(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024095770
(43)【公開日】2024-07-10
(54)【発明の名称】積層電極体の製造方法
(51)【国際特許分類】
H01M 10/0585 20100101AFI20240703BHJP
H01M 10/0562 20100101ALI20240703BHJP
H01M 10/052 20100101ALI20240703BHJP
H01M 4/139 20100101ALI20240703BHJP
【FI】
H01M10/0585
H01M10/0562
H01M10/052
H01M4/139
【審査請求】有
【請求項の数】4
【出願形態】OL
(21)【出願番号】P 2024062821
(22)【出願日】2024-04-09
(62)【分割の表示】P 2020034002の分割
【原出願日】2020-02-28
(71)【出願人】
【識別番号】000005810
【氏名又は名称】マクセル株式会社
(74)【代理人】
【識別番号】100104444
【弁理士】
【氏名又は名称】上羽 秀敏
(74)【代理人】
【識別番号】100194777
【弁理士】
【氏名又は名称】田中 憲治
(72)【発明者】
【氏名】土江 宏典
(72)【発明者】
【氏名】藤本 晃広
(72)【発明者】
【氏名】片山 祐也
(72)【発明者】
【氏名】中村 新吾
【テーマコード(参考)】
5H029
5H050
【Fターム(参考)】
5H029AJ03
5H029AK01
5H029AK03
5H029AL02
5H029AL03
5H029AL06
5H029AL07
5H029AL08
5H029AL12
5H029AM12
5H029CJ03
5H029CJ22
5H029CJ23
5H050AA08
5H050BA16
5H050BA17
5H050CA01
5H050CA08
5H050CA09
5H050CB02
5H050CB03
5H050CB07
5H050CB08
5H050CB09
5H050CB12
5H050FA02
5H050GA03
5H050GA22
5H050GA23
(57)【要約】 (修正有)
【課題】正極層の周側面及び負極層の周側面を覆う固体電解質層の厚みを薄くして電池容量を増大させ、且つ、内部短絡を抑制できる積層電極体の製造方法を提供する。
【解決手段】積層電極体1は、正極層2、負極層3、固体電解質層4及び固体電解質層5を備える。固体電解質層4、5は比較的薄い。そのため電池容量が増大される。また、固体電解質層5は正極層2又は負極層3の周側面を覆う。そのため内部短絡が抑制される。積層電極体1は、臼孔に粉状の電極材Xを充填して負極層3を形成し、負極層3の上面と臼孔の内周面とに粉状の固体電解質材Wを薄く噴射して固体電解質層4、5を形成し、固体電解質層4と固体電解質層5とに囲まれた空間に粉状の電極材Yを充填して正極層2を形成することによって製造される。
【選択図】
図1
【特許請求の範囲】
【請求項1】
上下に貫通した臼孔を有するダイスと、前記臼孔の下方から挿入されて臼孔内を摺動する下杵と、前記臼孔の上方から挿入されて臼孔内を摺動する上杵とを備える加圧装置を準備する工程と、
前記臼孔の下方の開口を前記下杵により閉じた状態で、前記臼孔に第1電極材を充填することにより、正極層及び負極層の一方の第1電極層を形成する工程と、
前記臼孔の上方から前記第1電極層の上面及び臼孔の内周面に対し、固体電解質材を付着させることにより、前記第1電極層の上面に第1固体電解質層を形成し、前記臼孔の内周面に第2固体電解質層を形成する工程と、
前記第1固体電解質層及び第2固体電解質層によって囲まれた空間に第2電極材を充填することにより、正極層及び負極層の他方の第2電極層を形成する工程と、
前記下杵及び上杵によって前記第1電極層、第2電極層、第1固体電解質層及び第2固体電解質層を加圧することにより、積層電極体を形成する工程と、
前記上杵及び下杵の少なくとも一方と前記ダイスとを相対的に移動させることにより、前記臼孔から前記積層電極体を取り出す工程とを含む、積層電極体の製造方法。
【請求項2】
請求項1に記載の積層電極体の製造方法であって、さらに、
前記臼孔に前記第1電極材を充填することにより前記第1電極層を形成したのち、固体電解質材を付着させる前に、前記第1電極層を上杵及び下杵によって加圧する工程を含む、積層電極体の製造方法。
【請求項3】
請求項1に記載の積層電極体の製造方法であって、
前記第1固体電解質層及び第2固体電解質層を形成する工程では、前記第1電極層の上面に対向する上杵の下面に予め固体電解質材を付着させ、該上杵を第1電極層の上面に向かって移動させて加圧することにより前記第1電極層の上面に第1固体電解質層を形成したのち、前記臼孔の内周面に対して固体電解質材を付着させることにより第2固体電解質層を形成する、積層電極体の製造方法。
【請求項4】
請求項1に記載の積層電極体の製造方法であって、さらに、
前記第1電極材を臼孔に充填する前に、前記臼孔の下方の開口を第1下杵によって閉じた状態で、固体電解質材を付着させることにより、前記臼孔の内周面に第1電極層側の第2固体電解質層を形成し、前記第1下杵の上面に第3固体電解質層を形成する工程と、
前記第3固体電解質層とともに前記第1下杵を臼孔の下方から取り外し、前記第1電極層側の第2固体電解質層の下端に接するように第2下杵を前記臼孔の下方から挿入する工程とを含み、
前記第1電極材を臼孔に充填する工程では、前記臼孔の内周面の第2固体電解質層と第2下杵の上面とによって囲まれた空間に第1電極材を充填することにより、前記第1電極層を形成し、
前記第1固体電解質層と前記第2電極層側の第2固体電解質層とを形成する前に、前記臼孔の内周面及び前記第1電極層の上面に固体電解質材を付着させるための空間を臼孔に形成する工程を含む、積層電極体の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、全固体電池に収容される積層電極体の製造方法に関する。
【背景技術】
【0002】
全固体電池は、正極層と負極層との間に固体電解質層を配置した積層電極体を電池容器内に収容して組み立てられる。積層電極体は、正極層を形成するための粉状の電極材、負極層を形成するための粉状の電極材及び粉状の固体電解質材を加圧することにより成形される。
【0003】
積層電極体の固体電解質層は、電池容量を向上させるため、比較的薄い方がよい。しかし、固体電解質層を薄く形成しようとすると、積層電極体は、加圧成形する際に割れが生じやすい。また、固体電解質層は、比較的厚く形成した場合に比べ、加圧成形してもムラが生じやすい。そのため、固体電解質層の厚みは、均一になりにくい。積層電極体の割れ及び固体電解質層の厚みの不均一は、全固体電池の電池性能を低下させる。
【0004】
また、電池容器内に積層電極体を収容した状態で、積層電極体の外周面と電池容器の内周面との間には隙間を有している。そのため、正極層から正極活物質粒子が脱離した場合、または、負極層から負極活物質粒子が脱離した場合、それぞれ対極の電極層に接触すると内部短絡が生じ得る。
【0005】
特開2009-64644号公報は、少なくとも正極および負極のいずれか一方の電極を覆った形状のリチウムイオン伝導型固体電解質層を備えた全固体リチウム二次電池を開示している(特許文献1)。全固体リチウム二次電池は、電極の周側面を覆うリチウムイオン伝導型固体電解質層を備えたことにより、正極活物質粒子又は負極活物質粒子の離脱による内部短絡の発生を抑制することができる。
【0006】
特開2010-282803号公報は、集電体の表面に極材の粉末材料および固体電解質の粉末材料を帯電させて吹き付ける全固体リチウムイオン二次電池の製造方法を開示している(特許文献2)。これにより、全固体リチウムイオン二次電池の製造方法は、均一な厚さで粉体の層を形成でき、成形加工時の圧力が全体にかかるため、加圧成形時の割れを抑制することができる。したがって、全固体リチウムイオン二次電池の製造方法によれば、正極層と負極層との間に配置される固体電解質層を薄く形成することができる。
【0007】
また、特開2019-21428号公報は、積層体の固体電解質層が5μm以上100μm以下の平均厚みを有するコイン形電池を開示している(特許文献3)。コイン形電池の積層体は、固体電解質層の形成材料である粉体を各々スクリーンに刷り込ませることにより帯電させ、被印刷物に付着させて形成される。これにより、正極層と負極層との間に配置される固体電解質層を薄く形成することができる。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2009-64644号公報
【特許文献2】特開2010-282803号公報
【特許文献3】特開2019-21428号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかしながら、特許文献1に記載された全固体リチウム二次電池の固体電解質層のうち電極の側面を覆う側面側の固体電解質層は、円柱形状の固体電解質層の上面を電極充填用空間部を形成するための凸部を備えた金型で加圧することによって形成される。そのため、側面側の固体電解質層を径方向に薄く形成しようとして、金型の凸部の径を固体電解質層の上面の径よりも僅かに小さくすると、側面側の固体電解質層は、適切に形成されずに潰れてしまう。したがって、全固体リチウム二次電池は、側面側の固体電解質層を薄く形成することは難しかった。
【0010】
また、特許文献2に記載された全固体リチウムイオン二次電池及び特許文献3に記載されたコイン形電池は、正極層と負極層との間に配置される固体電解質層を薄く形成できるものの、固体電解質層を形成するための粉末を単に上方から噴射又は付着させるだけでは正極層の周側面及び負極層の周側面を覆う固体電解質層を薄く形成することは難しかった。また、コイン形電池は、正極層の周側面側を覆う固体電解質層を備えてはいるものの、噴射又は付着の後に加圧成形する際、周側面側の固体電解質層の厚みを調整することは難しかった。また、正極層の周側面と周側面側の固体電解質層との接合性、または、負極層の周側面と周側面側の固体電解質層との接合性が悪く、周側面側の固体電解質層が正極層又は負極層から剥離する可能性があった。
【0011】
そこで、本開示は、正極層の周側面及び負極層の周側面を覆う固体電解質層の厚みを薄くして電池容量を増大させ、且つ、内部短絡を抑制できる、高容量で信頼性の高い積層電極体の製造方法を提供することを課題とする。
【課題を解決するための手段】
【0012】
上記課題を解決するために、本開示は次のように構成した。すなわち、本開示に係る積層電極体の製造方法は、上下に貫通した臼孔を有するダイスと、臼孔の下方から挿入されて臼孔内を摺動する下杵と、臼孔の上方から挿入されて臼孔内を摺動する上杵とを備える加圧装置を準備する工程を含んでよい。臼孔の下方の開口を下杵により閉じた状態で、臼孔に第1電極材を充填することにより、正極層及び負極層の一方の第1電極層を形成する工程を含んでよい。臼孔の上方から第1電極層の上面及び臼孔の内周面に対し、固体電解質材を付着させることにより、第1電極層の上面に第1固体電解質層を形成し、臼孔の内周面に第2固体電解質層を形成する工程を含んでよい。第1固体電解質層及び第2固体電解質層によって囲まれた空間に第2電極材を充填することにより、正極層及び負極層の他方の第2電極層を形成する工程を含んでよい。下杵及び上杵により第1電極層、第2電極層、第1固体電解質層及び第2固体電解質層を加圧することにより、積層電極体を形成する工程を含んでよい。上杵及び下杵の少なくとも一方とダイスとを相対的に移動させることにより、臼孔から積層電極体を取り出す工程を含んでよい。
【0013】
好ましくは、さらに、臼孔に第1電極材を充填することにより、第1電極層を形成したのち、固体電解質材を付着させる前に、第1電極層を上杵及び下杵によって加圧する工程を含んでよい。
【0014】
好ましくは、第1固体電解質層及び第2固体電解質層を形成する工程では、第1電極層の上面に対向する上杵の下面に予め固体電解質材を付着させてよい。上杵を第1電極層の上面に向かって移動させて加圧することにより第1電極層の上面に第1固体電解質層を形成してよい。臼孔の内周面に対して固体電解質材を付着させることにより第2固体電解質層を形成してよい。
【0015】
好ましくは、さらに、第1電極材を臼孔に充填する前に、臼孔の下方の開口を第1下杵によって閉じた状態で、固体電解質材を付着させることにより、臼孔の内周面に第1電極層側の第2固体電解質層を形成し、第1下杵の上面に第3固体電解質層を形成する工程を含んでよい。第3固体電解質層とともに第1下杵を臼孔の下方から取り外し、第1電極層側の第2固体電解質層の下端に接するように第2下杵を臼孔の下方から挿入する工程を含んでよい。第1電極材を臼孔に充填する工程では、臼孔の内周面の第2固体電解質層と第2下杵の上面とによって囲まれた空間に第1電極材を充填することにより、第1電極層を形成してよい。第1固体電解質層と第2電極層側の第2固体電解質層とを形成する前に、臼孔の内周面及び第1電極層の上面に固体電解質材を付着させるための空間を臼孔に形成する工程を含んでよい。
【発明の効果】
【0016】
本開示に係る積層電極体の製造方法によれば、正極層の周側面及び負極層の周側面の少なくとも一方を覆う固体電解質層の径方向の厚みを薄くして電池容量を増大させ、且つ、内部短絡を抑制できる積層電極体を提供することができる。
【図面の簡単な説明】
【0017】
【
図1】
図1は、本開示に係る全固体電池の構造を示す断面図である。
【
図2】
図2は、
図1に示す積層電極体の構造を示す断面図である。
【
図3】
図3は、
図2に示す積層電極体の製造方法を示す概略図である。
【
図4】
図4は、
図2に示す積層電極体の製造方法を示す概略図である。
【
図5】
図5は、
図2に示す積層電極体の製造方法を示す概略図である。
【
図6】
図6は、
図2に示す積層電極体の製造方法を示す概略図である。
【
図7】
図7は、
図2に示す積層電極体の製造方法を示す概略図である。
【
図8】
図8は、他の積層電極体の構造を示す断面図である。
【
図9】
図9は、
図8に示す積層電極体の他の製造方法を示す概略図である。
【発明を実施するための形態】
【0018】
以下、本開示に係る積層電極体1の製造方法について、
図1~13を用いて具体的に説明する。まず、本開示に係る全固体電池10と全固体電池10に含まれる積層電極体1について、
図1及び
図2を用いて具体的に説明する。
図1に示すように、全固体電池10は、外装缶20と、封口缶30と、積層電極体1と、ガスケット40とを備えている。全固体電池10は、扁平形電池である。
【0019】
外装缶20は、円形状の底部21と、底部21の外周から連続して形成される円筒状の周壁部22とを備えている。周壁部22は、縦断面視で、底部21に対して略垂直に延びるように設けられている。外装缶20は、ステンレス、ニッケル、鉄などの金属材料によって形成されている。なお、外装缶20の形状は、円形状の底部21を備えた円筒形状に限られない。例えば、外装缶20の形状は、底部21を四角形状などの多角状に形成し、周壁部22を底部21の形状に合わせた四角筒状などの多角筒状に形成してもよく、全固体電池10のサイズや形状に応じて、種々変更することができる。そのため、周壁部22の形状は、円筒状だけでなく、四角筒状などの多角筒状も含むものである。
【0020】
封口缶30は、円形状の平面部31と、平面部31の外周から連続して形成される円筒状の周壁部32とを備える。封口缶30の開口は、外装缶20の開口と対向している。封口缶30は、ステンレスなどの金属材料によって形成されている。なお、封口缶30の形状は、円形状の平面部31を備えた円筒形状に限られない。例えば、封口缶30の形状は、平面部31を四角形状などの多角状に形成し、周壁部32を平面部31の形状に合わせた四角筒状などの多角筒状に形成してもよく、全固体電池10のサイズや形状に応じて、種々変更することができる。そのため、周壁部32の形状は、円筒状だけでなく、四角筒状などの多角筒状も含むものである。
【0021】
封口缶30の周壁部32は、平面部31側の基端部32aと、基端部32aの外径よりも大きく形成された開口端側の拡径部32bと、基端部32aと拡径部32bとの間の段部32cとを有している。そのため、周壁部32は、基端部32aよりも拡径部32bが外側に広くなる段状に形成されている。
【0022】
外装缶20と封口缶30とは、積層電極体1を内部空間に収容したのち、外装缶20の周壁部22と封口缶30の周壁部32との間にガスケット40を介してカシメられる。具体的には、外装缶20と封口缶30とは、外装缶20と封口缶30の互いの開口を対向させ、外装缶20の周壁部22の内側に封口缶30の周壁部32を挿入したのち、周壁部22と周壁部32との間にガスケット40を介してカシメられる。周壁部22の縁端部は、周壁部32の段部32cの方向へ内側に向くようにカシメられる。そのため、周壁部22の縁端部は、筒状側壁部22の径方向に対して略垂直の方向、すなわち、縦方向へと充分にカシメることができる。このようにして外装缶20と封口缶30とにより電池容器が構成される。
【0023】
ガスケット40は、ポリプロピレン樹脂、ポリフェニレンサルファイド樹脂、PFA樹脂などの水分低透過性樹脂によって形成されている。ガスケット40は、外装缶20の周壁部22の内周面に沿う筒状に形成され、外装缶20の周壁部22と封口缶30の周壁部32との間に配置されている。ガスケット40は、外装缶20と封口缶30とを絶縁できれば、特に限定されるものではないが、水分透過性や耐熱性の点から、ポリフェニレンサルファイド樹脂、あるいはPFA樹脂などのフッ素樹脂が好ましく用いられる。
【0024】
図1及び
図2に示すように、積層電極体1は、正極層(電極層)2と、負極層(電極層)3と、正極層2と負極層3との間に配置されている固体電解質層4と、固体電解質層4の周端から正極層2の周側面に沿って延びる固体電解質層5とを備えている。正極層2、負極層3及び固体電解質層4は、平面視において略相似の円形状であり、正極缶20の底面21側から図示の下方から正極層2、固体電解質層4及び負極層3の順で積層されている。すなわち、積層電極体1は、円柱形状である。積層電極体1の正極層2は、外装缶20の底部21の上面に配置されている。よって、外装缶20は、正極缶として機能する。また、積層電極体1の負極層3は、封口缶30の平面部31の下面に対向している。よって、封口缶30は、負極缶として機能する。なお、積層電極体1は、円柱形状に限られず、直方体形状や多角柱形状等、全固体電池10のサイズや形状に応じて、種々変更することができる。また、外装缶20側に負極層3を位置付け、封口缶30側に正極層2を位置付けるように積層電極体1を配置してもよい。その場合、外装缶20が負極缶として機能し、封口缶30が正極缶として機能する。
【0025】
正極層2は、例えば、リチウムイオン二次電池に用いられる正極活物質として、平均粒径5μmのコバルト酸リチウムと、硫化物系固体電解質(Li6PS5Cl)と、導電助剤であるカーボンナノチューブとを質量比で70:26:4の割合で含有した92mgの正極合剤を直径8mmの金型に入れて円柱形状に成形した正極ペレットである。なお、正極層2は、積層電極体1の正極層2として機能することができれば、特に限定されるものではなく、例えば、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、スピネル型マンガン複合酸化物、オリビン型複合酸化物等であってもよく、これらを適宜混合したものであってもよい。また、正極層2のサイズや形状は、円柱形状に限定されるものではなく、全固体電池1のサイズや形状に応じて種々変更可能である。
【0026】
負極層3は、例えば、リチウムイオン二次電池に用いられる負極活物質として、LTO(Li4Ti5O12、チタン酸リチウム)と、硫化物系固体電解質(Li6PS5Cl)と、カーボンナノチューブとを重量比で50:41:9の割合で含有した129mgの負極合剤を円柱形状に成形した負極ペレットである。なお、負極層3は、積層電極体1の負極層3として機能することができれば、特に限定されるものではなく、例えば、金属リチウム、リチウム合金などの金属材料や、黒鉛、低結晶カーボンなどの炭素材料や、SiO、LTO(Li4Ti5O12、チタン酸リチウム)等であってもよく、これらを適宜混合したものであってもよい。また、負極層3のサイズや形状は、円柱形状に限定されるものではなく、全固体電池1のサイズや形状に応じて種々変更可能である。
【0027】
固体電解質層4及び固体電解質層5は、例えば、1mgの硫化物系固体電解質(Li6PS5Cl)を円柱形状に成形したものである。なお、固体電解質層4及び固体電解質層5は、特に限定はされないが、イオン伝導性の点から他のアルジロダイト型などの硫化物系固体電解質であってもよい。硫化物系固体電解質を用いる場合には、正極活物質との反応を防ぐために、正極活物質の表面をニオブ酸化物で被覆することが好ましい。また、固体電解質層4及び固体電解質層5は、水素化物系固体電解質や酸化物系固体電解質等であってもよい。また、固体電解質層4のサイズや形状は、円柱形状に限定されるものではなく、全固体電池1のサイズや形状に応じて種々変更可能である。
【0028】
固体電解質層4は、正極層2と負極層3との間に配置されている。
図2に示すように、固体電解質層4の厚みt1は、5μm~180μmである。固体電解質層4の厚みt1は、固体電解質層4を均一な厚みで形成し、正極層と負極層との間で生じる短絡を防止するために、5μm以上、好ましくは10μm以上、より好ましくは20μm以上とするのがよい。一方、固体電解質層4が厚くなりすぎると、積層電極体1全体に占める正極層2及び負極層3の割合が低下してしまい、積層電極体1の体積当たりの電池容量が低下する。また、固体電解質層4による抵抗の増加によって放電特性が低下する。そのため、固体電解質層4の厚みt1は、180μm以下、好ましくは100μm以下、より好ましくは50μm以下とするのがよい。
【0029】
固体電解質層5は、固体電解質層4の周端から正極層2及び負極層3の少なくとも一方の周側面に沿って延びていればよい。
図2に示すように、正極層2の周側面に固体電解質層5を設けた場合、平面視において、負極層3の径方向の大きさを正極層2よりも大きくすることができる。すなわち、正極層2と固体電解質層5とを合わせた径方向の大きさが、負極層3の径方向の大きさと同じになるように、固体電解質層4の周端から正極層2の周側面に沿って固体電解質層5を延ばすこともできる。固体電解質層4と固体電解質層5とは、
図2に示すように、縦断面視において略コ字形状を有している。固体電解質層5は、正極層2の周側面を覆う円筒状である。これにより、正極層2の周側面から正極活物質粒子が脱離し、負極層3の周側面に接触することによって生じ得る短絡を抑制することができる。固体電解質層5の径方向の厚みt2は、正極層2又は負極層3からの活物質粒子の脱離を防止するためには、1μm以上、好ましくは5μm以上、より好ましくは10μm以上とするのがよい。一方、固体電解質層5が厚くなりすぎると、積層電極体1全体に占める正極層2及び負極層3の割合が低下してしまい、積層電極体1の体積当たりの電池容量が低下する。そのため、固体電解質層5の径方向の厚みt2は、180μm以下、好ましくは50μm以下、より好ましくは30μm以下とするのがよい。なお、固体電解質層5は、必ずしも固体電解質のみで構成されていなくともよく、例えば、固体電解質層5が形成されている電極層の活物質が多少混在していても、その機能を発揮することが可能である。
【0030】
正極層2の厚みt3に対する固体電解質層4の厚みt1の比率Rである(t1/t3)は、0.03以上とするのがよい。正極層2は、成形時、一定以上の充填密度となるように加圧される。正極層2への圧力は、正極層2の厚みt3が厚くなるにしたがって大きくなる。そのため、正極層2の厚みt3が厚すぎる、すなわち、比率Rが小さくなりすぎると、正極層2と固体電解質層4とを併せて加圧する際、固体電解質層4に対して必要以上の圧力が加えられる。そうすると、正極層2の正極活物質粒子が固体電解質層4に食い込み、正極層2と負極層3との間で短絡が生じる危険性が高くなる。したがって、比率Rは、0.03以上とするのがよく、好ましくは0.1以上とするのがよい。一方、固体電解質層4の厚みt1が厚すぎる、すなわち、比率Rが大きくなりすぎると、積層電極体1全体に占める正極層2及び負極層3の割合が低下してしまい、積層電極体1の体積当たりの電池容量が低下する。また、固体電解質層4による抵抗の増加によって放電特性が低下する。そのため、比率Rは、0.3以下とするのがよく、好ましくは0.2以下とするのがよい。
【0031】
図1に示すように、封口缶30の周壁部32は、外装缶20の周壁部22よりも内側に位置している。固体電解質層5は、正極層2の周側面に沿って形成されている。すなわち、固体電解質層5は、正極層2の周側面を覆っている。これにより、正極層2から正極活物質粒子が脱離し、封口缶30に接触して生じ得る短絡を抑制することができる。一方で、外装缶20側に負極層3を位置付け、封口缶30側に正極層2を位置付けるように積層電極体1を配置した場合は、負極層3の周側面に沿って固体電解質層5を形成するようにしてもよい。このように、外装缶20側に配置される正極層2又は負極層3のいずれかの周側面を固体電解質層5で覆うことにより、封口缶2と活物質粒子との接触による内部短絡を抑制することができる。
【0032】
次に、積層電極体1の製造方法について、
図3~7を参照しながら具体的に説明する。
【0033】
まず、
図3に示すように、加圧装置100を準備する。加圧装置100は、上下に貫通した臼孔101aを有するダイス101と、臼孔101aの下方から挿入されて臼孔101a内を摺動する下杵102と、臼孔101aの上方から挿入されて臼孔101a内を摺動する上杵103とを備えている。ダイス101は、板状に形成されている。臼孔101aは、ダイス101の上面から下面にかけて円筒状に開口形成されている。下杵102と上杵103とは各々、臼杵の開口形状に沿う円柱形状に形成されている。加圧装置100は、下杵102及び上杵103を上下方向に摺動させることにより、臼孔101aに充填された材料を加圧する。
【0034】
次に、
図4に示すように、臼孔101aに下杵102を挿入し、臼孔101aの下方の開口を下杵102により閉じた状態で、臼孔101aの上方から電極材Xを充填する。これにより、成形前の負極層3が形成される。本製法において、電極材Xは、負極層3を形成するための粉状の負極配合剤である。粉状の電極材Xは、特に図示しないが、ダイス101の上面を平行に移動するホッパーから臼孔101aに充填される。ホッパーは、電極材Xを充填する際に臼孔101aの上方に移動し、電極材Xを充填しないときは臼孔101aの上方以外の場所で待機している。臼孔101aに充填された電極材Xは、上方から上杵103によって加圧される。電極材Xは、粉状であってもよく、予め加圧処理がなされ、臼孔101aの内径と略同じ外径で形成されたペレットであってもよい。電極材Xがペレットである場合、電極材Xは、上方から上杵103によって加圧されてもよく、加圧されなくてもよい。また、粉状の電極材Xであっても、ここでは加圧せず、後述するように、さらに固体電解質材W及び電極材Yを臼孔101aに入れたのち、電極材X、固体電解質材W及び電極材Yをまとめて加圧するようにしてもよい。
【0035】
また、
図4では、臼孔101aの上側の空間を利用して負極層3を形成しているが、実際には、臼孔101aの下側の空間を利用して負極層3を形成するのが好ましい。その際、下杵102の上面は、臼孔101aの下方開口側に、例えば、ダイス101の下面に沿うように位置付けられる。臼孔101aの下側の空間に負極層3を形成したのち、負極層3の上側の空間(
図4において、負極層3が形成されている部分)を利用して、固体電解質層4、固体電解質層5及び正極層2を形成する。これにより、後述する臼孔101aの上側の負極層3を下側に配するという工程を省略でき、積層電極体1の製造工程を簡略化することができる。
【0036】
なお、
図4に示すように、臼孔101aの上側の空間を利用して負極層3を形成する場合には、次に、負極層3(成形体、あるいは、成形前の充填物)を、上杵103により、あるいは上杵103と下杵102で挟んだ状態で、臼孔101aの下側に移動させ、下記の
図5で示すように臼孔101aの上側に固体電解質層4、固体電解質層5及び正極層2を作製するための空間を形成する。あるいは、下杵102を臼孔101aの下方から取り外した後、ダイス101を反転させ、負極層3を臼孔101aの下側に配置することにより、前記空間を形成してもよい。すなわち、負極層3を形成したのちに、さらに臼孔101aの内周面及び負極層3の上面に固体電解質材Wを噴射できる空間を臼孔101aに形成できればよい。
【0037】
次に、
図5に示すように、臼孔101aの上方から負極層3と臼孔101aの内周面とに対し、噴射装置104によって粉状の固体電解質材Wを噴射する。噴射装置104は、上述のホッパーと同様に、ダイス101の上面を平行に移動する。噴射装置104は、固体電解質材Wを噴射する際に臼孔101aの上方に移動し、固体電解質材Wを噴射しないときは臼孔101aの上方以外の場所で待機している。噴射装置104は、先端が針状またはテーパ状に形成された静電気発生電極(図示しない)を備えている。前記電極に例えば-20kV程度の直流高電圧を印加することによって前記電極の先端に形成される電界により固体電解質材Wを負に帯電させることができる。ダイス101及び下杵102は、帯電した固体電解質材Wとは反対極性で帯電させており、これにより、固体電解質材Wの付着層が形成される。固体電解質層4及び固体電解質層5における固体電解質材Wの付着量を調整することにより、固体電解質層4及び固体電解質層5の厚みを調整することができ、成形後には、電極材Xの上面に固体電解質層4を薄く、かつ、厚みを均一に形成することができ、臼孔101aの内周面に固体電解質層5を薄く、且つ、厚みを均一に形成することができる。
【0038】
なお、前記の方法で固体電解質層4の厚み、すなわち、固体電解質層4における固体電解質材Wの付着量を調整しにくい場合には、固体電解質層4を形成した後に、固体電解質層5を形成してもよい。すなわち、図示はしないが、負に帯電させた固体電解質材Wを、これと反対の極性に帯電させた上杵103の下面に付着させ、更にこの上杵103で上方から電極材Xを加圧することにより、前記固体電解質材Wを負極層3の上面に固定し、固体電解質層4を形成する。次に、帯電させた固体電解質材Wを臼孔101aの内部に噴射して、臼孔101aの内周面に固体電解質材Wを付着させ、固体電解質層5を形成する。
【0039】
次に、
図6に示すように、固体電解質層4と固体電解質層5とによって囲まれた空間に電極材Yを充填する。これにより、成形前の正極層2が形成される。本製法において、電極材Yは、正極層2を形成するための粉状の正極配合剤である。粉状の電極材Yは、特に図示しないが、ダイス101の上面を平行に移動するホッパーから臼孔101aに充填される。ホッパーは、電極材Yを充填する際に臼孔101aの上方に移動し、電極材Yを充填しないときは臼孔101aの上方以外の場所で待機している。なお、加圧装置100は、電極材Xを充填するホッパーと電極材Yを充填するホッパーとをそれぞれ備えている。充填された電極材Yは、上方から上杵103によって加圧される。これにより、積層電極体1の成形体が形成される。
【0040】
充填された電極材Yが上方から加圧される際、上述の負極層3、固体電解質層4及び固体電解質層5も一緒に加圧される。この際、臼孔101aの内周面によって固体電解質層5の径方向への移動は抑制されており、また、積層電極体1の下方への移動も下杵102によって抑制されている。そのため、上杵103による上方からの圧力が積層電極体1に加わると、正極層2の外周面が固体電解質層5を臼孔101aの内周面に対して径方向に押し当てる。これにより加圧による固体電解質層5の成形を充分に行うことができる。また、正極層2と固体電解質層5との接合性を向上させることができ、これにより、正極層2から固体電解質層5が剥離するのを抑制することができるため、成形後の固体電解質層5の厚みを薄くすることができる。
【0041】
最後に、
図7に示すように、ダイス101と下杵102とを相対的に移動させることにより、臼孔101aから積層電極体1を取り出すことができる。そして、
図1に示すように、積層電極体1を外装缶20と封口缶30との間に収容し、全固体電池10が組み立てられる。なお、積層電極体1を臼孔101aから取り出すには、ダイス101と上杵103とを相対的に移動させてもよい。また、積層電極体1を挟んだ状態で、上杵103と下杵102をダイス101に対して相対的に移動させ、積層電極体1を臼孔101aから取り出すようにすれば、積層電極体1に割れや欠けが生じるのを防ぐことができるので好ましい。なお、固体電解質層5の材料によっては、固体電解質が滑沢剤として作用し、ダイス101から積層電極体1の取り出しがより容易になることも期待できる。
【0042】
このように、積層電極体1の製造方法によれば、固体電解質層4及び固体電解質層5を薄く、且つ均一に形成することができ、固体電解質層5の厚みを調整することができる。また、正極層2の周側面と固体電解質層5との接合性を向上させることができる。その結果、全固体電池1の電池容量を増大させることができる。また、正極活物質粒子が正極層2から脱離するのをより確実に抑制して、正極活物質粒子と負極層3あるいは負極缶30との接触による内部短絡を抑制することができる。すなわち、この製造方法によって得られる積層電極体1によれば、高容量で信頼性の高い全固体電池1を提供することができる。
【0043】
なお、本製法では、電極材Xが負極層3を形成し、電極材Yが正極層2を形成したが、電極材Xが正極層2を形成し、電極材Yが負極層3を形成するようにすることもできる。
【0044】
次に、他の積層電極体1について、
図8を用いて具体的に説明する。他の積層電極体1は、上述の積層電極体1と基本的な構成は共通する。そのため、上述の積層電極体1と相違する構成について説明する。
【0045】
他の積層電極体1は、
図8に示すように、固体電解質層4の周端から正極層2の周側面及び負極層3の周側面に沿って延びる固体電解質層5を有している。固体電解質層5の径方向の厚みは、
図2に示す上述の固体電解質層5と同様である。固体電解質層4と固体電解質層5とは、縦断面視において略H字型形状を有している。これにより、正極層2及び負極層3の両方から活物質粒子が脱離するのを抑制することができ、より確実に内部短絡を抑制することができる。その結果、他の積層電極体1によれば、電池容量を増大でき、より信頼性の高い全固体電池1を提供することができる。特に、複数の積層電極体1を直列に積層するバイポーラ型電池では、隣接する積層電極体1の一方の積層電極体1の負極層3と他方の積層電極体1の正極層2とが隣り合うため、隣接する積層電極体1同士の内部短絡を抑制することができる。
【0046】
積層電極体1の他の製造方法について、
図9~13を参照して説明する。
【0047】
まず、上述の製造方法と同様に、加圧装置100を準備する。なお、本製法においては、下杵102に代えて
図9に示す交換される下杵105が臼孔101aの下方から挿入されている。
【0048】
次に、
図9に示すように、交換用の下杵105の上面と臼孔101aの内周面とに対し、臼孔101aの上方から噴射装置104によって粉状の固体電解質材Wを噴射する。固体電解質材Wは、負に帯電している。ダイス101及び交換用の下杵105は、帯電した固体電解質材Wとは反対極性で帯電している。これにより、固体電解質材Wの付着層が形成され、臼孔101aの内周面に固体電解質層5を薄く形成することができる。一方、交換用の下杵105の上面に形成された固体電解質層6は、積層電極体1の製造には利用しないため、
図10に示すように、固体電解質層6とともに交換用の下杵105を臼孔101aの下方から取り外す。その後、臼孔101aの下方から下杵105とは別の下杵102を挿入する。下杵102の上面端部は、固体電解質層5の下端に接するように臼孔101aに挿入することができる。
【0049】
次に、
図11に示すように、固体電解質層5と下杵102の上面とによって囲まれた空間に、電極材Xを充填する。これにより、成形前の負極層3が形成される。本製法において、電極材Xは、負極層3を形成するための粉状の負極配合剤である。粉状の電極材Xは、特に図示しないが、上述と同様のホッパーによって臼孔101aに充填される。臼孔101aに充填された電極材Xおよび固体電解質層5は、上方から上杵103によって加圧され、負極層3と負極層3の周側面に配置された固体電解質層5の成形体とが形成される。なお、負極層3及び固体電解質層5をここでは加圧せず、更に固体電解質材W及び電極材Yを臼孔101aに入れたのち、これらをまとめて加圧するようにしてもよい。
【0050】
次に、前記負極層3及び固体電解質層5(成形体、あるいは、成形前の充填物)を、上杵103により、あるいは上杵103と下杵102とで挟んだ状態で、臼孔101aの下側に移動させ、臼孔101aの上側に下記の
図12で示す固体電解質層4及び固体電解質層5並びに
図13で示す正極層2を作製するための空間を形成する。あるいは、下杵102を臼孔101aの下方から取り外した後、ダイス101を反転させ、負極層3を臼孔101aの下側に配置することにより、前記空間を形成してもよい。すなわち、負極層3及び負極層3側の固体電解質層5を形成したのちに、さらに臼孔101aの内周面及び負極層3の上面に固体電解質材Wを噴射できる空間を臼孔101aに形成できればよい。
【0051】
次に、
図12に示すように、上述の空間において、臼孔101aの上方から負極層3と臼孔101aの内周面とに対し、噴射装置104によって粉状の固体電解質材Wを噴射することにより、あるいは、上杵103により固体電解質材Wを負極層3の上面に固定した後、噴射装置104によって粉状の固体電解質材Wを噴射することにより、固体電解質層4及び正極層2側の固体電解質層5を形成する。この工程は前述したものと同じであり、詳細な説明は省略する。
【0052】
次に、
図13に示すように、固体電解質層4と固体電解質層5とによって囲まれた空間に電極材Yを充填する。これにより、成形前の正極層2が形成される。充填された電極材Yは、上方から上杵103によって加圧される。この際、上述の負極層3、固体電解質層4及び固体電解質層5も一緒に加圧される。これにより、積層電極体1の成形体が形成される。この工程についても、前述したものと同じであり、詳細な説明は省略する。なお、負極層3の周側面に形成された固体電解質層5と、正極層2の周側面に形成された固体電解質層5とは、厚みが異なっていてもよい。
【0053】
最後に、ダイス101と下杵102とを相対的に移動させることにより、臼孔101aから積層電極体1を取り出すことができる。なお、積層電極体1を臼孔101aから取り出すには、ダイス101と上杵103とを相対的に移動させてもよい。また、積層電極体1を挟んだ状態で、上杵103と下杵102をダイス101に対して相対的に移動させ、積層電極体1を臼孔101aから取り出すようにすれば、積層電極体1に割れや欠けが生じるのを防ぐことができるので好ましい。この製造方法よって得られる積層電極体1によれば、より確実に短絡を防止でき、より信頼性の高い全固体電池1を提供することができる。なお、本製法でも、電極材Xが正極層2を形成し、電極材Yが負極層3を形成するようにすることもできる。
【0054】
以上、実施形態について説明したが、本開示は、上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。
【0055】
次に、積層電極体1の固体電解質層4又は5の厚みと、積層電極体1を収容した全固体電池10(扁平形電池)における内部短絡の有無について、試験を行った。
【0056】
(実施例1)
市販の錠剤成形用の粉体圧縮成形機を用い、以下の方法により積層電極体を作製した。なお、電極体の作製は、充分に湿度を低減した雰囲気中で行った。
【0057】
<負極層および固体電解質層の形成>
平均粒子径が2μmのチタン酸リチウム粉末:50質量部、カーボンナノチューブ:9質量部、硫化物系固体電解質(Li6PS5Cl):41質量部の割合で混合し、負極合剤を作製した。前記負極合剤を粉体圧縮成形機に備えられた粉体供給機構(ホッパー)にセットし、直径が8mmの臼孔を有するダイスの前記臼孔の内部に、下方の開口を下杵により閉じた状態で、前記負極合剤:129mgを充填した。
【0058】
次に、上杵を先端が針状に形成された静電気発生電極を備えた噴射装置に硫化物系固体電解質材(Li6PS5Cl)をセットし、前記電極に-20kV程度の直流高電圧を印加した状態で反対極性に帯電させた上杵の下面に噴射し、前記固体電解質材を付着させた。このときの固体電解質材の付着量は、約2mgであった。
【0059】
更に、下面に固体電解質材が付着した状態の上杵により、前記臼孔内の負極合剤を加圧し、負極層と固体電解質層(固体電解質層4)を形成した。
【0060】
<積層電極体の形成>
負極層および固体電解質層4を形成した臼孔の内部に、前記噴射装置から負に帯電した硫化物系固体電解質材を噴射し、反対極性に帯電させた臼孔の内周面に固体電解質材を付着させ、固体電解質層(固体電解質層5)を形成した。
【0061】
次に、平均粒子径が5μmのコバルト酸リチウム粉末:70質量部、カーボンナノチューブ:4質量部、平均粒子径が3μmの硫化物系固体電解質(Li6PS5Cl):26質量部の割合で混合し、正極合剤を作製した。前記正極合剤をホッパーにセットし、内周面に固体電解質材を付着させた臼孔の内部に前記正極合剤を充填し、積層電極体を形成した。
【0062】
更に前記積層電極体を上杵により加圧し、積層電極体の成形体を作製した。前記積層電極体の負極層、正極層、固体電解質層4および固体電解質層5の厚みを、断面の電子顕微鏡観察により確認した。負極層の厚みは1.3mmであり、正極層の厚みは0.7mmであり、固体電解質層4の厚みは25μmであり、固体電解質層5の厚みは20μmであった。
【0063】
(比較例1)
実施例1で作製した負極合剤:129mgを直径8mmの粉末成形金型に入れ、プレス機を用いて加圧成形を行い、負極層を形成した。次に、硫化物系固体電解質材(Li6PS5Cl):2mgを前記負極層の上面に投入し、加圧成形して負極層の上面に固体電解質層を形成した。更に、実施例1で作製した正極合剤:92mgを前記固体電解質層の上面に投入し、加圧成形して積層電極体の成形体を作製した。前記積層電極体の負極層の厚みは1.3mmであり、正極層の厚みは0.7mmであった。一方、固体電解質層の厚みは不均一で、負極層と正極層とが接触して短絡している箇所が見受けられた。
【0064】
(比較例2)
実施例1で作製した負極合剤:129mgを直径8mmの粉末成形金型に入れ、プレス機を用いて加圧成形を行い、負極層を形成した。次に、硫化物系固体電解質(Li6PS5Cl):16mgを前記負極層の上面に投入し、加圧成形して負極層の上面に固体電解質層を形成した。更に、実施例1で作製した正極合剤:92mgを前記固体電解質層の上面に投入し、加圧成形して積層電極体の成形体を作製した。前記積層電極体の負極層の厚みは1.3mmであり、正極層の厚みは0.7mmであり、固体電解質層の厚みは0.2mmであった。
【0065】
帯電した固体電解質材を用いる本発明の製造方法により作製された実施例1の積層電極体では、固体電解質層4および固体電解質層5のいずれも、薄く均一な厚みで形成することができた。一方、従来の方法により作製された比較例の積層電極体では、固体電解質層を薄く形成しようとした比較例1の積層電極体において、厚みが不均一となり、負極層と正極層との絶縁が不十分になるという問題が生じた。
【0066】
次に、実施例1及び比較例2の積層電極体を、負極層側および正極層側にそれぞれ膨張黒鉛製シートよりなる集電体を配置した状態で、ステンレス鋼製の外装缶および封口缶と、ポリフェニレンサルファイド樹脂製のガスケットにより構成された電池容器内に封入することにより、コイン形の電池を組み立てた。なお、実施例1の積層電極体の厚み(2.025mm)と、比較例2の積層電極体の厚み(2.2mm)との差が解消できるよう、実施例1の積層電極体に配置した膨張黒鉛製シートの厚みを、比較例2のものより合計で0.18mm厚くした。
【0067】
実施例1の積層電極体を収容した扁平形電池と比較例2の積層電極体を収容した扁平形電池とを、それぞれ10個ずつ組み立てて充放電を行い、放電容量の確認を行い、内部短絡の有無を調べた。その結果、実施例1の積層電極体を収容した扁平形電池では、10個すべてにおいて短絡を認めることはできなかった。一方、比較例2の積層電極体を収容した扁平形電池では、10個のうち9個において短絡が認められた。すなわち、比較例2の積層電極体を収容した扁平形電池では、90%の割合で短絡による不良が生じた。
【0068】
これは、実施例1の積層電極体を収容した扁平形電池では、正極層の周側面に形成された固体電解質層5によって正極層の脱落を防止でき、比較例2の積層電極体を収容した扁平形電池では、正極層の周側面に固体電解質層が形成されておらず、正極層が脱落したことに起因する。
【符号の説明】
【0069】
1 積層電極体、2 正極層、3 負極層、4 固体電解質層、5 固体電解質層、6 固体電解質層 10 全固体電池、20 外装缶、21 底部、22 周壁部、30 封口缶、31 平面部、32 周壁部、40 ガスケット 100 加圧装置、101 ダイス、101a 臼孔、102 下杵、103 上杵、104 噴射装置、105 下杵、X 電極材、Y 電極材、W 固体電解質材