IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日東電工株式会社の特許一覧

<>
  • 特開-レンズ部および積層フィルム 図1
  • 特開-レンズ部および積層フィルム 図2
  • 特開-レンズ部および積層フィルム 図3
  • 特開-レンズ部および積層フィルム 図4
  • 特開-レンズ部および積層フィルム 図5
  • 特開-レンズ部および積層フィルム 図6
  • 特開-レンズ部および積層フィルム 図7
  • 特開-レンズ部および積層フィルム 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024095082
(43)【公開日】2024-07-10
(54)【発明の名称】レンズ部および積層フィルム
(51)【国際特許分類】
   G02B 5/30 20060101AFI20240703BHJP
   H10K 50/86 20230101ALI20240703BHJP
   H10K 50/858 20230101ALI20240703BHJP
   H10K 59/10 20230101ALI20240703BHJP
   G02B 27/02 20060101ALI20240703BHJP
   G02F 1/1335 20060101ALI20240703BHJP
   G02F 1/13363 20060101ALI20240703BHJP
   G02B 3/00 20060101ALI20240703BHJP
【FI】
G02B5/30
H10K50/86
H10K50/858
H10K59/10
G02B27/02 Z
G02F1/1335 510
G02F1/13363
G02B3/00
【審査請求】未請求
【請求項の数】10
【出願形態】OL
(21)【出願番号】P 2022212094
(22)【出願日】2022-12-28
(71)【出願人】
【識別番号】000003964
【氏名又は名称】日東電工株式会社
(74)【代理人】
【識別番号】110003845
【氏名又は名称】弁理士法人籾井特許事務所
(72)【発明者】
【氏名】小島 理
(72)【発明者】
【氏名】後藤 周作
【テーマコード(参考)】
2H149
2H199
2H291
3K107
【Fターム(参考)】
2H149AA02
2H149AA18
2H149AB01
2H149AB23
2H149BA02
2H149BA05
2H149BA22
2H149CA02
2H149DA04
2H149DA12
2H149DA18
2H149EA03
2H149EA07
2H149EA10
2H149EA12
2H149EA22
2H149FA08W
2H149FA08Z
2H149FC02
2H149FC03
2H149FC07
2H149FC10
2H149FD10
2H149FD44
2H199CA23
2H199CA25
2H199CA42
2H199CA47
2H199CA64
2H199CA65
2H199CA86
2H199CA87
2H291FA25X
2H291FA30X
2H291FA32X
2H291FA56X
2H291FA94X
2H291FA95X
2H291FB05
2H291FD12
2H291LA11
2H291LA21
2H291MA02
2H291PA04
2H291PA07
2H291PA24
2H291PA44
2H291PA53
2H291PA64
2H291PA87
3K107AA01
3K107BB01
3K107CC32
3K107CC43
3K107EE26
3K107EE29
3K107FF06
3K107FF08
(57)【要約】      (修正有)
【課題】VRゴーグルの軽量化、視認性の向上を実現し得るレンズ部を提供すること。
【解決手段】表示素子から出射され、偏光部材および第1のλ/4部材を通過した光を反射する反射型偏光部材と、前記表示素子と前記反射型偏光部材との間に配置される前記第一レンズ部と、表示素子と第一レンズ部との間に配置され、前記表示素子から出射された光を透過させ、反射型偏光部材で反射された光を反射型偏光部材に向けて反射させるハーフミラーと、反射型偏光部材の前方に配置される第二レンズ部と、前記ハーフミラーと反射型偏光部材との間に配置される第2のλ/4部材と、ハーフミラーと前記第二レンズ部との間に配置される保護部材と、を備え、前記保護部材は、保護部材と、第一レンズ部と第二レンズ部の少なくとも一つとの間に形成される空間に接し、波長420nmから680nmでの5°正反射率スペクトルの最大値が1.2%以下である。
【選択図】図1
【特許請求の範囲】
【請求項1】
ユーザに対して画像を表示する表示システムに用いられるレンズ部であって、
画像を表す表示素子の表示面から前方に向けて出射され、偏光部材および第1のλ/4部材を通過した光を反射する反射型偏光部材と、
前記表示素子と前記反射型偏光部材との間の光路上に配置される第一レンズ部と、
前記表示素子と前記第一レンズ部との間に配置され、前記表示素子から出射された光を透過させ、前記反射型偏光部材で反射された光を前記反射型偏光部材に向けて反射させるハーフミラーと、
前記反射型偏光部材の前方に配置される第二レンズ部と、
前記ハーフミラーと前記反射型偏光部材との間の光路上に配置される第2のλ/4部材と、
前記ハーフミラーと前記第二レンズ部との間の光路上に配置される保護部材と、
を備え、
前記保護部材は、前記保護部材と、前記第一レンズ部と前記第二レンズ部の少なくとも一つとの間に形成される空間に接し、
前記保護部材は、波長420nmから680nmの範囲における5°正反射率スペクトルの最大値が1.2%以下である、
レンズ部。
【請求項2】
前記保護部材は、波長450nmにおける5°正反射率が0.3%以下である、請求項1に記載のレンズ部。
【請求項3】
前記保護部材は、波長600nmにおける5°正反射率が0.3%以下である、請求項1に記載のレンズ部。
【請求項4】
前記保護部材は、表面平滑性が0.5arcmin以下である、請求項1に記載のレンズ部。
【請求項5】
前記第2のλ/4部材は、Re(450)<Re(550)を満たす、請求項1に記載のレンズ部。
【請求項6】
前記第2のλ/4部材と前記反射型偏光部材と前記保護部材とを含む積層部を備える、請求項1に記載のレンズ部。
【請求項7】
前記積層部は、前記反射型偏光部材と前記保護部材との間に配置される吸収型偏光部材を含む、請求項6に記載のレンズ部。
【請求項8】
前記積層部は、前記反射型偏光部材と前記保護部材との間に配置される第3のλ/4部材を含む、請求項6に記載のレンズ部。
【請求項9】
前記第3のλ/4部材は、Re(450)<Re(550)を満たす、請求項8に記載のレンズ部。
【請求項10】
偏光部材および第1のλ/4部材を介して出射された画像を表す光を、ハーフミラーおよび第一レンズ部を通過させるステップと、
前記ハーフミラーおよび前記第一レンズ部を通過した光を、第2のλ/4部材を通過させるステップと、
前記第2のλ/4部材を通過した光を、反射型偏光部材で前記ハーフミラーに向けて反射させるステップと、
前記反射型偏光部材および前記ハーフミラーで反射させた光を、前記第2のλ/4部材により前記反射型偏光部材を透過可能にするステップと、
前記反射型偏光部材を透過した光を、第二レンズ部を通過させるステップと、
を有する、表示方法に用いられ、
前記ハーフミラーと前記第二レンズ部との間の光路上に配置され、前記第一レンズ部と前記第二レンズ部との間に形成される空間に接する積層フィルムであって、
波長420nmから680nmの範囲における5°正反射率スペクトルの最大値が1.2%以下である、
積層フィルム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、レンズ部および積層フィルムに関する。
【背景技術】
【0002】
液晶表示装置およびエレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置)に代表される画像表示装置が急速に普及している。画像表示装置においては、画像表示を実現し、画像表示の性能を高めるために、一般的に、偏光部材、位相差部材等の光学部材が用いられている(例えば、特許文献1を参照)。
【0003】
近年、画像表示装置の新たな用途が開発されている。例えば、Virtual Reality(VR)を実現するためのディスプレイ付きゴーグル(VRゴーグル)が製品化され始めている。VRゴーグルは様々な場面での利用が検討されていることから、その軽量化、視認性の向上等が望まれている。軽量化は、例えば、VRゴーグルに用いられるレンズを薄型化することで達成され得る。一方で、薄型レンズを用いた表示システムに適した光学部材の開発も望まれている。例えば、視認性の向上のため、VRゴーグル内で生じ得る反射の問題を解決し得る光学部材が望まれている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2021-103286号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記に鑑み、本発明はVRゴーグルの軽量化、視認性の向上を実現し得るレンズ部の提供を主たる目的とする。
【課題を解決するための手段】
【0006】
1.本発明の実施形態によるレンズ部は、ユーザに対して画像を表示する表示システムに用いられるレンズ部であって、画像を表す表示素子の表示面から前方に向けて出射され、偏光部材および第1のλ/4部材を通過した光を反射する反射型偏光部材と、前記表示素子と前記反射型偏光部材との間の光路上に配置される第一レンズ部と、前記表示素子と前記第一レンズ部との間に配置され、前記表示素子から出射された光を透過させ、前記反射型偏光部材で反射された光を前記反射型偏光部材に向けて反射させるハーフミラーと、前記反射型偏光部材の前方に配置される第二レンズ部と、前記ハーフミラーと前記反射型偏光部材との間の光路上に配置される第2のλ/4部材と、前記ハーフミラーと前記第二レンズ部との間の光路上に配置される保護部材と、を備え、前記保護部材は、前記保護部材と、前記第一レンズ部と前記第二レンズ部の少なくとも一つとの間に形成される空間に接し、前記保護部材は、波長420nmから680nmの範囲における5°正反射率スペクトルの最大値が1.2%以下である。
2.上記1に記載のレンズ部において、上記保護部材は、波長450nmにおける5°正反射率が0.3%以下であってもよい。
3.上記1または2に記載のレンズ部において、上記保護部材は、波長600nmにおける5°正反射率が0.3%以下であってもよい。
4.上記1から3のいずれかに記載のレンズ部において、上記保護部材は、表面平滑性が0.5arcmin以下であってもよい。
5.上記1から4のいずれかに記載のレンズ部において、上記第2のλ/4部材は、Re(450)<Re(550)を満たしてもよい。
6.上記1から5のいずれかに記載のレンズ部は、上記第2のλ/4部材と上記反射型偏光部材と上記保護部材とを含む積層部を備えてもよい。
7.上記6に記載のレンズ部において、上記積層部は、上記反射型偏光部材と上記保護部材との間に配置される吸収型偏光部材を含んでもよい。
8.上記6または7に記載のレンズ部において、上記積層部は、上記反射型偏光部材と上記保護部材との間に配置される第3のλ/4部材を含んでもよい。
9.上記8に記載のレンズ部において、上記第3のλ/4部材は、Re(450)<Re(550)を満たしてもよい。
10.本発明の実施形態による積層フィルムは、偏光部材および第1のλ/4部材を介して出射された画像を表す光を、ハーフミラーおよび第一レンズ部を通過させるステップと、前記ハーフミラーおよび前記第一レンズ部を通過した光を、第2のλ/4部材を通過させるステップと、前記第2のλ/4部材を通過した光を、反射型偏光部材で前記ハーフミラーに向けて反射させるステップと、前記反射型偏光部材および前記ハーフミラーで反射させた光を、前記第2のλ/4部材により前記反射型偏光部材を透過可能にするステップと、前記反射型偏光部材を透過した光を、第二レンズ部を通過させるステップと、を有する、表示方法に用いられ、前記ハーフミラーと前記第二レンズ部との間の光路上に配置され、前記第一レンズ部と前記第二レンズ部との間に形成される空間に接する積層フィルムであって、波長420nmから680nmの範囲における5°正反射率スペクトルの最大値が1.2%以下である。
【発明の効果】
【0007】
本発明の実施形態によるレンズ部によれば、VRゴーグルの軽量化、視認性の向上を実現し得る。
【図面の簡単な説明】
【0008】
図1】本発明の1つの実施形態に係る表示システムの概略の構成を示す模式図である。
図2図1に示す表示システムのレンズ部の詳細の一例を示す模式的な断面図である。
図3】本発明の1つの実施形態に係る積層フィルムの概略の構成を示す模式的な断面図である。
図4】反射型偏光フィルムに含まれる多層構造の一例を示す模式的な斜視図である。
図5図1に示す表示システムのレンズ部の詳細の別の一例を示す模式的な断面図である。
図6】実施例1および比較例1の積層フィルムの5°正反射率スペクトルを示すグラフである。
図7】(a)、(b)および(c)は外観評価の結果を示す写真である。
図8】(a)、(b)、(c)および(d)は外観評価の結果を示す写真である。
【発明を実施するための形態】
【0009】
以下、図面を参照して本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。図面は説明をより明確にするため、実施の形態に比べ、各部の幅、厚み、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、図面については、同一または同等の要素には同一の符号を付し、重複する説明は省略することがある。
【0010】
(用語および記号の定義)
本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
本明細書において角度に言及するときは、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は±45°を意味する。
【0011】
図1は本発明の1つの実施形態に係る表示システムの概略の構成を示す模式図である。図1では、表示システム2の各構成要素の配置および形状等を模式的に図示している。表示システム2は、表示素子12と、反射型偏光部材14と、第一レンズ部16と、ハーフミラー18と、第一位相差部材20と、第二位相差部材22と、第二レンズ部24とを備えている。反射型偏光部材14は、表示素子12の表示面12a側である前方に配置され、表示素子12から出射された光を反射し得る。第一レンズ部16は表示素子12と反射型偏光部材14との間の光路上に配置され、ハーフミラー18は表示素子12と第一レンズ部16との間に配置されている。第一位相差部材20は表示素子12とハーフミラー18との間の光路上に配置され、第二位相差部材22はハーフミラー18と反射型偏光部材14との間の光路上に配置されている。
【0012】
ハーフミラー、または、第一レンズ部から前方に配置される構成要素(図示例では、ハーフミラー18、第一レンズ部16、第二位相差部材22、反射型偏光部材14および第二レンズ部24)をまとめてレンズ部(レンズ部4)と称する場合がある。
【0013】
表示素子12は、例えば、液晶ディスプレイまたは有機ELディスプレイであり、画像を表示するための表示面12aを有している。表示面12aから出射される光は、例えば、表示素子12に含まれ得る偏光部材(代表的には、偏光フィルム)を通過して出射され、第1の直線偏光とされている。
【0014】
第一位相差部材20は、第一位相差部材20に入射した第1の直線偏光を第1の円偏光に変換し得る第1のλ/4部材を含む。第一位相差部材が第1のλ/4部材以外の部材を含まない場合は、第一位相差部材は第1のλ/4部材に相当し得る。第一位相差部材20は、表示素子12に一体に設けられてもよい。
【0015】
ハーフミラー18は、表示素子12から出射された光を透過させ、反射型偏光部材14で反射された光を反射型偏光部材14に向けて反射させる。ハーフミラー18は、第一レンズ部16に一体に設けられている。
【0016】
第二位相差部材22は、反射型偏光部材14およびハーフミラー18で反射させた光を、反射型偏光部材14を透過させ得る第2のλ/4部材を含む。第二位相差部材が第2のλ/4部材以外の部材を含まない場合は、第二位相差部材は第2のλ/4部材に相当し得る。第二位相差部材22は、第一レンズ部16に一体に設けられてもよい。
【0017】
第一位相差部材20に含まれる第1のλ/4部材から出射された第1の円偏光は、ハーフミラー18および第一レンズ部16を通過し、第二位相差部材22に含まれる第2のλ/4部材により第2の直線偏光に変換される。第2のλ/4部材から出射された第2の直線偏光は、反射型偏光部材14を透過せずにハーフミラー18に向けて反射される。このとき、反射型偏光部材14に入射した第2の直線偏光の偏光方向は、反射型偏光部材14の反射軸と同方向である。そのため、反射型偏光部材14に入射した第2の直線偏光は、反射型偏光部材14で反射される。
【0018】
反射型偏光部材14で反射された第2の直線偏光は第二位相差部材22に含まれる第2のλ/4部材により第2の円偏光に変換され、第2のλ/4部材から出射された第2の円偏光は第一レンズ部16を通過してハーフミラー18で反射される。ハーフミラー18で反射された第2の円偏光は、第一レンズ部16を通過し、第二位相差部材22に含まれる第2のλ/4部材により第3の直線偏光に変換される。第3の直線偏光は、反射型偏光部材14を透過する。このとき、反射型偏光部材14に入射した第3の直線偏光の偏光方向は、反射型偏光部材14の透過軸と同方向である。そのため、反射型偏光部材14に入射した第3の直線偏光は、反射型偏光部材14を透過する。
【0019】
反射型偏光部材14を透過した光は、第二レンズ部24を通過して、ユーザの目26に入射する。
【0020】
例えば、表示素子12に含まれる偏光部材の吸収軸と反射型偏光部材14の反射軸とは、互いに略平行に配置されてもよいし、略直交に配置されてもよい。表示素子12に含まれる偏光部材の吸収軸と第一位相差部材20に含まれる第1のλ/4部材の遅相軸とのなす角度は、例えば40°~50°であり、42°~48°であってもよく、約45°であってもよい。表示素子12に含まれる偏光部材の吸収軸と第二位相差部材22に含まれる第2のλ/4部材の遅相軸とのなす角度は、例えば40°~50°であり、42°~48°であってもよく、約45°であってもよい。
【0021】
第1のλ/4部材の面内位相差Re(550)は、例えば100nm~190nmであり、110nm~180nmであってもよく、130nm~160nmであってもよく、135nm~155nmであってもよい。第1のλ/4部材は、好ましくは、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示す。第1のλ/4部材のRe(450)/Re(550)は、例えば0.75以上1未満であり、0.8以上0.95以下であってもよい。
【0022】
第2のλ/4部材の面内位相差Re(550)は、例えば100nm~190nmであり、110nm~180nmであってもよく、130nm~160nmであってもよく、135nm~155nmであってもよい。第2のλ/4部材は、好ましくは、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示す。第2のλ/4部材のRe(450)/Re(550)は、例えば0.75以上1未満であり、0.8以上0.95以下であってもよい。
【0023】
レンズ部4において、第一レンズ部16と第二レンズ部24との間には空間が形成され得る。この場合、第一レンズ部16と第二レンズ部24との間に配置される部材は、第一レンズ部16と第二レンズ部24のいずれかに一体に設けられることが好ましい。例えば、第一レンズ部16と第二レンズ部24との間に配置される部材は、接着層を介して第一レンズ部16と第二レンズ部24のいずれかに一体化させることが好ましい。このような形態によれば、例えば、各部材の取扱い性に優れ得る。接着層は、接着剤で形成されてもよいし、粘着剤で形成されてもよい。具体的には、接着層は、接着剤層であってもよいし、粘着剤層であってもよい。接着層の厚みは、例えば0.05μm~30μmである。
【0024】
図2は、図1に示す表示システムのレンズ部の詳細の一例を示す模式的な断面図である。具体的には、図2は、第一レンズ部と第二レンズ部とこれらの間に配置される部材を示している。レンズ部4は、第一レンズ部16と、第一レンズ部16に隣接して設けられる第一積層部100と、第二レンズ部24と、第二レンズ部24に隣接して設けられる第二積層部200を備えている。図2に示す例では、第一積層部100と第二積層部200とは離間して配置されている。図示しないが、ハーフミラーは、第一レンズ部16に一体に設けられ得る。
【0025】
第一積層部100は、第二位相差部材22と、第一レンズ部16と第二位相差部材22との間に配置される接着層(例えば、粘着剤層)41とを含み、接着層41により第一レンズ部16に一体に設けられている。第一積層部100は、第二位相差部材22の前方に配置される第一保護部材31をさらに含んでいる。第一保護部材31は、第二位相差部材22に接着層(例えば、粘着剤層)42を介して積層されている。第一保護部材31は、第一積層部100の最表面に位置し得る。
【0026】
図2に示す例では、第二位相差部材22は、第2のλ/4部材22aに加えて、屈折率特性がnz>nx=nyの関係を示し得る部材(いわゆる、ポジティブCプレート)22bを含んでいる。第二位相差部材22は、第2のλ/4部材22aとポジティブCプレート22bとの積層構造を有している。ポジティブCプレートを用いることにより、光抜け(例えば、斜め方向の光抜け)を防止し得る。図2に示すとおり、第二位相差部材22において、ポジティブCプレート22bより第2のλ/4部材22aの方が前方に位置していることが好ましい。第2のλ/4部材22aとポジティブCプレート22bとは、例えば、図示しない接着剤層を介して積層される。
【0027】
上記第2のλ/4部材は、好ましくは、屈折率特性がnx>ny≧nzの関係を示す。ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny<nzとなる場合があり得る。第2のλ/4部材のNz係数は、好ましくは0.9~3であり、より好ましくは0.9~2.5であり、さらに好ましくは0.9~1.5であり、特に好ましくは0.9~1.3である。
【0028】
第2のλ/4部材は、上記特性を満足し得る任意の適切な材料で形成される。第2のλ/4部材は、例えば、樹脂フィルムの延伸フィルムまたは液晶化合物の配向固化層であり得る。
【0029】
上記樹脂フィルムに含まれる樹脂としては、ポリカーボネート系樹脂、ポリエステルカーボネート系樹脂、ポリエステル系樹脂、ポリビニルアセタール系樹脂、ポリアリレート系樹脂、環状オレフィン系樹脂、セルロース系樹脂、ポリビニルアルコール系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエーテル系樹脂、ポリスチレン系樹脂、アクリル系樹脂等が挙げられる。これらの樹脂は、単独で用いてもよく、組み合わせて用いてもよい。組み合わせる方法としては、例えば、ブレンド、共重合が挙げられる。第2のλ/4部材が逆分散波長特性を示す場合、ポリカーボネート系樹脂またはポリエステルカーボネート系樹脂(以下、単にポリカーボネート系樹脂と称する場合がある)を含む樹脂フィルムが好適に用いられ得る。
【0030】
上記ポリカーボネート系樹脂としては、任意の適切なポリカーボネート系樹脂を用いることができる。例えば、ポリカーボネート系樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジオール、脂環式ジメタノール、ジ、トリまたはポリエチレングリコール、ならびに、アルキレングリコールまたはスピログリコールからなる群から選択される少なくとも1つのジヒドロキシ化合物に由来する構造単位と、を含む。好ましくは、ポリカーボネート系樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジメタノールに由来する構造単位ならびに/あるいはジ、トリまたはポリエチレングリコールに由来する構造単位と、を含み;さらに好ましくは、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、ジ、トリまたはポリエチレングリコールに由来する構造単位と、を含む。ポリカーボネート系樹脂は、必要に応じてその他のジヒドロキシ化合物に由来する構造単位を含んでいてもよい。なお、第2のλ/4部材に好適に用いられ得るポリカーボネート系樹脂および第2のλ/4部材の形成方法の詳細は、例えば、特開2014-10291号公報、特開2014-26266号公報、特開2015-212816号公報、特開2015-212817号公報、特開2015-212818号公報に記載されており、これらの公報の記載は本明細書に参考として援用される。
【0031】
樹脂フィルムの延伸フィルムで構成される第2のλ/4部材の厚みは、例えば10μm~100μmであり、好ましくは10μm~70μmであり、より好ましくは20μm~60μmである。
【0032】
上記液晶化合物の配向固化層は、液晶化合物が層内で所定の方向に配向し、その配向状態が固定されている層である。なお、「配向固化層」は、後述のように液晶モノマーを硬化させて得られる配向硬化層を包含する概念である。第2のλ/4部材においては、代表的には、棒状の液晶化合物が第2のλ/4部材の遅相軸方向に並んだ状態で配向している(ホモジニアス配向)。棒状の液晶化合物として、例えば、液晶ポリマーおよび液晶モノマーが挙げられる。液晶化合物は、好ましくは、重合可能である。液晶化合物が重合可能であると、液晶化合物を配向させた後に重合させることで、液晶化合物の配向状態を固定できる。
【0033】
上記液晶化合物の配向固化層(液晶配向固化層)は、所定の基材の表面に配向処理を施し、当該表面に液晶化合物を含む塗工液を塗工して当該液晶化合物を上記配向処理に対応する方向に配向させ、当該配向状態を固定することにより形成され得る。配向処理としては、任意の適切な配向処理が採用され得る。具体的には、機械的な配向処理、物理的な配向処理、化学的な配向処理が挙げられる。機械的な配向処理の具体例としては、ラビング処理、延伸処理が挙げられる。物理的な配向処理の具体例としては、磁場配向処理、電場配向処理が挙げられる。化学的な配向処理の具体例としては、斜方蒸着法、光配向処理が挙げられる。各種配向処理の処理条件は、目的に応じて任意の適切な条件が採用され得る。
【0034】
液晶化合物の配向は、液晶化合物の種類に応じて液晶相を示す温度で処理することにより行われる。このような温度処理を行うことにより、液晶化合物が液晶状態をとり、基材表面の配向処理方向に応じて当該液晶化合物が配向する。
【0035】
配向状態の固定は、1つの実施形態においては、上記のように配向した液晶化合物を冷却することにより行われる。液晶化合物が重合性または架橋性である場合には、配向状態の固定は、上記のように配向した液晶化合物に重合処理または架橋処理を施すことにより行われる。
【0036】
上記液晶化合物としては、任意の適切な液晶ポリマーおよび/または液晶モノマーが用いられる。液晶ポリマーおよび液晶モノマーは、それぞれ単独で用いてもよく、組み合わせてもよい。液晶化合物の具体例および液晶配向固化層の作製方法は、例えば、特開2006-163343号公報、特開2006-178389号公報、国際公開第2018/123551号公報に記載されている。これらの公報の記載は本明細書に参考として援用される。
【0037】
液晶配向固化層で構成される第2のλ/4部材の厚みは、例えば1μm~10μmであり、好ましくは1μm~8μmであり、より好ましくは1μm~6μmであり、さらに好ましくは1μm~4μmである。
【0038】
上記ポジティブCプレートの厚み方向の位相差Rth(550)は、好ましくは-50nm~-300nmであり、より好ましくは-70nm~-250nmであり、さらに好ましくは-90nm~-200nmであり、特に好ましくは-100nm~-180nmである。ここで、「nx=ny」は、nxとnyが厳密に等しい場合のみならず、nxとnyが実質的に等しい場合も包含する。ポジティブCプレートの面内位相差Re(550)は、例えば10nm未満である。
【0039】
ポジティブCプレートは、任意の適切な材料で形成され得るが、ポジティブCプレートは、好ましくは、ホメオトロピック配向に固定された液晶材料を含むフィルムから構成される。ホメオトロピック配向させることができる液晶材料(液晶化合物)は、液晶モノマーであってもよいし、液晶ポリマーであってもよい。このような液晶化合物およびポジティブCプレートの形成方法の具体例としては、特開2002-333642号公報の[0020]~[0028]に記載の液晶化合物および当該位相差層の形成方法が挙げられる。この場合、ポジティブCプレートの厚みは、好ましくは0.5μm~5μmである。
【0040】
上記第一保護部材は、代表的には、基材と表面処理層とを有する積層フィルムであり得る。表面処理層を有する第一保護部材は、表面処理層が前方側に位置するように配置され得る。具体的には、表面処理層が第一積層部の最表面に位置し得る。
【0041】
第一保護部材は、波長420nmから680nmの範囲における5°正反射率スペクトルの最大値が0%以上1.2%以下であり、好ましくは1.0%以下であり、より好ましくは0.8%以下である。このような反射特性を有する保護部材を積層部の最表面に位置させることにより、視認性が格段に向上し得る。具体的には、第一レンズ部16と第二レンズ部24との間に形成される空間に接する保護部材が上記反射特性を満足することにより、空気と保護部材との界面における反射による光のロスを極めて良好に抑制することができる。多くの部材を用いる表示システム2においては必要となる光量が大きく、光のロスを抑制する効果が顕著に得られ得る。上述のとおり、図1に示す表示システム2においては、光は、ハーフミラー18と反射型偏光部材14との間に配置される部材を3回通り得ることから、光のロスを抑制する効果が顕著に得られ得る。また、保護部材が上記反射特性を満足することにより、反射に由来する残像(ゴースト)の視認を抑制することができる。
【0042】
上述のように、用いる光量が大きい場合、色相管理が重要となり得る。例えば、可視光領域の反射率のバランスが重要となり得る。第一保護部材の波長450nmにおける5°正反射率は、例えば0.01%以上0.4%以下であり、好ましくは0.3%以下であり、より好ましくは0.2%以下であり、さらに好ましくは0.1%以下である。第一保護部材の波長600nmにおける5°正反射率は、例えば0.01%以上0.4%以下であり、好ましくは0.3%以下であり、より好ましくは0.2%以下であり、さらに好ましくは0.1%以下である。
【0043】
第一保護部材の波長420nmから680nmの範囲における5°正反射率スペクトルは、波長450nmから480nmの範囲、および、波長600nmから630nmの範囲に、極小値を有していてもよい。例えば、波長530nmから560nmの範囲における5°正反射率の平均値Ave(530-560nm)に対する、波長450nmから480nmの範囲における5°正反射率の平均値Ave(450-480nm)の比は、好ましくは0.10以上0.90以下であり、より好ましくは0.80以下である。そして、波長530nmから560nmの範囲における5°正反射率の平均値Ave(530-560nm)に対する、波長600nmから630nmの範囲における5°正反射率の平均値Ave(600-630nm)の比は、好ましくは0.10以上0.50以下であり、より好ましくは0.40以下である。なお、5°正反射率の平均値は、例えば、各波長範囲で、5nmおきに測定値を7点抽出し、これらの合計を抽出した波長の数(7点)で割ることにより求めることができる。
【0044】
第一保護部材の表面平滑性は、好ましくは0.5arcmin以下であり、より好ましくは0.4arcmin以下である。このような平滑性を満足する保護部材を用いることにより、拡散光の発生を抑制し、画像が不明瞭になることを抑制し得る。実質的には、第一保護部材の表面平滑性は、例えば0.1arcmin以上である。第一保護部材の厚みは、好ましくは10μm~80μmであり、より好ましくは15μm~60μmであり、さらに好ましくは20μm~45μmである。
【0045】
図3は、本発明の1つの実施形態に係る積層フィルムの概略の構成を示す模式的な断面図である。積層フィルム34は、基材36と基材36の上方に配置される表面処理層38とを有している。基材36の厚みは、好ましくは5μm~80μmであり、より好ましくは10μm~50μmであり、さらに好ましくは15μm~40μmである。基材36の表面平滑性は、好ましくは0.7arcmin以下であり、より好ましくは0.6arcmin以下であり、さらに好ましくは0.5arcmin以下である。なお、表面平滑性は、照射光を対象の表面にフォーカスさせることにより測定することができる。
【0046】
基材36は、任意の適切なフィルムで構成され得る。基材36を構成するフィルムの主成分となる材料としては、例えば、トリアセチルセルロース(TAC)等のセルロース系樹脂、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン等のシクロオレフィン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の樹脂が挙げられる。ここで、(メタ)アクリルとは、アクリルおよび/またはメタクリルをいう。1つの実施形態においては、基材36は、(メタ)アクリル系樹脂で構成されることが好ましい。(メタ)アクリル系樹脂を採用することにより、上記表面平滑性を良好に満足し得る。具体的には、(メタ)アクリル系樹脂を採用することにより、押出し成形により、表面平滑性に優れた基材を製膜し得る。
【0047】
表面処理層38の厚みは、好ましくは0.5μm~10μmであり、より好ましくは1μm~7μmであり、さらに好ましくは2μm~5μmである。表面処理層38は、例えば、ハードコート層38aと反射防止機能を有する機能層38bとを有している。
【0048】
ハードコート層38aは、代表的には、基材36にハードコート層形成材料を塗布し、塗布層を硬化させることにより形成される。ハードコート層形成材料は、代表的には、層形成成分としての硬化性化合物を含む。硬化性化合物の硬化メカニズムとしては、例えば、熱硬化型、光硬化型が挙げられる。硬化性化合物としては、例えば、モノマー、オリゴマー、プレポリマーが挙げられる。好ましくは、硬化性化合物として多官能モノマーまたはオリゴマーが用いられる。多官能モノマーまたはオリゴマーとしては、例えば、2個以上の(メタ)アクリロイル基を有するモノマーまたはオリゴマー、ウレタン(メタ)アクリレートまたはウレタン(メタ)アクリレートのオリゴマー、エポキシ系モノマーまたはオリゴマー、シリコーン系モノマーまたはオリゴマーが挙げられる。
【0049】
ハードコート層38aの厚みは、好ましくは0.5μm~10μmであり、より好ましくは1μm~7μmであり、さらに好ましくは2μm~5μmである。
【0050】
機能層38bは、高屈折率層および低屈折率層を含む積層構造を有することが好ましい。機能層38bは、高屈折率層および低屈折率層を基材36側からこの順で有することが好ましい。このような積層構造を有することにより、上記反射特性を良好に満足し得る。
【0051】
例えば、上記高屈折率層は、高屈折率樹脂(例えば、波長550nmの条件で測定される屈折率が1.55以上)により構成され得る。この場合、高屈折率層は、代表的には、塗工層であり得る。また例えば、上記高屈折率層は、無機膜により構成され得る。この場合、高屈折率層は、代表的には、真空蒸着、スパッタリング等の物理蒸着、化学蒸着により成膜され得る。
【0052】
高屈折率層の厚みは、好ましくは10nm~200nmであり、より好ましくは20nm~150nmである。
【0053】
低屈折率層の厚みは、好ましくは10nm~200nmであり、より好ましくは20nm~150nmである。
【0054】
上記低屈折率層(反射防止層)は、例えば、低屈折率層(反射防止層)形成用塗工液を塗工、乾燥して得られる塗膜を硬化させることにより得ることができる。反射防止層形成用塗工液は、例えば、樹脂成分(硬化性化合物)、フッ素含有添加剤、中空粒子、中実粒子および溶媒等を含んでいてもよく、例えば、これらを混合して得ることができる。
【0055】
反射防止層形成用塗工液に含まれる樹脂成分(硬化性化合物)の硬化メカニズムとしては、例えば、熱硬化型、光硬化型が挙げられる。樹脂成分としては、例えば、アクリレート基およびメタクリレート基の少なくとも一方の基を有する硬化性化合物が用いられ、例えば、シリコーン樹脂、ポリエステル樹脂、ポリエーテル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂、多価アルコール等の多官能化合物のアクリレートやメタクリレート等のオリゴマーまたはプレポリマー等が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を併用してもよい。
【0056】
上記樹脂成分には、例えば、アクリレート基およびメタクリレート基の少なくとも一方の基を有する反応性希釈剤を用いることもできる。反応性希釈剤は、例えば、特開2008-88309号公報に記載の反応性希釈剤を用いることができ、例えば、単官能アクリレート、単官能メタクリレート、多官能アクリレート、多官能メタクリレート等を含む。反応性希釈剤としては、優れた硬度を得る観点から、3官能以上のアクリレート、3官能以上のメタクリレートが好ましく用いられる。反応性希釈剤としては、例えば、ブタンジオールグリセリンエーテルジアクリレート、イソシアヌル酸のアクリレート、イソシアヌル酸のメタクリレート等も挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を併用してもよい。上記樹脂成分の硬化のために、例えば、硬化剤を用いてもよい。硬化剤としては、例えば、公知の重合開始剤(例えば、熱重合開始剤、光重合開始剤等)を用いることができる。
【0057】
上記フッ素含有添加剤は、例えば、フッ素を含む有機化合物であってもよく、フッ素を含む無機化合物であってもよい。フッ素を含む有機化合物としては、例えば、フッ素含有防汚コーティング剤、フッ素含有アクリル化合物、フッ素・ケイ素含有アクリル化合物が挙げられる。フッ素を含む有機化合物としては市販品を用いることができる。市販品の具体例としては、信越化学工業株式会社製の商品名「KY-1203」、DIC株式会社製の商品名「メガファック」等が挙げられる。フッ素含有添加剤の含有量は、上記樹脂成分100重量部に対し、例えば、0.05重量部以上、0.1重量部以上、0.15重量部以上、0.20重量部以上、または0.25重量部以上であってもよく、20重量部以下、15重量部以下、10重量部以下、5重量部以下、または3重量部以下であってもよい。
【0058】
上記中空粒子としては、例えば、シリカ粒子、アクリル粒子、アクリル-スチレン共重合粒子が用いられる。中空シリカ粒子は、市販品(例えば、日揮触媒化成工業株式会社製の商品名「スルーリア5320」、「スルーリア4320」)を用いることができる。中空粒子の重量平均粒子径は、例えば、30nm以上、40nm以上、50nm以上、60nm以上、または70nm以上であってもよく、150nm以下、140nm以下、130nm以下、120nm以下、または110nm以下であってもよい。中空粒子の形状は、特に制限されないが、好ましくは略球形である。具体的には、中空粒子のアスペクト比は、好ましくは1.5以下である。中空粒子の含有量は、上記樹脂成分100重量部に対し、例えば、30重量部以上、50重量部以上、70重量部以上、90重量部以上、または100重量部以上であってもよく、300重量部以下、270重量部以下、250重量部以下、200重量部以下、または180重量部以下であってもよい。
【0059】
上記中実粒子としては、例えば、シリカ粒子、ジルコニア粒子、チタニア粒子が用いられる。中実シリカ粒子は、市販品(例えば、日産化学工業株式会社製の商品名「MEK-2140Z-AC」、「MIBK-ST」、「IPA-ST」)を用いることができる。中実粒子の重量平均粒子径は、例えば、5nm以上、10nm以上、15nm以上、20nm以上、または25nm以上であってもよく、330nm以下、250nm以下、200nm以下、150nm以下、または100nm以下であってもよい。中空粒子の形状は、特に制限されないが、好ましくは略球形である。具体的には、中空粒子のアスペクト比は、好ましくは1.5以下である。中実粒子の含有量は、上記樹脂成分100重量部に対し、例えば、5重量部以上、10重量部以上、15重量部以上、20重量部以上、または25重量部以上であってもよく、150重量部以下、120重量部以下、100重量部以下、または80重量部以下であってもよい。
【0060】
上記溶媒としては、任意の適切な溶媒を用い得る。溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール、ブタノール、TBA(ターシャリーブチルアルコール)、2-メトキシエタノール等のアルコール類;アセトン、メチルエチルケトン、MIBK(メチルイソブチルケトン)、シクロペンタノン等のケトン類;酢酸メチル、酢酸エチル、酢酸ブチル、PMA(プロピレングリコールモノメチルエーテルアセテート)等のエステル類;ジイソプロピルエーテル、プロピレングリコールモノメチルエーテル等のエーテル類;エチレングリコール、プロピレングリコール等のグリコール類;エチルセロソルブ、ブチルセロソルブ等のセロソルブ類;ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を併用してもよい。溶媒の含有量は、例えば、上記反射防止層形成用塗工液全体の重量に対する固形分の重量が、例えば、0.1重量%以上、0.3重量%以上、0.5重量%以上、1.0重量%以上、または1.5重量%以上となるようにしてもよく、20重量%以下、15重量%以下、10重量%以下、5重量%以下、または3重量%以下となるようにしてもよい。
【0061】
上記反射防止層形成用塗工液の塗工方法としては、例えば、ファンテンコート法、ダイコート法、スピンコート法、スプレーコート法、グラビアコート法、ロールコート法、バーコート法等の公知の塗工方法を用いることができる。上記塗膜の乾燥温度は、例えば30℃~200℃であり、乾燥時間は、例えば30秒~90秒である。上記塗膜の硬化は、例えば、加熱、光照射(代表的には、紫外線照射)により行うことができる。光照射の光源としては、例えば、高圧水銀ランプが用いられる。紫外線照射の照射量は、紫外線波長365nmでの積算露光量として、50mJ/cm~500mJ/cmであることが好ましい。
【0062】
第二積層部200は、反射型偏光部材14と、反射型偏光部材14と第二レンズ部24との間に配置される接着層(例えば、粘着剤層)とを含んでいる。第二積層部200は、例えば、視認性向上の観点から、反射型偏光部材14と第二レンズ部24との間に配置される吸収型偏光部材28をさらに含んでいる。吸収型偏光部材28は、反射型偏光部材14の前方に接着層(例えば、粘着剤層)44を介して積層されている。反射型偏光部材14の反射軸と吸収型偏光部材28の吸収軸とは互いに略平行に配置され得、反射型偏光部材14の透過軸と吸収型偏光部材28の透過軸とは互いに略平行に配置され得る。接着層を介して積層することにより、反射型偏光部材14と吸収型偏光部材28とが固定され、反射軸と吸収軸(透過軸と透過軸)との軸配置のズレを防止することができる。また、反射型偏光部材14と吸収型偏光部材28との間に形成され得る空気層による悪影響を抑制することができる。
【0063】
第二積層部200は、反射型偏光部材14の後方に配置される第二保護部材32をさらに含んでいる。第二保護部材32は、反射型偏光部材14に接着層(例えば、粘着剤層)43を介して積層されている。第二保護部材32は、第二積層部200の最表面に位置し得る。第一保護部材31と第二保護部材32とは、空間を介して対向して配置されている。第二保護部材は、上記第一保護部材と同様、代表的には、基材と表面処理層とを有する積層フィルムであり得る。この場合、表面処理層が第二積層部の最表面に位置し得る。第二保護部材の詳細については、上記第一保護部材と同様の説明を適用することができる。具体的には、第二保護部材の反射特性とその効果、平滑性、構成、厚みおよび構成材料については、上記第一保護部材と同様の説明を適用することができる。
【0064】
図2に示す例では、第二積層部200は、吸収型偏光部材28と第二レンズ部24との間に配置される第三位相差部材30をさらに含んでいる。第三位相差部材30は、吸収型偏光部材28に接着層(例えば、粘着剤層)45を介して積層されている。また、第三位相差部材30は、第二レンズ部24に接着層(例えば、粘着剤層)46を介して積層され、第二積層部200は、第二レンズ部24に一体に設けられている。第三位相差部材30は、例えば、第3のλ/4部材を含む。吸収型偏光部材28の吸収軸と第三位相差部材30に含まれる第3のλ/4部材の遅相軸とのなす角度は、例えば40°~50°であり、42°~48°であってもよく、約45°であってもよい。このような部材を設けることにより、例えば、第二レンズ部16側からの外光の反射を防止することができる。第三位相差部材が第3のλ/4部材以外の部材を含まない場合は、第三位相差部材は第3のλ/4部材に相当し得る。
【0065】
上記反射型偏光部材は、その透過軸に平行な偏光(代表的には、直線偏光)をその偏光状態を維持したまま透過させ、それ以外の偏光状態の光を反射し得る。反射型偏光部材としては、代表的には、多層構造を有するフィルム(反射型偏光フィルムと称する場合がある)で構成される。この場合、反射型偏光部材の厚みは、例えば10μm~150μmであり、好ましくは20μm~100μmであり、さらに好ましくは30μm~60μmである。
【0066】
図4は、反射型偏光フィルムに含まれる多層構造の一例を示す模式的な斜視図である。多層構造14aは、複屈折性を有する層Aと複屈折性を実質的に有さない層Bとを交互に有する。多層構造を構成する層の総数は、50~1000であってもよい。例えば、A層のx軸方向の屈折率nxはy軸方向の屈折率nyより大きく、B層のx軸方向の屈折率nxとy軸方向の屈折率nyとは実質的に同一であり、A層とB層との屈折率差は、x軸方向において大きく、y軸方向においては実質的にゼロである。その結果、x軸方向が反射軸となり、y軸方向が透過軸となり得る。A層とB層とのx軸方向における屈折率差は、好ましくは0.2~0.3である。
【0067】
上記A層は、代表的には、延伸により複屈折性を発現する材料で構成される。このような材料としては、例えば、ナフタレンジカルボン酸ポリエステル(例えば、ポリエチレンナフタレート)、ポリカーボネートおよびアクリル系樹脂(例えば、ポリメチルメタクリレート)が挙げられる。上記B層は、代表的には、延伸しても複屈折性を実質的に発現しない材料で構成される。このような材料としては、例えば、ナフタレンジカルボン酸とテレフタル酸とのコポリエステルが挙げられる。上記多層構造は、共押出と延伸とを組み合わせて形成され得る。例えば、A層を構成する材料とB層を構成する材料とを押し出した後、多層化する(例えば、マルチプライヤーを用いて)。次いで、得られた多層積層体を延伸する。図示例のx軸方向は、延伸方向に対応し得る。
【0068】
反射型偏光フィルムの市販品として、例えば、3M社製の商品名「DBEF」、「APF」、日東電工社製の商品名「APCF」が挙げられる。
【0069】
反射型偏光部材(反射型偏光フィルム)の直交透過率(Tc)は、例えば0.01%~3%であり得る。反射型偏光部材(反射型偏光フィルム)の単体透過率(Ts)は、例えば43%~49%であり、好ましくは45%~47%である。反射型偏光部材(反射型偏光フィルム)の偏光度(P)は、例えば92%~99.99%であり得る。
【0070】
上記直交透過率、単体透過率および偏光度は、例えば、紫外可視分光光度計を用いて測定することができる。偏光度Pは、紫外可視分光光度計を用いて、単体透過率Ts、平行透過率Tpおよび直交透過率Tcを測定し、得られたTpおよびTcから、下記式により求めることができる。なお、Ts、TpおよびTcは、JIS Z 8701の2度視野(C光源)により測定して視感度補正を行なったY値である。
偏光度P(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
【0071】
上記吸収型偏光部材は、代表的には、二色性物質を含む樹脂フィルム(吸収型偏光膜と称する場合がある)を含み得る。吸収型偏光膜の厚みは、例えば1μm以上20μm以下であり、2μm以上15μm以下であってもよく、12μm以下であってもよく、10μm以下であってもよく、8μm以下であってもよく、5μm以下であってもよい。
【0072】
上記吸収型偏光膜は、単層の樹脂フィルムから作製してもよく、二層以上の積層体を用いて作製してもよい。
【0073】
単層の樹脂フィルムから作製する場合、例えば、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理、延伸処理等を施すことにより吸収型偏光膜を得ることができる。中でも、PVA系フィルムをヨウ素で染色し一軸延伸して得られる吸収型偏光膜が好ましい。
【0074】
上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。
【0075】
上記二層以上の積層体を用いて作製する場合の積層体としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる吸収型偏光膜は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を吸収型偏光膜とすること;により作製され得る。本実施形態においては、好ましくは、樹脂基材の片側に、ハロゲン化物とポリビニルアルコール系樹脂とを含むポリビニルアルコール系樹脂層を形成する。延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。加えて、本実施形態においては、好ましくは、積層体は、長手方向に搬送しながら加熱することにより幅方向に2%以上収縮させる乾燥収縮処理に供される。代表的には、本実施形態の製造方法は、積層体に、空中補助延伸処理と染色処理と水中延伸処理と乾燥収縮処理とをこの順に施すことを含む。補助延伸を導入することにより、熱可塑性樹脂上にPVAを塗布する場合でも、PVAの結晶性を高めることが可能となり、高い光学特性を達成することが可能となる。また、同時にPVAの配向性を事前に高めることで、後の染色工程や延伸工程で水に浸漬された時に、PVAの配向性の低下や溶解などの問題を防止することができ、高い光学特性を達成することが可能になる。さらに、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、ポリビニルアルコール分子の配向の乱れ、および配向性の低下が抑制され得る。これにより、染色処理および水中延伸処理など、積層体を液体に浸漬して行う処理工程を経て得られる吸収型偏光膜の光学特性は向上し得る。さらに、乾燥収縮処理により積層体を幅方向に収縮させることにより、光学特性を向上させることができる。得られた樹脂基材/吸収型偏光膜の積層体はそのまま用いてもよく(すなわち、樹脂基材を吸収型偏光膜の保護層としてもよく)、樹脂基材/吸収型偏光膜の積層体から樹脂基材を剥離した剥離面に、もしくは、剥離面とは反対側の面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような吸収型偏光膜の製造方法の詳細は、例えば特開2012-73580号公報、特許第6470455号に記載されている。これらの公報は、その全体の記載が本明細書に参考として援用される。
【0076】
吸収型偏光部材(吸収型偏光膜)の直交透過率(Tc)は、0.5%以下であることが好ましく、より好ましくは0.1%以下であり、さらに好ましくは0.05%以下である。吸収型偏光部材(吸収型偏光膜)の単体透過率(Ts)は、例えば41.0%~45.0%であり、好ましくは42.0%以上である。吸収型偏光部材(吸収型偏光膜)の偏光度(P)は、例えば99.0%~99.997%であり、好ましくは99.9%以上である。
【0077】
上記第3のλ/4部材の面内位相差Re(550)は、例えば100nm~190nmであり、110nm~180nmであってもよく、130nm~160nmであってもよく、135nm~155nmであってもよい。第3のλ/4部材は、好ましくは、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示す。第3のλ/4部材のRe(450)/Re(550)は、例えば0.75以上1未満であり、0.8以上0.95以下であってもよい。第3のλ/4部材は、好ましくは、屈折率特性がnx>ny≧nzの関係を示す。第3のλ/4部材のNz係数は、好ましくは0.9~3であり、より好ましくは0.9~2.5であり、さらに好ましくは0.9~1.5であり、特に好ましくは0.9~1.3である。
【0078】
第3のλ/4部材は、上記特性を満足し得る任意の適切な材料で形成される。第3のλ/4部材は、例えば、樹脂フィルムの延伸フィルムまたは液晶化合物の配向固化層であり得る。樹脂フィルムの延伸フィルムまたは液晶化合物の配向固化層で構成される第3のλ/4部材については、上記第2のλ/4部材と同様の説明を適用することができる。第2のλ/4部材と第3のλ/4部材とは、構成(例えば、形成材料、厚み、光学特性等)が同じ部材であってもよく、異なる構成の部材であってもよい。
【0079】
図5は、図1に示す表示システムのレンズ部の詳細の別の一例を示す模式的な断面図である。具体的には、図5は、第一レンズ部と第二レンズ部とこれらの間に配置される部材を示している。レンズ部4は、第一レンズ部16と、第一レンズ部16に隣接して設けられる第一積層部100と、第二レンズ部24とを備えている。第一積層部100と第二レンズ部24とは離間して配置されている。
【0080】
第一積層部100は、第2のλ/4部材22aとポジティブCプレート22bとの積層構造を有する第二位相差部材22と、反射型偏光部材14と、吸収型偏光部材28と、第三位相差部材30と、第一保護部材31を含んでいる。また、各部材を一体化させる接着層(例えば、粘着剤層)41~45を含んでいる。図5に示す例では、図2に示す例と異なり、第一レンズ部16と第二レンズ部24との間に配置される部材は、第一レンズ部16に一体に設けられている。そして、第一レンズ部16と第二レンズ部24との間に形成される空間に接する保護部材として、第一保護部材31のみが設けられている。
【実施例0081】
以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、厚みおよび表面平滑性は下記の測定方法により測定した値である。また、特に明記しない限り、「部」および「%」は重量基準である。
<厚み>
10μm以下の厚みは、走査型電子顕微鏡(日本電子社製、製品名「JSM-7100F」)を用いて測定した。10μmを超える厚みは、デジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。
<表面平滑性>
走査型白色干渉計(Zygo社製、製品名「NewView9000」)を用いて表面平滑性を測定した。具体的には、防振台つき測定台に測定試料を載せ、単一白色LED照明を用いて干渉縞を発生させ、基準面を持った干渉対物レンズ(1.4倍)をZ方向(厚み方向)にスキャンすることで、12.4mm□の視野範囲における測定対象最表面の平滑性(表面平滑性)を選択的に取得した。マイクロスライドガラス(松浪硝子工業社製、製品名「S200200」)に厚み5μmの凹凸の少ないアクリル系粘着剤層を形成し、この粘着面に測定対象のフィルムを異物や気泡、変形のスジが入り込まないようにラミネートし、粘着剤層と反対側の表面の平滑性を測定した。
解析については、角度の指標「Slope magnitude RMS」を2倍した値(2σに相当)を、表面平滑性(単位:arcmin)と定義した。
【0082】
[実施例1]
(ハードコート層形成材料の調製)
ウレタンアクリルオリゴマー(新中村化学社製、「NKオリゴ UA-53H」)50部、ペンタエリストールトリアクリレートを主成分とする多官能アクリレート(大阪有機化学工業社製、商品名「ビスコート#300」)30部、4-ヒドロキシブチルアクリレート(大阪有機化学工業社製)20部、レベリング剤(DIC社製、「GRANDIC PC4100」)1部および光重合開始剤(チバ・ジャパン社製、「イルガキュア907」)3部を混合し、固形分濃度が50%になるようにメチルイソブチルケトンで希釈して、ハードコート層形成材料を調製した。
【0083】
(高屈折率層形成用塗工液の調製)
多官能アクリレート(荒川化学工業株式会社製、商品名「オプスターKZ6728」、固形分20重量%)100重量部、レベリング剤(DIC社製、「GRANDIC PC4100」)3重量部、および光重合開始剤(BASF社製、商品名「OMNIRAD907」、固形分100重量%)3重量部を混合した。その混合物に、希釈溶媒として酢酸ブチルを用いて固形分が12重量%となるようにし、攪拌して高屈折率層形成用塗工液を調製した。
【0084】
(低屈折率層形成用塗工液Aの調製)
ペンタエリストールトリアクリレートを主成分とする多官能アクリレート(大阪有機化学工業株式会社製、商品名「ビスコート#300」、固形分100重量%)100重量部、中空ナノシリカ粒子(日揮触媒化成工業株式会社製、商品名「スルーリア5320」、固形分20重量%、重量平均粒子径75nm)150重量部、中実ナノシリカ粒子(日産化学工業株式会社製、商品名「MEK-2140Z-AC」、固形分30重量%、重量平均粒子径10nm)50重量部、フッ素含有添加剤(信越化学工業株式会社製、商品名「KY-1203」、固形分20重量%)12重量部、および光重合開始剤(BASF社製、商品名「OMNIRAD907」、固形分100重量%)3重量部を混合した。その混合物に、希釈溶媒としてTBA(ターシャリーブチルアルコール)、MIBK(メチルイソブチルケトン)およびPMA(プロピレングリコールモノメチルエーテルアセテート)を60:25:15重量比で混合した混合溶媒を添加して全体の固形分が4重量%となるようにし、攪拌して低屈折率層形成用塗工液を調製した。
【0085】
ラクトン環構造を有するアクリルフィルム(厚み40μm、表面平滑性0.45arcmin)に、上記のハードコート層形成材料を塗布して90℃で1分間加熱し、加熱後の塗布層に高圧水銀ランプにて積算光量300mJ/cmの紫外線を照射して塗布層を硬化させ、厚み4μmのハードコート層が形成されたアクリルフィルム(厚み44μm、ハードコート層側の表面平滑性0.4arcmin)を作製した。
次いで、上記ハードコート層上に、上記高屈折率層形成用塗工液をワイヤーバーで塗工し、塗工した塗工液を80℃で1分間加熱し、乾燥させて塗膜を形成した。乾燥後の塗膜に、高圧水銀ランプにて積算光量300mJ/cmの紫外線を照射して塗膜を硬化させ、厚み140nmの高屈折率層を形成した。
続いて、高屈折率層上に、上記低屈折率層形成用塗工液をワイヤーバーで塗工し、塗工した塗工液を80℃で1分間加熱し、乾燥させて塗膜を形成した。乾燥後の塗膜に、高圧水銀ランプにて積算光量300mJ/cmの紫外線を照射して塗膜を硬化させ、厚み105nmの低屈折率層を形成した。
こうして、厚み44μmで、表面平滑性0.4arcminの積層フィルムを得た。
【0086】
[比較例1]
高屈折率層を形成しなかったこと、および、低屈折率層形成用塗工液として下記の塗工液Bを用いて厚み100nmの低屈折率層を形成したこと以外は実施例1と同様にして、厚み44μmで、表面平滑性0.4arcminの積層フィルムを得た。
【0087】
(低屈折率層形成用塗工液Bの調製)
ペンタエリストールトリアクリレートを主成分とする多官能アクリレート(大阪有機化学工業株式会社製、商品名「ビスコート#300」、固形分100重量%)100重量部、中空ナノシリカ粒子(日揮触媒化成工業株式会社製、商品名「スルーリア5320」、固形分20重量%、重量平均粒子径75nm)100重量部、フッ素含有添加剤(信越化学工業株式会社製、商品名「KY-1203」、固形分20重量%)12重量部、および光重合開始剤(BASF社製、商品名「OMNIRAD907」、固形分100重量%)3重量部を混合した。その混合物に、希釈溶媒としてTBA(ターシャリーブチルアルコール)、MIBK(メチルイソブチルケトン)およびPMA(プロピレングリコールモノメチルエーテルアセテート)を60:25:15重量比で混合した混合溶媒を添加して全体の固形分が4重量%となるようにし、攪拌して反射防止低屈折層形成用塗工液Bを調製した。
【0088】
[比較例2]
高屈折率層および低屈折率層を形成しなかったこと以外は実施例1と同様にして、厚み44μmで、表面平滑性0.4arcminの積層フィルムを得た。
【0089】
<評価>
(1)5°正反射率
実施例1、比較例1および比較例2の積層フィルムから50mm×50mmサイズの試験片を切り出し、これを、粘着剤を用いて黒アクリル板に貼り付けて測定サンプルを得た。測定装置としては、分光光度計(日立ハイテクノロジー社製、商品名「U-4100」)を用い、正反射率スペクトルを測定した。測定波長は420nmから680nmの範囲とし、測定サンプルに対する光の入射角は5°とした。
【0090】
実施例1および比較例1の積層フィルムの5°正反射率スペクトルを図6に示す。図6に示すとおり、実施例1の積層フィルムの波長420nmから680nmの範囲における5°正反射率スペクトルの最大値は0.75%であった。また、波長450nmにおける5°正反射率は0.17%であり、波長600nmにおける5°正反射率は0.05%であった。なお、比較例1および比較例2の結果は以下のとおりである。
【0091】
【表1】
【0092】
(2)外観1
実施例1、比較例1および比較例2の積層フィルムを、粘着剤を用いて黒アクリル板に貼り付けて測定板を得た。暗室にて、測定板に向けて、18cm離れた位置に測定板に対向するように設置した面発光ユニット(AItec社製、LEDライティングボックス「LLBK1」)から調光ボリューム1にて光を照射したときの測定板の外観(反射見映え)を目視により確認した。反射見映えを図7(a)、図7(b)および図7(c)に示す。具体的には、図7(a)は白表示の光を照射したときの結果を示し、図7(b)は青色光(波長450nm±30nm)を照射したときの結果を示し、図7(c)は赤色光(波長630nm±30nm)を照射したときの結果を示す。
【0093】
(3)外観2
実施例1、比較例1および比較例2の積層フィルムを、粘着剤を用いて透明ガラス板に貼り付けて測定板を得た。暗室に面発光ユニット(AItec社製、LEDライティングボックス「LLBK1」)を設置し、その発光面上に測定板を載置した状態で、面発光ユニットから調光ボリューム1にて光を照射したときの測定板の外観(透過見映え)を目視により確認した。透過見映えを図8(a)、図8(b)、図8(c)および図8(d)に示す。図8(a)は白表示の光を照射したときの結果を示し、図8(b)は青色光(波長450nm±30nm)を照射したときの結果を示し、図8(c)は赤色光(波長630nm±30nm)を照射したときの結果を示し、図8(d)は緑色光(波長530nm±30nm)を照射したときの結果を示す。
【0094】
図7(a)、図7(b)および図7(c)に示すように、実施例1は比較例1および比較例2に比べて、格段に反射見映えに優れる。上記評価では吸収型偏光部材との組合せを想定して黒アクリル板を用いているが、透明ガラス板を用いても同様に反射見映えの差が確認できた。実施例1によれば、本発明の実施形態により表示システムにおいて、反射光が原因で起こり得るゴーストの問題を極めて良好に解決し得ると考えられる。なお、図8(a)、図8(b)、図8(c)および図8(d)に示すように、実施例1、比較例1および比較例2は、透過見映えは大きくかわらない。
【0095】
本発明は、上記実施形態に限定されるものではなく、種々の変形が可能である。例えば、上記実施形態で示した構成と実質的に同一の構成、同一の作用効果を奏する構成または同一の目的を達成することができる構成で置き換えることができる。
【産業上の利用可能性】
【0096】
本発明の実施形態に係るレンズ部は、例えば、VRゴーグル等の表示体に用いられ得る。
【符号の説明】
【0097】
2 表示システム、4 レンズ部、12 表示素子、14 反射型偏光部材、16 第一レンズ部、18 ハーフミラー、20 第一位相差部材、22 第二位相差部材、24 第二レンズ部、28 吸収型偏光部材、30 第三位相差部材、31 第一保護部材、32 第二保護部材、34 積層フィルム、36 基材、38 表面処理層、41 接着層、42 接着層、43 接着層、44 接着層、45 接着層、46 接着層、100 第一積層部、200 第二積層部。
図1
図2
図3
図4
図5
図6
図7
図8