IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ボストン サイエンティフィック サイムド,インコーポレイテッドの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024091927
(43)【公開日】2024-07-05
(54)【発明の名称】経腹膜蒸気焼灼システム及び方法
(51)【国際特許分類】
   A61B 18/04 20060101AFI20240628BHJP
【FI】
A61B18/04
【審査請求】有
【請求項の数】13
【出願形態】OL
(21)【出願番号】P 2024071737
(22)【出願日】2024-04-25
(62)【分割の表示】P 2022196084の分割
【原出願日】2018-01-08
(31)【優先権主張番号】62/443,555
(32)【優先日】2017-01-06
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】506192652
【氏名又は名称】ボストン サイエンティフィック サイムド,インコーポレイテッド
【氏名又は名称原語表記】BOSTON SCIENTIFIC SCIMED,INC.
(74)【代理人】
【識別番号】100094569
【弁理士】
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100109070
【弁理士】
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100130937
【弁理士】
【氏名又は名称】山本 泰史
(74)【代理人】
【識別番号】100123607
【弁理士】
【氏名又は名称】渡邊 徹
(72)【発明者】
【氏名】ジャーク エリック
(72)【発明者】
【氏名】ホーイ マイケル
(72)【発明者】
【氏名】クラヴィク リチャード チャールズ
(72)【発明者】
【氏名】シュロム マーク
(72)【発明者】
【氏名】バーン マシュー
(72)【発明者】
【氏名】ヘイスティングス ロジャー ノエル
(72)【発明者】
【氏名】モーク グラント
(57)【要約】
【課題】大型の蒸気シリンジを使用することなしに蒸気発生のための大量の流体を供給する蒸気発生器を提供する。
【解決手段】蒸気発生器は、シリンジ(128)と、発生器本体を含む。シリンジは、開口を有するバレル(130)と、第1の磁石(142)を含むプランジャ(132)を含む。発生器本体は、第1の磁石と係合するように構成された第2の磁石を含むシャフトを含む。第1の磁石と第2の磁石の係合により、シャフトを開口に向かって駆動するとき、流体をバレルから開口を通して移動させ、シャフトを開口から離れるように引込めるとき、流体を流体リザーバから開口を通してバレルの中に移動させて、シリンジを補充する。
【選択図】図2C
【特許請求の範囲】
【請求項1】
蒸気発生器であって、
シリンジと、発生器本体と、を含み、
前記シリンジは、開口を有するバレルと、第1の磁石を含むプランジャと、を含み、
前記発生器本体は、シャフトを含み、シャフトは、前記プランジャの第1の磁石と係合するように構成された第2の磁石を含み、
前記蒸気発生器は、前記第1の磁石と前記第2の磁石の係合により前記シャフトを前記開口に向かって駆動するとき、流体を前記バレルから前記開口を通して移動させるように構成され、
前記蒸気発生器は、前記第1の磁石と前記第2の磁石の係合により前記シャフトを前記開口から離れるように引込めるとき、前記シリンジを補充するために、流体を流体リザーバから前記開口を通して前記バレルの中に移動させるように構成される、蒸気発生器。
【請求項2】
前記蒸気発生器は、前記シャフトを駆動するときに流体を蒸気送出装置に流入させるように構成される、請求項1に記載の蒸気発生器。
【請求項3】
前記蒸気発生器は、前記蒸気送出装置を準備するために前記シャフトを駆動するように構成され、前記蒸気送出装置を準備した後で蒸気を患者に送出する前に、前記バレルを補充するために前記シャフトを自動的に引込めるように構成される、請求項2に記載の蒸気発生器。
【請求項4】
前記蒸気発生器は、前記蒸気発生器が閾値圧力よりも高い陽圧を検出するまで前記シャフトを駆動するように構成される、請求項2に記載の蒸気発生器。
【請求項5】
前記閾値圧力は、5ポンド(2.27Kg)の圧力である、請求項4に記載の蒸気発生器。
【請求項6】
前記蒸気発生器は、閾値圧力よりも高い陽圧を検出したときに試験的な蒸気砲を送出するように構成される、請求項4に記載の蒸気発生器。
【請求項7】
前記蒸気発生器は、試験的な蒸気砲を送出した後、低電力アイドル状態に入るように構成される、請求項6に記載の蒸気発生器。
【請求項8】
前記蒸気発生器は、オペレータの介入なしに前記シリンジを補充するために、前記シャフトを自動的に引込めるように構成される、請求項1に記載の蒸気発生器。
【請求項9】
前記蒸気発生器は、前記プランジャが、前記開口を有する前記バレルの端部に到達したときに前記シャフトを自動的に引込めるように構成される、請求項5に記載の蒸気発生器。
【請求項10】
更に、ユーザインターフェイスを有する画面装置を含み、前記ユーザインターフェイスは、オペレータが前記バレルを選択的に補充するためのボタンを含む、請求項1に記載の蒸気発生器。
【請求項11】
更に、前記開口に流体的に接続された第1のバルブを含み、前記第1のバルブにより、流体が前記バレルに流入することを可能にしたり、流体が前記バレルから流出することを制限したりする、請求項1に記載の蒸気発生器。
【請求項12】
更に、前記開口に流体的に接続された第2のバルブを含み、前記第2のバルブにより、流体が前記バレルから流出することを可能にしたり、流体が前記バレルに流入することを制限したりする、請求項8に記載の蒸気発生器。
【請求項13】
前記シリンジは、ルアー継手を含む、請求項1に記載の蒸気発生器。
【発明の詳細な説明】
【技術分野】
【0001】
〔関連出願との相互参照〕
本出願は、2017年1月6日に出願された米国仮特許出願第62/443、555号に対する優先権の利益を主張するものであり、この文献は引用により本明細書に組み入れられる。
【0002】
本出願は、2015年9月9日に出願された米国特許出願公開第14/773、853号及び2016年12月19日に出願された米国特許出願公開第2016/067558号に関連し、これらの文献はその全体が引用により本明細書に組み入れられる。
【0003】
本明細書において言及する特許及び特許出願を含む全ての文献は、各個々の文献が引用により組み入れられていると明確にかつ個別に示されている場合と同等にその全体が引用により本明細書に組み入れられる。
【0004】
本発明は、低侵襲法を用いた前立腺治療装置及び関連する方法に関する。
【背景技術】
【0005】
前立腺は、人生の早期ではクルミの寸法及び形状であり、BPH(前立腺肥大症)によって生じる肥大の前において、約20グラムの重さを有する。前立腺肥大は、通常の経過であるように見える。前立腺の寸法は、年と共に次女に、通常の寸法の2倍又はそれ以上に増大する。外側前立腺被膜の線維筋性組織は、前立腺が或る寸法に達した後、肥大を制限する。肥大時のかかる制限により、嚢内組織は、尿道前立腺部を圧迫して締め付け、従って、尿の流れに抵抗を生じさせる。
【0006】
前立腺は、3つの領域、即ち、周辺領域、移行領域、及び中心領域に分類される。周辺領域(PZ)は、男性の前立腺の容積の約70%を含む。前立腺の後面のこの被膜下部分は、遠位尿道を包囲し、癌の70%~80%は、周辺領域の組織に発症する。中心領域(CZ)は、射精管を包囲し、前立腺の容積の約20~25%を含む。中心領域は、しばしば、炎症過程の部位である。移行領域(TZ)は、前立腺肥大症が発達する部位であり、正常な前立腺の腺要素の容積の約5~10%を含むが、BPHの場合、かかる容積の80%までを構成することがある。移行領域は、2つの外側前立腺中葉と、尿道周囲腺領域を含む。生来のバリヤが移行領域の周りにあり、すなわち、尿道前立腺部、前部線維筋間質FS、及び移行領域と周辺領域の間の線維性平面FPである。前部線維筋間質FS又は線維筋域は、主として線維筋性組織である。
【0007】
前立腺癌の約70%~80%は、前立腺の周辺領域に発症し、周辺領域に拘束されることがある。近年、生検の後、癌が見つかった組織の領域のみを治療する前立腺癌の局所治療への関心が高まっている。RF焼灼エネルギーを用いるような従来技術の局所治療処置は、治療を周辺領域組織に限定しない場合がある。
【発明の概要】
【0008】
非周辺領域組織を焼灼することなく周辺領域組織を焼灼するためのシステム及び方法を開示する。経腹膜的アプローチにより、蒸気送出装置を用いて周辺領域組織へのアクセス及び治療を行う。
【0009】
超音波及び針位置センサガイダンスを用いて、針の経路に沿った複数の部位に蒸気を送出することができる。
【0010】
経路に沿った蒸気送出針の動きを、蒸気送出のために停止することを含めて制御することができる。針の到達範囲内のあらゆる位置への針の動きをデジタルステップで制御するためのシステム及び方法を開示する。
【0011】
ほとんどの前立腺癌は周辺領域に発症する。針を通じて周辺領域に送出された蒸気は、癌が存在しない可能性がある他の前立腺領域への組織障壁を横切らない。
【0012】
患者の前立腺癌の治療方法であって、尿道冷却カテーテルを用いて患者の尿道を冷却するステップと、冷却流体の注入を用いて患者の前立腺に隣接した組織を冷却するステップと、前立腺をリアルタイムで撮像するステップと、前立腺内に蒸気送出装置を経腹膜的に前進させるステップと、蒸気送出装置において誘導的に蒸気を発生させるステップと、蒸気送出装置を通じて蒸気を前立腺に送出するステップとを含む方法を提供する。
【0013】
いくつかの例では、この方法が、蒸気送出装置の遠位端における組織の第1の電気インピーダンス及び位相シフトを測定するステップをさらに含む。方法は、測定された第1の電気インピーダンス及び位相シフトに基づいて、遠位端が患者の前立腺に挿入されているかどうかをさらに決定することができる。
【0014】
また、この方法は、蒸気送出装置の遠位端の近位部分における組織の第2の電気インピーダンス及び位相シフトを測定し、測定された第2の電気インピーダンス及び位相シフトに基づいて、蒸気送出装置の遠位端の近位部分が患者の前立腺に挿入されているかどうかを決定することもできる。
【0015】
方法は、患者の会陰組織に隣接した蒸気送出装置の部分を能動的に絶縁するステップをさらに含むことができる。この能動的な絶縁を用いて、敏感な組織を加熱された蒸気送出装置から保護することができる。能動的に絶縁するステップは、蒸気送出装置の細長いシャフトを包囲する複数の管内に絶縁空気空間を形成するステップを含むことができる。
【0016】
蒸気送出装置を前立腺内に配置する方法であって、前立腺内に蒸気送出装置を経腹膜的に前進させるステップと、蒸気送出装置の先端電極に接触する組織の第1の電気インピーダンス及び位相シフトを測定するステップと、蒸気送出装置の先端電極の近位に存在するリング電極に接触する組織の第2の電気インピーダンス及び位相シフトを測定するステップと、先端電極及びリング電極が前立腺内に配置されているかどうかを決定するステップと、先端電極及びリング電極が前立腺内に配置されている場合、前立腺に蒸気を送出するステップとを含む方法も提供する。
【0017】
この方法は、1~100MHzの周波数の交流電流を付与して、前立腺内の組織と前立腺の外側の組織の間のインピーダンスと位相のコントラストを最適化する作動周波数を決定するステップを含むことができる。
【0018】
また、この方法は、先端電極及びリング電極が前立腺内に配置されている旨の指示をユーザに提供するステップをさらに含むことができる。
【0019】
蒸気送出装置であって、細長いシャフトと、接触する組織の第1の電気インピーダンス及び位相シフトを測定するように構成された遠位端電極と、細長いシャフト上の遠位端電極から近位に配置され、接触する組織の第2の電気インピーダンス及び位相シフトを測定するように構成されたリング電極と、遠位端電極とリング電極との間に配置された電気的絶縁部分と、第1及び第2の電気インピーダンス及び位相シフトに基づいて、先端電極及びリング電極が前立腺内に配置されているかどうかを決定するように構成された電子コントローラとを含む装置も提供する。
【0020】
この装置は、1~100MHzの周波数の交流電流を供給して、前立腺内の組織と前立腺の外側の組織の間のインピーダンスと位相のコントラストを最適化する作動周波数を決定するように構成された回路をさらに含むことができる。
【0021】
蒸気送出システムであって、RF発生器コンソールと、シリンジハンドル、プランジャ、シリンジハンドル上に配置されたハンドル磁石及びプランジャ内に配置されたプランジャ磁石を含む、RF発生器コンソールに挿入されるように適合されたシリンジと、シリンジに結合された流体源と、RF発生器内に配置されて、プランジャ磁石と整列してプランジャ磁石を前進させたり後退させたりするように構成された発生器磁石とを含み、RF発生器コンソールが、発生器磁石を前進させたり後退させたりすることによってシリンジに流体源からの流体を自動的に補充するように構成されたシステムも提供する。
【0022】
1つの例では、このシステムが、流体源からシリンジ内への流体の流れを可能にするように構成された一方向逆止弁を含むとともに、シリンジから蒸気送出装置への流体の流れを可能にするように構成された第2の一方向逆止弁を任意に含む。
【0023】
次に、本発明をさらに良く理解してその実際の実施方法を確認できるように、同様の実施形態全体を通じて同じ参照文字が一貫して対応する特徴を示す添付図面を参照しながらいくつかの好ましい実施形態をほんの一例として説明する。
【図面の簡単な説明】
【0024】
図1A】経腹膜蒸気送出システムを示す図である。
図1B】経腹膜蒸気送出システムを示す図である。
図2A】送出システムと共に使用するシリンジを示す図である。
図2B】送出システムと共に使用するシリンジを示す図である。
図2C】送出システムと共に使用するシリンジを示す図である。
図3A】送出システムと共に使用する蒸気発生器を示す図である。
図3B】送出システムと共に使用する蒸気発生器を示す図である。
図3C】送出システムと共に使用する蒸気発生器を示す図である。
図3D】送出システムと共に使用する蒸気発生器を示す図である。
図3E】送出システムと共に使用する蒸気発生器を示す図である。
図3F】送出システムと共に使用する蒸気発生器を示す図である。
図3G】送出システムと共に使用する蒸気発生器を示す図である。
図3H】送出システムと共に使用する蒸気発生器を示す図である。
図4A】蒸気送出針を示す図である。
図4B】蒸気送出針を示す図である。
図4C】蒸気送出針を示す図である。
図4D】蒸気送出針を示す図である。
図5】超音波撮像ガイダンスを用いて前立腺内に針を正しく配置する際の曖昧性を示す図である。
図6】分離した導体間の電圧及び電流及び電圧信号を示す図である。
図7】尿道冷却カテーテルを示す図である。
図8】経腹膜蒸気送出システムを用いた前立腺癌の治療法を示す図である。
【発明を実施するための形態】
【0025】
前立腺癌を治療するための経腹膜蒸気送出システムを提供する。図1Aに示すように、経腹膜蒸気送出システム100は、RF発生器102と、補助コントローラコンソール104と、蒸気発生送出ハンドル106と、蒸気送出針(図示せず)と、前立腺の外側周辺の神経を冷却して保護するための生理食塩水を送出する冷却針(図示せず)と、ユーザに高温を警告することによって神経及びその他の前立腺周囲組織をさらに保護する針状熱電対(図示せず)と、尿道前立腺部に配置されてこの組織を保護する冷却カテーテル110を通じて低温生理食塩水109を循環させる尿道冷却システム108と、経直腸超音波(TRUS)撮像システムなどの超音波撮像システム111を含む。システムは、更に、生理食塩水ライン112と、熱電対ライン114、116と、撮像ライン118を含み、これらはそれぞれ、冷却システム、針状熱電対、及び超音波撮像システムに接続される。超音波撮像システム111からの画像は、ディスプレイ120上に表示される。
【0026】
図1Bは、蒸気発生送出ハンドル106と、蒸気送出針122と、冷却針124と、針状熱電対126と、冷却カテーテル110と、超音波撮像システム111の詳細図である。蒸気送出針122は、前立腺内に経腹膜的に挿入されて前立腺内に高温の凝縮性蒸気を送出して前立腺癌を治療するように構成される。冷却針124及び冷却カテーテルは、前立腺の近傍の組織内に低温生理食塩水を送出して、尿道及び肛門などの隣接組織への焼灼ダメージを防ぐように構成される。針状熱電対126は、蒸気送出中に前立腺の組織を含む組織の温度を測定するように構成される。
【0027】
RF発生器の主要機能は、蒸気送出装置の加熱素子に滅菌水及びRF電力を供給することである。オペレータが送出装置の蒸気送出ボタンを押したとき、RF発生器は蒸気を送出する。また、RF発生器は、前立腺の周囲組織に注入するための生理食塩水を針に供給する。生理食塩水は冷却を行うが、治療の実行中に前立腺と敏感な直腸組織との間の空間を満たして分離する役割も果たす。
【0028】
図1Aの補助コントローラコンソールは、図1Bの尿道前立腺部に示す特注設計の尿道冷却カテーテルを通じて低温生理食塩水を循環させる特注設計のペルチェ効果チラー(冷却装置)を含む。チラーの生理食塩水は、生理食塩水注入針を通じて前立腺の外側の組織に送出される生理食塩水を、RF発生器にも供給する生理食塩水バッグリザーバから供給する。補助コントローラコンソールは、前立腺周囲組織に損傷を与え得る温度を超えないことを確実にするように、前立腺の外側の複数の地点における温度の追跡も行う。
【0029】
図1Aに示す補助コントローラコンソールは、治療中に水を冷やして循環させて尿道を冷却する。補助コントローラコンソールは、前立腺の外側の組織に挿入された針の長さに沿った熱電対の位置の温度もモニタして、いずれかの温度が指定限度を超えた時に治療が行われるのを防ぐ。各針状熱電対は、その長さに沿って離間した3又は4以上の熱電対を含む。また、補助コントローラコンソールは、蒸気送出先端部及びリング電極の電気インピーダンス及び位相シフトをモニタし、オペレータと相互作用して、治療を行う前に蒸気送出針の先端が前立腺組織に隣接しているかどうかを決定する。針の先端に隣接した組織の状態のカスタム表示が補助コントローラにおけるリアルタイム超音波撮像に融合されて、図1Aに示すようにオペレータの好みの場所の作業領域のモニタに表示される。
【0030】
〔RF発生器〕
大量の蒸気をBPHシステムよりも高い割合で長い時間にわたって送出できる癌蒸気治療システムの要件としては、より多くの総滅菌水量に十分な電力を供給することが挙げられる。図1A図1Bのシステムは、300~600kHzの範囲の周波数で最大500ワットのRF電力を供給することができる。
【0031】
蒸気発生のために大量の滅菌水を供給する1つの解決策は、RF発生器に大型の蒸気シリンジを使用することである。この解決策には、所与の水流量のために低速で移動するシリンジプランジャを駆動するリニアモータが必要である。低いプランジャ速度で正確な水流量を確実にすることは困難となり得る。また、大口径のシリンジでは、シリンジの弾性コンプライアンスが高まって送水の精度も低下する恐れがある。シリンジの長さはRF発生器の長さによって制限され、RF発生器の長さは臨床ニーズによって制限される。
【0032】
本開示は、より多くの水の必要性を克服するために、水がなくなると自動的に補充を行う滅菌水シリンジを提供する。このシリンジを図2Aに組立図として示し、図2Bに組立てたものを示す。図2Aでは、滅菌水シリンジ128が、シリンジバレル130と、シリンジプランジャ132と、シリンジハンドル134と、ブッシュ136と、Oリング138と、ルアー継手(luer fitting)140と、シリンジプランジャ磁石142と、ねじ144と、ハンドル磁石146と、接着剤148を含む。
【0033】
図2Cに、RF発生器102に挿入された滅菌水シリンジ128を示すとともに、シリンジハンドル134、シリンジプランジャ磁石142、ハンドル磁石146、シリンジプランジャ132をさらに示す。滅菌水シリンジは、送出装置に流入する水は通すが流出する水は通さない一方向逆止弁141と、滅菌水リザーバから流出する水は通すが流入する水は通さない第2の一方向弁141とを含む送水管を通じて送出ハンドル内の蒸気発生器に取付けられる。治療の最後には、オペレータがシリンジプランジャ磁石とRF発生器のシャフトプランジャ磁石との間の磁力に打ち勝つように滅菌水シリンジ引っ張ることによってこれを解放する。
【0034】
図2A図2Cに示す手動操作式のプランジャ132及びハンドル134は、ハンドル磁石146とシリンジプランジャ磁石142との間の磁力を通じてシリンジバレルに係合する。オペレータは、シリンジを滅菌水に漬けて後方に引くことによってシリンジを満たす。その後、オペレータは、磁力に打ち勝つようにハンドルを引っ張ることによってハンドルを解放することができる。満たされたシリンジをRF発生器に挿入すると、RF発生器内のシリンジプランジャシャフトと整列した(RF発生器の内部に存在するため図示していない磁石146と同一の)磁石がシリンジプランジャ磁石に係合して、システムによるシリンジの前進及び後退が可能になる。
【0035】
オペレータは、システムの設定及び準備を行うために以下のステップを実行するように指示される。1)蒸気シリンジに手動で生理食塩水を満たし、RF発生器内に配置して磁石に係合させる。2)蒸気発生送出ハンドルへの一方向弁OUTと、滅菌水リザーバからの一方向弁INとを有する二方向ルアーをシリンジに取付ける。3)送出装置の治療送出ボタンを係合させ、RF発生器がプランジャを駆動させて、システムを準備するための滅菌水が送出され、蒸気を発生させるためのRF電力が供給されるようにする。4)その後、シャフトプランジャ磁石とシリンジプランジャ磁石との間の磁力によって発生器がプランジャを後退させるようにする。一方向弁が、送出ライン内の水がシリンジに戻るのを防ぐ。第2の一方向弁は、プランジャの後退時にリザーバからの水がシリンジを補充できるようにする。5)その後、プランジャが送出システムに係合して水を送出していることを示す5lbの陽圧を検知するまで発生器のプランジャシャフトを前進させる。6)送出装置の治療送出ボタンを係合させて試験的な蒸気砲を空中に送出し、その後にシステムを低電力アイドル状態に入れて治療送出を待機させる。7)治療送出後、シリンジプランジャがシリンジの端部まで移動していれば、補充シーケンスが自動的にトリガされてプランジャを後退させる。8)オペレータは、発生器の画面上のボタンを押すことによっていつでもシリンジを補充することができる。いくつかの実施形態では、シリンジの初期充填時にステップ1)が自動的に行われる。このモードでは、オペレータが発生器内に空のシリンジを配置してシリンジに二方向ルアー継手を取付けると、システムがシリンジの初期充填を自動的に実行する。
【0036】
〔蒸気送出装置〕
図3A図3Bに示す蒸気発生送出ハンドル106は、ハンドル部分150と、治療送出ボタン152と、蒸気送出針のためのルアー継手154と、蒸気発生送出ハンドルをRF発生器に接続するケーブル及びコネクタ156を含む。図3Bに示すように、蒸気発生送出ハンドルは、更に、加熱素子158と、患者内に配置される針に取付けられるルアー継手を含み、加熱素子158は、押出し加工された高温PFA絶縁体を含むリッツ線のRFコイルと、インコネル(登録商標)625の内側コイルと、コイル及び出口用の熱電対を有する。
【0037】
蒸気送出装置内の加熱素子158は、500ワットまでにおける長期治療のための高温を取扱うことができる。加熱素子は、ワイヤの外側RFコイルと、蒸気用チューブ材の内側コイルを含む。RF電流を外側RFコイルに付与すると、蒸気用チューブ材の内側コイルの中を流れる流体を外側RFコイルが誘導的に加熱する。
【0038】
蒸気用チューブ材の内側コイル及び外側RFコイルの構造は、水投入端部から片持ちにされるのがよく、それにより、いかなる材料も、蒸気用チューブ材の内側コイルの高温蒸気端部に露出されない。インコネル(登録商標)625の内側コイルは、コイルの両側に沿った巻線間のマイクロ溶接を含むのがよい。これにより、巻線の分離、従って治療送出の変化が起きないことが確保される。ハンドルは、図1Bに示すように、治療ごとに、予め挿入された蒸気送出針の間を移動する。
【0039】
図3C図3Dに、加熱素子の外側RFコイル160を示す。加熱素子は、RFコイル取付け具162を含むことができる。好ましい実施形態では、外側RFコイルが、全体的に同等の#24ワイヤゲージを有する個別にエナメル加工された44ゲージの銅線ストランドで構成される。44ゲージのストランド加工は、350~850kHzの範囲の、具体的には440~480kHzの好ましい範囲の作動周波数における表皮効果の問題を避けるのに適している。リッツ線は、全体が押出し加工されたPFA(ペルフルオロアルコキシ)絶縁体の0.002”(0.05ミリメートル)肉厚のコーティングを有する。この絶縁体は、内側コイルの高温蒸気端部に隣接した巻線にとっては特に重要な最大250℃の連続使用温度を定格とする。
【0040】
接着剤の変形例として、ワイヤの近位端は、RFコイル取付け具の孔164に挿通されることによって機械的に適所に保持される。遠位ワイヤは、図3Bに示すワイヤ保持リング166の孔に挿通されることによって適所に保持される。図3Cに示すRFコイルアセンブリの内訳(break out)に、薄肉の高温ポリイミド管に巻かれて遠位ワイヤ保持リング及びRFコイル取付け具を通じて取付けられたRFコイルワイヤを示す。コイルに対する往復のリッツリード線(go and return Litz wire leads)は、いずれもRFコイル取付け具の孔に通されることによって機械的に適所に保持される。
【0041】
図3Eに、巻線間にレーザ溶接などのマイクロ溶接が2本施された蒸気用チューブ材168の内側コイルを示す。巻線間には良好な電気的接触が存在することが重要であり、溶接によってこれが保証される。2本の溶接は、巻線の屈曲によって電気的接触が失われないことを保証するのに役立つ機械的強度をもたらす。
【0042】
図3Fは、高温ポリイミド管172及びRFコイル取付け具162を含む外側RFコイル160の分解図である。図3Gには、アセンブリハブ170から片持ち状態にされた蒸気用チューブ材の内側コイルを示す。蒸気用チューブ材の内側コイルは外側RFコイルに挿入されるが、図3Gには、例示を目的としてRFコイルから切り離して示している。この設計では、蒸気用チューブ材の内側コイルの遠位端が高温ポリイミド管172に接触しているが、コイルの遠位端が水を含んでいない時に少なくとも瞬間的に生じ得る高温(最大400℃)に耐えられない恐れがある他の材料には接触していない。
【0043】
蒸気用チューブ材の内側コイルは、非磁性ステンレス鋼であるインコネル(登録商標)625で構成され、インコネル(登録商標)625は、内側コイルが遭遇する温度範囲(20℃~400℃)を上回る温度とほぼ無関係な電気抵抗率を有する。これらの特性は、投与間及び装置間で一貫した蒸気及びカロリーの送出を保証する。特に、一般にハイポ管(hypo tubing)に使用される300シリーズのステンレス鋼は、管体のロット毎に、また温度サイクリングと共に変動し得る残留透磁率を有する。可変透磁率は、一定の発生器入力電力に対して可変のカロリー出力をもたらす。300シリーズステンレスの電気抵抗率は、温度サイクリングと共に予想不能な形で変化するとともに、可変カロリー出力をもたらすこともある。これらの特性は、材料の冷間加工時(cold worked)又は温度サイクル時(thermally cycled)におけるオーステナイトとマルテンサイトとの間での材料の相変化に起因する。
【0044】
図3Hに、内側コイル熱電対の位置を示す。コイル熱電対174は、最遠位のコイル巻線の内側に溶接されるのがよい。この場所は、蒸発して熱を運び出す水がほとんど又は全く存在しない可能性があり、内側コイル上の最も高温の場所である。さらに、この位置はRFコイルの下方に存在して誘導加熱される。これは鍋の中の沸騰水に類似しており、温度は、水が全て蒸発してしまうまでは水の沸点に留まり、水が全て蒸発してしまう時点からが急速に上昇する。出口熱電対176は、RFコイルから離れており、出口管内の蒸気から入力される熱と、熱が付与される蒸気コイルから出口管を下って熱電対に伝わる熱を受入れる。熱電対にはリード線178が接続され、蒸気用チューブ材の内側コイルの内部を経由する。
【0045】
〔蒸気送出針〕
前立腺癌蒸気送出針は、会陰を穿刺し、前立腺被膜を穿刺して、会陰組織を焼灼することなしに前立腺のみに蒸気を送出する必要がある。本発明では、会陰組織に隣接した針の部分を絶縁し、先端を包囲する組織の電気的特性を測定して、蒸気を送出する前に針が前立腺組織内に存在することを検証することによってこれらの要件に対処する。
【0046】
針に隣接した非前立腺組織の過熱を防ぐために、固有の蒸気送出針絶縁システムを設計して実装した。このシステムは、中心の蒸気針を包囲して高温の針と会陰組織との間に絶縁空気空間をもたらす小型ポリイミド管のアレイを含む。真空針も開発した。
【0047】
蒸気送出針は、周囲組織の電気的特性を検知するための2つの電極を有する。針の先端と、先端から絶縁されて先端に近接するリングが電極である。固有の警報システムが、最初に前立腺の外側及び内側の組織の電気的特性を測定し、その後に針が内側又は外側のいずれに存在するかを決定して、前立腺の外側に蒸気が送出されるのを防ぐことができる。
【0048】
図4A及び図4Cに蒸気送出針122を示す。この針は、成形されて先が尖った先端123と、前立腺組織に蒸気を送出するための先端の孔と、電気的絶縁部分180によって先端から分離されたリング電極182と、会陰組織を保護する断熱部分125と、先端及びリング電極のためのコネクタを有するリードと、針を蒸気発生送出ハンドルに取付けるためのルアー継手を含む中空のスチール針を含む。
【0049】
1つの好ましい実施形態では、2つの同心的な鋼管の間に真空を形成して、管内を通過する高温蒸気から針の外面を断熱する。図4Dに詳細に示す別の好ましい実施形態では、鋼製の蒸気管を覆う内側管186と会陰組織に接触する外側管188との間に挟まれ且つ空気で満たされた小型管184の円形配列を用いて、断熱を達成する。内側管、外側管及び絶縁管は、ポリイミドで構成されることが好ましい。これらの3つの管のインチ単位での好ましい寸法は以下の通りである。
【0050】

【0051】
組織検知電極の一方は、図4Bに示すような内側スチール針管に溶接できる針の先端自体で構成される。内側スチール針の近位端は、電気コネクタを通過して補助コントローラコンソールに至るリードと電気的に接触するのがよい。第2の電極は、絶縁スペーサによって先端電極から電気的に絶縁された、図4Cに示すリング電極である。リング電極は、内側ポリイミド管によってスチール針内側管から電気的に絶縁される。好ましい実施形態では、リング電極のリードが、小型管の一方を通過して近位電気コネクタに至る。
【0052】
〔バイオコンデンサー組織検知及びガイダンス〕
前立腺癌の蒸気治療を行う場合、医師は、患者の前立腺の周辺領域及び/又は移行領域内に蒸気送出針の先端を配置する必要がある。これを行うために、患者の会陰に針を挿通し、超音波ガイダンスを利用して、適切な前立腺領域への操縦を行う。場合によっては、針を適所に配置し、治療を行い、針を前立腺の先端部に向けて引戻し又は前立腺の基部に向けて押進め、その後に別の治療を行うように、単一の針を用いて複数回の蒸気治療を行う。このプロセスを、針の軸の周囲に連続する治療済み組織の領域が形成されるまで繰返す。
【0053】
前立腺被膜は矯正的なバリヤ(corrective barrier)であるため、針の放出孔(emitter holes)が完全に前立腺内に収容されている場合には、治療中に送出された蒸気が前立腺内に残ったままになる。しかしながら、放出孔のうちの1つ又は2つ以上が前立腺被膜の外部に存在する場合には、蒸気が前立腺の外側を進むため望ましくない。
【0054】
前立腺は3次元器官であるのに対し、超音波データは最終的に2次元画像にレンダリングされるので、蒸気放出孔が完全に前立腺内に収容されていることを医師が確認するのは困難となり得る。このことは、先端部を治療するために針を会陰に向けて引戻した時に特に当てはまる。図5に、この概念を視覚的に示す。垂直セグメントは、超音波が感知して医師が観察する前立腺の平面を示す。
【0055】
この例では、蒸気針が存在する正確な平面を超音波が測定していないので、ユーザは、前立腺が蒸気針の軸内で実際よりもさらに延びていると誤解する恐れがある(このことを破線で示す)。右側の蒸気針の場合には、放出孔が依然として完全に前立腺内に収容されているので、これを許容することができる。しかしながら、左側の蒸気針の場合には、この可視化の課題では蒸気が前立腺被膜の外部に送出されてしまう。従って、超音波可視化を補足する前立腺内の針の先端の位置の二次的指示が望ましい。
【0056】
〔バイオコンデンサーの作動原理〕
本発明は、蒸気送出針の先端に電極を組込む。電極間に高周波電流を流し、結果として生じる電極間の電圧、並びに電圧と電流との間の位相シフトを測定する。これらの測定は、針の先端を包囲する組織の性質に依存する。組織は、その内容に応じて電気的に抵抗性及び/又は電気的に容量性となり得る。具体的には、この測定によって前立腺組織が周囲組織と区別され、蒸気の送出前に蒸気送出針が前立腺内に存在するという明確な判断が可能になる。
【0057】
電子装置におけるコンデンサは、電場内の電気的エネルギーを電荷の形で一時的に蓄える回路要素である。コンデンサは、様々な形状、寸法及びタイプで市販されており、これらは全て、絶縁誘電材料によって分離された2つの導電体という一般的な形態を共有する。誘電材料は、電荷を分離して蓄えることによって静電容量を増幅する。所与のコンデンサの静電容量の大きさは、高レベルにおいては、導体の表面積と導体間の材料の誘電率との積を導体間の分離距離で除算したものによって決まる。所与の誘電材料では、互いに近接近した大型の導体から成るコンデンサの方が、離れた小型の導体から成るコンデンサよりも高い静電容量を有する。交流回路では、静電容量が、電圧信号を電流信号よりも遅れさせるという効果を奏する。この電圧が電流よりも遅れる程度は-90°~90°の度数で測定され、一般に「位相シフト」と呼ばれる。図6に、電流信号及び電圧信号を示す。
【0058】
同様に、人間の細胞の構造も容量性素子と考えられるようなものである。細胞膜は、導電性の細胞内液を導電性の細胞外液から分離する誘電性の脂質二重層で構成され、これらは共に、コンデンサを形成するために必要な要素である誘電材料によって分離された2つの導電体を構成する。生きた細胞組織では、細胞膜内でイオンポンプが働くことによって膜を横切って電荷が能動的に輸送され、生命にとって不可欠な生きた細胞膜を横切る電位の維持が行われる。これにより、膜を横切る電荷分離が保持されて、生きた組織の静電容量をもたらすのに役立つ。一般に、組織は、静電容量に加えて抵抗を有することができ、組織によって分離された電極は、抵抗と静電容量とを兼ね備えた「漏れコンデンサ」を構成する。生きた細胞を含んでいない組織は、一般に容量性よりも抵抗性の方が強い。理論的には、生物組織の一部の静電容量の測定値を、その組織を構成する細胞のタイプの指標として使用することができる。このことは、組織の生物学的静電容量、すなわちバイオコンデンサーを測定することであると考えることができる。本開示では、バイオコンデンサーの測定によって蒸気針の先端が前立腺内に存在する時と前立腺外に存在する時とを判断し、これに応じて医師に通知を行う。
【0059】
前立腺自体は、主に間質性の組織細胞(平滑筋)と腺性の組織細胞とを含み、これらはその寸法及び構造に起因して、一般に中間のインピーダンスと中間~高の静電容量とを特徴とする。一方で、前立腺を直接包囲する領域は、一般に電解液、アミノ酸及び脂肪酸を含む流体を含み、従ってインピーダンスも静電容量も低い。
【0060】
また、前立腺は、長鎖タンパク質によって形成されるコラーゲンで構成された組織の線維鞘である様々な筋膜によっても取り囲まれる。このコラーゲンは、その長くて細い構造に起因して、前立腺内の間質組織及び腺組織よりも低い、ただし凝集構造(cohesive structure)を欠いた前立腺の外側の流体よりも高いインピーダンス及び静電容量を有する。前立腺被膜も筋膜である。前立腺からはさらに離れるが依然として針の経路内には皮膚及び脂肪細胞が存在し、これらはその構造に起因して、むしろ前立腺内の間質組織及び腺組織と同様のインピーダンス及び静電容量を有する。表1に、治療針が会陰から前立腺までに取る経路上の組織の理論的インピーダンス及び静電容量の概算マップを示す。
【0061】

【0062】
〔バイオコンデンサーシステムの詳細な説明〕
図4Cに、治療中に蒸気を放出する4つの放出孔を3列有する蒸気送出針の先端123を示す。この先端は、それ自体がバイオコンデンサー測定のための第1の電極である。第2の電極は、PTFE絶縁体182の部分によって針の先端から電気的に分離されたリング電極180である。絶縁されたニッケルワイヤがこの電極に溶接され、針の長さにわたって延びる。蒸気針アセンブリの内部では、これらの2つの電極が、雄型MMCXコネクタにおいて終端するMMCV同軸ケーブルの6”セグメントにはんだ付けされる。蒸気針は、8’MMCX同軸延長ケーブル及びMMXCからN型へのアダプタ(MMXC to N-type adapter)を介してシステム発生器(system generator)内のベクトル電圧計回路に接続される。この回路は、1~100MHzで変動できる周波数の交流電流を供給し、初期周波数掃引を行って前立腺内の組織と前立腺の外側の組織の間のインピーダンスと位相のコントラストを最適化する作動周波数を決定する。インピーダンス振幅及び位相は、システムコンピュータにおいて分析されるベクトル電圧計回路の出力である。
【0063】
ユーザワークフローは、前立腺の外側及び内側に存在する組織を手動で識別することによって開始する。このステップでは、システムが周波数を掃引して、前立腺の内側組織と外側組織との間のインピーダンス振幅及び位相の最大分離を示す1~100MHzの周波数を探す。位相及び振幅スコアの計算は、以下の表2の式を用いて行われる。スコアは0(針が前立腺の外側にある)~100(針が前立腺の内側にある)であり、前立腺の内側組織及び外側組織の位相及び振幅の初期較正に基づく。較正ステップが完了すると、システムは、針の先端における組織タイプをリアルタイムで大規模に識別し、これをユーザに対してディスプレイ上に表示する。蒸気は、両インピーダンス測定によって先端電極もリング電極も前立腺の内部に存在することが示されたと決定された時にのみ組織に送出することができる。ユーザには、一方の電極のみが前立腺内に存在する状態、及び両電極が前立腺外に存在する状態が通知される。
【0064】

重みは、ユーザが複合スコアの重点を位相と振幅のいずれかに偏向できるように、ユーザインターフェイス上のスライド目盛り(sliding scale)を介して調整可能である。
【0065】
〔尿道冷却システム〕
図1Bに示す尿道冷却カテーテル110は、先端が膀胱内に至るまで尿道に挿通される。10ccシリンジを介して固定バルーン113を生理食塩水で膨らませて先端を係止する。カテーテルを引戻して、固定バルーン113を膀胱壁の内部に係合させる。これらのステップは、フォーリーカテーテルの挿入と同様である。
【0066】
図7に、冷却カテーテル110をさらに詳細に示す。中心管腔は、ガイドワイヤを介したカテーテルの挿入を可能にして、膀胱ドレナージのための管腔を提供する。カテーテル管腔を通じて固定バルーン113の遠位端内に冷水が循環し、冷却バルーンの長さを伝って流れた後にカテーテルの外側管腔を通じて排出される。前立腺内の蒸気治療によって発生した熱は、この循環する冷水によって尿道壁から離れて導かれる。
【0067】
この冷却水は、図1Aに示す冷却生理食塩水109を通じて循環してカテーテルに戻る。冷却生理食塩水は、補助コントローラコンソール内に位置するペルチェ効果チラーに挿入される。冷水は、蠕動ポンプによって約150ml/分の速度で循環する。冷水流量の望ましい範囲は、125ml/分~175ml/分である。水は、冷却生理食塩水109から約5℃の温度で排出される。チラーから排出される理想的な水の温度は1℃であり、10℃未満の温度が好ましい。
【0068】
〔経腹膜前立腺癌治療システムの使用法〕
蒸気治療は、前治療MRI及び/又は超音波画像、並びに前立腺の生検に基づいて事前に計画することができる。治療計画は、癌であると診断された前立腺の領域における蒸気送出針の配置を含む。個々の針は、所与の領域に複数回の治療投与を適用することができる。1つの経験則としては、蒸気治療を行った組織は、未治療の組織よりも超音波に対する透過性が低く、従ってその後の治療投与に対する最適な可視化を保証するために超音波トランスデューサから最も遠い組織を最初に治療することが挙げられる。
【0069】
蒸気の1つの固有の特徴は、前立腺領域の境界を横切らないことである。これにより、治療する領域の外側の組織に固有の保護がもたらされる。しかしながら、熱は組織境界層を横切って伝わり、時間依存型プロセスとなり得る。分離境界層を横切って熱が伝わるのに十分な長さの時間にわたって蒸気治療を適用した場合には、隣接領域の組織又は前立腺被膜の外側の組織も焼灼温度に達することがある。このため、蒸気治療は、治療領域の寸法に応じて最大15秒又は最大10秒にわたって適用される。
【0070】
蒸気は、超音波エネルギーを反響させるという固有の特性を有し、従って治療中における蒸気の前進は容易に可視化される。蒸気は、最初の1秒間の治療で治療すべき組織の大部分に達するが、多くの場合は時間と共にさらに前進することができる。オペレータは、十分な容量の組織が治療されたと判断した時にはいつでも治療を終了させることができる。治療時間は、5~10秒の範囲又は5~15秒の範囲とすることができる。治療は、オペレータが問題を感じた場合にはいつでも停止することができる。一般に前立腺領域全体又は領域の一部を含むことができる所望の組織容量が治療されるまで、複数回の治療投与が適用される。
【0071】
図8は、蒸気治療を用いた前立腺癌の治療方法のブロック図である。この方法は、ステップ800における、治療の直前に撮影されたTRUS画像を含むことができる前治療画像及び生検に基づく治療計画から開始する。この計画は、例えば周辺領域及び移行領域を含む、癌が発症していて治療する必要がある前立腺領域を識別することを含む。
【0072】
次に、ステップ802において、治療計画に基づいて針を配置する。針は、超音波又はMRIガイダンスの下で配置することができる。MRIガイダンスの場合、治療で使用される全ての器具は非磁性でなければならず、RF治療とMR画像との間に電磁両立性をもたらすように注意しなければならない。このステップでは、蒸気、高張食塩水(saline infusion)及び針状熱電対を配置する。
【0073】
次に、最適な撮像のためにTRUSトランスデューサから最も遠い未治療組織に針を配置することを含む最初の蒸気治療投与を計画する。通常、最大治療時間は、治療が予想される組織領域の寸法に基づいて10秒又は15秒として選択される。治療RF電力及び滅菌水流量は、現在の投与において治療が予想される組織全体を通じて蒸気を膨張させるように選択される。治療を送出する前に、図7のバイオコンデンサー法を用いて、蒸気針が前立腺組織内に存在することを保証する。
【0074】
ステップ804において治療を送出し、ステップ806において、TRUS画像上で治療領域を通じて蒸気が膨張するにつれて、又はMRI熱画像上で温度前線が進むにつれて治療を観察する。治療は、ハンドピース上の治療ボタンを解除することによっていつでも停止させることができる。そうでなければ、治療は、選択された最大時間まで進行する。治療済みの組織の範囲は、TRUS画像における蒸気の進行の観察によって、又はMRI熱画像における焼灼領域の縁によって確認される。ステップ808において、この情報を用いて次の治療領域を選択し、やはり撮像及びバイオコンデンサーガイダンスの下で蒸気針を移動させることができる。このステップを、前立腺領域全体が治療されるまで繰返す。ステップ810において、送出装置のハンドルを次の治療針に移動させ、全ての計画された前立腺領域を治療し終えるまでプロセスを繰返す。
【0075】
以上、本発明の特定の実施形態について詳細に説明したが、この説明は例示を目的としたものにすぎず、包括的なものではないと理解されるであろう。図面には、本発明の特定の特徴を示しているものもあればそうでないものもあり、これは便宜的なものにすぎず、あらゆる特徴は本発明に従って別の特徴と組み合わせることができる。当業者には多くの変形例及び代替例が明らかであろう。このような代替例及び変形例も、特許請求の範囲に含まれるように意図される。従属請求項に示す特定の特徴は組み合わせて本発明の範囲に含めることもできる。本発明は、従属請求項が他の独立請求項を参照して複数の従属請求項の形式で書かれているかのような実施形態も含む。
図1A
図1B
図2A
図2B
図2C
図3A
図3B
図3C
図3D
図3E
図3F
図3G
図3H
図4A
図4B
図4C
図4D
図5
図6
図7
図8