(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024009909
(43)【公開日】2024-01-23
(54)【発明の名称】製造方法、プログラム、製造システム、集電体、及び電池
(51)【国際特許分類】
H01M 4/66 20060101AFI20240116BHJP
H01M 50/536 20210101ALI20240116BHJP
H01M 10/04 20060101ALI20240116BHJP
H01M 10/058 20100101ALI20240116BHJP
H01M 4/70 20060101ALI20240116BHJP
H01M 50/54 20210101ALI20240116BHJP
【FI】
H01M4/66 A
H01M50/536
H01M10/04 Z
H01M10/058
H01M4/70 A
H01M50/54
【審査請求】未請求
【請求項の数】31
【出願形態】OL
(21)【出願番号】P 2023175150
(22)【出願日】2023-10-10
(62)【分割の表示】P 2021165078の分割
【原出願日】2021-10-06
(71)【出願人】
【識別番号】501440684
【氏名又は名称】ソフトバンク株式会社
(74)【代理人】
【識別番号】110000877
【氏名又は名称】弁理士法人RYUKA国際特許事務所
(72)【発明者】
【氏名】齊藤 貴也
(72)【発明者】
【氏名】高柳 良基
(72)【発明者】
【氏名】宮川 絢太郎
(57)【要約】 (修正有)
【課題】電池の製造方法、プログラム、製造システム、集電体、及び電池を提供する。
【解決手段】樹脂層を準備する準備工程と、樹脂層の上面から下面に貫通する孔を形成する形成工程であって、孔の内面に金属を形成した場合の、集電体が用いられる電池の容量1Ah当たりの前記孔の抵抗が、1mΩ以下となるサイズ及び個数の孔を形成する形成工程と、樹脂層に金属を形成することにより、樹脂層の上面の金属層と下面の金属層とが孔の内面の金属によって電気的に接続された集電体を製造する集電体製造工程とを備える製造方法を提供する。
【選択図】
図17
【特許請求の範囲】
【請求項1】
樹脂層を準備する準備工程と、
前記樹脂層の上面から下面に貫通する孔を形成する形成工程であって、前記孔の内面に金属を形成した場合の、集電体が用いられる電池の容量1Ah当たりの前記孔の抵抗が、1mΩ以下となるサイズ及び個数の孔を形成する形成工程と、
前記樹脂層に金属を形成することにより、前記樹脂層の前記上面の金属層と前記下面の金属層とが前記孔の内面の金属によって電気的に接続された前記集電体を製造する集電体製造工程と
を備える製造方法。
【請求項2】
前記孔は円形又は楕円形である、請求項1に記載の製造方法。
【請求項3】
前記孔は円形であり、前記孔の直径は10~300μmである、請求項2に記載の製造方法。
【請求項4】
前記孔の直径は、50~150μmである、請求項3に記載の製造方法。
【請求項5】
前記形成工程は、前記樹脂層に複数の前記孔を形成する場合、隣接する孔の中心間距離が20~500μmとなるように、前記複数の孔を形成する、請求項1から4のいずれか一項に記載の製造方法。
【請求項6】
前記形成工程は、前記樹脂層に複数の前記孔を形成する場合、隣接する孔の中心間距離が60~350μmとなるように、前記複数の孔を形成する、請求項1から4のいずれか一項に記載の製造方法。
【請求項7】
前記樹脂層の厚みは1~10μmであり、前記上面の金属層の厚みは0.1~2.0μmであり、前記下面の金属層の厚みは0.1~2.0μmである、請求項1から6のいずれか一項に記載の製造方法。
【請求項8】
前記樹脂層の厚みは3~7μmであり、前記上面の金属層の厚みは0.3~1.0μmであり、前記下面の金属層の厚みは0.3~1.0μmである、請求項7に記載の製造方法。
【請求項9】
前記孔の体積に対する前記孔の内面の金属の体積の比率は、0.3~20%である、請求項1から8のいずれか一項に記載の製造方法。
【請求項10】
前記孔の体積に対する前記孔の内面の金属の体積の比率は、1.0~10%である、請求項9に記載の製造方法。
【請求項11】
前記集電体が用いられる前記電池の容量の情報を含む電池情報を取得する取得工程と、
前記電池情報に基づいて、前記孔のサイズ及び個数を決定する設計工程と
を備え、
前記形成工程は、前記設計工程において決定されたサイズ及び個数の前記孔を前記樹脂層に形成する、請求項1から10のいずれか一項に記載の製造方法。
【請求項12】
前記集電体製造工程は、複数の負極集電体を製造し、
前記製造方法は、
前記複数の負極集電体、複数の負極合剤、複数の正極集電体、複数の正極合剤、及び複数のセパレータを積層する積層工程と、
前記複数の負極集電体の負極合剤が積層されていない突出部を負極タブ及び負極Subタブで挟み込んで抵抗溶接するタブ設置工程と、
前記複数の負極集電体、前記複数の負極合剤、前記複数の正極集電体、前記複数の正極合剤、前記複数のセパレータ、前記負極タブ、及び前記負極Subタブを有する電池を製造する電池製造工程と
を備える、請求項1から10のいずれか一項に記載の製造方法。
【請求項13】
前記集電体製造工程は、前記複数の正極集電体を製造し、
前記タブ設置工程は、前記複数の正極集電体の正極合剤が積層されていない突出部を正極タブ及び正極Subタブで挟み込んで抵抗溶接し、
前記電池製造工程は、前記複数の負極集電体、前記複数の負極合剤、前記複数の正極集電体、前記複数の正極合剤、前記複数のセパレータ、前記負極タブ、前記負極Subタブ、前記正極タブ、及び前記正極Subタブを有する電池を製造する、請求項12に記載の製造方法。
【請求項14】
前記集電体製造工程は、複数の正極集電体を製造し、
前記製造方法は、
複数の負極集電体、複数の負極合剤、正極複数の正極集電体、複数の正極合剤、及び複数のセパレータを積層する積層工程と、
前記複数の正極集電体の正極合剤が積層されていない突出部を正極タブ及び正極Subタブで挟み込んで抵抗溶接するタブ設置工程と、
前記複数の負極集電体、前記複数の負極合剤、前記複数の正極集電体、前記複数の正極合剤、前記複数のセパレータ、前記正極タブ、及び前記正極Subタブを有する電池を製造する電池製造工程と
を備える、請求項1から10のいずれか一項に記載の製造方法。
【請求項15】
前記積層工程は、前記複数の正極集電体の層が少なくとも3層となるように、前記複数の負極集電体、複数の負極合剤、前記複数の正極集電体、複数の正極合剤、及び複数のセパレータを積層する、請求項12から14のいずれか一項に記載の製造方法。
【請求項16】
前記形成工程は、前記樹脂層のうちの前記突出部に相当する領域内に前記孔を形成する、請求項12から15のいずれか一項に記載の製造方法。
【請求項17】
前記形成工程は、前記樹脂層のうちの前記負極タブ及び前記負極Subタブに挟まれる領域内に前記孔を形成する、請求項12又は13に記載の製造方法。
【請求項18】
前記形成工程は、前記負極集電体を生成する場合、前記樹脂層のうちの前記負極タブ及び前記負極Subタブと抵抗溶接される領域内に前記孔を形成する、請求項17に記載の製造方法。
【請求項19】
前記形成工程は、前記樹脂層のうちの前記正極タブ及び前記正極Subタブに挟まれる領域内に前記孔を形成する、請求項13又は14に記載の製造方法。
【請求項20】
前記形成工程は、前記正極集電体を生成する場合、前記樹脂層のうちの前記正極タブ及び前記正極Subタブと抵抗溶接される領域内に前記孔を形成する、請求項19に記載の製造方法。
【請求項21】
前記集電体が用いられる前記電池の容量の情報を含む電池情報を取得する取得工程と、
前記電池情報に基づいて、前記孔のサイズ及び個数を決定する設計工程と
を備え、
前記形成工程は、前記設計工程において決定されたサイズ及び個数の前記孔を前記樹脂層に形成する、請求項12から20のいずれか一項に記載の製造方法。
【請求項22】
前記設計工程は、前記複数の負極集電体の前記突出部のそれぞれに形成される孔が、積層されることによって隣接する負極集電体の突出部の孔と少なくとも一部が重複するように、前記孔の位置及びサイズと、孔同士の間隔とを決定する、請求項21に記載の製造方法。
【請求項23】
複数の樹脂層を準備する準備工程と、
前記複数の樹脂層のそれぞれの突出部に上面から下面に貫通する孔を形成する形成工程と、
前記形成工程によって孔が形成された前記樹脂層に金属を形成することにより、前記樹脂層の前記上面の金属層と前記下面の金属層とが前記孔の内面の金属によって電気的に接続された負極集電体を生成する集電体生成工程と、
複数の前記負極集電体、複数の負極合剤、複数の正極集電体、複数の正極合剤、及び複数のセパレータを積層する積層工程と、
前記複数の負極集電体の前記突出部を負極タブ及び負極Subタブで挟み込んで抵抗溶接するタブ設置工程と、
前記複数の負極集電体、前記複数の負極合剤、前記複数の正極集電体、前記複数の正極合剤、前記複数のセパレータ、前記負極タブ、及び前記負極Subタブを有する電池を製造する電池製造工程と
を備え、
前記形成工程は、前記樹脂層のうちの前記負極タブ及び前記負極Subタブに挟まれる領域内に前記孔を形成する、
製造方法。
【請求項24】
前記集電体生成工程は、前記形成工程によって孔が形成された前記樹脂層に金属を形成することにより、前記樹脂層の前記上面の金属層と前記下面の金属層とが前記孔の内面の金属によって電気的に接続された正極集電体を生成し、
前記積層工程は、前記集電体生成工程において生成された前記複数の負極集電体及び前記複数の正極集電体と、前記複数の負極合剤、前記複数の正極合剤、及び前記複数のセパレータとを積層し、
前記タブ設置工程は、前記複数の正極集電体の前記突出部を正極タブ及び正極Subタブで挟み込んで抵抗溶接し、
前記電池製造工程は、前記複数の負極集電体、前記複数の負極合剤、前記複数の正極集電体、前記複数の正極合剤、前記複数のセパレータ、前記負極タブ、前記負極Subタブ、前記正極タブ、及び前記正極Subタブを有する電池を製造し、
前記形成工程は、前記樹脂層のうちの前記正極タブ及び前記正極Subタブに挟まれる領域内に前記孔を形成する、請求項23に記載の製造方法。
【請求項25】
複数の樹脂層を準備する準備工程と、
前記複数の樹脂層のそれぞれの突出部に上面から下面に貫通する孔を形成する形成工程と、
前記形成工程によって孔が形成された前記樹脂層に金属を形成することにより、前記樹脂層の前記上面の金属層と前記下面の金属層とが前記孔の内面の金属によって電気的に接続された正極集電体を生成する集電体生成工程と、
複数の負極集電体、複数の負極合剤、複数の前記正極集電体、複数の正極合剤、及び複数のセパレータを積層する積層工程と、
前記複数の正極集電体の前記突出部を正極タブ及び正極Subタブで挟み込んで抵抗溶接するタブ設置工程と、
前記複数の負極集電体、前記複数の負極合剤、前記複数の正極集電体、前記複数の正極合剤、前記複数のセパレータ、前記正極タブ、及び前記正極Subタブを有する電池を製造する電池製造工程と
を備え、
前記形成工程は、前記樹脂層のうちの前記正極タブ及び前記正極Subタブに挟まれる領域内に前記孔を形成する、
製造方法。
【請求項26】
コンピュータに、請求項1から25のいずれか一項に記載の製造方法を実行させるためのプログラム。
【請求項27】
樹脂層を準備する準備部と、
前記樹脂層の上面から下面に貫通する孔を形成する孔形成部であって、前記孔の内面に金属を形成した場合の、集電体が用いられる電池の容量1Ah当たりの前記孔の抵抗が、1mΩ以下となるサイズ及び個数の孔を形成する孔形成部と、
前記樹脂層に金属を形成することにより、前記樹脂層の前記上面の金属層と前記下面の金属層とが前記孔の内面の金属によって電気的に接続された前記集電体を製造する集電体製造部と
を備える製造システム。
【請求項28】
複数の樹脂層を準備する準備部と、
前記複数の樹脂層のそれぞれの突出部に上面から下面に貫通する孔を形成する孔形成部と、
前記孔形成部によって孔が形成された前記樹脂層に金属を形成することにより、前記樹脂層の前記上面の金属層と前記下面の金属層とが前記孔の内面の金属によって電気的に接続された負極集電体を製造する集電体製造部と、
複数の前記負極集電体、複数の負極合剤、複数の正極集電体、複数の正極合剤、及び複数のセパレータを積層する積層部と、
前記複数の負極集電体の前記突出部を負極タブ及び負極Subタブで挟み込んで抵抗溶接するタブ設置部と、
前記複数の負極集電体、前記複数の負極合剤、前記複数の正極集電体、前記複数の正極合剤、前記複数のセパレータ、前記負極タブ、及び前記負極Subタブを有する電池を製造する電池製造部と
を備え、
前記孔形成部は、前記樹脂層のうちの前記負極タブ及び前記負極Subタブに挟まれる領域内に前記孔を形成する、
製造システム。
【請求項29】
複数の樹脂層を準備する準備部と、
前記複数の樹脂層のそれぞれの突出部に上面から下面に貫通する孔を形成する孔形成部と、
前記孔形成部によって孔が形成された前記樹脂層に金属を形成することにより、前記樹脂層の前記上面の金属層と前記下面の金属層とが前記孔の内面の金属によって電気的に接続された正極集電体を製造する集電体製造部と、
複数の負極集電体、複数の負極合剤、複数の前記正極集電体、複数の正極合剤、及び複数のセパレータを積層する積層部と、
前記複数の正極集電体の前記突出部を正極タブ及び正極Subタブで挟み込んで抵抗溶接するタブ設置部と、
前記複数の負極集電体、前記複数の負極合剤、前記複数の正極集電体、前記複数の正極合剤、前記複数のセパレータ、前記正極タブ、及び前記正極Subタブを有する電池を製造する電池製造部と
を備え、
前記孔形成部は、前記樹脂層のうちの前記正極タブ及び前記正極Subタブに挟まれる領域内に前記孔を形成する、
製造システム。
【請求項30】
集電体であって、
上面から下面に貫通する少なくとも1つの孔を有する樹脂層と、
前記樹脂層の前記上面及び前記下面と、前記孔の内面とに形成された金属と
を備え、
前記樹脂層の前記上面の金属層と前記下面の金属層とが前記孔の内面の金属によって電気的に接続されており、前記集電体が用いられる電池の容量1Ah当たりの前記孔の抵抗が1mΩ以下である、
集電体。
【請求項31】
請求項30に記載の集電体を有する電池。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、製造方法、プログラム、製造システム、集電体、及び電池に関する。
【背景技術】
【0002】
金属メッキ樹脂フィルムが知られていた(例えば、特許文献1参照)。
[先行技術文献]
[特許文献]
[特許文献1]特開2018-181823号公報
【発明の概要】
【0003】
本発明の一実施態様によれば、製造方法が提供される。製造方法は、樹脂層を準備する準備工程を備えてよい。製造方法は、樹脂層の上面から下面に貫通する孔を形成する形成工程であって、孔の内面に金属を形成した場合の、集電体が用いられる電池の容量1Ah当たりの孔の抵抗が、1mΩ以下となるサイズ及び個数の孔を形成する形成工程を備えてよい。製造方法は、樹脂層に金属を形成することにより、樹脂層の上面の金属層と下面の金属層とが孔の内面の金属によって電気的に接続された集電体を製造する集電体製造工程を備えてよい。
【0004】
上記孔は円形又は楕円形であってよい。上記孔は円形であり、上記孔の直径は10~300μmであってよい。上記孔の直径は、50~150μmであってよい。上記形成工程は、上記樹脂層に複数の上記孔を形成する場合、隣接する孔の中心間距離が20~500μmとなるように、上記複数の孔を形成してよい。上記形成工程は、上記樹脂層に複数の上記孔を形成する場合、隣接する孔の中心間距離が60~350μmとなるように、上記複数の孔を形成してよい。上記樹脂層の厚みは1~10μmであってよく、上記上面の金属層の厚みは0.1~2.0μmであってよく、上記下面の金属層の厚みは0.1~2.0μmであってよい。上記樹脂層の厚みは3~7μmであってよく、上記上面の金属層の厚みは0.3~1.0μmであってよく、上記下面の金属層の厚みは0.3~1.0μmであってよい。上記孔の体積に対する上記孔の内面の金属の体積の比率は、0.3~20%であってよい。上記孔の体積に対する上記孔の内面の金属の体積の比率は、1.0~10%であってよい。
【0005】
上記製造方法は、上記集電体が用いられる上記電池の容量の情報を含む電池情報を取得する取得工程と、上記電池情報に基づいて、上記孔のサイズ及び個数を決定する設計工程とを備えてよく、上記形成工程は、上記設計工程において決定されたサイズ及び個数の上記孔を上記樹脂層に形成してよい。上記集電体製造工程は、複数の負極集電体を製造してよく、上記製造方法は、上記複数の負極集電体、複数の負極合剤、複数の正極集電体、複数の正極合剤、及び複数のセパレータを積層する積層工程と、上記複数の負極集電体の負極合剤が積層されていない突出部を負極タブ及び負極Subタブで挟み込んで抵抗溶接するタブ設置工程と、上記複数の負極集電体、上記複数の負極合剤、上記複数の正極集電体、上記複数の正極合剤、上記複数のセパレータ、上記負極タブ、及び上記負極Subタブを有する電池を製造する電池製造工程とを備えてよい。上記集電体製造工程は、上記複数の正極集電体を製造してよく、上記タブ設置工程は、上記複数の正極集電体の正極合剤が積層されていない突出部を正極タブ及び正極Subタブで挟み込んで抵抗溶接してよく、上記電池製造工程は、上記複数の負極集電体、上記複数の負極合剤、上記複数の正極集電体、上記複数の正極合剤、上記複数のセパレータ、上記負極タブ、上記負極Subタブ、上記正極タブ、及び上記正極Subタブを有する電池を製造してよい。上記集電体製造工程は、複数の正極集電体を製造してよく、上記製造方法は、複数の負極集電体、複数の負極合剤、正極複数の正極集電体、複数の正極合剤、及び複数のセパレータを積層する積層工程と、上記複数の正極集電体の正極合剤が積層されていない突出部を正極タブ及び正極Subタブで挟み込んで抵抗溶接するタブ設置工程と、上記複数の負極集電体、上記複数の負極合剤、上記複数の正極集電体、上記複数の正極合剤、上記複数のセパレータ、上記正極タブ、及び上記正極Subタブを有する電池を製造する電池製造工程とを備えてよい。上記形成工程は、上記樹脂層のうちの上記正極タブ及び上記正極Subタブに挟まれる領域内に上記孔を形成してよい。上記形成工程は、上記正極集電体を生成する場合、上記樹脂層のうちの上記正極タブ及び上記正極Subタブと抵抗溶接される領域内に上記孔を形成してよい。上記積層工程は、上記正極集電体の層が少なくとも3層となるように、上記複数の負極集電体、複数の負極合剤、上記複数の正極集電体、複数の正極合剤、及び複数のセパレータを積層してよい。上記形成工程は、上記樹脂層のうちの上記突出部に相当する領域内に上記孔を形成してよい。上記形成工程は、上記樹脂層のうちの上記負極タブ及び上記負極Subタブに挟まれる領域内に上記孔を形成してよい。上記形成工程は、上記負極集電体を生成する場合、上記樹脂層のうちの上記負極タブ及び上記負極Subタブと抵抗溶接される領域内に上記孔を形成してよい。上記製造方法は、上記集電体が用いられる上記電池の容量の情報を含む電池情報を取得する取得工程と、上記電池情報に基づいて、上記孔のサイズ及び個数を決定する設計工程とを備えてよく、上記形成工程は、上記設計工程において決定されたサイズ及び個数の上記孔を上記樹脂層に形成してよい。上記設計工程は、上記複数の負極集電体の上記突出部のそれぞれに形成される孔が、積層されることによって隣接する負極集電体の突出部の孔と少なくとも一部が重複するように、上記孔の位置及びサイズと、孔同士の間隔とを決定してよい。
【0006】
本発明の一実施態様によれば、製造方法が提供される。製造方法は、複数の樹脂層を準備する準備工程を備えてよい。製造方法は、複数の樹脂層のそれぞれの突出部に上面から下面に貫通する孔を形成する形成工程を備えてよい。製造方法は、形成工程によって孔が形成された樹脂層に金属を形成することにより、樹脂層の上面の金属層と下面の金属層とが孔の内面の金属によって電気的に接続された負極集電体を生成する集電体生成工程を備えてよい。製造方法は、複数の負極集電体、複数の負極合剤、複数の正極集電体、複数の正極合剤、及び複数のセパレータを積層する積層工程を備えてよい。製造方法は、複数の負極集電体の突出部を負極タブ及び負極Subタブで挟み込んで抵抗溶接するタブ設置工程を備えてよい。製造方法は、複数の負極集電体、複数の負極合剤、複数の正極集電体、複数の正極合剤、複数のセパレータ、負極タブ、及び負極Subタブを有する電池を製造する電池製造工程を備えてよい。形成工程は、樹脂層のうちの負極タブ及び負極Subタブに挟まれる領域内に孔を形成してよい。上記集電体生成工程は、上記形成工程によって孔が形成された上記樹脂層に金属をメッキすることにより、上記樹脂層の上記上面の金属層と上記下面の金属層とが上記孔の内面の金属によって電気的に接続された正極集電体を生成してよく、上記積層工程は、上記集電体生成工程において生成された上記複数の負極集電体及び上記複数の正極集電体と、上記複数の負極合剤、上記複数の正極合剤、及び上記複数のセパレータとを積層してよく、上記タブ設置工程は、上記複数の正極体の上記突出部を正極タブ及び正極Subタブで挟み込んで抵抗溶接してよく、上記電池製造工程は、上記複数の負極集電体、上記複数の負極合剤、上記複数の正極集電体、上記複数の正極合剤、上記複数のセパレータ、上記負極タブ、上記負極Subタブ、上記正極タブ、及び上記正極Subタブを有する電池を製造してよく、上記形成工程は、上記樹脂層のうちの上記正極タブ及び上記正極Subタブに挟まれる領域内に上記孔を形成してよい。
【0007】
本発明の一実施態様によれば、製造方法が提供される。製造方法は、複数の樹脂層を準備する準備工程を備えてよい。製造方法は、複数の樹脂層のそれぞれの突出部に上面から下面に貫通する孔を形成する形成工程を備えてよい。製造方法は、形成工程によって孔が形成された樹脂層に金属を形成することにより、樹脂層の上面の金属層と下面の金属層とが孔の内面の金属によって電気的に接続された正極集電体を生成する集電体生成工程を備えてよい。製造方法は、複数の負極集電体、複数の負極合剤、複数の正極集電体、複数の正極合剤、及び複数のセパレータを積層する積層工程を備えてよい。製造方法は、複数の正極集電体の突出部を正極タブ及び正極Subタブで挟み込んで抵抗溶接するタブ設置工程を備えてよい。製造方法は、複数の負極集電体、複数の負極合剤、複数の正極集電体、複数の正極合剤、複数のセパレータ、正極タブ、及び正極Subタブを有する電池を製造する電池製造工程を備えてよい。形成工程は、樹脂層のうちの正極タブ及び正極Subタブに挟まれる領域内に孔を形成する。
【0008】
本発明の一実施態様によれば、コンピュータに、上記製造方法を実行させるためのプログラムが提供される。
【0009】
本発明の一実施態様によれば、製造システムが提供される。製造システムは、樹脂層を準備する準備部を備えてよい。製造システムは、樹脂層の上面から下面に貫通する孔を形成する孔形成部であって、孔の内面に金属を形成した場合の、集電体が用いられる電池の容量1Ah当たりの孔の抵抗が、1mΩ以下となるサイズ及び個数の孔を形成する孔形成部を備えてよい。製造システムは、樹脂層に金属を形成することにより、樹脂層の上面の金属層と下面の金属層とが孔の内面の金属によって電気的に接続された集電体を製造する集電体製造部を備えてよい。
【0010】
本発明の一実施態様によれば、製造システムが提供される。製造システムは、複数の樹脂層を準備する準備部を備えてよい。製造システムは、複数の樹脂層のそれぞれの突出部に上面から下面に貫通する孔を形成する孔形成部を備えてよい。製造システムは、形成工程によって孔が形成された樹脂層に金属を形成することにより、樹脂層の上面の金属層と下面の金属層とが孔の内面の金属によって電気的に接続された負極集電体を製造する集電体製造部を備えてよい。製造システムは、複数の負極集電体、複数の負極合剤、複数の正極集電体、複数の正極合剤、及び複数のセパレータを積層する積層部を備えてよい。製造システムは、複数の負極集電体の突出部を負極タブ及び負極Subタブで挟み込んで抵抗溶接するタブ設置部を備えてよい。製造システムは、複数の負極集電体、複数の負極合剤、複数の正極集電体、複数の正極合剤、複数のセパレータ、負極タブ、及び負極Subタブを有する電池を製造する電池製造部を備えてよい。孔形成部は、樹脂層のうちの負極タブ及び負極Subタブに挟まれる領域内に孔を形成してよい。
【0011】
本発明の一実施態様によれば、製造システムが提供される。製造システムは、複数の樹脂層を準備する準備部を備えてよい。製造システムは、複数の樹脂層のそれぞれの突出部に上面から下面に貫通する孔を形成する孔形成部を備えてよい。製造システムは、孔形成部によって孔が形成された樹脂層に金属を形成することにより、樹脂層の上面の金属層と下面の金属層とが孔の内面の金属によって電気的に接続された正極集電体を製造する集電体製造部を備えてよい。製造システムは、複数の負極集電体、複数の負極合剤、複数の正極集電体、複数の正極合剤、及び複数のセパレータを積層する積層部を備えてよい。製造システムは、複数の正極集電体の突出部を正極タブ及び正極Subタブで挟み込んで抵抗溶接するタブ設置部を備えてよい。製造システムは、複数の負極集電体、複数の負極合剤、複数の正極集電体、複数の正極合剤、複数のセパレータ、正極タブ、及び正極Subタブを有する電池を製造する電池製造部を備えてよい。孔形成部は、樹脂層のうちの正極タブ及び正極Subタブに挟まれる領域内に孔を形成してよい。
製造システム。
【0012】
本発明の一実施態様によれば、集電体が提供される。集電体は、上面から下面に貫通する少なくとも1つの孔を有する樹脂層を備えてよい。集電体は、樹脂層の上面及び下面と、孔の内面とに形成された金属を備えてよい。集電体は、樹脂層の上面の金属層と下面の金属層とが孔の内面の金属によって電気的に接続されており、集電体が用いられる電池の容量1Ah当たりの孔の抵抗が1mΩ以下であってよい。
【0013】
本発明の一実施態様によれば、上記集電体を有する電池が提供される。
【0014】
なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
【図面の簡単な説明】
【0015】
【
図3】負極タブ204及び負極Subタブ206が溶接された状態の積層体280の一例を概略的に示す。
【
図4】正極タブ304及び正極Subタブ306が溶接された状態の積層体380の一例を概略的に示す。
【
図5】負極集電体200の一部の例を概略的に示す。
【
図7】正極集電体300の一部の例を概略的に示す。
【
図9】負極集電体200の突出部210の一例を概略的に示す。
【
図10】負極集電体200の突出部210の一例を概略的に示す。
【
図11】負極集電体200の突出部210の一例を概略的に示す。
【
図12】負極集電体200の突出部210の一例を概略的に示す。
【
図13】負極集電体200の突出部210の一例を概略的に示す。
【
図14】負極集電体200の突出部210の一例を概略的に示す。
【
図15】負極集電体200の突出部210の一例を概略的に示す。
【
図16】電池構成物10の他の一例を概略的に示す。
【
図17】製造システム400の機能構成の一例を概略的に示す。
【
図18】製造システム400による処理の流れの一例を概略的に示す。
【
図19】製造システム400として機能するコンピュータ1200のハードウェア構成の一例を概略的に示す。
【発明を実施するための形態】
【0016】
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
【0017】
図1及び
図2は、電池構成物10の一例を概略的に示す。電池構成物10は、セパレータ40を挟んで交互に積層された複数の負極20及び正極30を有する。負極20は、負極集電体200及び負極合剤202を有する。正極30は、正極集電体300及び正極合剤302を有する。負極集電体200は、突出部210を有する。正極集電体300は、突出部310を有する。
【0018】
図1及び
図2では、突出部210及び突出部310が同一方向に配置されている場合を例示しているが、これに限らない。突出部210と突出部310は、異なる方向に配置されていてもよい。例えば、突出部210と突出部310は、反対方向に配置されてもよい。
【0019】
電池構成物10は、任意の種類の電池の構成物であってよい。電池構成物10は、例えば、リチウムイオン電池の構成物である。例えば、負極集電体200の突出部210が積層された積層体280に負極タブ204及び負極Subタブ206が溶接され、正極集電体300の突出部310が積層された積層体380に正極タブ304及び正極Subタブ306が溶接されて、電池構成物10の全体が筐体等に入れられ、電界液が満たされることによって、リチウムイオン電池が形成される。なお、電池構成物10は、リチウム空気電池の構成物であってもよく、他の種類の電池の構成物であってもよい。
【0020】
図3は、負極タブ204及び負極Subタブ206が溶接された状態の積層体280の一例を概略的に示す。複数の突出部210の先端部分が負極タブ204及び負極Subタブ206によって挟み込まれて、溶接される。溶接手法は、抵抗溶接であってよい。
【0021】
図4は、正極タブ304及び正極Subタブ306が溶接された状態の積層体380の一例を概略的に示す。複数の突出部310の先端部分が正極タブ304及び正極Subタブ306によって挟み込まれて、溶接される。溶接手法は、抵抗溶接であってよい。
【0022】
図5は、負極集電体200の一部を概略的に示す。
図6は、X-X断面図である。負極集電体200は、樹脂層220、金属層230、金属層240、及び金属層260を有する。負極集電体200は、孔250が形成された樹脂層220に対して金属を形成することによって製造される。金属層230は、樹脂層220の上面222に位置し、金属層240は、樹脂層220の下面224に位置し、金属層260は、樹脂層220の孔250の内面226に位置する。金属層230と金属層240とは、金属層260によって電気的に接続される。
【0023】
樹脂層220の樹脂として、金属層230、金属層240、及び金属層260の金属よりも導電性は低いが、密度の低い樹脂が採用される。樹脂層220の樹脂の例として、PET(ポリエチレンテレフタレート)、PP(ポリプロピレン)、PE(ポリエチレン)、及びPPE(ポリフェニレンエーテル)等が挙げられるが、これらに限られない。例えば、電池構成物10がリチウムイオン電池の構成物である場合、金属層230、金属層240、及び金属層260の金属は銅であり、樹脂層220の樹脂はPETであり得る。金属層230、金属層240、及び金属層260の金属は、他の金属であってもよい。また、樹脂層220の樹脂は、他の樹脂であってもよい。
【0024】
電池の用途によって、電流は低くてもよいが重量を軽くしたい場合がある。例えば、太陽電池パネル及び電池を搭載して成層圏を飛行し、地上に無線通信サービスを提供するHAPS(High Altitude Platform Station)では、飛行速度の変化が少ないことから電池の出力電流は低くもよいが、HAPS全体の重量が軽いことが求められる。このように、電流は低くてもよいが重量を軽くすることが要求される用途は他にも存在する。
【0025】
例えば、リチウムイオン電池の場合、負極集電体として銅箔が用いられる場合が多いが、銅箔の厚みを薄くすることによってこのような要求に答えることができる。しかし、銅箔の厚みを薄くするには、技術的な限界があり、また、銅箔の厚みをあまり薄くしてしまうと強度を保つことができず、破損の可能性が高まってしまう。本実施形態に係る負極集電体200は中間が樹脂層220であることから、金属のみからなる負極集電体と比較して、電気抵抗は大きくなるが、密度を低くすることができる。また、負極集電体200の強度も維持することができる。
【0026】
例えば、金属が銅であり、樹脂が仮にPETである場合、銅の密度は約8.96g/cm3であり、PETの密度は約1.38g/cm3であるので、負極集電体を銅のみで構成した場合よりも、重量を大幅に低減することができる。
【0027】
例えば、負極集電体200の厚みを8μmとした場合、樹脂層220の厚みを6μmとすると密度は約3.25g/cm3となり、銅のみで構成した場合との重量比が35%程度となり、重量65%程度を削減することができる。また、樹脂層220の厚みを7μmとすると密度は約2.30g/cm3となり、銅のみで構成した場合との重量比が25%程度となり、重量75%程度を削減することができる。
【0028】
負極集電体が金属のみで構成されている場合、負極集電体を多層化したとしても、金属同士(導電性の材料同士)なので、超音波溶接、抵抗溶接、及びレーザー溶接等で溶接することによって導電パスが確保できる。それに対して、従来の金属メッキ樹脂フィルムは、接着剤接合によって樹脂に金属を接合しており、エッジ部に金属を接合することができなかったので、多層化した場合、導電パスを確保できない。このため、そのままでは抵抗溶接をすることができない。また、金属層と樹脂層との間で、沸点、熱膨張、及び強度等の面で特性が異なるので、例えば、レーザー溶接をしようとした場合、破裂や空孔残存等の問題が発生し得る。また、超音波溶接をしようとした場合、クラックや破断が発生し得る。
【0029】
本実施形態に係る負極集電体200は、孔250を有し、孔250の金属層260によって、金属層230と金属層240との導電パスを確保することができる。十分な導電パスを確保するために、孔250のサイズ、個数、金属層260の厚み等を調整する必要がある。このとき、孔250の分量が多いと負極集電体200の強度が低下してしまうことから、孔250の分量は多すぎない方がよく、必要最低限に抑えた方がよい場合もある。電池構成物10が用いられる電池の容量によって、求められる孔250の抵抗が変わることになる。
【0030】
下記表1は、抵抗の範囲が、0.01mΩ以下、0.01~0.1mΩ、0.1~1.0mΩ、1.0mΩ以上となるように、孔250のサイズ、個数、孔内の金属層の厚みを選択した場合の電池のバラツキ及び強度の実験結果を示す。当該実験では、容量が1Ahの電池に用いられる負極集電体200を対象としている。当該負極集電体200は、樹脂層220の樹脂がPETであり、金属層230、金属層240、及び金属層260の金属が銅である。孔250は、突出部210の負極タブ204と負極Subタブ206とに挟まれる領域内であって、溶接される領域外に形成されており、孔250の形状は円形状である。
【0031】
【0032】
電池のバラツキは、同条件で孔250を形成した電池セルを100セル作成し、異常セルを除いた後、抵抗を測定して、平均値を算出し、平均値に対するMAX、MINが何%になるかを実験した。本実験では、±3%以内が望ましく「◎」、±5%以内を合格「〇」とし、5%を超えた場合を「×」とした。強度は、同条件で孔250を形成した電池セルを100セル作成し、UN38.3の振動試験を実施し、抵抗変化の平均値が、3%以内が望ましく「◎」、5%以内を合格「◎」とし、5%を超えた場合を「×」とした。
【0033】
抵抗が1mΩ以上の場合、電池のバラツキが大きくなることから、抵抗は1mΩ以下が望ましいといえる。抵抗が0.01mΩ以下の場合、強度が十分でないといえることから、抵抗は0.01mΩより高いことが望ましいといえる。
【0034】
孔250の個数及び大きさの条件において、負極集電体200の層数と孔250の個数とは比例する。また、容量面密度と孔250の個数は比例する。また、孔250内の金属の厚み、すなわち、金属層260の厚みと孔250の個数とは反比例する。また、孔250の大きさと個数は反比例する。
【0035】
例えば、負極集電体200が用いられる電池の容量が1Ahであり、正極1層(負極片面2層)の場合であって、孔250の径が50μm、金属層260の厚みが0.5μmの場合、1つ以上の孔250が必要となる。
【0036】
電池の容量が5Ahであり、正極20層(負極両面19層、片面2層)の場合であって、孔250の径が100μm、金属層260の厚みが0.5μmの場合、50個以上の孔250(1枚につき2.5個の孔250)が必要となる。
【0037】
電池の容量が10Ahであり、正極20層(負極両面19層、片面2層)の場合であって、孔250の径が100μm、金属層260の厚みが0.5μmの場合、100個以上の孔250(1枚につき5個の孔250)が必要となる。
【0038】
電池の容量が5Ahであり、正極40層(負極両面39層、片面2層)の場合であって、孔250の径が100μm、金属層260の厚みが0.5μmの場合、100個以上の孔250(1枚につき2.5個の孔250)が必要となる。
【0039】
電池の容量が5Ahであり、正極20層(負極両面19層、片面2層)の場合であって、孔250の径が100μm、金属層260の厚みが0.1μmの場合、250個以上の孔250(1枚につき12.5個の孔250)が必要となる。
【0040】
電池の容量が5Ahであり、正極20層(負極両面19層、片面2層)の場合であって、孔250の径が50μm、金属層260の厚みが0.5μmの場合、100個以上の孔250(1枚につき5個の孔250)が必要となる。
【0041】
図7は、正極集電体300の一部を概略的に示す。
図8は、Y-Y断面図である。正極集電体300は、樹脂層320、金属層330、金属層340、及び金属層360を有する。正極集電体300は、孔350が形成された樹脂層320に対して金属を形成することによって製造される。金属層330は、樹脂層320の上面322に位置し、金属層340は、樹脂層320の下面324に位置し、金属層360は、樹脂層320の孔350の内面326に位置する。金属層330と金属層340とは、金属層360によって電気的に接続される。
【0042】
樹脂層320の樹脂として、金属層330、金属層340、及び金属層360の金属よりも導電性は低いが、密度の低い樹脂が採用される。樹脂層320の樹脂の例として、PET(ポリエチレンテレフタレート)、PP(ポリプロピレン)、PE(ポリエチレン)、及びPPE(ポリフェニレンエーテル)等が挙げられるが、これらに限られない。例えば、電池構成物10がリチウムイオン電池の構成物である場合、金属層330、金属層340、及び金属層360の金属はアルミニウムであり、樹脂層320の樹脂はPETであり得る。金属層330、金属層340、及び金属層230の金属は、他の金属であってもよい。また、樹脂層320の樹脂は、他の樹脂であってもよい。
【0043】
例えば、金属層330、金属層340、及び金属層360の金属がアルミニウムである場合、アルミニウムの抵抗は銅の2倍なので、銅を用いた負極集電体200の場合と比べて、孔250の数を2倍にしたり、孔250のサイズを約2倍にしたりすることによって、負極集電体200と同様の要件を満たすことができる。
【0044】
図9は、負極集電体200の突出部210の一例を概略的に示す。
図9は、積層された複数の突出部210を上から見た状態を概略的に示す。一番上の突出部210に負極タブ204が配置されて、溶接部208において抵抗溶接されている。
【0045】
突出部210は、孔250を含む孔有部212と、孔250を含まない孔無部214とを有する。孔有部212は、溶接部208に相当する領域に孔250を含むとともに、溶接部208に相当する領域以外の領域に、負極集電体200が用いられる電池の容量1Ah当たりの抵抗が0.01mΩより高く、1mΩ以下となるように設計された孔250を含んでよい。
【0046】
溶接部208に相当する領域に孔250がない場合、樹脂層220を加熱して溶出させるための電源と、抵抗溶接するための電源とが必要となる。一度放電すると次の放電までは時間がかかるので、1つでは時間的に間に合わないためである。また、電流、パルスパターン、時間、及び圧力等の様々なパラメータを調整する必要があり、溶接できる条件範囲は非常に狭い。また、金蔵や樹脂の材料、金属や樹脂厚みが異なるたびに、調整が必要で、多いときには、調整で数日費やす場合もある。
【0047】
それに対して、溶接部208に相当する領域に孔250を含むことによって、負極タブ204及び負極Subタブ206が抵抗溶接されたときに溶出した樹脂層220の樹脂を受容する空間を提供することができる。これにより、必要な電源数を1つとすることができ、溶接できる条件範囲も広く、条件が買っても数時間程度で完了させることができる。さらに、溶接部208に相当する領域以外の領域に、負極集電体200が用いられる電池の容量1Ah当たりの抵抗が0.01mΩより高く1mΩ以下となるように設計された孔250を含むことによって、仮に、溶接部208における導電性が無い状態になったとしても、必要最低限の導電性を実現することができる。なお、孔有部212は、溶接部208に相当する領域と、溶接部208に相当する領域以外の領域のうち、負極タブ204と重複する領域のみに、孔250を含んでもよい。負極タブ204と重複する領域は、負極タブ204及び負極Subタブ206によって挟み込まれるので、それ以外の領域と比較して、層同士の密着度が高いことから、導電パスをより確実に確保することに寄与することができる。
【0048】
図10は、負極集電体200の突出部210の他の一例を概略的に示す。ここでは、
図9と異なる点を主に説明する。
図10に例示する突出部210は、先端に孔無部214を有する。
【0049】
図11は、負極集電体200の突出部210の他の一例を概略的に示す。ここでは、
図9と異なる点を主に説明する。
図11に例示する突出部210は、負極タブ204の形状に沿った形状の孔有部212と、孔無部214とを有する。
【0050】
図12は、負極集電体200の突出部210の他の一例を概略的に示す。ここでは、
図9と異なる点を主に説明する。
図12に例示する突出部210は、溶接部208の部分を取り囲む孔有部212と、その孔有部212を取り囲む孔無部214とを有する。
【0051】
図13は、負極集電体200の突出部210の他の一例を概略的に示す。ここでは、
図9と異なる点を主に説明する。
図13に例示する突出部210は、端部に孔無部214を有し、内側に孔有部212を有する。
【0052】
図14は、負極集電体200の突出部210の他の一例を概略的に示す。ここでは、
図9と異なる点を主に説明する。
図14に例示する突出部210は、根元部分と先端部分に孔無部214及び孔無部216を有し、中間部分に孔有部212を有する。
【0053】
図15は、負極集電体200の突出部210の他の一例を概略的に示す。ここでは、
図9と異なる点を主に説明する。
図15に例示する突出部210は、全体が孔有部212である。
図9から
図15を用いて、負極集電体200の突出部210について説明したが、正極集電体300の突出部310も同様であってよい。
【0054】
図16は、電池構成物10の他の一例を概略的に示す。電池構成物10は、
図16に示すように、積層されたラミネート電池50を有する。ラミネート電池50からは、負極集電体200の突出部210及び正極集電体300の突出部310が突出している。例えば、電池構成物10がリチウムイオン電池の構成物である場合、積層体280に負極タブ204及び負極Subタブ206が溶接され、積層体380に正極タブ304及び正極Subタブ306が溶接されて、電池構成物10の全体が筐体等に入れられることによって、リチウムイオン電池が形成される。
【0055】
図16では、突出部210及び突出部310が同一方向に配置されている場合を例示しているが、これに限らない。突出部210と突出部310は、異なる方向に配置されていてもよい。例えば、突出部210と突出部310は、反対方向に配置されてもよい。
【0056】
図17は、製造システム400の機能構成の一例を概略的に示す。製造システム400は、情報取得部402、設計部404、準備部406、孔形成部408、集電体製造部410、積層部412、タブ設置部414、及び電池製造部416を備える。なお、製造システム400がこれらの全てを備えることは必須とは限らない。例えば、製造システム400が、集電体を製造するシステムである場合、製造システム400は、タブ設置部414、タブ設置部414、及び電池製造部416を備えなくてよい。
【0057】
製造システム400は、1つの装置によって構成されてよい。また、製造システム400は、複数の装置によって構成されてもよい。
【0058】
情報取得部402は、各種情報を取得する。情報取得部402は、例えば、製造システム400の入力デバイスを介して入力された情報を取得する。情報取得部402は、例えば、他の装置から情報を受信する。
【0059】
情報取得部402は、例えば、製造する集電体に関する集電体情報を取得する。集電体情報は、集電体の樹脂層の樹脂の情報を含んでよい。集電体は、集電体の金属層の金属の情報を含んでよい。
【0060】
情報取得部402は、例えば、製造する電池に関する電池情報を取得する。電池情報は、電池の容量の情報を含んでよい。電池情報は、電池が含む層数の情報を含んでよい。電池情報は、負極20、正極30、セパレータ40の枚数を含んでよい。
【0061】
情報取得部402は、負極集電体200の孔250に関する負極孔情報を取得してもよい。負極孔情報は、負極集電体200に形成する孔250の位置の情報を含んでよい。負極孔情報は、負極集電体200に形成する孔250のサイズ及び個数の情報を含んでよい。負極孔情報は、負極集電体200に形成する孔250内の金属の厚みに情報を含んでよい。負極孔情報は、負極集電体200に形成する孔250の間隔の情報を含んでよい。
【0062】
情報取得部402は、正極集電体300の孔350に関する正極孔情報を取得してもよい。正極孔情報は、正極集電体300に形成する孔350の位置の情報を含んでよい。正極孔情報は、正極集電体300に形成する孔350のサイズ及び個数の情報を含んでよい。正極孔情報は、正極集電体300に形成する孔350内の金属の厚みに情報を含んでよい。正極孔情報は、正極集電体300に形成する孔350の間隔の情報を含んでよい。
【0063】
設計部404は、情報取得部402が取得した情報に基づいて、負極集電体200の設計を実行する。設計部404は、例えば、情報取得部402が取得した集電体情報及び電池情報に基づいて、負極集電体200の設計を実行する。設計部404は、例えば、電池の容量1Ah当たりの孔250の抵抗が、1mΩ以下となるサイズ及び個数を決定する。また、設計部404は、例えば、上下に重なる負極集電体200の孔250が少なくとも一部重複するように、孔250の位置及びサイズと、孔250同士の間隔とを決定する。例えば、設計部404は、孔250同士の間隔を、孔250の直径よりも小さくすることによって、上下に重なる負極集電体200の孔250が少なくとも一部重複するようにする。
【0064】
設計部404は、情報取得部402が取得した情報に基づいて、正極集電体300の設計を実行する。設計部404は、例えば、情報取得部402が取得した集電体情報及び電池情報に基づいて、正極集電体300の設計を実行する。設計部404は、例えば、電池の容量1Ah当たりの孔350の抵抗が、1mΩ以下となるサイズ及び個数を決定する。また、設計部404は、例えば、上下に重なる正極集電体300の孔350が少なくとも一部重複するように、孔350の位置及びサイズと、孔350同士の間隔とを決定する。例えば、設計部404は、孔350同士の間隔を、孔350の直径よりも小さくすることによって、上下に重なる正極集電体300の孔350が少なくとも一部重複するようにする。
【0065】
準備部406は、樹脂層220を準備する。準備部406は、1~10μmの厚みの樹脂層220を準備してよい。また、準備部406は、3~7μmの厚みの樹脂層220を準備してよい。準備部406は、例えば、1μmの樹脂層220を準備する。準備部406は、例えば、3μmの樹脂層220を準備する。準備部406は、例えば、2μmの樹脂層220を準備する。準備部406は、例えば、4μmの樹脂層220を準備する。準備部406は、例えば、5μmの樹脂層220を準備する。準備部406は、例えば、6μmの樹脂層220を準備する。準備部406は、例えば、7μmの樹脂層220を準備する。準備部406は、例えば、8μmの樹脂層220を準備する。準備部406は、例えば、9μmの樹脂層220を準備する。準備部406は、例えば、10μmの樹脂層220を準備する。
【0066】
準備部406は、樹脂層320を準備する。準備部406は、1~10μmの厚みの樹脂層320を準備してよい。また、準備部406は、3~7μmの厚みの樹脂層320を準備してよい。準備部406は、例えば、1μmの樹脂層320を準備する。準備部406は、例えば、2μmの樹脂層320を準備する。準備部406は、例えば、3μmの樹脂層320を準備する。準備部406は、例えば、4μmの樹脂層320を準備する。準備部406は、例えば、5μmの樹脂層320を準備する。準備部406は、例えば、6μmの樹脂層320を準備する。準備部406は、例えば、7μmの樹脂層320を準備する。準備部406は、例えば、8μmの樹脂層320を準備する。準備部406は、例えば、9μmの樹脂層320を準備する。準備部406は、例えば、10μmの樹脂層320を準備する。
【0067】
孔形成部408は、準備部406が準備した樹脂層220に、樹脂層220の上面から下面に貫通する孔250を形成する。孔形成部408は、負極集電体200が用いられる電池の容量1Ah当たりの孔250の抵抗が、1mΩ以下となるサイズ及び個数の孔250を形成してよい。孔形成部408は、例えば、情報取得部402が取得した負極孔情報に従って、樹脂層220に孔250を形成する。孔形成部408は、例えば、設計部404による設計に従って、樹脂層220に孔250を形成する。
【0068】
孔形成部408が樹脂層220に形成する孔250の形状は、円形状であってよい。孔250の直径は、例えば、10~300μmであってよい。孔250の直径は、50~150μmであってもよい。孔250の形状は、楕円形状であってもよい。孔250の形状は、多角形状であってもよい。孔250の形状は、その他任意の形状であってもよい。孔250の形状が円形状以外の形状である場合、孔250のサイズは、孔250が円形状である場合に相当するサイズであってよい。例えば、孔250の形状が円形状以外の形状である場合、孔250のサイズは、孔250が円形状である場合の周の長さと同様の周の長さを有するサイズであってよい。樹脂層220に複数の孔250を形成する場合、孔形成部408は、隣接する孔250の中心間距離が20~500μmとなるように、複数の孔250を形成してよい。孔形成部408は、隣接する孔250の中心間距離が60~350μmとなるように複数の孔250を形成してもよい。
【0069】
孔形成部408は、例えば、ケミカルエッチングによって、樹脂層220に孔250を形成する。孔形成部408は、超音波レーザーによって、樹脂層220に孔250を形成してもよい。孔形成部408は、掘削用のドリルを用いた掘削によって、樹脂層220に孔250を形成してもよい。孔形成部408は、ガスレーザーによって、樹脂層220に孔250を形成してもよい。
【0070】
孔形成部408は、準備部406が準備した樹脂層320に、樹脂層320の上面から下面に貫通する孔350を形成する。孔形成部408は、正極集電体300が用いられる電池の容量1Ah当たりの孔350の抵抗が、1mΩ以下となるサイズ及び個数の孔350を形成してよい。孔形成部408は、例えば、情報取得部402が取得した正極孔情報に従って、樹脂層320に孔350を形成する。孔形成部408は、例えば、設計部404による設計に従って、樹脂層320に孔350を形成する。
【0071】
孔形成部408が樹脂層320に形成する孔350の形状は、円形状であってよい。孔350の直径は、50~150μmであってもよい。孔350の形状は、楕円形状であってもよい。孔350の形状は、多角形状であってもよい。孔350の形状は、その他任意の形状であってもよい。孔350の形状が円形状以外の形状である場合、孔350のサイズは、孔350が円形状である場合に相当するサイズであってよい。例えば、孔350の形状が円形状以外の形状である場合、孔350のサイズは、孔350が円形状である場合の周の長さと同様の周の長さを有するサイズであってよい。樹脂層320に複数の孔350を形成する場合、孔形成部408は、隣接する孔350の中心間距離が20~500μmとなるように、複数の孔350を形成してよい。孔形成部408は、隣接する孔350の中心間距離が60~350μmとなるように複数の孔350を形成してもよい。
【0072】
孔形成部408は、例えば、ケミカルエッチングによって、樹脂層320に孔350を形成する。孔形成部408は、超音波レーザーによって、樹脂層220に孔250を形成してもよい。孔形成部408は、掘削用のドリルを用いた掘削によって、樹脂層220に孔250を形成してもよい。孔形成部408は、ガスレーザーによって、樹脂層220に孔250を形成してもよい。
【0073】
集電体製造部410は、集電体を製造する。集電体製造部410は、孔形成部408が孔250を形成した樹脂層220に金属を形成することにより、樹脂層220の上面の金属層と、樹脂層220の下面の金属層とが孔250の内面の金属によって電気的に接続された負極集電体200を製造する。
【0074】
集電体製造部410は、例えば、上面の金属の厚みが0.1~2.0μmの負極集電体200を製造する。集電体製造部410は、例えば、上面の金属の厚みが0.3~1.0μmの負極集電体200を製造する。集電体製造部410は、例えば、下面の金属の厚みが0.1~2.0μmの負極集電体200を製造する。集電体製造部410は、例えば、下面の金属の厚みが0.3~1.0μmの負極集電体200を製造する。
【0075】
孔250の体積に対する孔250の内面の金属の体積の比率が大きすぎると、抵抗溶接したときに樹脂が流れ込む空間が少なくなり、溶接強度のばらつきが大きくなってしまう。孔250の体積に対する孔250の内面の金属の体積の比率が小さすぎると、抵抗が高くなってしまうとともに、溶接強度のばらつきが大きくなってしまう。それに対して、発明者は、実験を繰り返すことにより、孔250の体積に対する孔250の内面の金属の体積の比率を0.3%以上とすることによって、溶接強度のばらつきが望ましい範囲に収まり、1%以上とすることによって、溶接強度のばらつきが特に望ましい範囲に収まることを見出した。また、発明者は、実験を繰り返すことにより、孔250の体積に対する孔250の内面の金属の体積の比率を20%未満とすることによって、抵抗と溶接強度のばらつきが望ましい範囲に収まり、10%未満とすることによって、抵抗と溶接強度のばらつきが特に望ましい範囲に収まることを見出した。集電体製造部410は、例えば、孔250の体積に対する孔250の内面の金属の体積の比率が0.3~20%の負極集電体200を製造する。集電体製造部410は、例えば、孔250の体積に対する孔250の内面の金属の体積の比率が1~10%の負極集電体200を製造する。
【0076】
集電体製造部410は、孔形成部408が孔350を形成した樹脂層320に金属を形成することにより、樹脂層320の上面の金属層と、樹脂層320の下面の金属層とが孔250の内面の金属によって電気的に接続された正極集電体300を製造する。
【0077】
集電体製造部410は、例えば、上面の金属の厚みが0.1~2.0μmの正極集電体300を製造する。集電体製造部410は、例えば、上面の金属の厚みが0.3~1.0μmの正極集電体300を製造する。集電体製造部410は、例えば、下面の金属の厚みが0.1~2.0μmの正極集電体300を製造する。集電体製造部410は、例えば、下面の金属の厚みが0.3~1.0μmの正極集電体300を製造する。集電体製造部410は、例えば、孔350の体積に対する孔350の内面の金属の体積の比率が0.3~20%の正極集電体300を製造する。集電体製造部410は、例えば、孔350の体積に対する孔350の内面の金属の体積の比率が1~10%の正極集電体300を製造する。
【0078】
集電体製造部410は、公知の任意の形成手法を用いて、樹脂層220及び樹脂層320に金属を形成してよい。集電体製造部410が用いる形成手法の例として、スパッタリング、蒸着、メッキ(電気メッキ、無電解メッキ)、イオンプレーティング、及び分子接合等が挙げられるが、これらに限られない。
【0079】
積層部412は、集電体製造部410が製造した複数の負極集電体200及び複数の正極集電体300と、複数の負極合剤及び複数の正極合剤と、複数のセパレータとを積層する。積層部412は、
図1及び
図2に例示するように、負極集電体200の突出部210以外の領域に負極合剤202を積層し、正極集電体300の突出部310以外の領域に正極合剤302を積層してよい。
【0080】
タブ設置部414は、複数の負極集電体200の突出部210を、負極タブ204及び負極Subタブ206で挟み込んで抵抗溶接する。負極タブ204の厚みは、100~300μmであってよい。負極Subタブ206の厚みは、50~100μmであってよい。タブ設置部414は、複数の正極集電体300の突出部310を、正極タブ304及び正極Subタブ306で挟み込んで抵抗溶接する。正極タブ304の厚みは、100~300μmであってよい。正極Subタブ306の厚みは、50~100μmであってよい。抵抗溶接を行う装置として、例えば、NAGシステムの精密抵抗溶接機等が採用され得る。
【0081】
電池製造部416は、複数の負極集電体200、複数の負極合剤、複数の正極集電体300、複数の正極合剤、複数のセパレータ、負極タブ204、負極Subタブ206、正極タブ304、及び正極Subタブ306を有する電池を製造する。電池製造部416は、例えば、タブ設置部414によって負極タブ204、負極Subタブ206、正極タブ304、及び正極Subタブ306が設置された電池構成物10を筐体に入れ、電解液の注入等の電池の種類に応じた作業を行うことによって、電池を製造する。
【0082】
図18は、製造システム400による処理の流れの一例を概略的に示す。ここでは、製造システム400が、電池情報を取得して、電池情報に従って電池を製造する処理の流れを概略的に示す。
【0083】
ステップ(ステップをSと省略して記載する場合がある。)102では、情報取得部402が、電池情報を取得する。S104では、設計部404が、S102において情報取得部402が取得した電池情報に基づいて設計を実行する。
【0084】
S106では、準備部406が樹脂層220を準備する。S108では、孔形成部408が、設計部404による設計に従って、樹脂層220に孔250を形成する。S110では、集電体製造部410が、孔250が形成された樹脂層220に金属を形成する。
【0085】
集電体の製造が完了した場合(S112でYES)、S114に進み、完了していない場合(S112でNO)、S106に戻る。S106において、準備部406は、負極集電体200の製造が終了していない場合、樹脂層220を準備し、終了している場合、樹脂層320を準備する。
【0086】
S114では、積層部412が、製造された複数の負極集電体200及び複数の正極集電体300と、複数の負極合剤、複数の正極合剤、及び複数のセパレータ40とを積層する。S116では、タブ設置部414が、複数の負極集電体200の突出部210を負極タブ204及び負極Subタブ206で挟み込んで抵抗溶接し、複数の正極集電体300の突出部310を正極タブ304及び正極Subタブ306で挟み込んで抵抗溶接する。S118では、電池製造部416が、電池を製造する。そして、処理を終了する。
【0087】
図18では、製造システム400が電池を製造する処理の流れについて説明したが、製造システム400が集電体を製造する場合、S112において、集電体の製造が完了したときに、処理を終了してよい。
【0088】
上記実施形態では、負極集電体200及び正極集電体300の両方に孔を設ける場合を主に説明したが、これに限らない。孔を形成するのは、負極集電体200及び正極集電体300のうちの負極集電体200のみであってもよい。この場合、準備部406は、負極集電体200を生成するために用いる樹脂層を準備するとともに、複数の正極集電体を準備してよい。積層部412は、集電体製造部410によって製造された複数の負極集電体200と、準備部406によって準備された複数の正極集電体、複数の負極合剤、複数の正極合剤、及び複数のセパレータとを積層してよい。タブ設置部414は、複数の負極集電体200の突出部210を、負極タブ204及び負極Subタブ206で挟み込んで抵抗溶接してよい。タブ設置部414は、複数の正極集電体の突出部を、正極タブ及び正極Subタブで挟み込んで溶接してよい。電池製造部416は、複数の負極集電体200、複数の負極合剤、複数の正極集電体、複数の正極合剤、複数のセパレータ、負極タブ204、負極Subタブ206、正極タブ、及び正極Subタブを有する電池を製造してよい。
【0089】
孔を形成するのは、負極集電体200及び正極集電体300のうちの正極集電体300のみであってもよい。この場合、準備部406は、正極集電体300を生成するために用いる樹脂層を準備するとともに、複数の負極集電体を準備してよい。積層部412は、集電体製造部410によって製造された複数の正極集電体300と、準備部406によって準備された複数の負極集電体、複数の負極合剤、複数の正極合剤、及び複数のセパレータとを積層してよい。タブ設置部414は、複数の正極集電体300の突出部310を、正極タブ304及び正極Subタブ306で挟み込んで抵抗溶接してよい。タブ設置部414は、複数の負極集電体の突出部を、負極タブ及び負極Subタブで挟み込んで溶接してよい。電池製造部416は、複数の負極集電体、複数の負極合剤、複数の正極集電体300、複数の正極合剤、複数のセパレータ、負極タブ、負極Subタブ、正極タブ304、及び正極Subタブ306を有する電池を製造してよい。
【0090】
図19は、製造システム400として機能するコンピュータ1200のハードウェア構成の一例を概略的に示す。コンピュータ1200にインストールされたプログラムは、コンピュータ1200を、本実施形態に係る装置の1又は複数の「部」として機能させ、又はコンピュータ1200に、本実施形態に係る装置に関連付けられるオペレーション又は当該1又は複数の「部」を実行させることができ、及び/又はコンピュータ1200に、本実施形態に係るプロセス又は当該プロセスの段階を実行させることができる。そのようなプログラムは、コンピュータ1200に、本明細書に記載のフローチャート及びブロック図のブロックのうちのいくつか又はすべてに関連付けられた特定のオペレーションを実行させるべく、CPU1212によって実行されてよい。
【0091】
本実施形態によるコンピュータ1200は、CPU1212、RAM1214、及びグラフィックコントローラ1216を含み、それらはホストコントローラ1210によって相互に接続されている。コンピュータ1200はまた、通信インタフェース1222、記憶装置1224、DVDドライブ、及びICカードドライブのような入出力ユニットを含み、それらは入出力コントローラ1220を介してホストコントローラ1210に接続されている。DVDドライブは、DVD-ROMドライブ及びDVD-RAMドライブ等であってよい。記憶装置1224は、ハードディスクドライブ及びソリッドステートドライブ等であってよい。コンピュータ1200はまた、ROM1230及びキーボードのようなレガシの入出力ユニットを含み、それらは入出力チップ1240を介して入出力コントローラ1220に接続されている。
【0092】
CPU1212は、ROM1230及びRAM1214内に格納されたプログラムに従い動作し、それにより各ユニットを制御する。グラフィックコントローラ1216は、RAM1214内に提供されるフレームバッファ等又はそれ自体の中に、CPU1212によって生成されるイメージデータを取得し、イメージデータがディスプレイデバイス1218上に表示されるようにする。
【0093】
通信インタフェース1222は、ネットワークを介して他の電子デバイスと通信する。記憶装置1224は、コンピュータ1200内のCPU1212によって使用されるプログラム及びデータを格納する。DVDドライブは、プログラム又はデータをDVD-ROM等から読み取り、記憶装置1224に提供する。ICカードドライブは、プログラム及びデータをICカードから読み取り、及び/又はプログラム及びデータをICカードに書き込む。
【0094】
ROM1230はその中に、アクティブ化時にコンピュータ1200によって実行されるブートプログラム等、及び/又はコンピュータ1200のハードウェアに依存するプログラムを格納する。入出力チップ1240はまた、様々な入出力ユニットをUSBポート、パラレルポート、シリアルポート、キーボードポート、マウスポート等を介して、入出力コントローラ1220に接続してよい。
【0095】
プログラムは、DVD-ROM又はICカードのようなコンピュータ可読記憶媒体によって提供される。プログラムは、コンピュータ可読記憶媒体から読み取られ、コンピュータ可読記憶媒体の例でもある記憶装置1224、RAM1214、又はROM1230にインストールされ、CPU1212によって実行される。これらのプログラム内に記述される情報処理は、コンピュータ1200に読み取られ、プログラムと、上記様々なタイプのハードウェアリソースとの間の連携をもたらす。装置又は方法が、コンピュータ1200の使用に従い情報のオペレーション又は処理を実現することによって構成されてよい。
【0096】
例えば、通信がコンピュータ1200及び外部デバイス間で実行される場合、CPU1212は、RAM1214にロードされた通信プログラムを実行し、通信プログラムに記述された処理に基づいて、通信インタフェース1222に対し、通信処理を命令してよい。通信インタフェース1222は、CPU1212の制御の下、RAM1214、記憶装置1224、DVD-ROM、又はICカードのような記録媒体内に提供される送信バッファ領域に格納された送信データを読み取り、読み取られた送信データをネットワークに送信し、又はネットワークから受信した受信データを記録媒体上に提供される受信バッファ領域等に書き込む。
【0097】
また、CPU1212は、記憶装置1224、DVDドライブ(DVD-ROM)、ICカード等のような外部記録媒体に格納されたファイル又はデータベースの全部又は必要な部分がRAM1214に読み取られるようにし、RAM1214上のデータに対し様々なタイプの処理を実行してよい。CPU1212は次に、処理されたデータを外部記録媒体にライトバックしてよい。
【0098】
様々なタイプのプログラム、データ、テーブル、及びデータベースのような様々なタイプの情報が記録媒体に格納され、情報処理を受けてよい。CPU1212は、RAM1214から読み取られたデータに対し、本開示の随所に記載され、プログラムの命令シーケンスによって指定される様々なタイプのオペレーション、情報処理、条件判断、条件分岐、無条件分岐、情報の検索/置換等を含む、様々なタイプの処理を実行してよく、結果をRAM1214に対しライトバックする。また、CPU1212は、記録媒体内のファイル、データベース等における情報を検索してよい。例えば、各々が第2の属性の属性値に関連付けられた第1の属性の属性値を有する複数のエントリが記録媒体内に格納される場合、CPU1212は、当該複数のエントリの中から、第1の属性の属性値が指定されている条件に一致するエントリを検索し、当該エントリ内に格納された第2の属性の属性値を読み取り、それにより予め定められた条件を満たす第1の属性に関連付けられた第2の属性の属性値を取得してよい。
【0099】
上で説明したプログラム又はソフトウエアモジュールは、コンピュータ1200上又はコンピュータ1200近傍のコンピュータ可読記憶媒体に格納されてよい。また、専用通信ネットワーク又はインターネットに接続されたサーバシステム内に提供されるハードディスク又はRAMのような記録媒体が、コンピュータ可読記憶媒体として使用可能であり、それによりプログラムを、ネットワークを介してコンピュータ1200に提供する。
【0100】
本実施形態におけるフローチャート及びブロック図におけるブロックは、オペレーションが実行されるプロセスの段階又はオペレーションを実行する役割を持つ装置の「部」を表わしてよい。特定の段階及び「部」が、専用回路、コンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプログラマブル回路、及び/又はコンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプロセッサによって実装されてよい。専用回路は、デジタル及び/又はアナログハードウェア回路を含んでよく、集積回路(IC)及び/又はディスクリート回路を含んでよい。プログラマブル回路は、例えば、フィールドプログラマブルゲートアレイ(FPGA)、及びプログラマブルロジックアレイ(PLA)等のような、論理積、論理和、排他的論理和、否定論理積、否定論理和、及び他の論理演算、フリップフロップ、レジスタ、並びにメモリエレメントを含む、再構成可能なハードウェア回路を含んでよい。
【0101】
コンピュータ可読記憶媒体は、適切なデバイスによって実行される命令を格納可能な任意の有形なデバイスを含んでよく、その結果、そこに格納される命令を有するコンピュータ可読記憶媒体は、フローチャート又はブロック図で指定されたオペレーションを実行するための手段を作成すべく実行され得る命令を含む、製品を備えることになる。コンピュータ可読記憶媒体の例としては、電子記憶媒体、磁気記憶媒体、光記憶媒体、電磁記憶媒体、半導体記憶媒体等が含まれてよい。コンピュータ可読記憶媒体のより具体的な例としては、フロッピー(登録商標)ディスク、ディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、消去可能プログラマブルリードオンリメモリ(EPROM又はフラッシュメモリ)、電気的消去可能プログラマブルリードオンリメモリ(EEPROM)、静的ランダムアクセスメモリ(SRAM)、コンパクトディスクリードオンリメモリ(CD-ROM)、デジタル多用途ディスク(DVD)、ブルーレイ(登録商標)ディスク、メモリスティック、集積回路カード等が含まれてよい。
【0102】
コンピュータ可読命令は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ、又はSmalltalk(登録商標)、JAVA(登録商標)、C++等のようなオブジェクト指向プログラミング言語、及び「C」プログラミング言語又は同様のプログラミング言語のような従来の手続型プログラミング言語を含む、1又は複数のプログラミング言語の任意の組み合わせで記述されたソースコード又はオブジェクトコードのいずれかを含んでよい。
【0103】
コンピュータ可読命令は、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサ、又はプログラマブル回路が、フローチャート又はブロック図で指定されたオペレーションを実行するための手段を生成するために当該コンピュータ可読命令を実行すべく、ローカルに又はローカルエリアネットワーク(LAN)、インターネット等のようなワイドエリアネットワーク(WAN)を介して、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサ、又はプログラマブル回路に提供されてよい。プロセッサの例としては、コンピュータプロセッサ、処理ユニット、マイクロプロセッサ、デジタル信号プロセッサ、コントローラ、マイクロコントローラ等を含む。
【0104】
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
【0105】
特許請求の範囲、明細書、及び図面中において示した装置、システム、プログラム、及び方法における動作、手順、ステップ、及び段階などの各処理の実行順序は、特段「より前に」、「先立って」などと明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、及び図面中の動作フローに関して、便宜上「まず、」、「次に、」などを用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
【符号の説明】
【0106】
10 電池構成物、20 負極、30 正極、40 セパレータ、50 ラミネート電池、200 負極集電体、202 負極合剤、204 負極タブ、206 負極Subタブ、208 溶接部、210 突出部、212 孔有部、214 孔無部、216 孔無部、220 樹脂層、222 上面、224 下面、226 内面、230 金属層、240 金属層、250 孔、260 金属層、280 積層体、300 正極集電体、302 正極合剤、304 正極タブ、306 正極Subタブ、310 突出部、320 樹脂層、322 上面、324 下面、326 内面、330 金属層、340 金属層、350 孔、360 金属層、380 積層体、400 製造システム、402 情報取得部、404 設計部、406 準備部、408 孔形成部、410 集電体製造部、412 積層部、414 タブ設置部、416 電池製造部、1200 コンピュータ、1210 ホストコントローラ、1212 CPU、1214 RAM、1216 グラフィックコントローラ、1218 ディスプレイデバイス、1220 入出力コントローラ、1222 通信インタフェース、1224 記憶装置、1230 ROM、1240 入出力チップ