位置Z2に水素イオンを注入する。
【0154】
次に段階S1415において、半導体基板10の上面21側から水素イオンを注入してよい。段階S1415は、段階S1412と同様である。段階S1415を行う場合、段階S1412、段階S1413および段階S1414は行わなくてよい。段階S1406の後に、段階S1414または段階S1415を行うことで、段階S1414または段階S1415で形成した下面23近傍の空孔欠陥が、レーザーアニールにより過剰に回復することを抑制できる。このため、半導体基板10のドナー濃度を精度よく制御できる。
【0155】
次に、段階S1410において半導体基板10を熱処理する。段階S1410においては、アニール炉によって半導体基板10の全体を熱処理してよい。これにより水素が拡散して、VOH欠陥の形成が促進される。段階S1410の熱処理温度は、350℃以上、380℃以下であってよい。熱処理温度の上限は、360℃以下であってもよい。段階S1410の後に、コレクタ電極24等の構造を形成する。これにより、半導体装置100を製造できる。
【0156】
また段階S1410で示した熱処理段階は、上面21および下面23の一方から水素を注入した後と、上面21および下面23の他方から水素を注入した後の2回行ってよい。また、上面21から水素を注入する段階と、下面23から水素を注入する段階は、水素の加速エネルギーが高い方を先に行ってよい。この場合も、それぞれの水素注入を行う毎に熱処理を行ってよい。より具体的には、加速エネルギーが高い方の水素注入段階を行った後の第1熱処理段階の温度は、加速エネルギーが低い方の水素注入段階を行った後の第2熱処理段階の温度よりも高くてよい。第1熱処理段階の温度は、360℃以上、380℃以下であってよい。第2熱処理段階の温度は、360℃未満であってよい。加速エネルギーが高い方が空孔欠陥が形成されやすいので、第1熱処理段階の熱処理温度を高くすることでVOH欠陥を効率よく形成できる。
【0157】
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
【0158】
特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
【符号の説明】
【0159】
10・・・半導体基板、11・・・ウェル領域、12・・・エミッタ領域、14・・・ベース領域、15・・・コンタクト領域、16・・・蓄積領域、18・・・ドリフト領域、20・・・バッファ領域、21・・・上面、22・・・コレクタ領域、23・・・下面、24・・・コレクタ電極、25・・・ピーク、29・・・直線部分、30・・・ダミートレンチ部、31・・・先端部、32・・・ダミー絶縁膜、34・・・ダミー導電部、38・・・層間絶縁膜、39・・・直線部分、40・・・ゲートトレンチ部、41・・・先端部、42・・・ゲート絶縁膜、44・・・ゲート導電部、52・・・エミッタ電極、54・・・コンタクトホール、60、61・・・メサ部、70・・・トランジスタ部、80・・・ダイオード部、81・・・延長領域、82・・・カソード領域、90・・・エッジ終端構造部、100・・・半導体装置、101・・・第1の水素濃度ピーク、102・・・第2の水素濃度ピーク、103・・・中間水素分布、104・・・上面側水素分布、105・・・下面側水素分布、106・・・通過領域、111・・・第1のドナー濃度ピーク、112・・・第2のドナー濃度ピーク、113・・・中間ドナー分布、114・・・上面側ドナー分布、115・・・下面側ドナー分布、130・・・外周ゲート配線、131・・・活性側ゲート配線、150・・・平坦部分、160・・・活性部、162・・・端辺、164・・・ゲートパッド
【手続補正書】
【提出日】2024-05-14
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
上面および下面を有する半導体基板を備える半導体装置であって、
深さ方向における前記半導体基板のドナー濃度を対数軸で示したドナー濃度分布は、
前記半導体基板の前記深さ方向の中央位置を含む所定の範囲に渡って設けられる平坦部分と、
前記平坦部分の上面側の端部と連続して設けられる、傾きをもった第1の裾と、
前記平坦部分の下面側の端部と連続して設けられる、傾きをもった第2の裾と、
を含み、
前記第1の裾の上面側の端部に設けられ、傾きがゼロとなる第1頂点、及び、前記第2の裾の下面側の端部に設けられ、傾きがゼロとなる第2頂点を含んだ範囲に、水素を有する
半導体装置。
【請求項2】
前記第1頂点及び前記第2頂点のドナー濃度が同一である
請求項1に記載の半導体装置。
【請求項3】
上面および下面を有し、水素を含む半導体基板を備える半導体装置であって、
深さ方向における前記半導体基板のドナー濃度を対数軸で示したドナー濃度分布は、
前記半導体基板の前記深さ方向の中央位置を含む所定の範囲に渡って設けられる平坦部分と、
前記平坦部分の上面側の端部と連続して設けられる、傾きをもった第1の裾と、
前記平坦部分の下面側の端部と連続して設けられる、傾きをもった第2の裾と、
を含み、
前記第1の裾の上面側の端部に設けられ、傾きがゼロとなる第1頂点、及び、前記第2の裾の下面側の端部に設けられ、傾きがゼロとなる第2頂点のドナー濃度が同一である
半導体装置。
【請求項4】
前記平坦部分は、バルク・ドナー濃度である
請求項1から3のいずれか1項に記載の半導体装置。
【請求項5】
前記平坦部分を含んだ範囲に水素を有する
請求項1から4のいずれか1項に記載の半導体装置。
【請求項6】
前記所定の範囲は、少なくとも5μm以上である
請求項1から5のいずれか1項に記載の半導体装置。
【請求項7】
前記第1の裾の上面側の第1ドナー濃度ピークは、前記第2の裾の下面側の第2ドナー濃度ピークよりも高い
請求項1に記載の半導体装置。
【請求項8】
前記第2の裾の下面側の第2ドナー濃度ピークは、前記第1の裾の上面側の第1ドナー濃度ピークよりも高い
請求項1に記載の半導体装置。
【請求項9】
上面および下面を有する半導体基板を備える半導体装置であって、
深さ方向における前記半導体基板のドナー濃度を対数軸で示したドナー濃度分布は、
前記深さ方向の前記半導体基板の所定の範囲に渡って設けられる平坦部分と、
前記平坦部分の上面側の端部と連続して設けられる、傾きをもった第1の裾と、
前記平坦部分の下面側の端部と連続して設けられる、傾きをもった第2の裾と、
を含み、
前記第1の裾の上面側の第1ドナー濃度ピークは前記第2の裾の下面側の第2ドナー濃度ピークよりも高く、前記第1ドナー濃度ピーク及び前記第2ドナー濃度ピークを含んだ範囲に、水素を有する
半導体装置。
【請求項10】
前記ドナー濃度分布は、
前記第1頂点の上面側に連続して設けられる、傾きをもった第3の裾と、
前記第2頂点の下面側に連続して設けられる、傾きをもった第4の裾と、
前記第3の裾の上面側の端部と連続して設けられる上面側ドナー分布と、
前記第4の裾の下面側の端部と連続して設けられる下面側ドナー分布と、
を含む
請求項1から6のいずれか1項に記載の半導体装置。
【請求項11】
前記下面側ドナー分布は、前記上面側ドナー分布よりもドナー濃度が高い
請求項10に記載の半導体装置。
【請求項12】
前記上面側ドナー分布は、前記下面側ドナー分布よりもドナー濃度が高い
請求項10に記載の半導体装置。
【請求項13】
前記平坦部分のドナー濃度は、バルク・ドナー濃度よりも大きい
請求項1から3のいずれか1項に記載の半導体装置。
【請求項14】
前記深さ方向における前記第1頂点と前記第2頂点の距離は、前記深さ方向における前記半導体基板の厚みの1/2以下である
請求項1から8または10から13のいずれか1項に記載の半導体装置。
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】0004
【補正方法】変更
【補正の内容】
【0004】
上記課題を解決するために、本発明の第1の態様においては、上面および下面を有する半導体基板を備える半導体装置を提供する。上記半導体装置において、深さ方向における前記半導体基板のドナー濃度を対数軸で示したドナー濃度分布は、前記半導体基板の前記深さ方向の中央位置を含む所定の範囲に渡って設けられる平坦部分と、前記平坦部分の上面側の端部と連続して設けられる、傾きをもった第1の裾と、前記平坦部分の下面側の端部と連続して設けられる、傾きをもった第2の裾と、を含んでよい。上記いずれかの半導体装置において、前記第1の裾の上面側の端部に設けられ、傾きがゼロとなる第1頂点、及び、前記第2の裾の下面側の端部に設けられ、傾きがゼロとなる第2頂点を含んだ範囲に、水素を有してよい。
【手続補正3】
【補正対象書類名】明細書
【補正対象項目名】0005
【補正方法】変更
【補正の内容】
【0005】
上記いずれかの半導体装置において、前記第1頂点及び前記第2頂点のドナー濃度が同一であってよい。
【手続補正4】
【補正対象書類名】明細書
【補正対象項目名】0006
【補正方法】変更
【補正の内容】
【0006】
上記課題を解決するために、本発明の第2の態様においては、上面および下面を有し、水素を含む半導体基板を備える半導体装置を提供する。上記半導体装置において、深さ方向における前記半導体基板のドナー濃度を対数軸で示したドナー濃度分布は、前記半導体基板の前記深さ方向の中央位置を含む所定の範囲に渡って設けられる平坦部分と、前記平坦部分の上面側の端部と連続して設けられる、傾きをもった第1の裾と、前記平坦部分の下面側の端部と連続して設けられる、傾きをもった第2の裾と、を含んでよい。上記いずれかの半導体装置において、前記第1の裾の上面側の端部に設けられ、傾きがゼロとなる第1頂点、及び、前記第2の裾の下面側の端部に設けられ、傾きがゼロとなる第2頂点のドナー濃度が同一であってよい。
【手続補正5】
【補正対象書類名】明細書
【補正対象項目名】0007
【補正方法】変更
【補正の内容】
【0007】
上記いずれかの半導体装置において、前記平坦部分は、バルク・ドナー濃度であってよい。上記いずれかの半導体装置において、前記平坦部分を含んだ範囲に水素を有してよい。上記いずれかの半導体装置において、前記所定の範囲は、少なくとも5μm以上であってよい。上記いずれかの半導体装置において、前記第1の裾の上面側の第1ドナー濃度ピークは、前記第2の裾の下面側の第2ドナー濃度ピークよりも高くてよい。
【手続補正6】
【補正対象書類名】明細書
【補正対象項目名】0008
【補正方法】変更
【補正の内容】
【0008】
上記いずれかの半導体装置において、前記第2の裾の下面側の第2ドナー濃度ピークは、前記第1の裾の上面側の第1ドナー濃度ピークよりも高くてよい。
【手続補正7】
【補正対象書類名】明細書
【補正対象項目名】0009
【補正方法】変更
【補正の内容】
【0009】
上記課題を解決するために、本発明の第3の態様においては、上面および下面を有する半導体基板を備える半導体装置を提供する。上記半導体装置において、深さ方向における前記半導体基板のドナー濃度を対数軸で示したドナー濃度分布は、前記深さ方向の前記半導体基板の所定の範囲に渡って設けられる平坦部分と、前記平坦部分の上面側の端部と連続して設けられる、傾きをもった第1の裾と、前記平坦部分の下面側の端部と連続して設けられる、傾きをもった第2の裾と、を含んでよい。上記いずれかの半導体装置において、前記第1の裾の上面側の第1ドナー濃度ピークは前記第2の裾の下面側の第2ドナー濃度ピークよりも高く、前記第1ドナー濃度ピーク及び前記第2ドナー濃度ピークを含んだ範囲に、水素を有してよい。
【手続補正8】
【補正対象書類名】明細書
【補正対象項目名】0010
【補正方法】変更
【補正の内容】
【0010】
上記いずれかの半導体装置において、前記ドナー濃度分布は、前記第1頂点の上面側に連続して設けられる、傾きをもった第3の裾と、前記第2頂点の下面側に連続して設けられる、傾きをもった第4の裾と、前記第3の裾の上面側の端部と連続して設けられる上面側ドナー分布と、前記第4の裾の下面側の端部と連続して設けられる下面側ドナー分布と、を含んでよい。
【手続補正9】
【補正対象書類名】明細書
【補正対象項目名】0011
【補正方法】変更
【補正の内容】
【0011】
上記いずれかの半導体装置において、前記下面側ドナー分布は、前記上面側ドナー分布よりもドナー濃度が高くてよい。
【手続補正10】
【補正対象書類名】明細書
【補正対象項目名】0012
【補正方法】変更
【補正の内容】
【0012】
上記いずれかの半導体装置において、前記上面側ドナー分布は、前記下面側ドナー分布よりもドナー濃度が高くてよい。
【手続補正11】
【補正対象書類名】明細書
【補正対象項目名】0013
【補正方法】変更
【補正の内容】
【0013】
上記いずれかの半導体装置において、前記平坦部分のドナー濃度は、バルク・ドナー濃度よりも大きくてよい。上記いずれかの半導体装置において、前記深さ方向における前記第1頂点と前記第2頂点の距離は、前記深さ方向における前記半導体基板の厚みの1/2以下であってよい。