(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024096895
(43)【公開日】2024-07-17
(54)【発明の名称】ビデオ復号方法及び装置並びに符号化方法及び記憶方法
(51)【国際特許分類】
H04N 19/52 20140101AFI20240709BHJP
H04N 19/46 20140101ALI20240709BHJP
【FI】
H04N19/52
H04N19/46
【審査請求】有
【請求項の数】4
【出願形態】OL
(21)【出願番号】P 2024065857
(22)【出願日】2024-04-16
(62)【分割の表示】P 2023015924の分割
【原出願日】2015-11-02
(31)【優先権主張番号】62/073,317
(32)【優先日】2014-10-31
(33)【優先権主張国・地域又は機関】US
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.WCDMA
(71)【出願人】
【識別番号】503447036
【氏名又は名称】サムスン エレクトロニクス カンパニー リミテッド
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100091214
【弁理士】
【氏名又は名称】大貫 進介
(72)【発明者】
【氏名】ジョン,スン-ス
(72)【発明者】
【氏名】パク,ミン-ウ
(72)【発明者】
【氏名】イ,ジン-ヨン
(72)【発明者】
【氏名】イ,ソン-イル
(57)【要約】 (修正有)
【課題】動きベクトルを利用して、多様な予測動きベクトル候補を探索し、ビット表現を減らして圧縮率を向上させるビデオ符号化方法及び装置並びにビデオ復号方法及び装置を提供する。
【解決手段】ビデオ復号装置によって遂行されるビデオ復号方法において、ビットストリームから、現在ブロックの予測モード情報、及び予測候補を示すインデックスを決定する段階と、予測モード情報によって、予測子候補リストを決定する段階と、現在ブロックの予測モード情報が既設定予測モードを示せば、予測子候補リストのうち、インデックスが示す動きベクトルを決定し、動きベクトルに係わる動き予測情報のうち少なくとも一つに基づいて、現在ブロックの予測動きベクトルを決定する段階と、予測動きベクトルに基づいて、現在ブロックの動きベクトルを決定する段階と、を含む。
【選択図】
図4
【特許請求の範囲】
【請求項1】
ビデオ復号装置によって遂行されるビデオ復号方法において、
ビットストリームから現在ブロックに対してスキップモードで予測を行うか否かを示すスキップモード情報を獲得する段階と、
前記スキップモード情報によって、前記現在ブロックに対してスキップモードで予測が行われないとき、前記ビットストリームから、前記現在ブロックの動きベクトル予測モード情報を獲得する段階と、
前記現在ブロックの動きベクトル予測モードが第1予測モードを指すとき、前記ビットストリームから動きベクトル差分の符号がある方向を示す情報、前記動きベクトル差分の画素距離を示す情報及び第1候補リストのうち、第1動きベクトル候補を示す第1インデックスを獲得し、
前記現在ブロックに隣接するブロックの動きベクトルを含む前記第1候補リストを決定し、
前記第1候補リストのうち、前記第1インデックスが示す前記第1動きベクトル候補を決定し、前記動きベクトル差分の符号がある方向及び前記動きベクトル差分の画素距離に基づいて前記動きベクトル差分を決定し、前記第1動きベクトル候補及び前記動きベクトル差分に基づいて前記現在ブロックの動きベクトルを決定する段階と、
前記現在ブロックの動きベクトル予測モードが第1予測モードではないことを指すとき、前記ビットストリームから、第2候補リストのうち、第2動きベクトル候補を示す第2インデックスを獲得し、前記現在ブロックに隣接するブロックの動きベクトルを含む前記第2候補リストを決定し、前記第2候補リストのうち、前記第2インデックスが示す前記第2動きベクトル候補を決定し、前記第2動きベクトル候補に基づいて前記現在ブロックの動きベクトルを決定する段階と、
前記動きベクトルが指す予測ブロックを用いて前記現在ブロックの復元ブロックを決定する段階と、を含み、
前記動きベクトル差分の符号がある方向(signed direction)は、正の水平方向、負の水平方向、正の垂直方向及び負の垂直方向のうち、1つであり、
前記動きベクトル差分の画素距離、副画素単位の値及び整数画素単位の値のうち、1つであることを特徴とするビデオ復号方法。
【請求項2】
ビデオ符号化装置によって遂行されるビデオ符号化方法において、
現在ブロックの動きベクトルを決定する段階と、
前記現在ブロックに対してスキップモードで予測を行うか否かを示すスキップモード情報を決定する段階と、
前記現在ブロックに対してスキップモードで予測が行われないとき、前記現在ブロックの動きベクトルが第1予測モードによって予測されるか否かを示す現在ブロックの動きベクトル予測モード情報を決定する段階と、
前記現在ブロックが第1予測モードによって予測されるとき、前記現在ブロックに隣接するブロックの動きベクトルを含む第1候補リストを決定し、前記第1候補リストのうち、第1動きベクトル候補を決定し、前記第1動きベクトル候補と前記現在ブロックの動きベクトル間の動きベクトル差分を決定し、前記動きベクトル差分の符号がある方向を示す情報、前記動きベクトル差分の画素距離を示す情報及び第1候補リストのうち、前記第1動きベクトル候補を示す第1インデックスを生成する段階と、
前記現在ブロックの動きベクトルが前記第1予測モードによって予測されないとき、前記現在ブロックに隣接するブロックの動きベクトルを含む第2候補リストを決定し、前記第2候補リストのうち、第2動きベクトル候補を決定し、第2候補リストのうち、前記第2動きベクトル候補を示す第2インデックスを生成する段階と、
前記動きベクトルが指す予測ブロックを前記現在ブロックから差し引くことでレジデュアルブロックを決定する段階と、
前記レジデュアルブロックに変換を遂行することで、前記レジデュアルブロックの変換係数を生成する段階と、を含み、
前記動きベクトル差分の符号がある方向(signed direction)は、正の水平方向、負の水平方向、正の垂直方向及び負の垂直方向のうち、1つであり、
前記動きベクトル差分の画素距離、副画素単位の値及び整数画素単位の値のうち、1つであることを特徴とするビデオ符号化方法。
【請求項3】
ビットストリームから現在ブロックに対してスキップモードで予測を行うか否かを示すスキップモード情報を獲得し、前記スキップモード情報によって前記現在ブロックに対してスキップモードで予測が行われないとき、前記ビットストリームから前記現在ブロックの動きベクトル予測モード情報を獲得する決定部と、
前記現在ブロックに隣接するブロックの動きベクトルを含む候補リストを決定し、前記候補リストのうち、動きベクトル候補を決定し、動きベクトル差分に基づいて前記現在ブロックの動きベクトルを決定し、前記動きベクトルが指す予測ブロックを用いて前記現在ブロックの復元ブロックを決定する復号部と、を含み、
前記現在ブロックの動きベクトル予測モードが第1予測モードを指すとき、
前記決定部は、前記ビットストリームから、動きベクトル差分の符号がある方向を示す情報、前記動きベクトル差分の画素距離を示す情報及び第1候補リストのうち、第1動きベクトル候補を示す第1インデックスを獲得し、
前記復号部は、前記現在ブロックに隣接するブロックの動きベクトルを含む前記第1候補リストを決定し、前記第1候補リストのうち、前記第1インデックスが示す前記第1動きベクトル候補を決定し、前記動きベクトル差分の符号がある方向及び前記動きベクトル差分の画素距離に基づいて前記動きベクトル差分を決定し、前記第1動きベクトル候補及び前記動きベクトル差分に基づいて前記現在ブロックの動きベクトルを決定し、
前記現在ブロックの動きベクトル予測モードが第1予測モードではないことを示すとき、
前記決定部は、前記ビットストリームから、第2候補リストのうち、第2動きベクトル候補を示す第2インデックスを獲得し、
前記復号部は、前記現在ブロックに隣接するブロックの動きベクトルを含む前記第2候補リストを決定し、前記第2候補リストのうち、前記第2インデックスが示す前記第2動きベクトル候補を決定し、前記第2動きベクトル候補に基づいて前記現在ブロックの動きベクトルを決定し、
前記動きベクトル差分の符号がある方向(signed direction)は、正の水平方向、負の水平方向、正の垂直方向及び負の垂直方向のうち、1つであり、
前記動きベクトル差分の画素距離、副画素単位の値及び整数画素単位の値のうち、1つであることを特徴とするビデオ復号装置。
【請求項4】
ビデオ符号化方法によって生成されたビットストリームを記録媒体に保存する方法において、
現在ブロックに対してスキップモードで予測を行うか否かを示すスキップモード情報を決定する段階と、
前記現在ブロックに対してスキップモードで予測が行われないとき、前記現在ブロックの動きベクトルを決定する段階と、
前記現在ブロックの動きベクトルが第1予測モードによって予測されるか否かを示す前記現在ブロックの動きベクトル予測モード情報を決定する段階と、
前記現在ブロックが第1予測モードによって予測されるとき、前記現在ブロックに隣接するブロックの動きベクトルを含む第1候補リストを決定し、前記第1候補リストのうち、第1動きベクトル候補を決定し、前記第1動きベクトル候補と前記現在ブロックの動きベクトルとの動きベクトル差分を決定し、前記動きベクトル差分の符号がある方向を示す情報、前記動きベクトル差分の画素距離を示す情報及び第1候補リストのうち、前記第1動きベクトル候補を示す第1インデックスを生成する段階と、
前記現在ブロックの動きベクトルが前記第1予測モードによって予測されないとき、前記現在ブロックに隣接するブロックの動きベクトルを含む第2候補リストを決定し、前記第2候補リストのうち、第2動きベクトル候補を決定し、第2候補リストのうち、前記第2動きベクトル候補を示す第2インデックスを生成する段階と、
前記動きベクトルが指す予測ブロックを前記現在ブロックから差し引くことでレジデュアルブロックを決定する段階と、
前記レジデュアルブロックに変換を遂行することで、前記レジデュアルブロックの変換係数を生成する段階と、
前記スキップモード情報、前記動きベクトル予測モード情報及び前記レジデュアルブロックの変換係数を含むビットストリームを記録媒体に保存する段階と、を含み、
前記ビットストリームは、前記第1インデックス及び前記第2インデックスのうち、1つを含み、
前記ビットストリームが前記第1インデックスを含む場合、前記ビットストリームは、前記動きベクトル差分の符号がある方向を示す情報及び前記動きベクトル差分の画素距離を示す情報を含み、
前記動きベクトル差分の符号がある方向(signed direction)は、正の水平方向、負の水平方向、正の垂直方向及び負の垂直方向のうち、1つであり、
前記動きベクトル差分の画素距離、副画素単位の値及び整数画素単位の値のうち、1つであることを特徴とする方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ビデオ符号化及び復号化のための装置及び方法に関する。
【背景技術】
【0002】
高解像度または高画質のビデオコンテンツを再生、保存することができるハードウェアの開発及び普及によって、高解像度または高画質のビデオコンテンツを効果的に符号化したり復号したりするビデオコーデックの必要性が増大している。既存のビデオコーデックによれば、ビデオは、ツリー構造の符号化単位に基づいて、制限された符号化方式によって符号化されている。
【0003】
周波数変換を利用して、空間領域の映像データは、周波数領域の係数に変換される。ビデオコーデックは、周波数変換の迅速な演算のために、映像を所定サイズのブロックに分割し、ブロックごとにDCT変換を行い、ブロック単位の周波数係数を符号化する。空間領域の映像データに比べ、周波数領域の係数が、圧縮しやすい形態を有する。特に、ビデオコーデックのインター予測またはイントラ予測を介して、空間領域の映像画素値は、予測誤差によって表現されるので、予測誤差に対して周波数変換が行われれば、多くのデータが0に変換される。ビデオコーデックは、連続的に反復的に発生するデータを小サイズのデータに置き換えることにより、データ量を節減している。
【発明の概要】
【発明が解決しようとする課題】
【0004】
動きベクトルを利用して、多様な予測動きベクトル候補を探索し、ビット表現を減らして圧縮率を向上させるビデオ符号化方法及びビデオ復号方法を提供する。
【課題を解決するための手段】
【0005】
一側によれば、ビデオ復号装置によって遂行されるビデオ復号方法において、ビットストリームから、現在ブロックの予測モード情報及び予測候補を示すインデックスを決定する段階と、前記予測モード情報によって、予測子候補リストを決定する段階と、前記現在ブロックの予測モード情報が既設定予測モードを示せば、前記予測子候補リストのうち、前記インデックスが示す動きベクトルを決定し、前記動きベクトルに係わる動き予測情報のうち少なくとも一つに基づいて、前記現在ブロックの予測動きベクトルを決定する段階と、前記予測動きベクトルに基づいて、前記現在ブロックの動きベクトルを決定する段階と、を含み、前記既設定予測モードは、スキップモード及びマージモードと異なる予測モードでもある。
【発明の効果】
【0006】
動きベクトルを利用して、多様な予測動きベクトル候補を探索し、ビット表現を減らして圧縮率を向上させるビデオ符号化方法及びビデオ復号方法を提供する。
【図面の簡単な説明】
【0007】
【
図1】一実施形態によるビデオ符号化装置のブロック図である。
【
図2】一実施形態によるビデオ符号化方法のフローチャートである。
【
図3】一実施形態によるビデオ復号装置のブロック図である。
【
図4】一実施形態によるビデオ復号方法のフローチャートである。
【
図5A】一実施形態によって、予測動きベクトル候補を決定する過程について説明するための図面である。
【
図5B】一実施形態によって、予測動きベクトル候補を決定する過程について説明するための図面である。
【
図5C】一実施形態によって、予測動きベクトル候補を決定する過程について説明するための図面である。
【
図5D】一実施形態によって、予測動きベクトル候補を決定する過程について説明するための図面である。
【
図6A】一実施形態によって、既存の予測子候補リストに、既設定予測モード情報が挿入される場合、ビット表現方法について説明するための図面である。
【
図6B】一実施形態によって、既存の予測子候補リストに、既設定予測モード情報が挿入される場合、ビット表現方法について説明するための図面である。
【
図6C】一実施形態によって、既存の予測子候補リストに、既設定予測モード情報が挿入される場合、ビット表現方法について説明するための図面である。
【
図7】一実施形態によって、予測動きベクトルのビット表現方法について説明するための図面である。
【
図8】一実施形態による、ツリー構造による符号化単位に基づいたビデオ符号化装置のブロック図である。
【
図9】一実施形態による、ツリー構造による符号化単位に基づいたビデオ復号装置のブロック図である。
【
図10】一実施形態による符号化単位の概念を図示する図面である。
【
図11】一実施形態による、符号化単位に基づいたビデオ符号化部のブロック図である。
【
図12】一実施形態による、符号化単位に基づいたビデオ復号部のブロック図である。
【
図13】一実施形態による、符号化単位及びパーティションを図示する図面である。
【
図14】一実施形態による、符号化単位及び変換単位の関係を図示する図面である。
【
図15】一実施形態による符号化情報を図示する図面である。
【
図16】一実施形態による符号化単位を図示する図面である。
【
図17】一実施形態による、符号化単位、予測単位及び変換単位の関係を図示する図面である。
【
図18】一実施形態による、符号化単位、予測単位及び変換単位の関係を図示する図面である。
【
図19】一実施形態による、符号化単位、予測単位及び変換単位の関係を図示する図面である。
【
図20】表2の符号化モード情報による、符号化単位、予測単位及び変換単位の関係を図示する図面である。
【
図21】一実施形態による、プログラムが保存されたディスクの物理的構造を例示する図面である。
【
図22】ディスクを利用して、プログラムを記録して判読するためのディスクドライブを図示する図面である。
【
図23】コンテンツ流通サービス(content distribution service)を提供するためのコンテンツ供給システム(content supply system)の全体的構造を図示する図面である。
【
図24】一実施形態による、本発明のビデオ符号化方法及びビデオ復号方法が適用される携帯電話の外部構造を図示する図面である。
【
図25】一実施形態による、本発明のビデオ符号化方法及びビデオ復号方法が適用される携帯電話の内部構造を図示する図面である。
【
図26】本発明による通信システムが適用されたデジタル放送システムを図示する図面である。
【
図27】一実施形態によるビデオ符号化装置及びビデオ復号装置を利用するクラウドコンピューティングシステムのネットワーク構造を図示する図面である。
【発明を実施するための形態】
【0008】
本発明は、以下の詳細な説明と、それに伴う図面との結合によって、容易に理解され、参照番号(reference numerals)は、構造的構成要素(structural elements)を意味する。
【0009】
一側によれば、ビデオ復号装置によって遂行されるビデオ復号方法において、ビットストリームから、現在ブロックの予測モード情報及び予測候補を示すインデックスを決定する段階と、前記予測モード情報によって、予測子候補リストを決定する段階と、前記現在ブロックの予測モード情報が既設定予測モードを示せば、前記予測子候補リストのうち、前記インデックスが示す動きベクトルを決定し、前記動きベクトルに係わる動き予測情報のうち少なくとも一つに基づいて、前記現在ブロックの予測動きベクトルを決定する段階と、前記予測動きベクトルに基づいて、前記現在ブロックの動きベクトルを決定する段階と、を含み、前記既設定予測モードは、スキップモード及びマージモードと異なる予測モードでもある。
【0010】
また、前記既設定予測モードによる予測子候補リストは、基本動きベクトルにおいて、一定距離にある候補を予測動きベクトル候補に含んでもよい。
【0011】
また、前記基本動きベクトルは、前記現在ブロックのスキップモードまたはマージモードで使用される予測動きベクトル候補のうち一つでもある。
【0012】
また、前記現在ブロックの予測動きベクトル候補を決定する段階は、前記基本動きベクトルにおいて、第1画素距離にある予測動きベクトル候補を、第1候補グループと決定し、前記基本動きベクトルにおいて、第2画素距離にある予測動きベクトル候補を、第2候補グループと決定することができる。
【0013】
また、前記動きベクトルに係わる動き予測情報は、前記現在ブロックの周辺ブロックから獲得された参照方向、参照ピクチャのインデックス、前記動きベクトルの値、及び動きベクトル差分値情報のうち少なくとも一つを含み、前記現在ブロックの予測動きベクトルを決定する段階は、前記参照方向、前記参照ピクチャのインデックス、前記動きベクトルの値、及び動きベクトル差分値情報を組み合わせたり変移させたりし、前記現在ブロックの予測動きベクトルを決定することができる。
【0014】
また、前記予測子候補リストに含まれる予測動きベクトル候補が示すインデックスは、スキップモードまたはマージモードによる予測動きベクトル候補を示すインデックス、及び前記既設定予測モードによる予測動きベクトル候補を示すインデックスを含み、前記既設定予測モードによる予測動きベクトル候補を示すインデックスは、既存インデックス間で生成されもする。
【0015】
また、前記既設定予測モードの予測モード情報は、スキップフラグ及びマージモードフラグの間で獲得されるか、あるいはスキップフラグ及びマージモードフラグの次において獲得されもする。
【0016】
他の一側によれば、ビデオ復号装置によって遂行されるビデオ符号化方法において、既設定予測モードによって、予測子候補リストを決定する段階と、現在ブロックの予測モード情報が、前記既設定予測モードを示せば、前記予測子候補リストのうちインデックスが示す動きベクトルを決定し、前記動きベクトルに係わる動き予測情報のうち少なくとも一つに基づいて、前記現在ブロックの予測動きベクトルを決定する段階と、前記予測動きベクトルに基づいて、前記現在ブロックの動きベクトルを決定する段階と、前記既設定予測モードを示す予測モード情報を符号する段階と、を含み、前記既設定予測モードは、スキップモード及びマージモードと異なる予測モードでもある。
【0017】
また、前記既設定予測モードによる予測子候補リストは、基本動きベクトルにおいて、一定距離にある候補を予測動きベクトル候補に含んでもよい。
【0018】
また、前記基本動きベクトルは、前記現在ブロックのスキップモードまたはマージモードで使用される予測動きベクトル候補のうち一つでもある。
【0019】
また、前記現在ブロックの予測動きベクトル候補を決定する段階は、前記基本動きベクトルにおいて、第1画素距離にある予測動きベクトル候補を、第1候補グループと決定し、前記基本動きベクトルにおいて、第2画素距離にある予測動きベクトル候補を、第2候補グループと決定することができる。
【0020】
また、前記予測子候補リストに含まれる予測動きベクトル候補が示すインデックスは、スキップモードまたはマージモードによる予測動きベクトル候補を示すインデックス、及び前記既設定予測モードによる予測動きベクトル候補を示すインデックスを含み、前記既設定予測モードによる予測動きベクトル候補を示すインデックスは、既存インデックス間で生成されもする。
【0021】
また、前記既設定予測モードの予測モード情報は、スキップフラグ及びマージモードフラグの間に挿入されるか、あるいはスキップフラグ及びマージモードフラグの次に挿入されもする。
【0022】
さらに他の一側によれば、ビットストリームから、現在ブロックの予測モード情報及び予測候補を示すインデックスを決定し、前記予測モード情報によって、予測子候補リストを決定する決定部と、前記現在ブロックの予測モード情報が既設定予測モードを示せば、前記予測子候補リストのうち、前記インデックスが示す動きベクトルを決定し、前記動きベクトルに係わる動き予測情報のうち少なくとも一つに基づいて、前記現在ブロックの予測動きベクトルを決定し、前記予測動きベクトルから獲得された前記現在ブロックの動きベクトルに基づいて、前記現在ブロックの動き補償を行う復号部と、を含み、前記既設定予測モードは、スキップモード及びマージモードと異なる予測モードでもある。
【0023】
さらに他の一側によれば、既設定予測モード情報によって、予測子候補リストを決定し、現在ブロックの予測モード情報が、前記既設定予測モードを示せば、前記予測子候補リストのうちインデックスが示す動きベクトルを決定し、前記動きベクトルに係わる動き予測情報のうち少なくとも一つに基づいて、前記現在ブロックの予測動きベクトルを決定し、前記予測動きベクトルから獲得された前記現在ブロックの動きベクトルに基づいて、前記現在ブロックの動き予測を遂行する符号化部と、前記既設定予測モードを示す予測モード情報を含むビットストリームを生成するビットストリーム生成部と、を含み、前記既設定予測モードは、スキップモード及びマージモードと異なる予測モードでもある。
【0024】
本発明で使用される用語は、本発明での機能を考慮しながら、可能な限り現在広く使用される一般的な用語を選択したが、それらは、当分野の当業者の意図、判例、または新たな技術の出現などによって異なる。また、特定の場合、出願人が任意に選定した用語もあり、その場合、当該発明の説明部分で詳細にその意味を記載する。従って、本発明で使用される用語、は単なる用語の名称ではない、その用語が有する意味と、本発明の全般にわたる内容とを基に定義されるものである。
【0025】
明細書全体において、ある部分がある構成要素を「含む」とするとき、それは、特別に反対となる記載がない限り、他の構成要素を除くものではなく、他の構成要素をさらに含んでもよいということを意味する。また、明細書で使用される「部」という用語は、ソフトウェア、FPGAまたはASICのようなハードウェア構成要素を意味し、「部」は、ある役割を行う。しかしながら、「部」は、ソフトウェアまたはハードウェアに限定される意味ではない。「部」は、アドレッシングすることができる記録媒体に存在するように構成されもするが、またはそれ以上のプロセッサを再生させるように構成されもする。従って、一例として、「部」は、ソフトウェア構成要素、客体志向ソフトウェア構成要素、クラス構成要素及びタスク構成要素のような構成要素、並びにプロセス、関数、属性、プロシージャ、サブルーチン、プログラムコードのセグメント、ドライバ、ファームウエア、マイクロコード、回路、データ、データベース、データ構造、テーブル、アレイ及び変数を含む。構成要素及び「部」において提供される機能は、さらに少数の構成要素、及び「部」に結合されるか、あるいはさらなる構成要素と「部」とに一層分離されもする。
【0026】
第1、第2のような用語は、多様な構成要素についての説明に使用されるが、前記構成要素は、前記用語によって限定されるものではない。前記用語は、1つの構成要素を他の構成要素から区別する目的のみに使用される。例えば、本発明の権利範囲を外れずに、第1構成要素は、第2構成要素と命名され、類似して、第2構成要素も第1構成要素と命名されもする。「及び/または」という用語は、複数の関連する記載項目の組み合わせ、または複数の関連記載項目のうちいずれかの項目を含む。
【0027】
以下において、添付した図面を参照し、本発明の実施形態について、本発明が属する技術分野で当業者が容易に実施することができるように詳細に説明する。しかし、本発明は、さまざまに異なる形態に具現され、ここで説明する実施形態に限定されるものではない。
以下、
図1ないし
図7を参照し、一実施形態によるビデオ符号化方法及びビデオ復号方法が提案される。
【0028】
また、
図8ないし
図20を参照し、先立って提案したビデオ符号化方法及びビデオ復号方法に適用可能な、一実施形態によるツリー構造の符号化単位に基づいたビデオ符号化方法及びビデオ復号方法が開示される。
【0029】
また、
図21ないし
図27を参照し、先立って提案したビデオ符号化方法、ビデオ復号方法が適用可能な一実施形態が開示される。
【0030】
以下、「映像」は、ビデオの静止映像や動画、すなわち、ビデオそれ自体を示す。
【0031】
以下、「現在ブロック(current block)」は、符号化または復号する映像のブロックを意味する。
【0032】
以下、「周辺ブロック(neighboring block)」は、現在ブロックに隣接する符号化されたり復号されたりする少なくとも1つのブロックを示す。例えば、周辺ブロックは、現在ブロックの上端、現在ブロックの右側上端、現在ブロックの左側、または現在ブロックの左側上端に位置することができる。また、空間的に隣接するブロックだけではなく、時間的に隣接するブロックも含んでもよい。例えば、時間的に隣接する周辺ブロックは、参照ピクチャの現在ブロックの周辺ブロックを含んでもよい。また、周辺ブロックは、参照ピクチャの現在ブロックと同一位置ブロック(co-located block)、または同一位置ブロックの空間的に隣接するブロックを含んでもよい。
【0033】
図1は、一実施形態によるビデオ符号化装置のブロック図である。
図1を参照すれば、ビデオ符号化装置10は、符号化部12及びビットストリーム生成部14を含んでもよい。しかし、図示された構成要素が、いずれも必須構成要素であるものではない。図示された構成要素より多くの構成要素によって、ビデオ符号化装置10が具現され、それより少ない構成要素によっても、ビデオ符号化装置10が具現されもする。以下、前記構成要素について説明する。
【0034】
ビデオ符号化装置10(例えば、エンコーダ)は、インター予測において、現在ブロックと最も類似した予測ブロックを参照ピクチャから探し出した後、予測ブロックに係わる情報をビデオ復号装置20(例えば、デコーダ)に伝送することができる。
【0035】
ビデオ符号化装置10は、動き推定過程を介して、参照ピクチャから最適の予測ブロックを探し、動き補償過程を介して、予測ブロックを生成することができる。
【0036】
以下、「動き推定」は、参照ピクチャから最適の予測ブロックを探すことを意味する。また、ビデオ符号化装置10は、さらに精密な動き推定のために、ビデオコーデックの種類によって、復元ピクチャを補間した後、補間された映像に対して、副画素単位で動き推定を行うこともできる。
【0037】
以下、「動き補償」は、動き推定過程において探した最適の予測ブロックに係わる動き情報に基づいて、予測ブロックを生成することを意味する。ここで、該動き情報は、モーションベクトル、参照ピクチャインデックスでもあるが、それらに限定されるものではない。
【0038】
一開示によれば、インター予測において、ビデオ符号化装置10は、動き推定結果方向情報、参照リスト内の参照ピクチャを区分する参照インデックス、動きベクトル情報などをビデオ復号装置20に伝送する。ここで、該動き推定結果方向情報は、参照ピクチャリスト0と参照ピクチャリスト1とを区分する方向情報でもある。ビデオ符号化装置10は、予測単位に伝送される動き情報の量を減らすために、周辺ブロックと現在ブロックとの動き情報の相関度を利用する予測モードを利用することができる。該予測モードは、スキップモード(skip mode)、マージモード(merge mode)、AMVP(advanced motion vector prediction)でもあるが、それらに限定されるものではなく、他の予測モードが含まれてもよい。
【0039】
符号化部12は、動き情報を誘導するための候補ブロックのリストを構成し、リスト内の候補ブロックを選択することができる。例えば、該動き情報は、現在ブロックの動きベクトルでもある。すなわち、符号化部12は、動き情報を誘導するための予測候補リストを決定することができる。
【0040】
以下、本明細書における「予測候補」は、候補ブロックを意味する。「予測候補リスト」は、候補ブロックの動きベクトルのリストを意味する。「予測候補リスト」は、候補ブロックの動きベクトルを示すインデックスのリストを意味することもできる。「基本動きベクトル」は、候補ブロックが参照ブロックを示す動きベクトルを意味する。「予測動きベクトル」は、「基本動きベクトル」から派生したベクトルであり、基本動きベクトルに係わる動き予測情報を利用して決定された動きベクトル候補のうち現在ブロックの動きベクトルを予測するために選択された動きベクトルを意味する。
【0041】
符号化部12は、既設定予測モード情報によって、予測候補リストを決定することができる。ここで、該既設定予測モードは、スキップモード及びマージマードと異なる予測モードでもある。該既設定予測モードは、スキップモードまたはマージモードで使用された情報だけではなく、映像を符号化及び復号するところに使用される情報を利用して、予測動きベクトル候補を生成し、予測動きベクトル候補のうち一つを予測動きベクトルとして決定するモードでもある。
【0042】
例えば、符号化部12は、該既設定予測モードによって、参照ピクチャリストを区分する参照方向情報、参照ピクチャインデックス、動きベクトル値及び動きベクトル差分値(motion vector difference)のうち少なくとも一つを利用して、予測動きベクトル候補を生成し、予測動きベクトル候補のうち一つを予測動きベクトルとして決定することができる。それに係わる内容は、
図5Aないし
図5Dで説明する。
【0043】
他例を挙げれば、符号化部12は、既設定予測モードによって、参照ピクチャリストを区分する参照方向情報、参照ピクチャインデックス、動きベクトル値、動きベクトル差分値のうち少なくとも一つを変形し、変形された情報のみを利用したり、変形された情報、及び変形以前の情報を利用したりして、予測動きベクトル候補を生成し、予測動きベクトル候補のうち一つを予測動きベクトルとして決定することができる。
【0044】
一開示によれば、該既設定予測モードによる予測候補リストは、基本動きベクトルにおいて、一定距離にある候補を予測動きベクトル候補に含んでもよい。それに係わる予測動きベクトル候補を決定する内容は、
図5Aないし
図5Dで説明する。
【0045】
予測候補リストには、空間的候補または時間的候補が含まれてもよい。該空間的候補は、現在ブロックと隣接したブロックの動きは、類似しているという仮定により、予測単位の分割形態によって決定された隣接周辺ブロックでもある。例えば、2Nx2N予測単位は、現在ブロックの周辺に位置した5つのブロックを空間的候補として使用することができる。2NxN,Nx2N,2NxnU,2NxnD,nLx2N,nRx2N予測単位も、現在ブロック周辺に位置した5つのブロックを空間的候補として使用することができる。また、空間的候補構成が完了すれば、符号化部12は、時間的候補を決定することができる。また、空間的候補または時間的候補の構成が完了し、完了された候補の組み合わせにより、さらなる候補を決定することもできる。
【0046】
符号化部12は、現在ブロックの予測モード情報が、該既設定予測モードを示せば、予測候補リストのうち予測候補インデックスが示す動きベクトルを決定することができる。符号化部12は、動きベクトルに係わる動き予測情報のうち少なくとも一つに基づいて、現在ブロックの予測動きベクトルを決定することができる。符号化部12は、動きベクトルに係わる動き予測情報を組み合わせ、予測動きベクトル候補を獲得し、予測動きベクトル候補のうち現在ブロックと最も類似した予測ブロックによる予測動きベクトルを決定することができる。
【0047】
動きベクトルに係わる動き予測情報は、現在ブロックの周辺ブロックから獲得された参照方向、参照ピクチャのインデックス、動きベクトル値及び動きベクトル差分値情報のうち少なくとも一つを含んでもよいが、それらに限定されるものではない。
【0048】
符号化部12は、参照方向、参照ピクチャのインデックス、動きベクトルの値、及び動きベクトル差分値情報を組み合わせたり変移させたりし、新たな予測動きベクトル候補を獲得し、新たな予測動きベクトル候補のうち現在ブロックの予測動きベクトルを決定することができる。
【0049】
また、符号化部12は、各候補グループに対して、予測動きベクトル候補の個数を異ならせて構成することもできる。符号化部12は、基本動きベクトルにおいて、第1画素距離にある予測動きベクトル候補を、第1候補グループと決定し、基本動きベクトルにおいて、第2画素距離にある予測動きベクトル候補を、第2候補グループと決定することができ、基本動きベクトルにおいて、第n画素距離にある予測動きベクトル候補を、第n候補グループと決定することができる。ここで、一定画素距離にある予測動きベクトル候補には、一定画素距離と、既設定の誤差範囲内の画素距離にある予測動きベクトル候補も、含まれてもよい。また、符号化部12は、グループ増加によって、画素距離が増大するように、予測動きベクトル候補を構成することができ、画素距離間の距離は、線形または非線形に増大する。
【0050】
符号化部12は、第1候補グループ及び第2候補グループのうち予測動きベクトルが属したグループを示す候補インデックスを決定することができる。
【0051】
一方、予測子候補リストに含まれる予測動きベクトル候補を示すインデックスは、スキップモードまたはマージモードによる予測動きベクトル候補を示すインデックス、及び既設定予測モードによる予測動きベクトル候補を示すインデックスを含んでもよい。該既設定予測モードによる予測動きベクトル候補を示すインデックスは、既存インデックス間で生成されもする。
【0052】
該既設定予測モードの予測モード情報は、既存予測モードのフラグまたはインデックスを利用して表示されもする。該既存予測モードは、スキップモード、マージモード、AMVPモードを含んでもよいが、それらに限定されるものではない。ビデオ符号化装置10は、スキップモード及びマージモードによって、周辺ブロックからの参照方向、参照ピクチャインデックス、動きベクトル値などを誘導し、予測動きベクトルを決定することができる。ビデオ符号化装置10は、AMVPモードによって、スキップモード及びマージモードと異なる参照方向、参照ピクチャインデックス、動きベクトルの差分値をビデオ復号装置20に伝送することができる。
【0053】
例えば、既設定予測モードの使用いかんフラグは、既存のスキップフラグ及びマージモードフラグの間に挿入されもする。既設定予測モードフラグがオン(on)であるならば、ビデオ符号化装置10は、予測動きベクトル候補のインデックスを除いては、動き予測に係わるシンタックス情報を送らないか、あるいは残差成分(residual)に係わる情報を伝送することができる。その場合、該残差成分に係わる情報を伝送するか否かということは、明示的にフラグに送ることもできる。ビデオ符号化装置10は、該既設定予測モードの予測モード情報を、既存モードのフラグまたはインデックスを利用して表示することにより、ビット表現を減らして圧縮率を向上させることができる。
【0054】
他例を挙げれば、既設定予測モードの使用いかんフラグは、マージモードフラグの次に挿入されもする。前述の例と同様に、既設定予測モードフラグがオンであるならば、ビデオ符号化装置10は、予測動きベクトル候補のインデックスを除き、動き予測に係わるシンタックス情報を送らないか、あるいは残差成分に係わる情報を伝送することができる。その場合、残差成分に係わる情報を伝送するか否かということは、明示的にフラグに送ることもできる。
【0055】
既設定予測モードの予測モード情報が、既存インデックスリストに挿入されることにより、予測モード情報が挿入された後のインデックスは、ビット表現の変化が生ずることになる。それに係わる内容は、
図6Aないし
図6Cで説明する。
【0056】
また、符号化部12は、予測動きベクトルを利用して、現在ブロックの動きベクトルを決定し、現在ブロックの動きベクトルに基づいて、現在ブロックの動き予測を行うことができる。
【0057】
ビットストリーム生成部14は、既設定予測モードを示す予測モード情報を含むビットストリームを生成することができる。ビデオ符号化装置10は、生成されたビットストリームを、ビデオ復号装置20に伝送することができる。ビデオ符号化装置10は、予測子候補リスト内で選択された予測動きベクトル情報を、ビデオ復号装置20に伝送することにより、動き関連データの量を効果的に減らすことができる。
【0058】
また、ビデオ符号化装置10は、インター予測から獲得された予測ブロックと、原本ブロックとの差値である残差信号を、変換、量子化、エントロピー符号化することができる。
【0059】
ビデオ符号化装置10は、符号化部12及びビットストリーム生成部14を総括的に制御する中央プロセッサ(図示せず)を含んでもよい。該中央プロセッサ(図示せず)は、多数の論理ゲートのアレイによっても具現され、汎用的なマイクロプロセッサと、そのマイクロプロセッサで実行されるプログラムが保存されたメモリとの組み合わせによって具現されもする。また、中央プロセッサ(図示せず)は、他形態のハードウェアによっても具現されるということは、本実施形態が属する技術分野で当業者であるならば、理解することができるであろう。または、符号化部12及びビットストリーム生成部14が、それぞれの自体プロセッサ(図示せず)によって作動し、プロセッサ(図示せず)が相互有機的に作動することにより、ビデオ符号化装置10が全体的に動作されもする。または、ビデオ符号化装置10の外部プロセッサ(図示せず)の制御によって、符号化部12及びビットストリーム生成部14が制御されもする。
【0060】
ビデオ符号化装置10は、符号化部12及びビットストリーム生成部14の入出力データが保存される1以上のメモリ(図示せず)を含んでもよい。ビデオ符号化装置10は、メモリのデータ入出力を制御するメモリ制御部(図示せず)を含んでもよい。
【0061】
以下では、ビデオ符号化装置10が遂行する多様な動作や応用について説明するが、符号化部12及びビットストリーム生成部14のうちいずれの構成を特定するものではないとしても、本発明の技術分野に係わる当業者が明確に理解して予想することができるほどの内容は、通常の具現と理解され、本発明の権利範囲は、特定の構成の名称や物理的/論理的構造によって制限されるものではない。以下、ビデオ符号化装置10の動作について、
図2を参照して説明する。
【0062】
図2は、一実施形態によるビデオ符号化方法のフローチャートである。
図2の段階S11において、ビデオ符号化装置10は、既設定予測モードによって、予測候補リストを決定することができる。ここで、該既設定予測モードは、スキップモード及びマージモードと異なる予測モードであることを特徴とする。該既設定予測モードは、スキップモードまたはマージモードで使用された情報だけではなく、映像を符号化及び復号するところに使用される情報を利用して、予測動きベクトル候補を生成し、予測動きベクトル候補のうち一つを予測動きベクトルとして決定するモードでもある。
【0063】
例えば、ビデオ符号化装置10は、既設定予測モードによって、参照ピクチャリストを区分する参照方向情報、参照ピクチャインデックス、動きベクトル値及び動きベクトル差分値のうち少なくとも一つを利用して、予測動きベクトル候補を生成し、予測動きベクトル候補のうち一つを、予測動きベクトルとして決定することができる。
【0064】
一開示によれば、既設定予測モードによる予測候補リストは、基本動きベクトルにおいて一定距離にある候補の動きベクトルを含んでもよい。また、該基本動きベクトルは、現在ブロックのスキップモードまたはマージモードで使用される予測動きベクトル候補のうち一つでもある。
【0065】
段階S13において、現在ブロックの予測モード情報が既設定予測モードを示せば、ビデオ符号化装置10は、予測候補リストのうち予測候補インデックスが示す動きベクトルを決定することができる。ビデオ符号化装置10は、動きベクトルに係わる動き予測情報のうち少なくとも一つに基づいて、現在ブロックの予測動きベクトルを決定することができる。
【0066】
ビデオ符号化装置10は、動き予測情報のうち少なくとも一つに基づいて、予測動きベクトル候補を決定することができ、決定された予測動きベクトル候補のうち現在ブロックと最も類似した予測ブロックによる予測動きベクトルを決定することができる。
【0067】
動きベクトルに係わる動き予測情報は、現在ブロックの周辺ブロックから獲得された参照方向、参照ピクチャのインデックス、動きベクトルの値、及び動きベクトル差分値情報のうち少なくとも一つを含んでもよいが、それらに限定されるものではない。ビデオ符号化装置10は、参照方向、参照ピクチャのインデックス、動きベクトルの値、及び動きベクトル差分値情報を組み合わせたり変移させたりし、現在ブロックの予測動きベクトルを決定することができる。
【0068】
ビデオ符号化装置10は、既設定予測モードによって、参照ピクチャリストを区分する参照方向情報、参照ピクチャインデックス、動きベクトル値及び動きベクトル差分値のうち少なくとも一つを利用して、予測動きベクトル候補を生成し、予測動きベクトル候補のうち一つを予測動きベクトルとして決定することができる。
【0069】
一方、予測候補リストに含まれる予測動きベクトル候補を示すインデックスは、スキップモードまたはマージマードによる予測動きベクトル候補を示すインデックス、及び既設定予測モードによる予測動きベクトル候補を示すインデックスを含んでもよい。
【0070】
ここで、がい既設定予測モードによる予測動きベクトル候補を示すインデックスは、既存インデックス間で生成されもする。また、該既設定予測モードの予測モード情報は、スキップフラグ及びマージモードフラグの間に挿入されるか、あるいはスキップフラグ及びマージモードフラグの次に挿入されもする。
【0071】
また、ビデオ符号化装置10は、m個の予測動きベクトル候補を1つの候補グループに構成し、n個の候補グループを生成することができる(ここで、m、nは、正の整数である)。例えば、ビデオ符号化装置10は、1/4画素距離にある予測動きベクトル候補4個を、第1候補グループと決定することができる。ビデオ符号化装置10は、1/2画素距離にある予測動きベクトル候補4個を、第2候補グループと決定することができる。
【0072】
段階S15において、ビデオ符号化装置10は、予測動きベクトルに基づいて、現在ブロックの動きベクトルを決定することができる。
【0073】
段階S17において、ビデオ符号化装置10は、既設定予測モードを示す予測モード情報を符号化することができる。ビデオ符号化装置10は、既設定予測モードを示す予測モード情報を含むビットストリームを生成することができる。ビデオ符号化装置10は、生成されたビットストリームをビデオ復号装置20に伝送することができる。また、ビデオ符号化装置10は、予測モード情報の符号化結果を出力するために、内部に搭載されたビデオエンコーディングプロセッサまたは外部ビデオエンコーディングプロセッサと連繋して作動することができる。ビデオ符号化装置10の内部ビデオエンコーディングプロセッサは、別個のプロセッサだけではなく、ビデオ符号化装置10、または中央演算装置、グラフィック演算装置がビデオエンコーディングプロセッシングモジュールを含むことにより、基本的なビデオ符号化動作を具現する場合も含んでもよい。
【0074】
図3は、一実施形態によるビデオ復号装置のブロック図である。
図3を参照すれば、ビデオ復号装置20は、決定部(22)及び復号部(24)を含んでもよい。しかし、図示された構成要素が、いずれも必須構成要素であるものではない。図示された構成要素より多くの構成要素によって、ビデオ復号装置20が具現され、それより少ない構成要素によっても、ビデオ復号装置20が具現されもする。以下、前記構成要素について説明する。
【0075】
ビデオ復号装置20は、現在ブロックの予測モードがインター予測モードであるならば、ビデオ符号化装置10で伝送された参照ピクチャ情報及び参照ブロック情報を利用して、動き補償を行う。ビデオ復号装置20は、動き補償を介して予測ブロックを生成することができる。ビデオ復号装置20は、生成された予測ブロックと、エントロピー符号化、逆量子化、逆変換過程を経て生成した残差信号とを合わせることにより、映像を復元することができる。
【0076】
決定部22は、ビスストリームを受信し、受信されたビットストリームから、現在ブロックの予測モード情報、及び予測候補を示すインデックスを決定することができる。該予測モードは、スキップモード、マージモード、AMVPモードを含んでもよいが、それらに限定されるものではなく、他の予測モードが含まれてもよいということは、当業者の立場で理解することができるであろう。該スキップモード及び該マージモードは、周辺ブロックからの参照方向、参照ピクチャインデックス、動きベクトル値などを誘導し、予測動きベクトルを決定するモードである。AMVPモードは、スキップモード及びマージモードと異なる参照方向、参照ピクチャインデックス、動きベクトルをビデオ符号化装置10から伝送される。該予測モードは、映像の符号化及び復号に使用される情報に基づいて、既設定でもある。
【0077】
決定部22は、動き情報を誘導するための候補ブロックのリストを構成し、リスト内の候補ブロックを選択することができる。例えば、該動き情報は、現在ブロックの予測動きベクトルでもある。すなわち、決定部22は、動き情報を誘導するための予測候補リストを決定することができる。
【0078】
「予測候補」は、候補ブロックを意味する。「予測候補リスト」は、候補ブロックの動きベクトルのリストを意味する。「予測候補リスト」は、候補ブロックの動きベクトルを示すインデックスのリストを意味することもできる。「基本動きベクトル」は、候補ブロックが参照ブロックを示す動きベクトルを意味する。「予測動きベクトル」は、「基本動きベクトル」から派生したベクトルであり、基本動きベクトルに係わる動き予測情報を利用して決定された動きベクトル候補のうち現在ブロックの動きベクトルを予測するために選択された動きベクトルを意味する。決定部22は、予測モード情報によって、予測候補リストを決定することができる。
【0079】
現在ブロックの予測モード情報が既設定予測モードを示せば、復号部24は、予測候補リストのうち予測候補インデックスが示す動きベクトルを決定し、動きベクトルに係わる動き予測情報のうち少なくとも一つに基づいて、現在ブロックの予測動きベクトルを決定することができる。復号部24は、予測動きベクトルから獲得された現在ブロックの動きベクトルに基づいて、現在ブロックの動き補償を行うことができる。復号部24は、予測動きベクトルと原動きベクトルとの差値に係わる情報を獲得し、該差値と予測動きベクトルとを加算し、現在ブロックの動きベクトルを復元することができる。該既設定予測モードは、スキップモード及びマージモードと異なる予測モードでもある。該既設定予測モードは、スキップモードまたはマージモードで使用された情報だけではなく、映像を符号化及び復号するところに使用される情報を利用して、予測動きベクトル候補を生成し、予測動きベクトル候補のうち一つを予測動きベクトルとして決定するモードでもある。
【0080】
例えば、復号部24は、既設定予測モードによって、参照ピクチャリストを区分する参照方向情報、参照ピクチャインデックス、動きベクトル値及び動きベクトル差分値のうち少なくとも一つを利用して、予測動きベクトル候補を生成し、予測動きベクトル候補のうち参照ブロックの動きベクトルを、予測動きベクトルとして決定することができる。
【0081】
他例を挙げれば、復号部24は、既設定予測モードによって、参照ピクチャリストを区分する参照方向情報、参照ピクチャインデックス、動きベクトル値、動きベクトル差分値のうち少なくとも一つを変形し、変形された情報のみを利用したり、変形された情報及び変形以前の情報を利用したりし、予測動きベクトル候補を生成し、予測動きベクトル候補のうち一つを予測動きベクトルとして決定することができる。
【0082】
すなわち、復号部24は、既設定予測モードによって予測動きベクトル候補を生成し、予測動きベクトル候補のうち一つを予測動きベクトルとして決定することができる。
【0083】
一開示によれば、既設定予測モードによる予測候補リストは、既存動きベクトルにおいて、一定距離にある候補を予測動きベクトル候補に含んでもよい。それに係わる予測動きベクトル候補を決定する内容は、
図5Aないし
図5Dで説明する。ここで、「基本動きベクトル」は、現在ブロックのスキップモードまたはマージモードで使用される予測動きベクトル候補のうち一つでもある。
【0084】
復号部24は、基本動きベクトルにおいて、第1画素距離にある予測動きベクトル候補を、第1候補グループと決定し、基本動きベクトルにおいて、第2画素距離にある予測動きベクトル候補を、第2候補グループと決定することができる。ここで、第1画素距離にある予測動きベクトル候補には、第1画素距離と、既設定の誤差範囲内の画素距離にある予測動きベクトル候補も、含まれてもよい。
【0085】
予測子候補リストには、空間的候補または時間的候補が含まれてもよい。該空間的候補は、現在ブロックと隣接したブロックの動きは、類似しているという仮定によって、予測単位の分割形態によって決定された隣接周辺ブロックでもある。例えば、2Nx2N予測単位は、現在ブロックの周辺に位置した5つのブロックを空間的候補として使用することができる。2NxN,Nx2N,2NxnU,2NxnD,nLx2N,nRx2N予測単位は、現在ブロックの周辺に位置した5つのブロックを空間的候補として使用することができる。また、空間的候補構成が完了すれば、決定部22は、時間的候補を決定することができる。また、空間的候補または時間的候補の構成が完了し、完了された候補の組み合わせにより、さらなる候補を決定することもできる。
【0086】
復号部24は、現在ブロックの予測モード情報が既設定予測モードを示せば、予測候補リストのうち予測候補インデックスが示す動きベクトルを決定することができる。復号部24は、動きベクトルに係わる動き予測情報のうち少なくとも一つに基づいて、現在ブロックの予測動きベクトルを決定することができる。復号部24は、動きベクトルに係わる動き予測情報を組み合わせて予測動きベクトル候補を獲得し、予測動きベクトル候補のうち予測候補インデックスが示す動きベクトルを決定することができる。
【0087】
動きベクトルに係わる動き予測情報は、現在ブロックの周辺ブロックから獲得された参照方向、参照ピクチャのインデックス、動きベクトル値及び動きベクトル差分値情報のうち少なくとも一つを含んでもよいが、それらに限定されるものではない。
【0088】
復号部24は、参照方向、参照ピクチャのインデックス、動きベクトルの値、及び動きベクトル差分値情報を組み合わせたり変移させたりし、新たな予測動きベクトル候補を獲得し、新たな予測動きベクトル候補のうち現在ブロックの予測動きベクトルを決定することができる。
【0089】
復号部24は、第1候補グループ及び第2候補グループのうち、予測動きベクトルが属したグループを示す候補インデックスを決定することができる。
【0090】
予測子候補リストに含まれる予測動きベクトル候補を示すインデックスは、スキップモードまたはマージモードによる予測動きベクトル候補が示すインデックス、及び既設定予測モードによる予測動きベクトル候補を示すインデックスを含んでもよい。該既設定予測モードによる予測動きベクトル候補を示すインデックスは、既存インデックスを基に変形されもする。既存インデックスは、スキップモードまたはマージモードによる予測動きベクトル候補を示すインデックスである。それに係わる内容は、
図6Aないし
図6Cで説明する。
【0091】
また、既設定予測モードの予測モード情報は、スキップフラグ及びマージモードフラグの次において獲得されもする。また、既設定予測モードの予測モード情報は、AMVPモードシンタックスエレメントから獲得されもする。
【0092】
スキップフラグは、コーディング単位呼び出し時、開始部分に位置し、現在ブロックがスキップモードであるか否かということの情報を表示する。もしスキップモードであるならば、スキップインデックスを除いた動き予測に係わるシンタックスを送らない。該スキップインデックスは、周辺ブロックの候補に構成されたリストのうち選択された候補の位置を意味する。該周辺ブロックから候補情報として持ってくる情報は、参照方向、参照ピクチャインデックス、動きベクトル予測値などがある。
【0093】
マージフラグは、予測単位呼び出し時、開始部分に位置して現在ブロックの予測単位ブロックがマージモードであるか否かということの情報を表示する。もしマージモードであるならば、ビデオ符号化装置10は、マージインデックスを送り、動きベクトル差分、予測方向、参照ピクチャインデックスに係わるシンタックスを送らない。マージインデックスは、周辺ブロックの候補に構成されたリストで選択された候補を示す。候補ブロックから候補情報として持ってくる情報は、参照方向、参照ピクチャインデックス、動きベクトル予測値などがある。
【0094】
AMVPモードにおいて、ビデオ符号化装置10は、動きベクトルと予測動きベクトルとの差分値であるMVDをビデオ復号装置20に伝送する。AMVPモードであることで決まれば、ビデオ復号装置20は、AMVPフラグ、動きベクトル差分、予測方向、参照ピクチャインデックスに係わるシンタックスを共に受けることができる。AMVPフラグは、周辺ブロックの候補に構成された2つの候補のうち1個を決定する。
【0095】
復号部24は、ビットストリームからパージングされた映像のシンボルを利用して、映像を復号することができる。ビデオ復号装置20が、ツリー構造の符号化単位を基に符号化されたストリームを受信するならば、復号部24は、ストリームの最大符号化単位ごとに、ツリー構造の符号化単位を基に復号を行うことができる。最大符号化単位に係わる内容は、
図8で説明する。
【0096】
復号部24は、最大符号化単位ごとにエントロピー復号を行い、符号化情報と符号化されたデータとを獲得することができる。復号部24は、ストリームから獲得した符号化されたデータに対して、逆量子化、逆変換を行い、レジデントデュアル成分を復元することができる。また、復号部24は、量子化された変換係数のビットストリームを直接受信することもできる。量子化された変換係数に対して、逆量子化、逆変換を行った結果、映像のレジデュアル成分が復元されもする。
【0097】
復号部24は、現在ブロックに最も類似した予測ブロックの動き情報に基づいて、予測ブロックを生成することができる。ここで、該動き情報は、予測ブロックのモーションベクトル、参照ピクチャインデックスを含んでもよい。復号部24は、予測ブロックと原本ブロックとの差であるレジデュアル成分を予測ブロックに加え、映像を復元することができる。
【0098】
ビデオ復号装置20は、決定部22及び復号部24を総括的に制御する中央プロセッサ(図示せず)を含んでもよい。該中央プロセッサ(図示せず)は、多数の論理ゲートのアレイによって具現され、汎用的なマイクロプロセッサと、そのマイクロプロセッサで実行されるプログラムが保存されたメモリとの組み合わせによって具現されもする。また、該中央プロセッサ(図示せず)は、他形態のハードウェアによっても具現されるということは、本実施形態が属する技術分野で当業者であるならば、理解することができるであろう。または、決定部22及び復号部24が、それぞれの自体プロセッサ(図示せず)によって作動し、プロセッサ(図示せず)が相互有機的に作動することにより、ビデオ復号装置20が全体的に動作されもする。または、ビデオ復号装置20の外部プロセッサ(図示せず)の制御によって、決定部22及び復号部24が制御されもする。
【0099】
ビデオ復号装置20は、決定部22及び復号部24の入出力データが保存される1以上のメモリ(図示せず)を含んでもよい。ビデオ復号装置20は、メモリのデータ入出力を制御するメモリ制御部(図示せず)を含んでもよい。
【0100】
以下では、ビデオ復号装置20が遂行する多様な動作や応用について説明するが、決定部22及び復号部24のうちいずれの構成を特定しないとしても、本発明の技術分野に係わる当業者が明確に理解して予想することができるほどの内容は、通常の具現と理解され、本発明の権利範囲は、特定の構成の名称や物理的/論理的構造によって制限されるものではない。以下、ビデオ復号装置20の動作について、
図4を参照して説明する。
【0101】
図4は、一実施形態によるビデオ復号方法のフローチャートである。
図4の段階S21において、ビデオ復号装置20は、ビットストリームから、現在ブロックの予測モード情報、及び予測候補を示すインデックスを決定することができる。該予測モードは、スキップモード、マージモード、AMVPモードを含んでもよいが、それらに限定されるものではない。
【0102】
段階S23において、ビデオ復号装置20は、予測モード情報によって、予測子候補リストを決定することができる。
【0103】
段階S25において、現在ブロックの予測モード情報が既設定予測モードを示せば、ビデオ復号装置20は、予測子候補リストのうちインデックスが示す動きベクトルを決定し、動きベクトルに係わる動き予測情報のうち少なくとも一つに基づいて、予測動きベクトルを決定することができる。
【0104】
該動きベクトルに係わる動き予測情報は、現在ブロックの周辺ブロックから獲得された参照方向、参照ピクチャのインデックス、動きベクトルの値、及び動きベクトル差分値情報のうち少なくとも一つを含んでもよいが、それらに限定されるものではない。ビデオ復号装置20は、参照方向、参照ピクチャのインデックス、動きベクトルの値、及び動きベクトル差分値情報を組み合わせたり変移させたりし、現在ブロックの予測動きベクトルを決定することができる。
【0105】
該既設定予測モードは、スキップモード及びマージモードと異なる予測モードでもある。該既設定予測モードによる予測子候補リストは、基本動きベクトルにおいて、一定距離にある候補を予測動きベクトル候補に含んでもよい。外基本動きベクトルは、現在ブロックのスキップモードまたはマージモードで使用される予測動きベクトル候補のうち一つでもある。
【0106】
一方、ビデオ復号装置20は、基本動きベクトルから派生した予測動きベクトル候補を、一定距離に基づいてグルーピングすることができる。具体的には、ビデオ復号装置20は、基本動きベクトルにおいて、第1画素距離にある予測動きベクトル候補を、第1候補グループと決定し、基本動きベクトルにおいて、第2画素距離にある予測動きベクトル候補を、第2候補グループと決定することができる。
【0107】
ビデオ復号装置20は、第1候補グループ及び第2候補グループのうち予測動きベクトルが属したグループを、ビットストリームから獲得した候補インデックスと決定することができる。
【0108】
段階S27において、ビデオ復号装置20は、予測動きベクトルに基づいて、現在ブロックの動きベクトルを決定することができる。ビデオ復号装置20は、現在ブロックの動きベクトルに基づいて、現在ブロックの動き補償を行うことができる。
【0109】
ビデオ復号装置20は、予測動きベクトルと原動きベクトルとの差値に係わる情報を抽出した後、該差値と予測動きベクトルとを加算し、現在ブロックの動きベクトルを復元することができる。
【0110】
ビデオ復号装置20は、ビデオ復号を介してビデオを復元するために、内部に搭載されたビデオデコーディングプロセッサまたは外部ビデオデコーディングプロセッサと連繋して作動することにより、ビデオ復号動作を遂行することができる。ビデオ復号装置20の内部ビデオデコーディングプロセッサは、別個のプロセッサだけではなく、ビデオ復号装置20、または中央演算装置、グラフィック演算装置がビデオデコーディングプロセッシングモジュールを含むことにより、基本的なビデオ復号動作を具現する場合も含んでもよい。
【0111】
図5Aないし
図5Dは、一実施形態によって、予測動きベクトル候補を決定する過程について説明するための図面である。
【0112】
一開示によって、現在ブロックの予測モードが、スキップモード、マージモード及びAMVPモードと異なる既設定予測モードである場合、ビデオ復号装置20は、基本動きベクトルを利用して、予測動きベクトル候補を決定することができる。ここで、該基本動きベクトルは、現在ブロックのスキップモードまたはマージモードで使用される予測動きベクトル候補のうち一つでもある。該基本動きベクトルは、スキップモードまたはマージモード以外の所定の予測モードで使用されるベクトル候補のうち一つでもある。
【0113】
また、基本動きベクトルは、現在符号化しているピクチャのコーディングされたブロックの動きベクトルから決定されるか、あるいは時間的に現在ピクチャが参照することができるピクチャのコーディングされたブロックの動きベクトルから決定される。例えば、該基本動きベクトルは、現在ブロックのスキップモードまたはマージモードで使用される予測動きベクトル候補のうち一つでもある。
【0114】
また、該基本動きベクトルは、基本動きベクトル間の演算を介しても決定される。
【0115】
また、該基本動きベクトルは、第1予測モードにおいて、予測候補が動きベクトル情報を含んでいるならば、ビデオ復号装置20は、動きベクトル情報を基本動きベクトルとして決定することができる。
【0116】
図5Aないし
図5Dを参照すれば、ビデオ復号装置20は、予測動きベクトル候補構成において、螺旋分布の動きベクトルを決定することができる。該螺旋分布の形態は、菱形、四角形などのN角形、または円形と類似した形態にもなる。
【0117】
ビデオ復号装置20は、基本動きベクトルにおいて一定距離にある候補を予測動きベクトル候補に決定することができる。ビデオ復号装置20は、基本動きベクトルにおいて、第1画素距離にある予測動きベクトル候補を、第1候補グループと決定し、第2画素距離にある予測動きベクトル候補を、第2候補グループと決定し、第n画素距離にある予測動きベクトル候補を、第n候補グループと決定することができる。ここで、ビデオ復号装置20は、基本動きベクトルで最も近い予測動きベクトル候補を、第1候補グループ、その次に近い予測動きベクトル候補を、第2候補グループと決定することができ、画素距離が増大するにつれ、候補グループ番号が順番通り増大する。
【0118】
該画素距離は、1/4画素単位を1と仮定するとき、候補グループ番号が増大するにつれ、画素距離間隔は、ログスケール間隔または非線形間隔などに決定される。また、ユーザの定義によって、画素距離の間隔が決定される。
【0119】
各候補グループ内の予測動きベクトル候補の数は、1、2、3、…M個まで決定される。
【0120】
図5A及び
図5Bは、各候補グループ内の予測動きベクトル候補の数が4であるとき(M=4)について説明する。ここで、該候補グループは、3個のグループであるときとして、例を挙げるが、それに限定されるものではない。
【0121】
図5Aを参照すれば、ビデオ復号装置20は、基本動きベクトルを基準に、菱形状の分布を有する予測動きベクトル候補を決定することができる。各画素間の間隔が、1/4画素距離であるが、以下、ベクトル候補の成分値を、便宜上4倍スケーリングして表示する。
【0122】
ビデオ復号装置20は、基本動きベクトル(base_x,base_y)501から、1/4画素の距離にある予測動きベクトル候補((base_x+1,base_y)502、(base_x-1,base_y)503、(base_x,base_y+1)504、(base_x,base_y-1)505)を第1候補グループと決定することができる。
【0123】
ビデオ復号装置20は、基本動きベクトル(base_x,base_y)501から、1/2画素の距離にある予測動きベクトル候補((base_x+2,base_y)506、(base_x-2,base_y)507、(base_x,base_y+2)508、(base_x,base_y-2)509)を第2候補グループと決定することができる。
【0124】
ビデオ復号装置20は、基本動きベクトル(base_x,base_y)501から1画素の距離にある予測動きベクトル候補((base_x+4,base_y)510、(base_x-4,base_y)511、(base_x,base_y+4)512、(base_x,base_y-4)513)を第3候補グループと決定することができる。
【0125】
図5Bを参照すれば、ビデオ復号装置20は、基本動きベクトルを基準に、四角形状の分布を有する予測動きベクトル候補を決定することができる。各画素間の間隔が1/4画素距離であるが、以下、ベクトル候補の成分値を、便宜上4倍スケーリングして表示する。
【0126】
同様に、ビデオ復号装置20は、基本動きベクトル(base_x,base_y)501から約1/4画素の距離にある予測動きベクトル候補((base_x+1,base_y+1)521、(base_x+1,base_y-1)522、(base_x-1,base_y+1)523、(base_x-1,base_y-1)524)を第1候補グループと決定することができる。
【0127】
ビデオ復号装置20は、基本動きベクトル(base_x,base_y)501から約1/2画素の距離にある予測動きベクトル候補((base_x+2,base_y+2)525、(base_x+2,base_y-2)526、(base_x-2,base_y+2)527、(base_x-2,base_y-2)528)を第2候補グループと決定することができる。
【0128】
ビデオ復号装置20は、基本動きベクトル(base_x,base_y)501から約1画素の距離にある予測動きベクトル候補((base_x+4,base_y+4)529、(base_x+4,base_y-4)530、(base_x-4,base_y+4)531、(base_x-4,base_y-4)532)を第3候補グループと決定することができる。
【0129】
図5Cを参照すれば、ビデオ復号装置20は、各グループを、異なる個数の予測動きベクトル候補と決定することができる。各画素間の間隔が1/4画素距離であるが、以下、ベクトル候補の成分値を、便宜上4倍スケーリングして表示する。
【0130】
具体的には、ビデオ復号装置20は、基本動きベクトルから約1/4画素の距離にある8個の予測動きベクトル候補((base_x+1,base_y)502、(base_x-1,base_y)503、(base_x,base_y+1)504、(base_x,base_y-1)505、(base_x+1,base_y+1)521、(base_x+1,base_y-1)522、(base_x-1,base_y+1)523、(base_x-1,base_y-1)524)を第1候補グループと決定することができる。
【0131】
また、ビデオ復号装置20は、基本動きベクトルから約1/2画素の距離にある8個の予測動きベクトル候補((base_x+2,base_y)506、(base_x-2,base_y)507、(base_x,base_y+2)508、(base_x,base_y-2)509、(base_x+2,base_y+2)525、(base_x+2,base_y-2)526、(base_x-2,base_y+2)527、(base_x-2,base_y-2)528)を第2候補グループと決定することができる。
【0132】
ビデオ復号装置20は、基本動きベクトルから約1画素の距離にある4個の予測動きベクトル候補((base_x+4,base_y)510、(base_x-4,base_y)511、(base_x,base_y+4)512、(base_x,base_y-4)513)を第3候補グループと決定することができる。
【0133】
図5Dを参照すれば、ビデオ復号装置20は、予測動きベクトル候補を、候補グループ別に決定することができ、各候補グループの分布形態を多様に決定することができる。具体的には、ビデオ復号装置20は、基本動きベクトル501を基準に、菱形状の分布を有する予測動きベクトル候補502,503,504,505を第1候補グループと決定することができる。また、ビデオ復号装置20は、基本動きベクトル501を基準に、四角形状の分布を有する予測動きベクトル候補525,526,527,528を第2候補グループと決定することができる。また、ビデオ復号装置20は、基本動きベクトル501を基準に、菱形状の分布を有する予測動きベクトル候補510,511,512,513を、第3候補グループと決定することができる。
図5Dに図示されているように、各候補グループの予測動きベクトル候補の分布は、
図5Dに図示された分布形態以外に、多様な分布形態でもっても決定される。
【0134】
ビデオ復号装置20は、1以上の基本動きベクトルを決定することができる。もし基本動きベクトルが二つであるならば、基本動きベクトルそれぞれを利用して、予測動きベクトル候補が生成されもする。
【0135】
ビデオ復号装置20は、双方向動き予測が可能である。もし基本動きベクトルが、List 0とList 1とにある参照ピクチャを利用して双方向予測によって遂行されるならば、各参照方向の動きベクトルは、反対符号の大きさに変化される。
【0136】
例えば、現在復号されるピクチャのPOCが、2つの予測参照ピクチャPOC間に存在(List 0にある参照ピクチャのPOC<現在復号ピクチャのPOC<List 1にある参照ピクチャのPOC)するならば、ビデオ復号装置20が、現在復号ピクチャにおいて、基本動きベクトルにおいて、List 0にある参照ピクチャを示す予測動きベクトル候補を(x+1,y)で決定すれば、基本動きベクトルにおいて、List 1にある参照ピクチャを示す予測動きベクトル候補を(x-1,y)と決定することができる。ここで、List 0動きベクトルとList 1動きベクトルは、基本動きベクトルのx成分値またはy成分値が反対符号の変化量ほど移動されたベクトルでもある。例えば、基本動きベクトル(x,y)から、x成分が+1、-1ほど変化し、L0動きベクトルは、(x+1)と決定され、L1動きベクトルは、(x-1,y)と決定される。
【0137】
現在復号されるピクチャのPOCが、List 0にある参照ピクチャと、List 1にある参照ピクチャとのPOC間に存在しないのであるならば、List 0及びList 1にある参照ピクチャを示す予測動きベクトル候補は、同一であるか、あるいは異なる符号の大きさに変化する。
【0138】
図6Aないし
図6Cは、一実施形態による、既存の予測子候補リストに、既設定予測モード情報が挿入される場合、ビット表現方法について説明するための図面である。すなわち、スキップモードまたはマージモードにおいて、5個のインデックスのうち一つを利用し、て既設定予測モードの使用を表示する例について説明するための図面である。
【0139】
もしスキップモードまたはマージモードが5個の候補を使用しており、既設定予測モードの表示のために、1個のインデックスを追加して使用するとき、スキップモードまたはマージモードは、総6個の候補を使用することができる。ビデオ復号装置20においては、スキップモードまたはマージモードのインデックスをパージングするとき、既設定予測モードの使用によって約束されたインデックス情報が獲得されれば、既設定予測モードが使用されたと把握し、予測動きベクトル候補のインデックスを追加してパージングすることができる。その場合、それぞれのシーケンス、ピクチャ、スライスごとに、いかなるスキップモードまたはいかなるマージモードのインデックスが、既設定予測モードの使用を知らせるかということは、上位レベルでパージングされた情報で解釈することができる。上位レベルの例として、ヘッダ情報を有することができる。ビデオ符号化装置10は、それぞれのシーケンス、ピクチャ、スライスごとに、いかなるスキップモードまたはいかなるマージモードのインデックスが既設定予測モードの使用情報として表示されるかということを決定することができる。
【0140】
一開示によれば、ビデオ符号化装置10は、既設定予測モードの使用を知らせるインデックスと、スキップモードまたはマージモードの既存候補のインデックスとのヒット率(hit ratio)情報を統計的に累積し、シーケンス単位、ピクチャ単位またはスライス単位で適応的に順序を決定することができる。既設定予測モードの使用を知らせるインデックスは、次のピクチャまたはスライスのヘッダに明示的にシグナリング(signaling)可能である。従って、ビデオ復号装置20は、ピクチャまたはスライスのヘッダで獲得した情報により、どのインデックスが既設定予測モードの使用を知らせるかということを解釈することができる。
【0141】
図6Aは、5個のスキップモードまたはマージモードの予測動きベクトル候補のインデクシング方法を切削型単項(truncated unary)方法で表現したものである。
【0142】
図6Bは、既設定予測モードの予測モード情報が、既存インデックスリストに挿入可能な位置について説明するための図面である。該既存インデックスリストは、予測モードの予測モード情報が、インデックスリストに挿入される前のリストを意味する。例えば、該既存インデックスリストは、スキップモードまたはマージモードの候補を示すインデックスリストでもある。既設定予測モードの予測モード情報は、1つの候補形態でインデックスリストに挿入可能である。
図6Bに図示されているように、既存インデックスリストにおいて、既設定予測モードの予測モード情報が挿入されうる位置は、6個の位置601,602,603,604,605,606が可能である。
【0143】
図6Cは、既設定予測モードの予測モード情報が、既存インデックスリストにおいて、IDX3に挿入されたときの表現ビットの変化について説明するための図面である。
図6Cに図示されているように、既設定予測モードの予測モード情報が、IDX2後に挿入されれば、切削型単項方法によって、予測モード情報のインデックス610は、1110と表現され、それ以前のIDX3及びIDX4は、1ビットずつ増えたビットによって表現される。
【0144】
図7は、一実施形態によって、予測動きベクトルのビット表現方法について説明するための図面である。
【0145】
ビデオ符号化装置10は、予測動きベクトル候補の絶対的位置をシグナリングするのではなく、一定基準によって生成された予測動きベクトル候補をインデックス化して伝送することができる。例えば、予測動きベクトル候補の絶対的位置シグナリングは、基本動きベクトルと予測動きベクトル候補との差を伝送することを意味することができ、一定基準は、螺旋分布において、予測動きベクトル候補を選定することでもある。
図7に図示されているように、いかなる予測動きベクトル候補が使用されたかというをビットで表現することができる。
【0146】
図7を参照すれば、NIDXは、いかなる基本動きベクトルを使用したかということに係わる情報である。具体的には、第1基本動きベクトルの情報は、IDX0に割り当てられ、第2基本動きベクトルの情報は、IDX1に割り当てられる。各基本動きベクトルの情報をいずれのNIDXに割り当てるかということは、予測動きベクトルに係わる基本動きベクトルに採択された頻度によって決定される。各基本動きベクトルのインデックス情報は、
図7の701のようにビットによって表現されもする。
【0147】
また、同一基本動きベクトルから派生した予測動きベクトル候補は、一定基準によって候補グループにグルーピングされもする。ここで、該一定基準は、基本動きベクトルにおいて、同一画素距離にある候補を予測動きベクトル候補に決定する基準にもなる。グルーピングされた各グループに係わるインデックス情報は、
図7の702のように、ビットで表現されもする。
【0148】
既設定予測モードのインデックスがIDX3と定義される場合、IDX3において、基本動きベクトルから派生した予測動きベクトル候補は、NIDXと表現されもする。また、それぞれのNIDXは、基本動きベクトルに基づいた予測動きベクトル候補をグループ別に含んでもよい。NIDXの表現は、固定長符号化(FLC:fixed length coding)方法を使用するか、あるいは切削型単項方法を使用することができる。
【0149】
図7の場合、切削型単項方法で表現した例示である。NIDXの情報は、切削型単項方法によって表示され、予測動きベクトルがいずれのグループに含まれているかということを示すことができる。基本動きベクトルに係わる各候補グループの表現も、固定長符号化(FLC)方法を使用するか、あるいは切削型単項方法を使用して示すことができる。
【0150】
予測動きベクトルに係わる各候補グループを切削型単項で表現するとき、ピクチャ単位やスライス単位において、適応的に異なるビット表現で示すことができる。例えば、ビデオ符号化装置10において、累積グループ別ヒット率を求めた結果、第3候補グループにある候補が、予測動きベクトルに最も多く選択されたとすれば、次のピクチャやスライスのヘッダに該情報をシグナリングし、第3候補グループを最も短いビット表現「0」で表現する。
【0151】
その場合、次のピクチャやスライスのヘッダにシグナリングする方法は、最も多く選択される候補グループのインデックスを送る方法でも可能である。例えば、最も多く選択されるグループの順序が、次の通りであると仮定する。
【0152】
第3候補グループ>第2候補グループ>第4候補グループ>第1候補グループ>第5候補グループ>第0候補グループ>第6候補グループ>第7候補グループ
例えば、上位3個の情報を送るためには、3ビット(総8個の候補)ずつ3個であり、全てのピクチャ単位またはスライス単位において、9ビットの表現情報が必要である。発生頻度が高いと予想される上位3個の候補グループ情報を送るとすれば、第3候補グループの表現ビットである「011」、第2候補グループの表現ビットである「010」、第4候補グループの表現ビットである「100」がそれぞれシグナリングされることになる。
【0153】
一方、候補グループ情報をシグナリングし、候補グループ内の4個候補のうちいかなる候補であるかということを示すことができるビット表現が必要である。
図7の703を参照すれば、4方位概念で存在する候補を2個以上のグループに分け、CABACコンテクストモデル(context-based adaptive binary arithmetic coding context model)を適用することができる。横成分候補と縦成分候補とをそれぞれ2個ずつ2個のグループに分けたフラグに、コンテクストモデル(context model)が適用されもする。
図7の704を参照すれば、フラグパージング後には、2個のうちいずれの候補を使用するかということを決定するフラグも、コンテクストモデルが適用されもする。
【0154】
一実施形態によるビデオ符号化装置10、及び一実施形態によるビデオ復号装置20において、ビデオデータが分割されるブロックが最大符号化単位に分割され、最大符号化単位ごとに、ツリー構造の符号化単位を基に符号化/復号される。以下、
図8ないし20を参照し、多様な実施形態による、ツリー構造の符号化単位及び変換単位に基づいたビデオ符号化方法及びその装置、ビデオ復号方法及びその装置が開示される。
【0155】
図8は、本発明の一実施形態による、ツリー構造による符号化単位に基づいたビデオ符号化装置800のブロック図を図示している。
【0156】
一実施形態による、ツリー構造による符号化単位に基づいたビデオ予測を伴うビデオ符号化装置800は、符号化単位決定部820及び出力部830を含む。以下、説明の便宜のために、一実施形態による、ツリー構造による符号化単位に基づいたビデオ予測を伴うビデオ符号化装置800は、「ビデオ符号化装置800」と縮約して指称する。
【0157】
符号化単位決定部820は、映像の現在ピクチャのための最大サイズの符号化単位である最大符号化単位に基づいて、現在ピクチャを区画することができる。現在ピクチャが最大符号化単位より大きければ、現在ピクチャの映像データは、少なくとも1つの最大符号化単位に分割されもする。一実施形態による最大符号化単位は、サイズ32x32,64x64,128x128,256x256などのデータ単位であり、縦横サイズが2の自乗である正方形のデータ単位でもある。
【0158】
一実施形態による符号化単位は、最大サイズ及び深度で特徴づけられる。深度とは、最大符号化単位から符号化単位が空間的に分割された回数を示し、深度が深くなるほど、深度別符号化単位は、最大符号化単位から最小符号化単位まで分割されもする。最大符号化単位の深度が最上位深度であり、最小符号化単位が最下位符号化単位と定義されもする。最大符号化単位は、深度が深くなるにつれ、深度別符号化単位の大きさは、小さくなるので、上位深度の符号化単位は、複数個の下位深度の符号化単位を含んでもよい。
【0159】
前述のように、符号化単位の最大サイズによって、現在ピクチャの映像データを最大符号化単位に分割し、それぞれの最大符号化単位は、深度別に分割される符号化単位を含んでもよい。一実施形態による最大符号化単位は、深度別に分割されるので、最大符号化単位に含まれた空間領域(spatial domain)の映像データが深度によって階層的に分類されもする。
【0160】
最大符号化単位の高さ及び幅を階層的に分割することができる総回数を制限する最大深度及び符号化単位の最大サイズがあらかじめ設定されている。
【0161】
符号化単位決定部820は、深度ごとに、最大符号化単位の領域が分割された少なくとも1つの分割領域を符号化し、少なくとも1つの分割領域別に最終符号化結果が出力される深度を決定する。すなわち、符号化単位決定部820は、現在ピクチャの最大符号化単位ごとに、深度別符号化単位で映像データを符号化し、最小符号化誤差が発生する深度を選択し、最終深度と決定する。決定された最終深度及び最大符号化単位別映像データは、出力部830に出力される。
【0162】
最大符号化単位内の映像データは、最大深度以下の少なくとも1つの深度によって、深度別符号化単位に基づいて符号化され、それぞれの深度別符号化単位に基づいた符号化結果が比較される。深度別符号化単位の符号化誤差の比較結果、符号化誤差が最小である深度が選択される。それぞれの最大化符号化単位ごとに、少なくとも1つの最終深度が決定される。
【0163】
最大符号化単位の大きさは、深度が深くなるにつれ、符号化単位が階層的に分割されて分割され、符号化単位の個数は増加する。また、1つの最大符号化単位に含まれる同一深度の符号化単位であるとしても、それぞれのデータに係わる符号化誤差を測定し、下位深度への分割いかんが決定される。従って、1つの最大符号化単位に含まれるデータであるとしても、位置によって、深度別符号化誤差が異なるので、位置によって、最終深度が異なって決定される。従って、1つの最大符号化単位に対して、最終深度が1以上設定され、最大符号化単位のデータは、1以上の最終深度の符号化単位によって区画される。
【0164】
従って、一実施形態による符号化単位決定部820は、現在最大符号化単位に含まれる、ツリー構造による符号化単位が決定される。一実施形態による「ツリー構造による符号化単位」は、現在最大符号化単位に含まれる全ての深度別符号化単位において、最終深度と決定された深度の符号化単位を含む。最終深度の符号化単位は、最大符号化単位内において、同一領域では、深度によって階層的に決定され、他の領域については、独立して決定される。同様に、現在領域に係わる最終深度は、他の領域に係わる最終深度と独立して決定される。
【0165】
一実施形態による最大深度は、最大符号化単位から最小符号化単位までの分割回数に係わる指標である。一実施形態による第1最大深度は、最大符号化単位から最小符号化単位までの総分割回数を示すことができる。一実施形態による第2最大深度は、最大符号化単位から最小符号化単位までの深度レベルの総個数を示すことができる。例えば、最大符号化単位の深度が0であるとするとき、最大符号化単位が1回分割された符号化単位の深度は、1に設定され、2回分割された符号化単位の深度は、2に設定される。その場合、最大符号化単位から4回分割された符号化単位が最小符号化単位であるならば、深度0,1,2,3及び4の深度レベルが存在するので、第1最大深度は4と設定され、第2最大深度は、5と設定される。
【0166】
最大符号化単位の予測符号化及び変換も行われる。予測符号化及び変換も同様に、最大符号化単位ごとに、最大深度以下の深度ごとに、深度別符号化単位を基に行われる。
【0167】
最大符号化単位が深度別に分割されるたびに、深度別符号化単位の個数が増加するので、深度が深くなるにつれて生成される全ての深度別符号化単位に対して、予測符号化及び変換を含んだ符号化が行われなければならない。以下、説明の便宜のために、少なくとも1つの最大符号化単位のうち現在深度の符号化単位を基に、予測符号化及び変換について説明する。
【0168】
一実施形態によるビデオ符号化装置800は、映像データの符号化のためのデータ単位の大きさまたは形態を多様に選択することができる。映像データの符号化のためには、予測符号化、変換、エントロピー符号化などの段階を経るが、全ての段階にわたって同一データ単位が使用されもし、段階別にデータ単位が変更されもする。
【0169】
例えば、ビデオ符号化装置800は、映像データの符号化のための符号化単位だけではなく、符号化単位の映像データの予測符号化を行うために、符号化単位と異なるデータ単位を選択することができる。
【0170】
最大符号化単位の予測符号化のためには、一実施形態による最終深度の符号化単位、すなわち、それ以上さらに分割されない符号化単位を基に予測符号化が行われる。以下、予測符号化の基盤になる、それ以上さらに分割されない符号化単位を「予測単位」とする。予測単位が分割されたパーティションは、予測単位、並びに予測単位の高さ及び幅のうち少なくとも一つが分割されたデータ単位を含んでもよい。パーティションは、符号化単位の予測単位が分割された形態のデータ単位であり、予測単位は、符号化単位と同一サイズのパーティションでもある。
【0171】
例えば、サイズ2Nx2N(ただし、Nは、正の整数)の符号化単位が、それ以上分割されない場合、サイズ2Nx2Nの予測単位になり、パーティションの大きさは、2Nx2N、2NxN、Nx2N、NxNなどでもある。一実施形態によるパーティションモードは、予測単位の高さまたは幅が対称的な比率に分割された対称的パーティションだけではなく、1:nまたはn:1のように、非対称的な比率に分割されたパーティション、幾何学的な形態に分割されたパーティション、任意的形態のパーティションなどを選択的に含んでもよい。
【0172】
予測単位の予測モードは、イントラモード、インターモード及びスキップモードのうち少なくとも一つでもある。例えば、イントラモード及びインターモードは、2Nx2N,2NxN,Nx2N,NxNサイズのパーティションに対して行われる。また、スキップモードは、2Nx2Nサイズのパーティションに対してのみ行われる。符号化単位以内の1つの予測単位ごとに独立して符号化が行われ、符号化誤差が最小である予測モードが選択される。
【0173】
また、一実施形態によるビデオ符号化装置800は、映像データの符号化のための符号化単位だけではなく、符号化単位と異なるデータ単位を基に、符号化単位の映像データの変換を行うことができる。符号化単位の変換のためには、符号化単位より小さいか、あるいはそれと同じ大きさの変換単位を基に変換が行われる。例えば、該変換単位は、イントラモードのためのデータ単位、及びインターモードのための変換単位を含んでもよい。
【0174】
一実施形態による、ツリー構造による符号化単位と類似した方式により、符号化単位内の変換単位も、再帰的にさらに小サイズの変換単位に分割されながら、符号化単位のレジデュアルデータが、変換深度によって、ツリー構造による変換単位によって区画される。
【0175】
一実施形態による変換単位についても、符号化単位の高さ及び幅が分割され、変換単位に至るまでの分割回数を示す変換深度が設定される。例えば、サイズ2Nx2Nの現在符号化単位の変換単位の大きさが2Nx2Nであるならば、変換深度0に設定され、変換単位の大きさがNxNであるならば、変換深度1に設定され、変換単位の大きさがN/2xN/2であるならば、変換深度2に設定される。すなわち、変換単位についても、変換深度によって、ツリー構造による変換単位が設定される。
【0176】
深度別分割情報は、深度だけではなく、予測関連情報及び変換関連情報が必要である。従って、符号化単位決定部820は、最小符号化誤差を発生させた深度だけではなく、予測単位をパーティションに分割したパーティションモード、予測単位別予測モード、変換のための変換単位の大きさなどを決定することができる。
【0177】
一実施形態による最大符号化単位のツリー構造による符号化単位及び予測単位/パーティション、並びに変換単位の決定方式については、
図17ないし
図19を参照して詳細に説明する。
【0178】
符号化単位決定部820は、深度別符号化単位の符号化誤差を、ラグランジュ乗数(Lagrangian multiplier)基盤の率歪曲最適化技法(rate-distortion optimization)を利用して測定することができる。
【0179】
出力部830は、符号化単位決定部820で決定された少なくとも1つの深度に基づいて符号化された最大符号化単位の映像データ及び深度別分割情報を、ビットストリーム形態で出力する。
【0180】
符号化された映像データは、映像のレジデュアルデータの符号化結果でもある。
【0181】
深度別分割情報は、深度情報、予測単位のパーティションモード情報、予測モード情報、変換単位の分割情報などを含んでもよい。
【0182】
最終深度情報は、現在深度で符号化せず、下位深度の符号化単位で符号化するか否かということを示す深度別分割情報を利用して定義される。現在符号化単位の現在深度が深度であるならば、現在符号化単位は、現在深度の符号化単位で符号化されるので、現在深度の分割情報は、それ以上下位深度に分割されないように定義される。反対に、現在符号化単位の現在深度が深度ではないならば、下位深度の符号化単位を利用した符号化を試みなければならないので、現在深度の分割情報は、下位深度の符号化単位に分割されるように定義される。
【0183】
現在深度が深度ではないならば、下位深度の符号化単位に分割された符号化単位に対して符号化が行われる。現在深度の符号化単位内に、下位深度の符号化単位が1以上存在するので、それぞれの下位深度の符号化単位ごとに反復的に符号化が行われ、同一深度の符号化単位ごとに、再帰的(recursive)符号化が行われる。
【0184】
1つの最大符号化単位内で、ツリー構造の符号化単位が決定され、深度の符号化単位ごとに、少なくとも1つの分割情報が決定されなければならないので、1つの最大符号化単位については、少なくとも1つの分割情報が決定される。また、最大符号化単位のデータは、深度によって階層的に区画され、位置別に深度が異なるので、データについて、深度及び分割情報が設定される。
【0185】
従って、一実施形態による出力部830は、最大符号化単位に含まれている符号化単位、予測単位及び最小単位のうち少なくとも一つに対して、当該深度及び符号化モードについての符号化情報が割り当てられる。
【0186】
一実施形態による最小単位は、最下位深度である最小符号化単位が4分割された大きさの正方形のデータ単位である。一実施形態による最小単位は、最大符号化単位に含まれる全ての符号化単位内、予測単位内、パーティション単位内及び変換単位内に含まれる最大サイズの正方形データ単位でもある。
【0187】
例えば、出力部830を介して出力される符号化情報は、深度別符号化単位別符号化情報と予測単位別符号化情報とに分類される。該深度別符号化単位別符号化情報は、予測モード情報、パーティションサイズ情報を含んでもよい。予測単位別に伝送される符号化情報は、インターモードの推定方向に係わる情報、インターモードの参照映像インデックスに係わる情報、動きベクトルに係わる情報、イントラモードのクロマ成分に係わる情報、イントラモードの補間方式に係わる情報などを含んでもよい。
【0188】
ピクチャ別、スライス別またはGOP別に定義される符号化単位の最大サイズに係わる情報、及び最大深度に係わる情報は、ビットストリームのヘッダ、シーケンスパラメーターセットまたはピクチャパラメーターセットなどに挿入される。
【0189】
また、現在ビデオに対して許容される変換単位の最大サイズに係わる情報、及び変換単位の最小大きさに係わる情報も、ビットストリームのヘッダ、シーケンスパラメーターセットまたはピクチャパラメーターセットなどを介して出力される。出力部830は、予測に係わる参照情報、予測情報、スライスタイプ情報などを符号化して出力することができる。
【0190】
ビデオ符号化装置800の最も簡単な形態の実施形態によれば、深度別符号化単位は、1階層上位深度の符号化単位の高さ及び幅を半分にした大きさの符号化単位である。すなわち、現在深度の符号化単位の大きさが2Nx2Nであるならば、下位深度の符号化単位の大きさは、NxNである。また、2Nx2Nサイズの現在符号化単位は、NxNサイズの下位深度符号化単位を最大4個含んでもよい。
【0191】
従って、ビデオ符号化装置800は、現在ピクチャの特性を考慮して決定された最大符号化単位の大きさ及び最大深度を基に、それぞれの最大符号化単位ごとに、最適の形態及び大きさの符号化単位を決定し、ツリー構造による符号化単位を構成することができる。また、それぞれの最大符号化単位ごとに、多様な予測モード、変換方式などによって符号化することができるので、多様な映像サイズの符号化単位の映像特性を考慮し、最適の符号化モードが決定される。
【0192】
従って、映像の解像度が非常に高いか、あるいはデータ量が非常に多い映像を既存マクロブロック単位で符号化するならば、ピクチャ当たりマクロブロックの数が過度に多くなる。それによって、マクロブロックごとに生成される圧縮情報も多くなるので、圧縮情報の伝送負担が大きくなり、データ圧縮効率の低下するという傾向がある。従って、一実施形態によるビデオ符号化装置は、映像の大きさを考慮し、符号化単位の最大サイズを増大させながら、映像特性を考慮し、符号化単位を調節することができるので、映像圧縮効率が向上する。
【0193】
図9は、多様な実施形態による、ツリー構造による符号化単位に基づいたビデオ復号装置900のブロック図を図示している。
【0194】
一実施形態による、ツリー構造による符号化単位に基づいたビデオ予測を伴うビデオ復号装置900は、受信部910、映像データ及び符号化情報抽出部920、並びに映像データ復号部930を含む。以下、説明の便宜のために、一実施形態による、ツリー構造による符号化単位に基づいたビデオ予測を伴うビデオ復号装置900は、「ビデオ復号装置900」と縮約して指称する。
【0195】
一実施形態によるビデオ復号装置900の復号動作のための符号化単位、深度、予測単位、変換単位、各種分割情報など各種用語の定義は、
図8及びビデオ符号化装置800を参照して説明したところと同一である。
【0196】
受信部910は、符号化されたビデオに係わるビットストリームを受信してパージングする。映像データ及び符号化情報抽出部920は、パージングされたビットストリームから、最大符号化単位別に、ツリー構造による符号化単位によって、符号化単位ごとに符号化された映像データを抽出し、映像データ復号部930に出力する。映像データ及び符号化情報抽出部920は、現在ピクチャに係わるヘッダ、シーケンスパラメーターセットまたはピクチャパラメーターセットから、現在ピクチャの符号化単位の最大サイズに係わる情報を抽出することができる。
【0197】
また、映像データ及び符号化情報抽出部920は、パージングされたビットストリームから、最大符号化単位別に、ツリー構造による符号化単位に係わる最終深度及び分割情報を抽出する。抽出された最終深度及び分割情報は、映像データ復号部930に出力される。すなわち、ビット列の映像データを最大符号化単位に分割し、映像データ復号部930が最大符号化単位ごとに映像データを復号する。
【0198】
最大符号化単位別深度及び分割情報は、1以上の深度情報に対して設定され、深度別分割情報は、当該符号化単位のパーティションモード情報、予測モード情報及び変換単位の分割情報などを含んでもよい。また、該深度情報として、深度別分割情報が抽出される。
【0199】
映像データ及び符号化情報抽出部920が抽出した最大符号化単位別深度及び分割情報は、一実施形態によるビデオ符号化装置800のように、符号化端において、最大符号化単位別深度別符号化単位ごとに反復的に符号化を行い、最小符号化誤差を発生させると決定された深度及び分割情報である。従って、ビデオ復号装置900は、最小符号化誤差を発生させる符号化方式によってデータを復号し、映像を復元することができる。
【0200】
一実施形態による深度及び符号化モードについての符号化情報は、当該符号化単位、予測単位及び最小単位のうち所定データ単位に対して割り当てられているので、映像データ及び符号化情報抽出部920は、所定データ単位別に、深度及び分割情報を抽出することができる。所定データ単位別に、当該最大符号化単位の深度及び分割情報が記録されているならば、同一の深度及び分割情報を有している所定データ単位は、同一最大符号化単位に含まれるデータ単位と類推される。
【0201】
映像データ復号部930は、最大符号化単位別深度及び分割情報に基づいて、それぞれの最大符号化単位の映像データを復号し、現在ピクチャを復元する。すなわち、映像データ復号部930は、最大符号化単位に含まれるツリー構造による符号化単位において、それぞれの符号化単位ごとに、判読されたパーティションモード、予測モード、変換単位に基づいて、符号化された映像データを復号することができる。該復号過程は、イントラ予測及び動き補償を含む予測過程、及び逆変換過程を含んでもよい。
【0202】
映像データ復号部930は、深度別符号化単位の予測単位のパーティションモード情報及び予測モード情報に基づいて、符号化単位ごとに、それぞれのパーティション及び予測モードによって、イントラ予測または動き補償を行うことができる。
【0203】
また、映像データ復号部930は、最大符号化単位別逆変換のために、符号化単位別に、ツリー構造による変換単位情報を判読し、符号化単位ごとに、変換単位に基づいた逆変換を行うことができる。逆変換を介して、符号化単位の空間領域の画素値が復元される。
【0204】
映像データ復号部930は、深度別分割情報を利用して、現在最大符号化単位の深度を決定することができる。もし分割情報が現在深度において、それ以上分割されないということを示しているならば、現在深度である。従って、映像データ復号部930は、現在最大符号化単位の映像データに対して、現在深度の符号化単位を、予測単位のパーティションモード、予測モード及び変換単位サイズ情報を利用して復号することができる。
【0205】
すなわち、符号化単位、予測単位及び最小単位のうち所定データ単位に対して設定されている符号化情報を観察し、同一分割情報を含んだ符号化情報を保有しているデータ単位が集まり、映像データ復号部930によって、同一符号化モードで復号する1つのデータ単位と見なされる。かように決定された符号化単位ごとに、符号化モードに係わる情報を獲得し、現在符号化単位の復号が行われる。
【0206】
結局、ビデオ復号装置900は、符号化過程において、最大符号化単位ごとに再帰的に符号化を行い、最小符号化誤差を発生させた符号化単位に係わる情報を獲得し、現在ピクチャに対する復号に利用することができる。すなわち、最大符号化単位ごとに、最適符号化単位と決定されたツリー構造による符号化単位の符号化された映像データの復号が可能になる。
【0207】
従って、高い解像度の映像、またはデータ量が過度に多い映像でも、符号化端から伝送された最適分割情報を利用して、映像の特性に適応的に決定された符号化単位の大きさ及び符号化モードによって、効率的に映像データを復号して復元することができる。
【0208】
図10は、多様な実施形態による符号化単位の概念を図示している。
【0209】
符号化単位の例は、符号化単位の大きさは、幅x高さで表現され、サイズ64x64である符号化単位から、サイズ32x32,16x16,8x8を含んでもよい。サイズ64x64の符号化単位は、サイズ64x64,64x32,32x64,32x32のパーティションに分割され、サイズ32x32の符号化単位は、サイズ32x32,32x16,16x32,16x16のパーティションに分割され、サイズ16x16の符号化単位は、サイズ16x16,16x8,8x16,8x8のパーティションに分割され、サイズ8x8の符号化単位は、サイズ8x8,8x4,4x8,4x4のパーティションに分割される。
【0210】
ビデオデータ1010については、解像度が1920x1080に設定され、符号化単位の最大サイズが64に設定され、最大深度が2に設定されている。ビデオデータ1020については、解像度が1920x1080に設定され、符号化単位の最大サイズが64に設定され、最大深度が3に設定されている。ビデオデータ1030については、解像度が352x288に設定され、符号化単位の最大サイズが16に設定され、最大深度が1に設定されている。
図10に図示された最大深度は、最大符号化単位から最小符号化単位までの総分割回数を示す。
【0211】
解像度が高いか、あるいはデータ量が多い場合、符号化効率の向上だけではなく、映像特性を正確に反映させるために、符号化サイズの最大サイズが相対的に大きいことが望ましい。従って、ビデオデータ1030に比べ、解像度が高いビデオデータ1010,1020は、符号化サイズの最大サイズが64に選択される。
【0212】
ビデオデータ1010の最大深度が2であるので、ビデオデータ1010の符号化単位1015は、長軸サイズが64である最大符号化単位から、2回分割されて深度が2階層深くなり、長軸サイズが32,16である符号化単位まで含んでもよい。一方、ビデオデータ1030の最大深度が1であるので、ビデオデータ1030の符号化単位1035は、長軸サイズが16である符号化単位から、1回分割されて深度が1階層深くなり、長軸サイズが8である符号化単位まで含んでもよい。
【0213】
ビデオデータ1020の最大深度が3であるので、ビデオデータ1020の符号化単位1025は、長軸サイズが64である最大符号化単位から、3回分割されて深度が3階層深くなり、長軸サイズが32,16,8である符号化単位まで含んでもよい。深度が深くなるほど、細部情報の表現能が向上する。
【0214】
図11は、多様な実施形態による符号化単位に基づいたビデオ符号化部1100のブロック図を図示している。
【0215】
一実施形態によるビデオ符号化部1100は、ビデオ符号化装置800のピクチャ符号化部1520において、映像データを符号化するのに経る作業を遂行する。すなわち、イントラ予測部1120は、現在映像1105のうちイントラモードの符号化単位に対して、予測単位別にイントラ予測を行い、インター予測部1115は、インターモードの符号化単位に対して、予測単位別に、現在映像1105及び復元ピクチャバッファ1110で獲得された参照映像を利用して、インター予測を行う。現在映像1105は、最大符号化単位に分割された後、順次にエンコーディングが行われる。そのとき、最大符号化単位がツリー構造に分割される符号化単位に対して、エンコーディングが行われる。
【0216】
イントラ予測部1120またはインター予測部1115から出力された各モードの符号化単位に対する予測データを、現在映像1105のエンコーディングされる符号化単位に係わるデータから差し引くことにより、レジデューデータを生成し、レジデューデータは、変換部1125及び量子化部1130を経て、変換単位別に量子化された変換係数として出力される。量子化された変換係数は、逆量子化部1145、逆変換部1150を介して、空間領域のレジデューデータに復元される。復元された空間領域のレジデューデータは、イントラ予測部1120またはインター予測部1115から出力された各モードの符号化単位に係わる予測データと加えられることにより、現在映像1105の符号化単位に係わる空間領域のデータに復元される。復元された空間領域のデータは、デブロッキング部1155及びSAO遂行部1160を経て、復元映像に生成される。生成された復元映像は、復元ピクチャバッファ1110に保存される。復元ピクチャバッファ1110に保存された復元映像は、他の映像のインター予測のための参照映像に利用される。変換部1125及び量子化部1130で量子化された変換係数は、エントロピー符号化部1135を経て、ビットストリーム1140として出力される。
【0217】
一実施形態によるビデオ符号化部1100がビデオ符号化装置800に適用されるために、ビデオ符号化部1100の構成要素である、インター予測部1115、イントラ予測部1120、変換部1125、量子化部1130、エントロピー符号化部1135、逆量子化部1145、逆変換部1150、デブロッキング部1155及びSAO遂行部1160が最大符号化単位ごとに、ツリー構造による符号化単位のうちそれぞれの符号化単位に基づいた作業を遂行することができる。
【0218】
特に、イントラ予測部1120及びインター予測部1115は、現在最大符号化単位の最大サイズ及び最大深度を考慮し、ツリー構造による符号化単位のうちそれぞれの符号化単位のパーティションモード及び予測モードを決定し、変換部1125は、ツリー構造による符号化単位のうちそれぞれの符号化単位内の四分木による変換単位の分割いかんを決定することができる。
【0219】
図12は、多様な実施形態による符号化単位に基づいたビデオ復号部1200のブロック図を図示している。
【0220】
エントロピー復号部1215は、ビットストリーム1205から、復号対象である符号化された映像データ、及び復号のために必要な符号化情報をパージングする。符号化された映像データは、量子化された変換係数であり、逆量子化部1220及び逆変換部1225は、量子化された変換係数からレジデューデータを復元する。
【0221】
イントラ予測部1240は、イントラモードの符号化単位に対して、予測単位別にイントラ予測を行う。インター予測部1235は、現在映像のうちインターモードの符号化単位に対して、予測単位別に復元ピクチャバッファ1230で獲得された参照映像を利用してインター予測を行う。
【0222】
イントラ予測部1240またはインター予測部1235を経た各モードの符号化単位に係わる予測データと、レジデューデータとが加えられることにより、現在映像1105の符号化単位に係わる空間領域のデータが復元され、復元された空間領域のデータは、デブロッキング部1245及びSAO遂行部1250を経て、復元映像1260として出力される。また、復元ピクチャバッファ1230に保存された復元映像は、参照映像として出力される。
【0223】
ビデオ復号装置900のピクチャ復号部930において、映像データを復号するために、一実施形態によるビデオ復号部1200のエントロピー復号部1215以後の段階別作業が遂行される。
【0224】
ビデオ復号部1200が一実施形態によるビデオ復号装置900に適用されるために、ビデオ復号部1200の構成要素である、エントロピー復号部1215、逆量子化部1220、逆変換部1225、イントラ予測部1240、インター予測部1235、デブロッキング部1245及びSAO遂行部1250が最大符号化単位ごとに、ツリー構造による符号化単位のうちそれぞれの符号化単位に基づいて作業を遂行することができる。
【0225】
特に、イントラ予測部1240及びインター予測部1235は、ツリー構造による符号化単位のうちそれぞれの符号化単位ごとに、パーティションモード及び予測モードを決定し、逆変換部1225は、符号化単位ごとに四分木構造による変換単位の分割いかんを決定することができる。
【0226】
図13は、多様な実施形態による、深度別符号化単位及びパーティションを図示している。
【0227】
一実施形態によるビデオ符号化装置800、及び一実施形態によるビデオ復号装置900は、映像特性を考慮するために、階層的な符号化単位を使用する。符号化単位の最大高及び最大幅、最大深度は、映像の特性によって適応的に決定され、ユーザの要求によって、多様に設定される。あらかじめ設定された符号化単位の最大サイズによって、深度別符号化単位の大きさが決定される。
【0228】
一実施形態による符号化単位の階層構造1300は、符号化単位の最大高及び最大幅が64であり、最大深度が3である場合を図示している。そのとき、最大深度は、最大符号化単位から最小符号化単位までの総分割回数を示す。一実施形態による符号化単位の階層構造1300の縦軸に沿って深度が深くなるので、深度別符号化単位の高さ及び幅がそれぞれ分割される。また、符号化単位の階層構造1300の横軸に沿って、それぞれの深度別符号化単位の予測符号化の基になる予測単位及びパーティションが図示されている。
【0229】
すなわち、符号化単位1310は、符号化単位の階層構造1300において、最大符号化単位であって深度が0であり、符号化単位の大きさ、すなわち、高さ及び幅が64x64である。縦軸に沿って深度が深くなり、サイズ32x32である深度1の符号化単位1320、サイズ16x16である深度2の符号化単位1330、サイズ8x8である深度3の符号化単位1340が存在する。サイズ8x8である深度3の符号化単位1340は、最小符号化単位である。
【0230】
それぞれの深度別に横軸に沿って、符号化単位の予測単位及びパーティションが配列される。すなわち、深度0のサイズ64x64の符号化単位1310が予測単位であるならば、予測単位は、サイズ64x64の符号化単位1310に含まれるサイズ64x64のパーティション1310、サイズ64x32のパーティション1312、サイズ32x64のパーティション1314、サイズ32x32のパーティション1316に分割される。
【0231】
同様に、深度1のサイズ32x32の符号化単位1320の予測単位は、サイズ32x32の符号化単位1320に含まれるサイズ32x32のパーティション1320、サイズ32x16のパーティション1322、サイズ16x32のパーティション1324、サイズ16x16のパーティション1326に分割される。
【0232】
同様に、深度2のサイズ16x16の符号化単位1330の予測単位は、サイズ16x16の符号化単位1330に含まれるサイズ16x16のパーティション1330、サイズ16x8のパーティション1332、サイズ8x16のパーティション1334、サイズ8x8のパーティション1336に分割される。
【0233】
同様に、深度3のサイズ8x8の符号化単位1340の予測単位は、サイズ8x8の符号化単位1340に含まれるサイズ8x8のパーティション1340、サイズ8x4のパーティション1342、サイズ4x8のパーティション1344、サイズ4x4のパーティション1346に分割される。
【0234】
一実施形態によるビデオ符号化装置800の符号化単位決定部820は、最大符号化単位1310の深度を決定するために、最大符号化単位1310に含まれるそれぞれの深度の符号化単位ごとに符号化を行わなければならない。
【0235】
同一範囲及び同一サイズのデータを含むための深度別符号化単位の個数は、深度が深くなるほど、深度別符号化単位の個数も増加する。例えば、深度1の符号化単位一つを含むデータに対して、深度2の符号化単位は、四つが必要である。従って、同一データの符号化結果を深度別に比較するために、1つの深度1の符号化単位、及び4つの深度2の符号化単位を利用して、それぞれ符号化されなければならない。
【0236】
それぞれの深度別符号化のためには、符号化単位の階層構造1300の横軸に沿って、深度別符号化単位の予測単位ごとに符号化を行い、当該深度で最小符号化誤差である代表符号化誤差が選択される。また、符号化単位の階層構造1300の縦軸に沿って深度が深くなり、それぞれの深度ごとに符号化を行い、深度別代表符号化誤差を比較し、最小符号化誤差が検索される。最大符号化単位1310において、最小符号化誤差が発生する深度及びパーティションが、最大符号化単位1310の深度及びパーティションモードに選択される。
【0237】
図14は、多様な実施形態による、符号化単位及び変換単位の関係を図示している。
【0238】
一実施形態によるビデオ符号化装置800、または一実施形態によるビデオ復号装置900は、最大符号化単位ごとに、最大符号化単位より小さいか、あるいはそれと同じ大きさの符号化単位で映像を符号化したり復号したりする。符号化過程のうち変換のための変換単位の大きさは、それぞれの符号化単位ほど大きくないデータ単位を基に選択される。
【0239】
例えば、一実施形態によるビデオ符号化装置800、または一実施形態によるビデオ復号装置900において、現在符号化単位1410が64x64サイズであるとき、32x32サイズの変換単位1420を利用して変換が行われる。
【0240】
また、64x64サイズの符号化単位1410のデータを、64x64サイズ以下の32x32,16x16,8x8,4x4サイズの変換単位でそれぞれ変換を行って符号化した後、原本との誤差が最小である変換単位が選択される。
【0241】
図15は、多様な実施形態による符号化情報を図示している。
【0242】
一実施形態によるビデオ符号化装置800の出力部830は、分割情報として、それぞれの深度の符号化単位ごとに、パーティションモードに係わる情報1500、予測モードに係わる情報1510、変換単位サイズに係わる情報1520を符号化して伝送することができる。
【0243】
パーティションモードに係わる情報1500は、現在符号化単位の予測符号化のためのデータ単位として、現在符号化単位の予測単位が分割されたパーティションの形態に係わる情報を示す。例えば、サイズ2Nx2Nの現在符号化単位CU_0は、サイズ2Nx2Nのパーティション1502、サイズ2NxNのパーティション1504、サイズNx2Nのパーティション1506、サイズNxNのパーティション1508のうちいずれか1つのタイプに分割されて利用される。その場合、現在符号化単位のパーティションモードに係わる情報1500は、サイズ2Nx2Nのパーティション1502、サイズ2NxNのパーティション1504、サイズNx2Nのパーティション1506及びサイズNxNのパーティション1508のうち一つを示すように設定される。
【0244】
予測モードに係わる情報1510は、それぞれのパーティションの予測モードを示す。例えば、予測モードに係わる情報1510を介して、パーティションモードに係わる情報1500が示すパーティションが、イントラモード1512、インターモード1514及びスキップモード1516のうち一つで予測符号化が行われるか否かということが設定される。
【0245】
また、変換単位サイズに係わる情報1520は、現在符号化単位をいかなる変換単位を基に変換を行ったかということを示す。例えば、変換単位は、第1イントラ変換単位サイズ1522、第2イントラ変換単位サイズ1524、第1インター変換単位サイズ1526、第2インター変換単位サイズ1528のうち一つでもある。
【0246】
一実施形態によるビデオ復号装置900の映像データ及び符号化情報抽出部1610は、それぞれの深度別符号化単位ごとに、パーティションモードに係わる情報1500、予測モードに係わる情報1510、変換単位サイズに係わる情報1520を抽出し、復号に利用することができる。
【0247】
図16は、多様な実施形態による深度別符号化単位を図示している。
【0248】
深度の変化を示すために、分割情報が利用される。該分割情報は、現在深度の符号化単位が、下位深度の符号化単位に分割されるか否かということを示す。
【0249】
深度0及び2N_0x2N_0サイズの符号化単位1600の予測符号化のための予測単位1610は、2N_0x2N_0サイズのパーティションモード1612、2N_0xN_0サイズのパーティションモード1614、N_0x2N_0サイズのパーティションモード1616、N_0xN_0サイズのパーティションモード1618を含んでもよい。予測単位が対称的な比率に分割されたパーティション1612,1614,1616,1618だけが例示されているが、前述のように、パーティションモードは、それらに限定されるものではなく、非対称的パーティション、任意的形態のパーティション、幾何学的形態のパーティションなどを含んでもよい。
【0250】
パーティションモードごとに、1つの2N_0x2N_0サイズのパーティション、2つの2N_0xN_0サイズのパーティション、2つのN_0x2N_0サイズのパーティション、4つのN_0xN_0サイズのパーティションごとに反復的に予測符号化が行われなければならない。サイズ2N_0x2N_0、サイズN_0x2N_0、サイズ2N_0xN_0及びサイズN_0xN_0のパーティションについては、イントラモード及びインターモードで予測符号化が行われる。スキップモードは、サイズ2N_0x2N_0のパーティションについてのみ予測符号化が行われる。
【0251】
サイズ2N_0x2N_0,2N_0xN_0及びN_0x2N_0のパーティションモード1612,1614,1616のうち一つによる符号化誤差が最小であるならば、それ以上下位深度に分割する必要ない。
【0252】
サイズN_0xN_0のパーティションモード1618による符号化誤差が最小であるならば、深度0を1に変更しながら分割し(1620)、深度2及びサイズN_0xN_0のパーティションモードの符号化単位1630に対して反復的に符号化を行い、最小符号化誤差を検索する。
【0253】
深度1及びサイズ2N_1x2N_1(=N_0xN_0)の符号化単位1630の予測符号化のための予測単位1640は、サイズ2N_1x2N_1のパーティションモード1642、サイズ2N_1xN_1のパーティションモード1644、サイズN_1x2N_1のパーティションモード1646、サイズN_1xN_1のパーティションモード1648を含んでもよい。
【0254】
また、サイズN_1xN_1のパーティションモード1648による符号化誤差が最小であるならば、深度1を深度2に変更しながら分割し(1650)、深度2及びサイズN_2xN_2の符号化単位1660に対して反復的に符号化を行い、最小符号化誤差を検索する。
【0255】
最大深度がdである場合、深度別符号化単位は、深度d-1になるまで設定され、分割情報は、深度d-2まで設定される。すなわち、深度d-2から分割され(1670)、深度d-1まで符号化が行われる場合、深度d-1及びサイズ2N_(d-1)x2N_(d-1)の符号化単位1680の予測符号化のための予測単位1690は、サイズ2N_(d-1)x2N_(d-1)のパーティションモード1692、サイズ2N_(d-1)xN_(d-1)のパーティションモード1694、サイズN_(d-1)x2N_(d-1)のパーティションモード1696、サイズN_(d-1)xN_(d-1)のパーティションモード1698を含んでもよい。
【0256】
パーティションモードにおいて、1つのサイズ2N_(d-1)x2N_(d-1)のパーティション、2つのサイズ2N_(d-1)xN_(d-1)のパーティション、2つのサイズN_(d-1)x2N_(d-1)のパーティション、4つのサイズN_(d-1)xN_(d-1)のパーティションごとに、反復的に、予測符号化を介した符号化が行われ、最小符号化誤差が発生するパーティションモードが検索される。
【0257】
サイズN_(d-1)xN_(d-1)のパーティションモード1698による符号化誤差が最小であるとしても、最大深度がdであるので、深度d-1の符号化単位CU_(d-1)は、それ以上下位深度への分割過程を経ず、現在最大符号化単位1600に係わる深度が深度d-1に決定され、パーティションモードは、N_(d-1)xN_(d-1)と決定される。また、最大深度がdであるので、深度d-1の符号化単位1652について、分割情報が設定されない。
【0258】
データ単位1699は、現在最大符号化単位に係わる「最小単位」とされる。一実施形態による最小単位は、最下位深度である最小符号化単位が4分割された大きさの正方形のデータ単位でもある。そのような反復的符号化過程を介して、一実施形態によるビデオ符号化装置800は、符号化単位1600の深度別符号化誤差を比較し、最小の符号化誤差が発生する深度を選択して深度を決定し、当該パーティションモード及び予測モードが、深度の符号化モードに設定される。
【0259】
かように、深度0,1,…,d-1,dの全ての深度別最小符号化誤差を比較し、誤差が最小である深度が選択されて深度に決定される。深度、並びに予測単位のパーティションモード及び予測モードは、分割情報として符号化されて伝送される。また、深度0から深度に至るまで符号化単位が分割されなければならないので、深度の分割情報だけが「0」に設定され、深度を除いた深度別分割情報は、「1」に設定されなければならない。
【0260】
一実施形態によるビデオ復号装置900の映像データ及び符号化情報抽出部920は、符号化単位1600に係わる深度及び予測単位に係わる情報を抽出し、符号化単位1612の復号に利用することができる。一実施形態によるビデオ復号装置900は、深度別分割情報を利用して、分割情報が「0」である深度を深度と把握し、当該深度に係わる分割情報を利用して、復号に利用することができる。
【0261】
図17、
図18及び
図19は、多様な実施形態による、符号化単位、予測単位及び変換単位の関係を図示している。
【0262】
符号化単位1710は、最大符号化単位について、一実施形態によるビデオ符号化装置800が決定した深度別符号化単位である。予測単位1760は、符号化単位1710において、それぞれの深度別符号化単位の予測単位のパーティションであり、変換単位1770は、それぞれの深度別符号化単位の変換単位である。
【0263】
深度別符号化単位1710は、最大符号化単位の深度が0であるととすれば、符号化単位1712,1054は、深度が1であり、符号化単位1714,1716,1718,1728,1750,1752は、深度が2であり、符号化単位1720,1722,1724,1726,1730,1732,1748は、深度が3であり、符号化単位1740,1742,1744,1746は、深度が4である。
【0264】
予測単位1760のうち一部パーティション1714,1716,1722,1732,1748,1750,1752,1754は、符号化単位が分割された形態である。すなわち、パーティション1714,1722,1750,1754は、2NxNのパーティションモードであり、パーティション1716,1748,1752は、Nx2Nのパーティションモードであり、パーティション1732は、NxNのパーティションモードである。深度別符号化単位1710の予測単位及びパーティションは、それぞれの符号化単位より小さいか、あるいはそれと同じである。
【0265】
変換単位1770のうち一部変換単位1752の映像データについては、符号化単位に比べ、小サイズのデータ単位で変換または逆変換が行われる。また、変換単位1714,1716,1722,1732,1748,1750,1752,1754は、予測単位1760において、当該予測単位及びパーティションと比較すれば、互いに異なる大きさまたは形態のデータ単位である。すなわち、一実施形態によるビデオ符号化装置800、及び一実施形態に他のビデオ復号装置900は、同一符号化単位に係わるイントラ予測/動き推定/動き補償作業、及び変換/逆変換作業であるとしても、それぞれ別個のデータ単位を基に遂行することができる。
【0266】
それによって、最大符号化単位ごとに、領域別に階層的な構造の符号化単位ごとに、再帰的に符号化が行われ、最適符号化単位が決定されることにより、再帰的ツリー構造による符号化単位が構成される。符号化情報は、符号化単位に係わる分割情報、パーティションモード情報、予測モード情報、変換単位サイズ情報を含んでもよい。以下、表1は、一実施形態によるビデオ符号化装置800、及び一実施形態によるビデオ復号装置900において設定される一例を示す。
【0267】
【表1】
一実施形態によるビデオ符号化装置800の出力部830は、ツリー構造による符号化単位についての符号化情報を出力し、一実施形態によるビデオ復号装置900の符号化情報抽出部920は、受信されたビットストリームから、ツリー構造による符号化単位についての符号化情報を抽出することができる。
【0268】
分割情報は、現在符号化単位が下位深度の符号化単位に分割されるか否かということを示す。現在深度dの分割情報が0であるならば、現在符号化単位が下位符号化単位にそれ以上分割されない深度が深度であるので、深度について、パーティションモード情報、予測モード、変換単位サイズ情報が定義される。分割情報によって、1段階さらに分割されなければならない場合には、分割された4個の下位深度の符号化単位ごとに、独立して符号化が行われなければならない。
【0269】
予測モードは、イントラモード、インターモード及びスキップモードのうち一つで示すことができる。イントラモード及びインターモードは、全てのパーティションモードで定義され、スキップモードは、パーティションモード2Nx2Nでのみ定義される。
【0270】
パーティションモード情報は、予測単位の高さまたは幅が対称的な比率に分割された対称的パーティションモード2Nx2N,2NxN,Nx2N及びNxNと、非対称的な比率に分割された非対称的パーティションモード2NxnU,2NxnD,nLx2N,nRx2Nと、を示すことができる。非対称的パーティションモード2NxnU及び2NxnDは、それぞれ高さが1:3及び3:1に分割された形態であり、非対称的パーティションモードnLx2N及びnRx2Nは、それぞれ幅が1:3及び3:1に分割された形態を示す。
【0271】
変換単位サイズは、イントラモードで2種の大きさ、インターモードで2種の大きさに設定される。すなわち、変換単位分割情報が0であるならば、変換単位の大きさが、現在符号化単位のサイズ2Nx2Nに設定される。変換単位分割情報が1であるならば、現在符号化単位が分割された大きさの変換単位が設定される。また、サイズ2Nx2Nである現在符号化単位に係わるパーティションモードが、対称形パーティションモードであるならば、変換単位の大きさは、NxNに設定され、非対称形パーティションモードであるならば、N/2xN/2に設定される。
【0272】
一実施形態による、ツリー構造による符号化単位の符号化情報は、深度の符号化単位、予測単位及び最小単位のうち少なくとも一つに対して割り当てられる。深度の符号化単位は、同一符号化情報を保有している予測単位及び最小単位を1以上含んでもよい。
【0273】
従って、隣接したデータ単位同士それぞれ保有している符号化情報を確認すれば、同一深度の符号化単位に含まれるか否かということが確認される。また、データ単位が保有している符号化情報を利用すれば、当該深度の符号化単位を確認することができるので、最大符号化単位内の深度の分布が類推される。
【0274】
従って、その場合、現在符号化単位が周辺データ単位を参照して予測する場合、現在符号化単位に隣接する深度別符号化単位内のデータ単位の符号化情報が直接参照されて利用される。
【0275】
他の実施形態において、現在符号化単位が周辺符号化単位を参照して予測符号化が行われる場合、隣接する深度別符号化単位の符号化情報を利用して、深度別符号化単位内において、現在符号化単位に隣接するデータが検索されることにより、周辺符号化単位が参照される。
【0276】
図20は、表7の符号化モード情報による、符号化単位、予測単位及び変換単位の関係を図示している。
【0277】
最大符号化単位2000は、深度の符号化単位2002,2004,2006,2012,2014,2016,2018を含む。そのうち1つの符号化単位2018は、深度の符号化単位であるので、分割情報が0に設定される。サイズ2Nx2Nの符号化単位2018のパーティションモード情報は、パーティションモード2Nx2N 2022,2NxN 2024,Nx2N 2026,NxN 2028,2NxnU 2032,2NxnD 2034,nLx2N 2036及びnRx2N 2038のうち一つに設定される。
【0278】
変換単位分割情報(TU size flag)は、変換インデックスの一種であり、変換インデックスに対応する変換単位の大きさは、符号化単位の予測単位タイプまたはパーティションモードによって変更される。
【0279】
例えば、パーティションモード情報が、対称形パーティションモード2Nx2N 2022,2NxN 2024,Nx2N 2026及びNxN 2028のうち一つに設定されている場合、変換単位分割情報が0であるならば、サイズ2Nx2Nの変換単位2042が設定され、変換単位分割情報が1であるならば、サイズNxNの変換単位2044が設定される。
【0280】
パーティションモード情報が非対称形パーティションモード2NxnU 2032,2NxnD 2034,nLx2N 2036及びnRx2N 2038のうち一つに設定された場合、変換単位分割情報(TU size flag)が0であるならば、サイズ2Nx2Nの変換単位2052が設定され、変換単位分割情報が1であるならば、サイズN/2xN/2の変換単位2054が設定される。
【0281】
図20を参照して説明した変換単位分割情報(TU size flag)は、0または1の値を有するフラグであるが、一実施形態による変換単位分割情報が1ビットのフラグに限定されるものではなく、設定によって0、1、2、3、…などに増加し、変換単位が階層的に分割される。変換単位分割情報は、変換インデックスの一実施形態として利用される。
【0282】
その場合、一実施形態による変換単位分割情報を、変換単位の最大サイズ、変換単位の最小サイズと共に利用すれば、実際に利用された変換単位の大きさが表現される。一実施形態によるビデオ符号化装置800は、最大変換単位サイズ情報、最小変換単位サイズ情報及び最大変換単位分割情報を符号化することができる。符号化された最大変換単位サイズ情報、最小変換単位サイズ情報及び最大変換単位分割情報は、SPSに挿入される。一実施形態によるビデオ復号装置900は、最大変換単位サイズ情報、最小変換単位サイズ情報及び最大変換単位分割情報を利用して、ビデオ復号に利用することができる。
【0283】
例えば、(a)現在符号化単位がサイズ64x64であり、最大変換単位サイズが32x32であるならば、(a-1)変換単位分割情報が0であるとき、変換単位の大きさは、32x32に設定され、(a-2)変換単位分割情報が1であるとき、変換単位の大きさは、16x16に設定され、(a-3)変換単位分割情報が2であるとき、変換単位の大きさは、8x8に設定される。
【0284】
他の例として、(b)現在符号化単位がサイズ32x32であり、最小変換単位サイズが32x32であるならば、(b-1)変換単位分割情報が0であるとき、変換単位の大きさは、32x32に設定され、変換単位の大きさが32x32より小さいことがないので、それ以上の変換単位分割情報が設定されることがない。
【0285】
さらに他の例として、(c)現在符号化単位がサイズ64x64であり、最大変換単位分割情報が1であるならば、変換単位分割情報は、0または1であり、他の変換単位分割情報が設定されることがない。
【0286】
従って、最大変換単位分割情報を「MaxTransformSizeIndex」と定義し、最小変換単位サイズを「MinTransformSize」と定義し、変換単位分割情報が0である場合の変換単位サイズを「RootTuSize」と定義するとき、現在符号化単位で可能な最小変換単位サイズ「CurrMinTuSize」は、下記数式(1)のように定義される。
【0287】
CurrMinTuSize
= max (MinTransformSize, RootTuSize/(2^MaxTransformSizeIndex)) (1)
現在符号化単位において可能な最小変換単位サイズ「CurrMinTuSize」と比較し、変換単位分割情報が0である場合の変換単位サイズである「RootTuSize」は、システム上採択可能な最大変換単位サイズを示すことができる。すなわち、数式(1)によれば、「RootTuSize/(2^MaxTransformSizeIndex)」は、変換単位分割情報が0である場合の変換単位サイズである「RootTuSize」を最大変換単位分割情報に相応する回数ほど分割した変換単位サイズであり、「MinTransformSize」は、最小変換単位サイズであるので、それらのうち小さい値が現在符号化単位で可能な最小変換単位サイズ「CurrMinTuSize」でもある。
【0288】
一実施形態による最大変換単位サイズ「RootTuSize」は、予測モードによっても異なる。
【0289】
例えば、現在予測モードがインターモードであるならば、「RootTuSize」は、下記数式(2)によって決定される。数式(2)において、「MaxTransformSize」は、最大変換単位サイズを示し、「PUSize」は、現在予測単位サイズを示す。
【0290】
RootTuSize = min(MaxTransformSize, PUSize) (2)
すなわち、現在予測モードがインターモードであるならば、変換単位分割情報が0である場合の変換単位サイズである「RootTuSize」は、最大変換単位サイズ及び現在予測単位サイズのうち小さい値に設定される。
【0291】
現在パーティション単位の予測モードがイントラモードであるならば、「RootTuSize」は、下記数式(3)によって決定される。「PartitionSize」は、現在パーティション単位の大きさを示す。
【0292】
RootTuSize = min(MaxTransformSize, PartitionSize) (3)
すなわち、現在予測モードがイントラモードであるならば、変換単位分割情報が0である場合の変換単位サイズである「RootTuSize」は、最大変換単位サイズ及び現在パーティション単位サイズのうち小さい値に設定される。
【0293】
ただし、パーティション単位の予測モードによって変動する一実施形態による現在最大変換単位サイズ「RootTuSize」は、一実施形態であるのみ、現在最大変換単位サイズを決定する要因は、それに限定されるものではないということに留意しなければならない。
【0294】
図8ないし
図20を参照して説明した、ツリー構造の符号化単位に基づいたビデオ符号化技法によって、ツリー構造の符号化単位ごとに、空間領域の映像データが符号化され、ツリー構造の符号化単位に基づいたビデオ復号技法によって、最大符号化単位ごとに、復号が行われながら空間領域の映像データが復元され、ピクチャ及びピクチャシーケンスであるビデオが復元される。復元されたビデオは、再生装置によって再生されるか、記録媒体に保存されるか、あるいはネットワークを介して伝送される。
【0295】
一方、前述の本発明の実施形態は、コンピュータで実行されるプログラムに作成可能であり、コンピュータで読取り可能な記録媒体を利用して、前記プログラムを動作させる汎用デジタルコンピュータで具現される。前記コンピュータで読取り可能な記録媒体は、マグネチック記録媒体(例えば、ROM(read-only memory)、フロッピー(登録商標)ディスク、ハードディスクなど)、光学的判読媒体(例えば、CD-ROM(compact disc read only memory)、DVD(digital versatile disc)など)のような記録媒体を含む。
【0296】
説明の便宜のために、先に
図1ないし
図20を参照して説明したビデオ符号化方法及び/またはビデオ符号化方法は、「本発明のビデオ符号化方法」と総称する。また、先に
図1ないし
図20を参照して説明したビデオ復号方法及び/またはビデオ復号方法は、「本発明のビデオ復号方法」と総称する
また、先に
図1ないし
図20を参照して説明したビデオ符号化装置、ビデオ符号化装置800、またはビデオ符号化部1100で構成されたビデオ符号化装置は、「本発明のビデオ符号化装置」と総称する。また、先に
図1ないし
図20を参照して説明したインターレイヤビデオ復号装置、ビデオ復号装置900、またはビデオ復号部1200で構成されたビデオ復号装置は、「本発明のビデオ復号装置」と総称する。
【0297】
一実施形態によるプログラムが保存されるコンピュータで判読可能な記録媒体がディスク26000である実施形態について、以下で詳細に説明する。
【0298】
図21は、多様な実施形態によるプログラムが保存されたディスク26000の物理的構造を例示している。記録媒体として説明されたディスク26000は、ハードドライブ、CD-ROMディスク、ブルーレイ(登録商標(Blu-ray))ディスク、DVDディスクでもある。ディスク26000は、多数の同心円のトラックTrにより構成され、該トラックTrは、円周方向に沿って、所定個数のセクタSeに分割される。前述の一実施形態によるプログラムを保存するディスク26000のおける特定領域に、前述の量子化パラメータ決定方法、ビデオ符号化方法及びビデオ復号方法を具現するためのプログラムが割り当てられて保存される。
【0299】
前述のビデオ符号化方法及びビデオ復号方法を具現するためのプログラムを保存する記録媒体を利用して達成されたコンピュータシステムについて、
図22を参照して説明する。
【0300】
図22は、ディスク26000を利用して、プログラムを記録して判読するためのディスクドライブ26800を図示している。コンピュータシステム26700は、ディスクドライブ26800を利用して、本発明のビデオ符号化方法及びビデオ復号方法のうち少なくとも一つを具現するためのプログラムを、ディスク26000に保存することができる。ディスク26000に保存されたプログラムを、コンピュータシステム26700上で実行するために、ディスクドライブ26800によって、ディスク26000からプログラムが判読され、プログラムがコンピュータシステム26700に伝送される。
【0301】
図21及び
図22で例示されたディスク26000だけではなく、メモリカード、ROMカセット、SSD(solid state drive)にも、本発明のビデオ符号化方法及びビデオ復号方法のうち少なくとも一つを具現するためのプログラムが保存される。
【0302】
前述の実施形態によるビデオ符号化方法及びビデオ復号方法が適用されたシステムについて説明する。
【0303】
図23は、コンテンツ流通サービス(content distribution service)を提供するためのコンテンツ供給システム(content supply system)11000の全体的構造を図示している。通信システムのサービス領域は、所定サイズのセルに分割され、各セルに、ベースステーションになる無線基地局11700,11800,11900,12000が設置される。
【0304】
コンテンツ供給システム11000は、多数の独立デバイスを含む。例えば、コンピュータ12100、PDA(personal digital assistant)12200、ビデオカメラ12300及び携帯電話12500のような独立デバイスが、インターネットサービス・プロバイダ11200、通信網11400及び無線基地局11700,11800,11900,12000を経て、インターネット11100に連結される。
【0305】
しかし、コンテンツ供給システム11000は、
図24に図示された構造にのみ限定されるものではなく、デバイスが選択的に連結される。該独立デバイスは、無線基地局11700,11800,11900,12000を経ず、通信網11400に直接連結されてもよい。
【0306】
ビデオカメラ12300は、デジタルビデオカメラのように、ビデオ映像を撮影することができる撮像デバイスである。携帯電話12500は、PDC(personal digital communications)方式、CDMA(code division multiple access)方式、W-CDMA(wideband code division multiple access)方式、GSM(登録商標(global system for mobile communications))方式及びPHS(personal handyphone system)方式のような多様なプロトコルのうち少なくとも1つの通信方式を採択することができる。
【0307】
ビデオカメラ12300は、無線基地局11900及び通信網11400を経て、ストリーミングサーバ11300に連結される。ストリーミングサーバ11300は、ユーザが、ビデオカメラ12300を使用して伝送したコンテンツをリアルタイム放送でストリーミング伝送することができる。ビデオカメラ12300から受信されたコンテンツは、ビデオカメラ12300またはストリーミングサーバ11300によって符号化される。ビデオカメラ12300によって撮影されたビデオデータは、コンピュータ12100を経て、ストリーミングサーバ11300に伝送される。
【0308】
カメラ12600によって撮影されたビデオデータも、コンピュータ12100を経て、ストリーミングサーバ11300に伝送される。カメラ12600は、デジタルカメラのように、静止映像とビデオ映像とをいずれも撮影することができる撮像装置である。カメラ12600から受信されたビデオデータは、カメラ12600またはコンピュータ12100によって符号化される。ビデオ符号化及びビデオ復号のためのソフトウェアは、コンピュータ12100がアクセスすることができるCD-ROMディスク、フロッピーディスク、ハードディスクドライブ、SSD、メモリカードのようなコンピュータで判読可能な記録媒体に保存される。
【0309】
また、携帯電話12500に搭載されたカメラによってビデオが撮影された場合、ビデオデータが携帯電話12500から受信される。
【0310】
該ビデオデータは、ビデオカメラ12300、携帯電話12500またはカメラ12600に搭載されたLSI(large scale integrated circuit)システムによって符号化される。
【0311】
一実施形態によるコンテンツ供給システム11000において、例えば、コンサートの現場録画コンテンツのように、ユーザによって、ビデオカメラ12300、カメラ12600、携帯電話12500、または他の撮像デバイスを利用して録画されたコンテンツが符号化され、ストリーミングサーバ11300に伝送される。ストリーミングサーバ11300は、コンテンツデータを要請した他のクライアントに、コンテンツデータをストリーミング伝送することができる。
【0312】
該クライアントは、符号化されたコンテンツデータを復号することができるデバイスであり、例えば、コンピュータ12100、PDA 12200、ビデオカメラ12300または携帯電話12500でもある。従って、コンテンツ供給システム11000は、クライアントとして、符号化されたコンテンツデータを受信して再生させる。また、コンテンツ供給システム11000は、クライアントをして、符号化されたコンテンツデータを受信してリアルタイムに復号して再生させ、個人放送(personal broadcasting)を可能にする。
【0313】
コンテンツ供給システム11000に含まれた独立デバイスの符号化動作及び復号動作に、本発明のビデオ符号化装置及びビデオ復号装置が適用される。
【0314】
図24及び25を参照し、コンテンツ供給システム11000において、携帯電話12500の一実施形態について詳細に説明する。
【0315】
図24は、多様な実施形態による、本発明のビデオ符号化方法及びビデオ復号方法が適用される携帯電話12500の外部構造を図示している。携帯電話12500は、機能が制限されておらず、応用プログラムを介して、相当部分の機能を変更したり拡張したりすることができるスマートフォンでもある。
【0316】
携帯電話12500は、無線基地局12000とRF信号を交換するための内蔵アンテナ12510を含み、カメラ12530によって撮影された映像、またはアンテナ12510によって受信されて復号された映像をディスプレイするためのLCD(liquid crystal display)、OLED(organic light emitting diodes)の画面のようなディスプレイ画面12520を含む。スマートフォン12510は、制御ボタン、タッチパネルを含む動作パネル12540を含む。ディスプレイ画面12520がタッチスクリーンである場合、動作パネル12540は、ディスプレイ画面12520のタッチ感知パネルをさらに含む。スマートフォン12510は、音声、音響を出力するためのスピーカ12580、または他形態の音響出力部と、音声、音響が入力されるマイクロフォン12550、または他形態の音響入力部と、を含む。スマートフォン12510は、ビデオ及び静止映像を撮影するためのCCDカメラのようなカメラ12530をさらに含む。また、スマートフォン12510は、カメラ12530によって撮影されたり、電子メール(E-mail)によって受信されたり、他形態によって獲得されたりするビデオや静止映像のように、符号化されたり復号されたりするデータを保存するための記録媒体12570と、記録媒体12570を携帯電話12500に装着するためのスロット12560と、を含んでもよい。記録媒体12570は、SDカード、またはプラスチックケースに内蔵されたEEPROM(electrically erasable programmable read-only memory)のような他形態のフラッシュメモリでもある。
【0317】
図25は、携帯電話12500の内部構造を図示している。ディスプレイ画面12520及び動作パネル12540で構成された携帯電話12500の各パートを組織的に制御するために、電力供給回路12700、動作入力制御部12640、映像符号化部12720、カメラ・インターフェース12630、LCD制御部12620、映像復号部12690、マルチプレクサ/デマルチプレクサ(MUX/DEMUX:multiplexer/demultiplexer)12680、記録/判読部12670、変調/復調(modulation/demodulation)部12660及び音響処理部12650が、同期化バス12730を介して中央制御部12710に連結される。
【0318】
ユーザが電源ボタンを動作させ、「電源オフ」状態で「電源オン」状態に設定すれば、電力供給回路12700は、バッテリパックから携帯電話12500の各パートに電力を供給することにより、携帯電話12500が動作モードにセッティングされる。
【0319】
中央制御部12710は、CPU(central processing unit)、ROM(read-only memory)及びRAMを含む。
【0320】
携帯電話12500が外部に通信データを送信する過程としては、中央制御部12710の制御によって、携帯電話12500でデジタル信号が生成される。例えば、音響処理部12650においては、デジタル音響信号が生成され、ビデオ符号化部12720では、デジタル映像信号が生成され、動作パネル12540及び動作入力制御部12640を介して、メッセージのテキストデータが生成される。中央制御部12710の制御によっ、てデジタル信号が変調/復調部12660に伝達されれば、変調/復調部12660は、デジタル信号の周波数帯域を変調し、通信回路12610は、帯域変調されたデジタル音響信号に対して、D/A変換(digital-analog conversion)処理及び周波数変換(frequency conversion)処理を行う。通信回路12610から出力された送信信号は、アンテナ12510を介して音声通信基地局または無線基地局12000に送出される。
【0321】
例えば、携帯電話12500が通話モードであるとき、マイクロフォン12550によって獲得された音響信号は、中央制御部12710の制御によって、音響処理部12650において、デジタル音響信号に変換される。生成されたデジタル音響信号は、変調/復調部12660及び通信回路12610を経て送信信号に変換され、アンテナ12510を介して送出される。
【0322】
データ通信モードにおいて、電子メールのようなテキストメッセージが伝送される場合、動作パネル12540を利用して、メッセージのテキストデータが入力され、テキストデータが動作入力制御部12640を介して中央制御部12610に伝送される。中央制御部12610の制御によって、テキストデータは、変調/復調部12660及び通信回路12610を介して送信信号に変換され、アンテナ12510を介して、無線基地局12000に送出される。
【0323】
データ通信モードで映像データを伝送するために、カメラ12530によって撮影された映像データが、カメラ・インターフェース12630を介して、映像符号化部12720に提供される。カメラ12530によって撮影された映像データは、カメラ・インターフェース12630及びLCD制御部12620を介して、ディスプレイ画面12520に直ちにディスプレイされる。
【0324】
映像符号化部12720の構造は、前述の本発明のビデオ符号化装置の構造と相応する。映像符号化部12720は、カメラ12530から提供された映像データを、前述の本発明のビデオ符号化方式によって符号化し、圧縮符号化された映像データに変換し、符号化された映像データを多重化/逆多重化部12680に出力することができる。カメラ12530の録画中、携帯電話12500のマイクロフォン12550によって獲得された音響信号も、音響処理部12650を経て、デジタル音響データに変換され、デジタル音響データは、多重化/逆多重化部12680に伝達される。
【0325】
多重化/逆多重化部12680は、音響処理部12650から提供された音響データと共に、映像符号化部12720から提供された符号化された映像データを多重化する。多重化されたデータは、変調/復調部12660及び通信回路12610を介して送信信号に変換され、アンテナ12510を介して送出される。
【0326】
携帯電話12500が、外部から通信データを受信する過程においては、アンテナ12510を介して受信された信号を、周波数復元(frequency recovery)処理及びA/D変換(analog-digital conversion)処理を介して、デジタル信号を変換する。変調/復調部12660は、デジタル信号の周波数帯域を復調する。帯域復調されたデジタル信号は、種類によって、ビデオ復号部12690、音響処理部12650またはLCD制御部12620に伝達される。
【0327】
携帯電話12500は、通話モードであるとき、アンテナ12510を介して受信された信号を増幅し、周波数変換処理及びA/D変換(analog-digital conversion)処理を介して、デジタル音響信号を生成する。受信されたデジタル音響信号は、中央制御部12710の制御によって、変調/復調部12660及び音響処理部12650を経て、アナログ音響信号に変換され、アナログ音響信号がスピーカ12580を介して出力される。
【0328】
データ通信モードにおいて、インターネットのウェブサイトからアクセスされたビデオファイルのデータが受信される場合、アンテナ12510を介して、無線基地局12000から受信された信号は、変調/復調部12660の処理結果、多重化されたデータを出力し、多重化されたデータは、多重化/逆多重化部12680に伝達される。
【0329】
アンテナ12510を介して受信した多重化されたデータを復号するために、多重化/逆多重化部12680は、多重化されたデータを逆多重化し、符号化されたビデオデータストリームと、符号化されたオーディオデータストリームとを分離する。同期化バス12730によって、符号化されたビデオデータストリームは、ビデオ復号部12690に提供され、符号化されたオーディオデータストリームは、音響処理部12650に提供される。
【0330】
映像復号部12690の構造は、前述の本発明のビデオ復号装置の構造に相応する。映像復号部12690は、前述の本発明のビデオ復号方法を利用して、符号化されたビデオデータを復号し、復元されたビデオデータを生成し、復元されたビデオデータをLCD制御部12620を経て、ディスプレイ画面12520に復元されたビデオデータを提供することができる。
【0331】
それにより、インターネットのウェブサイトからアクセスされたビデオファイルのビデオデータが、ディスプレイ画面12520でディスプレイされる。それと同時に、音響処理部12650も、オーディオデータをアナログ音響信号に変換し、アナログ音響信号をスピーカ12580に提供することができる。それにより、、インターネットのウェブサイトからアクセスされたビデオファイルに含まれたオーディオデータも、スピーカ12580で再生される。
【0332】
携帯電話12500、または他形態の通信端末機は、本発明のビデオ符号化装置及びビデオ復号装置をいずれも含む送受信端末機であるか、前述の本発明のビデオ符号化装置のみを含む送信端末機であるか、あるいは本発明のビデオ復号装置のみを含む受信端末機でもある。
【0333】
本発明の通信システムは、
図24を参照して説明した構造に限定されるものではない。例えば、
図26は、多様な実施形態による通信システムが適用されたデジタル放送システムを図示している。
図26の一実施形態によるデジタル放送システムは、本発明のビデオ符号化装置及びビデオ復号装置を利用して、衛星ネットワークまたは地上波ネットワークを介して伝送されるデジタル放送を受信することができる。
【0334】
具体的に見れば、放送局12890は、電波を介して、ビデオデータストリームを通信衛星または放送衛星12900に伝送する。放送衛星12900は、放送信号を伝送し、放送信号は、家庭にあるアンテナ12860によって、衛星放送受信機に受信される。各家庭において、符号化されたビデオストリームは、TV(television)受信機12810、セットトップボックス(set-top box)12870、または他のデバイスによって復号されて再生される。
【0335】
再生装置12830において、本発明のビデオ復号装置が具現されることにより、再生装置12830が、ディスク及びメモリカードのような記録媒体12820に記録された符号化されたビデオストリームを判読して復号することができる。それによって、復元されたビデオ信号は、例えば、モニタ12840で再生される。
【0336】
衛星/地上波放送のためのアンテナ12860、またはケーブルTV受信のためのケーブルアンテナ12850に連結されたセットトップボックス12870にも、本発明のビデオ復号装置が搭載される。セットトップボックス12870の出力データも、TVモニタ12880で再生される。
【0337】
他の例として、セットトップボックス12870の代わりに、TV受信機12810自体にも、本発明のビデオ復号装置が搭載される。
【0338】
適切なアンテナ12910を具備した自動車12920が、衛星12800または無線基地局11700から送出される信号を受信することもできる。自動車12920に搭載された自動車ナビゲーションシステム12930のディスプレイ画面に、復号されたビデオが再生される。
【0339】
ビデオ信号は、本発明のビデオ符号化装置によって符号化されて記録媒体に記録されて保存される。具体的に見れば、DVDレコーダによって、映像信号がDVDディスク12960に保存されるか、あるいはハードディスクレコーダ12950によって、ハードディスクに映像信号が保存される。他の例として、ビデオ信号は、SDカード12970に保存される。ハードディスクレコーダ12950が、一実施形態による本発明のビデオ復号装置を具備すれば、DVDディスク12960、SDカード12970、または他形態の記録媒体に記録されたビデオ信号が、モニタ12880で再生される。
【0340】
自動車ナビゲーションシステム12930は、
図25のカメラ12530、カメラ・インターフェース12630及びビデオ符号化部12720を含まないこともある。例えば、コンピュータ12100及びTV受信機12810も、
図25のカメラ12530、カメラ・インターフェース12630及びビデオ符号化部12720を含まないこともある。
【0341】
図27は、多様な実施形態による、ビデオ符号化装置及びビデオ復号装置を利用するクラウドコンピューティングシステムのネットワーク構造を図示している。
【0342】
本発明のクラウドコンピューティングシステムは、クラウドコンピューティングサーバ14100、ユーザDB(database)14100、コンピューティング資源14200及びユーザ端末機を含んでもなる。
【0343】
該クラウドコンピューティングシステムは、ユーザ端末機の要請によって、インターネットのような情報通信網を介して、コンピューティング資源のオンデマンド・アウトソーシングサービスを提供する。クラウドコンピューティング環境において、サービスプロバイダは、互いに異なる物理的な位置に存在するデータセンターのコンピューティング資源を仮想化技術で統合し、ユーザが必要とするサービスを提供する。サービスユーザは、アプリケーション(application)、ストレージ(storage)、運用体制(OS)、保安(security)のようなコンピューティング資源を、各ユーザ所有の端末にインストールして使用するのではなく、仮想化技術を介して生成された仮想空間上のサービスを、所望時点に所望程度選んで使用することができる。
【0344】
特定サービスユーザのユーザ端末機、はインターネット及び移動通信網を含む情報通信網を介して、クラウドコンピューティングサーバ14100に接続する。ユーザ端末機は、クラウドコンピューティングサーバ14100から、クラウドコンピューティングサービス、特に、動画再生サービスを提供される。ユーザ端末機は、デストトップPC(personal computer)14300、スマートTV 14400、スマートフォン14500、ノート型パソコン14600、PMP(portable multimedia player)14700、タブレットPC 14800など、インターネット接続が可能な全ての電子機器にもなる。
【0345】
クラウドコンピューティングサーバ14100は、クラウド網に分散している多数のコンピューティング資源14200を統合し、ユーザ端末機に提供することができる。多数のコンピューティング資源14200は、さまざまなデータサービスを含み、ユーザ端末機からアップロードされたデータを含んでもよい。かように、クラウドコンピューティングサーバ14100は、多くのところに分散している動画データベースを仮想化技術で統合し、ユーザ端末機が要求するサービスを提供する。
【0346】
ユーザDB 14100には、クラウドコンピューティングサービスに加入しているユーザ情報が保存される。ここで、該ユーザ情報は、ログイン情報と、住所、氏名などの個人信用情報とを含んでもよい。また、該ユーザ情報は、動画のインデックス(index)を含んでもよい。ここで、該インデックスは、再生を完了した動画リストや、再生中の動画リストや、再生中動画の停止時点などを含んでもよい。
【0347】
ユーザDB 14100に保存された動画に係わる情報は、ユーザデバイス間に共有される。従って、例えば、ノート型パソコン14600から再生要請され、ノート型パソコン14600に、所定動画サービスを提供した場合、ユーザDB 14100に、所定動画サービスの再生ヒストリーが保存される。スマートフォン14500から、同一動画サービスの再生要請が受信される場合、クラウドコンピューティングサーバ14100は、ユーザDB 14100を参照し、所定動画サービスを探して再生する。スマートフォン14500が、クラウドコンピューティングサーバ14100を介して、動画データストリームを受信する場合、動画データストリームを復号し、ビデオを再生する動作は、先に
図24を参照して説明した携帯電話12500の動作と類似している。
【0348】
クラウドコンピューティングサーバ14100は、ユーザDB 14100に保存された所定動画サービスの再生ヒストリーを参照することもできる。例えば、クラウドコンピューティングサーバ14100は、ユーザ端末機から、ユーザDB 14100に保存された動画に対する再生要請を受信する。動画が、それ以前に再生中であったならば、クラウドコンピューティングサーバ14100は、ユーザ端末機からの選択によって、最初から再生するか、あるいは以前停止時点から再生するかということにより、ストリーミング方法が異なる。例えば、ユーザ端末機が、最初から再生するように要請した場合には、クラウドコンピューティングサーバ14100が、ユーザ端末機に、当該動画を最初フレームからストリーミング伝送する。一方、該端末機が、以前停止時点から続けて再生するように要請した場合には、クラウドコンピューティングサーバ14100は、ユーザ端末機に、当該動画を停止時点のフレームからストリーミング伝送する。
【0349】
そのとき、該ユーザ端末機は、
図1ないし
図20を参照して説明した本発明のビデオ復号装置を含んでもよい。他の例として、ユーザ端末機は、
図1ないし
図20を参照して説明した本発明のビデオ符号化装置を含んでもよい。また、ユーザ端末機は、
図1ないし
図20を参照して説明した、本発明のビデオ符号化装置及びビデオ復号装置をいずれも含んでもよい。
【0350】
図1ないし
図20を参照して説明した、ビデオ符号化方法及びビデオ復号方法、ビデオ符号化装置及びビデオ復号装置が活用される多様な実施形態は、
図21ないし
図27で説明した。しかし、
図1ないし
図20を参照して説明したビデオ符号化方法及びビデオ復号方法が記録媒体に保存されたり、ビデオ符号化装置及びビデオ復号装置がデバイスで具現される多様な実施形態は、
図21ないし
図27の実施形態に限定されるものではない。
【0351】
本発明は、またコンピュータで読取り可能な記録媒体に、コンピュータが読取り可能なコードとして具現することが可能である。コンピュータで読取り可能な記録媒体は、コンピュータシステムによって読取り可能なデータが保存される全種の記録装置を含む。コンピュータで読取り可能な記録媒体の例としては、ROM、RAM、CD-ROM、磁気テープ、フロッピー(登録商標)ディスク、光データ保存装置などが含まれる。また、コンピュータで読取り可能な記録媒体は、ネットワークに連結されたコンピュータシステムに分散され、分散方式で、コンピュータで読取り可能なコードに保存されて実行される。
【0352】
以上、本発明について、その望ましい実施形態を中心に説明した。本発明が属する技術分野で当業者であるならば、本発明が、本発明の本質的な特性から外れない範囲で変形された形態に具現されるということを理解するであろう。本発明の範囲は、前述の説明ではなく、特許請求の範囲に示されており、それと同等な範囲内にある全ての差異は、本発明に含まれたものであると解釈されなければならないのである。
【0353】
以下、本願により教示される手段を例示的に列挙する。
(付記1)
ビデオ復号装置によって遂行されるビデオ復号方法において、
ビットストリームから、現在ブロックの予測モード情報、及び予測候補を示すインデックスを決定する段階と、
前記予測モード情報によって予測候補リストを決定する段階と、
前記現在ブロックの予測モード情報が既設定予測モードを示せば、前記予測候補リストのうち、前記インデックスが示す動きベクトルを決定し、前記動きベクトルに係わる動き予測情報のうち少なくとも一つに基づいて、前記現在ブロックの予測動きベクトルを決定する段階と、
前記予測動きベクトルに基づいて、前記現在ブロックの動きベクトルを決定する段階と、を含み、
前記既設定予測モードは、スキップモード及びマージモードと異なる予測モードであることを特徴とするビデオ復号方法。
(付記2)
前記既設定予測モードによる予測候補リストは、
基本動きベクトルにおいて一定距離にある候補の動きベクトルを含むことを特徴とする付記1に記載のビデオ復号方法。
(付記3)
前記基本動きベクトルは、前記現在ブロックのスキップモードまたはマージモードで使用される予測動きベクトル候補のうち一つであることを特徴とする付記2に記載のビデオ復号方法。
(付記4)
前記現在ブロックの予測動きベクトル候補を決定する段階は、
前記基本動きベクトルにおいて、第1画素距離にある予測動きベクトル候補を、第1候補グループと決定し、前記基本動きベクトルにおいて、第2画素距離にある予測動きベクトル候補を、第2候補グループと決定することを特徴とする付記2に記載のビデオ復号方法。
(付記5)
前記動きベクトルに係わる動き予測情報は、
前記現在ブロックの周辺ブロックから獲得された参照方向、参照ピクチャのインデックス、前記動きベクトルの値、及び動きベクトル差分値情報のうち少なくとも一つを含み、
前記現在ブロックの予測動きベクトルを決定する段階は、
前記参照方向、前記参照ピクチャのインデックス、前記動きベクトルの値、及び動きベクトル差分値情報を組み合わせたり変移させたりし、前記現在ブロックの予測動きベクトルを決定することを特徴とする付記1に記載のビデオ復号方法。
(付記6)
前記予測子候補リストに含まれる予測動きベクトル候補が示すインデックスは、
スキップモードまたはマージモードによる予測動きベクトル候補を示すインデックス、及び前記既設定予測モードによる予測動きベクトル候補を示すインデックスを含み、
前記既設定予測モードによる予測動きベクトル候補を示すインデックスは、既存インデックス間で生成されることを特徴とする付記1に記載のビデオ復号方法。
(付記7)
前記既設定予測モードの予測モード情報は、
スキップフラグ及びマージモードフラグの間で獲得されるか、あるいはスキップフラグ及びマージモードフラグの次において獲得されることを特徴とする付記1に記載のビデオ復号方法。
(付記8)
ビデオ符号化装置によって遂行されるビデオ符号化方法において、
既設定予測モードによって、予測子候補リストを決定する段階と、
現在ブロックの予測モード情報が、前記既設定予測モードを示せば、前記予測子候補リストのうちインデックスが示す動きベクトルを決定し、前記動きベクトルに係わる動き予測情報のうち少なくとも一つに基づいて、前記現在ブロックの予測動きベクトルを決定する段階と、
前記予測動きベクトルに基づいて、前記現在ブロックの動きベクトルを決定する段階と、
前記既設定予測モードを示す予測モード情報を符号する段階と、を含み、
前記既設定予測モードは、スキップモード及びマージモードと異なる予測モードであることを特徴とするビデオ符号化方法。
(付記9)
前記既設定予測モードによる予測子候補リストは、
基本動きベクトルにおいて、一定距離にある候補を予測動きベクトル候補に含むことを特徴とする付記8に記載のビデオ符号化方法。
(付記10)
前記基本動きベクトルは、
前記現在ブロックのスキップモードまたはマージモードで使用される予測動きベクトル候補のうち一つであることを特徴とする付記9に記載のビデオ符号化方法。
(付記11)
前記現在ブロックの予測動きベクトル候補を決定する段階は、
前記基本動きベクトルにおいて、第1画素距離にある予測動きベクトル候補を、第1候補グループと決定し、前記基本動きベクトルにおいて、第2画素距離にある予測動きベクトル候補を、第2候補グループと決定することを特徴とする付記9に記載のビデオ符号化方法。
(付記12)
前記予測子候補リストに含まれる予測動きベクトル候補が示すインデックスは、
スキップモードまたはマージモードによる予測動きベクトル候補を示すインデックス、及び前記既設定予測モードによる予測動きベクトル候補を示すインデックスを含み、
前記既設定予測モードによる予測動きベクトル候補を示すインデックスは、既存インデックス間で生成されることを特徴とする付記8に記載のビデオ符号化方法。
(付記13)
前記既設定予測モードの予測モード情報は、
スキップフラグ及びマージモードフラグの間に挿入されるか、あるいはスキップフラグ及びマージモードフラグの次に挿入されることを特徴とする付記8に記載のビデオ符号化方法。
(付記14)
ビットストリームから、現在ブロックの予測モード情報、及び予測候補を示すインデックスを決定し、前記予測モード情報によって、予測子候補リストを決定する決定部と、
前記現在ブロックの予測モード情報が既設定予測モードを示せば、前記予測子候補リストのうち、前記インデックスが示す動きベクトルを決定し、前記動きベクトルに係わる動き予測情報のうち少なくとも一つに基づいて、前記現在ブロックの予測動きベクトルを決定し、前記予測動きベクトルから獲得された前記現在ブロックの動きベクトルに基づいて、前記現在ブロックの動き補償を行う復号部と、を含み、
前記既設定予測モードは、スキップモード及びマージモードと異なる予測モードであることを特徴とするビデオ復号装置。
(付記15)
既設定予測モード情報によって、予測子候補リストを決定し、現在ブロックの予測モード情報が、前記既設定予測モードを示せば、前記予測子候補リストのうちインデックスが示す動きベクトルを決定し、前記動きベクトルに係わる動き予測情報のうち少なくとも一つに基づいて、前記現在ブロックの予測動きベクトルを決定し、前記予測動きベクトルから獲得された前記現在ブロックの動きベクトルに基づいて、前記現在ブロックの動き予測を行う符号化部と、
前記既設定予測モードを示す予測モード情報を含むビットストリームを生成するビットストリーム生成部と、を含み、
前記既設定予測モードは、スキップモード及びマージモードと異なる予測モードであることを特徴とするビデオ符号化装置。
【先行技術文献】
【特許文献】
【0354】
【特許文献1】特表2014-520484号公報
【特許文献2】韓国公開特許第10-2014-0051026号公報