(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024099771
(43)【公開日】2024-07-25
(54)【発明の名称】抗原結合ドメインおよび運搬部分を含むポリペプチド
(51)【国際特許分類】
C07K 19/00 20060101AFI20240718BHJP
C07K 16/28 20060101ALI20240718BHJP
C07K 4/00 20060101ALI20240718BHJP
C07K 7/00 20060101ALI20240718BHJP
C12P 21/08 20060101ALI20240718BHJP
A61K 39/395 20060101ALI20240718BHJP
A61K 47/62 20170101ALI20240718BHJP
C12N 15/11 20060101ALN20240718BHJP
【FI】
C07K19/00 ZNA
C07K16/28
C07K4/00
C07K7/00
C12P21/08
A61K39/395 N
A61K39/395 Y
A61K47/62
C12N15/11 Z
【審査請求】有
【請求項の数】20
【出願形態】OL
(21)【出願番号】P 2024073389
(22)【出願日】2024-04-30
(62)【分割の表示】P 2019557251の分割
【原出願日】2018-11-28
(31)【優先権主張番号】P 2017227650
(32)【優先日】2017-11-28
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2018103682
(32)【優先日】2018-05-30
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000003311
【氏名又は名称】中外製薬株式会社
(74)【代理人】
【識別番号】100102978
【弁理士】
【氏名又は名称】清水 初志
(74)【代理人】
【識別番号】100205707
【弁理士】
【氏名又は名称】小寺 秀紀
(74)【代理人】
【識別番号】100160923
【弁理士】
【氏名又は名称】山口 裕孝
(74)【代理人】
【識別番号】100119507
【弁理士】
【氏名又は名称】刑部 俊
(74)【代理人】
【識別番号】100142929
【弁理士】
【氏名又は名称】井上 隆一
(74)【代理人】
【識別番号】100148699
【弁理士】
【氏名又は名称】佐藤 利光
(74)【代理人】
【識別番号】100188433
【弁理士】
【氏名又は名称】梅村 幸輔
(74)【代理人】
【識別番号】100128048
【弁理士】
【氏名又は名称】新見 浩一
(74)【代理人】
【識別番号】100129506
【弁理士】
【氏名又は名称】小林 智彦
(74)【代理人】
【識別番号】100114340
【弁理士】
【氏名又は名称】大関 雅人
(74)【代理人】
【識別番号】100214396
【弁理士】
【氏名又は名称】塩田 真紀
(74)【代理人】
【識別番号】100121072
【弁理士】
【氏名又は名称】川本 和弥
(72)【発明者】
【氏名】井川 智之
(72)【発明者】
【氏名】石川 広幸
(72)【発明者】
【氏名】廣庭 奈緒香
(72)【発明者】
【氏名】加和 達也
【テーマコード(参考)】
4B064
4C076
4C085
4H045
【Fターム(参考)】
4B064AG27
4B064CA02
4B064CA05
4B064CA06
4B064CA08
4B064CA10
4B064CA19
4B064CC24
4B064DA01
4B064DA13
4C076AA11
4C076BB11
4C076BB13
4C076BB15
4C076BB16
4C076CC41
4C076EE41
4C076EE59
4C085AA13
4C085AA14
4C085BB36
4C085CC22
4C085DD61
4C085EE01
4C085GG02
4C085GG03
4C085GG04
4H045AA10
4H045AA20
4H045AA30
4H045BA09
4H045BA41
4H045CA40
4H045DA76
4H045EA20
4H045EA50
4H045FA74
(57)【要約】 (修正有)
【課題】副作用を低減した疾患治療に有用な医薬組成物および有効成分、並びにそれらの製造方法を提供する。
【解決手段】抗原結合ドメインと、抗原結合ドメインの抗原結合活性を抑制する抑制ドメインを有する運搬部分とを含み、当該ポリペプチドは特定の配列群から選ばれる配列を一つまたは複数含むプロテアーゼ切断配列を有する、ポリペプチドであって、かつ単独で存在する抗原結合ドメインより長い半減期を有するポリペプチド、当該ポリペプチドの製造方法およびスクリーニング方法、当該ポリペプチドを含む医薬組成物、特定のVL/VH/VHHと会合することで抗原結合活性が抑制される単ドメイン抗体の製造方法及びスクリーニング方法、ならびに特定のVL/VH/VHHと会合することで抗原結合活性が抑制される単ドメイン抗体を含む融合ポリペプチドのライブラリを提供する。
【選択図】
図5
【特許請求の範囲】
【請求項1】
ポリペプチドであって、当該ポリペプチドは抗原結合ドメインと運搬部分とを含み、当該運搬部分は前記抗原結合ドメインの抗原結合活性を抑制する抑制ドメインを有し、当該ポリペプチドは配列番号:833~852、1062~1081で示す配列、表1に記載の配列から選ばれる配列を一つまたは複数含むプロテアーゼ切断配列を有する、ポリペプチド。
【請求項2】
前記プロテアーゼ切断配列がプロテアーゼにより切断された状態における前記抑制ドメインの前記抗原結合ドメインの抗原結合活性に対する抑制は、前記プロテアーゼ切断配列が未切断の状態における前記抑制ドメインの前記抗原結合ドメインの抗原結合活性に対する抑制より弱い、請求項1に記載のポリペプチド。
【請求項3】
前記抗原結合ドメインは前記運搬部分より短い血中半減期を有する、請求項1または請求項2に記載のポリペプチド。
【請求項4】
前記抗原結合ドメインは前記ポリペプチドから遊離可能であり、前記抗原結合ドメインは、前記ポリペプチドから遊離している状態下における抗原結合活性は、前記ポリペプチドから遊離していない状態下における抗原結合活性より高い、請求項1から請求項3のいずれか一項に記載のポリペプチド。
【請求項5】
前記抗原結合ドメインと前記運搬部分の前記抑制ドメインが会合することで前記抗原結合ドメインの抗原結合活性が抑制される、請求項1から請求項4のいずれか一項に記載のポリペプチド。
【請求項6】
前記プロテアーゼ切断配列がプロテアーゼにより切断されることで、前記抗原結合ドメインが前記ポリペプチドから遊離可能になる、または/及び前記抗原結合ドメインと前記運搬部分の前記抑制ドメインの会合が解消される、請求項4または請求項5に記載のポリペプチド。
【請求項7】
前記プロテアーゼは癌組織特異的プロテアーゼまたは炎症組織特異的プロテアーゼである、請求項1から請求項6のいずれか一項に記載のポリペプチド。
【請求項8】
前記抗原結合ドメインは単ドメイン抗体を含み、もしくは単ドメイン抗体であり、前記運搬部分の前記抑制ドメインは当該単ドメイン抗体の抗原結合活性を抑制する、請求項1から請求項7のいずれか一項に記載のポリペプチド。
【請求項9】
前記抗原結合ドメインは単ドメイン抗体を含み、前記運搬部分の前記抑制ドメインはVHH、または抗体VH、または抗体VLであり、前記単ドメイン抗体は当該VHH、または抗体VH、または抗体VLにより抗原結合活性が抑制される、請求項1から請求項8のいずれか一項に記載のポリペプチド。
【請求項10】
前記運搬部分は抗体定常領域を含む、請求項1から請求項9のいずれか一項に記載のポリペプチド。
【請求項11】
前記ポリペプチドは前記運搬部分の抗体定常領域のN末端と前記抗原結合ドメインのC末端がリンカーを介してまたはリンカーを介さずに融合されており、前記プロテアーゼ切断配列は、前記抗原結合ドメインと前記抗体定常領域の境界付近に位置する、請求項10に記載のポリペプチド。
【請求項12】
前記ポリペプチドの抗体定常領域はIgG抗体定常領域である、請求項10または請求項11に記載のポリペプチド。
【請求項13】
前記ポリペプチドはIgG抗体様分子である、請求項1から請求項12のいずれか一項に記載のポリペプチド。
【請求項14】
請求項1から請求項13のいずれか一項に記載のポリペプチドを含む医薬組成物。
【請求項15】
請求項1から請求項13のいずれか一項に記載のポリペプチドを製造する方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、抗原結合ドメインと、抗原結合ドメインの抗原結合活性を抑制する抑制ドメインを有する運搬部分とを含み、かつ単独で存在する抗原結合ドメインより長い半減期を有するポリペプチド、当該ポリペプチドの製造方法およびスクリーニング方法、当該ポリペプチドを含む医薬組成物、特定のVL/VH/VHHと会合することで抗原結合活性が抑制される単ドメイン抗体の製造方法及びスクリーニング方法、ならびに特定のVL/VH/VHHと会合することで抗原結合活性が抑制される単ドメイン抗体を含む融合ポリペプチドのライブラリに関する。
【背景技術】
【0002】
抗体は血漿中での安定性が高く、副作用も少ないことから医薬品として注目されている。中でもIgG型の抗体医薬は多数上市されており、現在も数多くの抗体医薬が開発されている(非特許文献1、非特許文献2)。
【0003】
抗体医薬を用いた癌治療薬として、これまでのCD20抗原に対するリツキサン、EGFR抗原に対するセツキシマブ、HER2抗原に対するハーセプチン等が承認されている(非特許文献3)。これらの抗体分子は、癌細胞に発現している抗原に対して結合し、ADCC活性等によって癌細胞に対する傷害活性を発揮する。こうしたADCC活性等による細胞傷害活性は、治療用抗体の標的細胞に発現する抗原の数に依存することが知られている(非特許文献4)ため、標的となる抗原の発現量が高いことが治療用抗体の効果の観点からは好ましい。しかし、抗原の発現量が高くても、正常組織に抗原が発現していると、正常細胞に対してADCC活性等の傷害活性を発揮してしまうため、副作用が大きな問題となる。そのため、癌治療薬として治療用抗体が標的とする抗原は、癌細胞に特異的に発現していることが好ましい。例えば、癌抗原として知られているEpCAM抗原に対する抗体分子は、癌治療薬として有望と考えられていたが、EpCAM抗原は膵臓にも発現していることが知られており、実際、臨床試験において、抗EpCAM抗体を投与することによって、膵臓に対する細胞傷害活性により膵炎の副作用がみられることが報告されている(非特許文献5)。
【0004】
ADCC活性による細胞傷害活性を発揮する抗体医薬の成功を受けて、天然型ヒトIgG1のFc領域のN型糖鎖のフコースを除去することによるADCC活性の増強(非特許文献6)、天然型ヒトIgG1のFc領域のアミノ酸置換によりFcγRIIIaへの結合を増強することによるADCC活性の増強(非特許文献7)等によって強力な細胞傷害活性を発揮する第二世代の改良抗体分子が報告されている。上述のNK細胞が介在するADCC活性以外のメカニズムで癌細胞に傷害活性を発揮する抗体医薬として、強力な細胞傷害活性のある薬物を抗体とコンジュゲートしたAntibody Drug Conjugate(ADC)(非特許文献8)、および、T細胞を癌細胞にリクルートすることによって癌細胞に対する傷害活性を発揮する低分子抗体(非特許文献9)等のより強力な細胞傷害活性を発揮する改良抗体分子も報告されている。
【0005】
こうしたより強力な細胞傷害活性を発揮する抗体分子は、抗原の発現が多くはない癌細胞に対しても細胞傷害活性を発揮することが出来る一方で、抗原の発現が少ない正常組織に対しても癌細胞と同様に細胞傷害活性を発揮してしまう。実際、EGFR抗原に対する天然型ヒトIgG1であるセツキシマブと比較して、CD3とEGFRに対する二重特異性抗体であるEGFR-BiTEはT細胞を癌細胞にリクルートすることによって癌細胞に対して強力な細胞傷害活性を発揮し抗腫瘍効果を発揮することができる。その一方で、EGFRは正常組織においても発現しているため、EGFR-BiTEをカニクイザルに投与した際に深刻な副作用が現れることも認められている(非特許文献10)。また、癌細胞で高発現しているCD44v6に対する抗体にmertansineを結合させたADCであるbivatuzumab mertansineは、CD44v6が正常組織においても発現していることから、臨床において重篤な皮膚毒性および肝毒性が認められている(非特許文献11)。
【0006】
このように抗原の発現が少ないような癌細胞に対しても強力な細胞傷害活性を発揮することが出来る抗体を用いた場合、標的抗原が極めて癌特異的に発現している必要があるが、ハーセプチンの標的抗原であるHER2やセツキシマブの標的抗原であるEGFRが正常組織にも発現しているように、極度に癌特異的に発現している癌抗原の数は限られていると考えられる。そのため、癌に対する細胞傷害活性を強化することはできるものの、正常組織に対する細胞傷害作用による副作用が問題となり得る。
【0007】
また、最近、癌における免疫抑制に寄与しているCTLA4を阻害することによって腫瘍免疫を増強するイプリムマブが転移性メラノーマに対してOverall survivalを延長させることが示された(非特許文献12)。しかしながら、イプリムマブはCTLA4を全身的に阻害するため、腫瘍免疫が増強される一方で、全身的に免疫が活性化されることによる自己免疫疾患様の重篤な副作用を示すことが問題となっている(非特許文献13)。
【0008】
一方、癌以外の疾患に対する抗体医薬として、炎症性・自己免疫疾患において炎症サイトカインを阻害することで治療効果を発揮する抗体医薬が知られている(非特許文献14)。例えばTNFを標的とするレミケードやヒュミラ、および、IL-6Rを標的とするアクテムラは、関節リウマチに対して高い治療効果を発揮するが、一方、これらのサイトカインを全身的に中和することにより感染症の副作用が見られることも知られている(非特許文献15)。
【0009】
第二世代の抗体医薬に適用可能な技術として様々な技術が開発されており、エフェクター機能、抗原結合能、薬物動態、安定性を向上させる、あるいは、免疫原性リスクを低減させる技術等が報告されているが(非特許文献16)、上記のような副作用を解決するための、抗体医薬を標的組織に特異的に作用させることを可能とする技術に関する報告は未だ少ない。報告されている技術として、癌組織や炎症性組織のような病変部位で発現するプロテアーゼで切断されるリンカーでマスキングペプチドと抗体をつなぐことで、抗体の抗原結合部位をマスキングペプチドでマスクし、抗体の抗原結合活性を阻害し、このリンカーがプロテアーゼで切断されることでマスクペプチドを解離させ、抗体の抗原結合活性を回復させ、標的の病態組織において抗原に結合することを可能にする方法がある(非特許文献17、18、特許文献1)。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】国際公開WO2010/081173号
【非特許文献】
【0011】
【非特許文献1】Monoclonal antibody successes in the clinic. Janice M Reichert, Clark J Rosensweig, Laura B Faden & Matthew C Dewitz, Nat. Biotechnol. (2005) 23, 1073 - 1078
【非特許文献2】The therapeutic antibodies market to 2008. Pavlou AK, Belsey MJ., Eur. J. Pharm. Biopharm. (2005) 59 (3), 389-396
【非特許文献3】Monoclonal antibodies: versatile platforms for cancer immunotherapy. Weiner LM, Surana R, Wang S., Nat. Rev. Immunol. (2010) 10 (5), 317-327
【非特許文献4】Differential responses of human tumor cell lines to anti-p185HER2 monoclonal antibodies. Lewis GD, Figari I, Fendly B, Wong WL, Carter P, Gorman C, Shepard HM, Cancer Immunol. Immunotherapy (1993) 37, 255-263
【非特許文献5】ING-1, a monoclonal antibody targeting Ep-CAM in patients with advanced adenocarcinomas. de Bono JS, Tolcher AW, Forero A, Vanhove GF, Takimoto C, Bauer RJ, Hammond LA, Patnaik A, White ML, Shen S, Khazaeli MB, Rowinsky EK, LoBuglio AF, Clin. Cancer Res. (2004) 10 (22), 7555-7565
【非特許文献6】Non-fucosylated therapeutic antibodies as next-generation therapeutic antibodies. Satoh M, Iida S, Shitara K., Expert Opin. Biol. Ther. (2006) 6 (11), 1161-1173
【非特許文献7】Optimizing engagement of the immune system by anti-tumor antibodies: an engineer's perspective. Desjarlais JR, Lazar GA, Zhukovsky EA, Chu SY., Drug Discov. Today (2007) 12 (21-22), 898-910
【非特許文献8】Antibody-drug conjugates: targeted drug delivery for cancer. Alley SC, Okeley NM, Senter PD., Curr. Opin. Chem. Biol. (2010) 14 (4), 529-537
【非特許文献9】BiTE: Teaching antibodies to engage T-cells for cancer therapy. Baeuerle PA, Kufer P, Bargou R., Curr. Opin. Mol. Ther. (2009) 11 (1), 22-30
【非特許文献10】T cell-engaging BiTE antibodies specific for EGFR potently eliminate KRAS- and BRAF-mutated colorectal cancer cells. Lutterbuese R, Raum T, Kischel R, Hoffmann P, Mangold S, Rattel B, Friedrich M, Thomas O, Lorenczewski G, Rau D, Schaller E, Herrmann I, Wolf A, Urbig T, Baeuerle PA, Kufer P., Proc. Natl. Acad. Sci. U.S.A. (2010) 107 (28), 12605-12610
【非特許文献11】Phase I trial with the CD44v6-targeting immunoconjugate bivatuzumab mertansine in head and neck squamous cell carcinoma. Riechelmann H, Sauter A, Golze W, Hanft G, Schroen C, Hoermann K, Erhardt T, Gronau S., Oral Oncol. (2008) 44 (9), 823-829
【非特許文献12】Ipilimumab in the treatment of melanoma. Trinh VA, Hwu WJ., Expert Opin. Biol. Ther., (2012) Apr 14 (doi:10.1517/14712598.2012.675325)
【非特許文献13】IPILIMUMAB - A NOVEL IMMUNOMODULATING THERAPY CAUSING AUTOIMMUNE HYPOPHYSITIS: A CASE REPORT AND REVIEW. Juszczak A, Gupta A, Karavitaki N, Middleton MR, Grossman A., Eur. J. Endocrinol. (2012) Apr 10 (doi: 10.1530/EJE-12-0167)
【非特許文献14】The Japanese experience with biologic therapies for rheumatoid arthritis. Takeuchi T, Kameda H., Nat. Rev. Rheumatol. (2010) 6 (11), 644-652
【非特許文献15】Current evidence for the management of rheumatoid arthritis with biological disease-modifying antirheumatic drugs: a systematic literature review informing the EULAR recommendations for the management of RA. Nam JL, Winthrop KL, van Vollenhoven RF, Pavelka K, Valesini G, Hensor EM, Worthy G, Landewe R, Smolen JS, Emery P, Buch MH., Ann. Rheum. Dis. (2010) 69 (6), 976-986
【非特許文献16】Antibody engineering for the development of therapeutic antibodies. Kim SJ, Park Y, Hong HJ., Mol. Cells. (2005) 20 (1), 17-29
【非特許文献17】Tumor-specific activation of an EGFR-targeting probody enhances therapeutic index. Desnoyers LR, Vasiljeva O, Richardson JH, Yang A, Menendez EE, Liang TW, Wong C, Bessette PH, Kamath K, Moore SJ, Sagert JG, Hostetter DR, Han F, Gee J, Flandez J, Markham K, Nguyen M, Krimm M, Wong KR, Liu S, Daugherty PS, West JW, Lowman HB. Sci Transl Med. 2013 Oct 16;5(207):207ra144.
【非特許文献18】Probody therapeutics for targeting antibodies to diseased tissue. Polu KR, Lowman HB. Expert Opin Biol Ther. 2014 Aug;14(8):1049-53.
【発明の概要】
【発明が解決しようとする課題】
【0012】
本発明者らは、前記のようなプロテアーゼ切断により抗体の抗原結合活性を阻害するマスクペプチドを解離させ、抗体の抗原結合活性を回復させる技術では、プロテアーゼによる切断が不可逆であるため、病変部位で切断された抗体が血流に乗って正常組織に分布し、副作用を起こしてしまう可能性があると考えた。
本発明は、このような考えに基づき為されたものであり、その目的の一つは、副作用を低減した疾患治療に有用な医薬組成物、およびその有効成分を提供することにある。また、その目的の一つは、当該医薬組成物および当該有効成分のスクリーニング方法ならびに製造方法を提供することにある。
【課題を解決するための手段】
【0013】
本発明者らは、鋭意研究を進めたところ、抗原結合ドメインと、抗原結合ドメインの結合活性を抑制する抑制ドメインを有する運搬部分を含み、かつ単独で存在する抗原結合ドメインより長い半減期を有するポリペプチドを創作した。当該ポリペプチドを用いることで、疾患組織において抗原結合ドメインの抗原結合活性が回復され、疾患組織において抗原結合活性を発揮できると考えられる。また、抗原結合ドメインの抗原結合活性が抑制された状態のポリペプチドと、抗原結合ドメインの抗原結合活性が回復された状態のポリペプチドの半減期の違いにより、活性化状態の抗原結合ドメインの全身への分布を抑制することが出来る。また、本発明者らは、当該ポリペプチドまたは当該ポリペプチドを含む医薬組成物が、疾患治療に有用であることを見出すとともに、当該ポリペプチドを投与することを含む疾患治療に有用であること、および疾患治療のための医薬の製造において当該ポリペプチドが有用であることを見出した。また、本発明者らは、当該ポリペプチドのスクリーニング方法および製造方法、特定のVLまたはVHまたはVHHと会合することで抗原結合活性が抑制される単ドメイン抗体の製造方法およびスクリーニング方法、ならびに特定のVLまたはVHまたはVHHと会合することで抗原結合活性が抑制される単ドメイン抗体を含むライブラリを創作して本発明を完成させた。
【0014】
本発明はこのような知見に基づくものであり、具体的には以下に例示的に記載する実施態様を包含するものである。
(1)ポリペプチドであって、当該ポリペプチドは抗原結合ドメインと運搬部分とを含み、当該運搬部分は前記抗原結合ドメインの抗原結合活性を抑制する抑制ドメインを有し、前記抗原結合ドメインは前記運搬部分より短い血中半減期を有する、ポリペプチド。
(2)前記抗原結合ドメインの分子量は前記運搬部分の分子量より小さい、(1)に記載のポリペプチド。
(3)前記抗原結合ドメインの分子量は60kDa以下である、(1)または(2)に記載のポリペプチド。
(4)前記運搬部分はFcRn結合活性を有し、前記抗原結合ドメインはFcRn結合活性を有さないまたは前記運搬部分より弱いFcRn結合活性を有する、(1)から(3)のいずれかに記載のポリペプチド。
(5)前記抗原結合ドメインは前記ポリペプチドから遊離可能であり、前記抗原結合ドメインは前記ポリペプチドから遊離することで、抗原結合活性が遊離前より高くなる、(1)から(4)のいずれかに記載のポリペプチド。
(6)前記抗原結合ドメインと前記運搬部分の前記抑制ドメインが会合することで前記抗原結合ドメインの抗原結合活性が抑制される、(1)から(5)のいずれかに記載のポリペプチド。
(7)前記ポリペプチドは切断サイトを含み、当該切断サイトが切断されることにより前記抗原結合ドメインが前記ポリペプチドから遊離可能になる、(5)に記載のポリペプチド。
(8)前記ポリペプチドは切断サイトを含み、当該切断サイトが切断されることにより前記抗原結合ドメインと前記運搬部分の前記抑制ドメインの会合が解消される、(6)に記載のポリペプチド。
(9)前記切断サイトはプロテアーゼ切断配列を含む、(7)または(8)に記載のポリペプチド。
(10)前記プロテアーゼは、標的組織特異的プロテアーゼである、(9)に記載のポリペプチド。
(11)前記標的組織は癌組織または炎症組織である、(10)に記載のポリペプチド。
(12)前記プロテアーゼは、マトリプターゼ、ウロキナーゼ(uPA)、メタロプロテアーゼから選択される少なくとも一つのプロテアーゼである、(9)に記載のポリペプチド。
(13)前記プロテアーゼは、MT-SP1、uPA、MMP-2、MMP-9、ADAMTS5、MMP-7、MMP-13から選択される少なくとも一つのプロテアーゼである、(12)に記載のポリペプチド。
(14)前記プロテアーゼ切断配列は、配列番号:12、25、26、78~81、83、84、91、168~178、193~195、833~852、1062~1081で示す配列、表1に記載の配列から選ばれる配列を一つまたは複数含む、(9)に記載のポリペプチド。
(15)前記プロテアーゼ切断配列の一端に、第一可動リンカーが更に付加されている、(9)から(14)のいずれかに記載のポリペプチド。
(16)前記プロテアーゼ切断配列の他端に、第二可動リンカーが更に付加されている、(15)に記載のポリペプチド。
(17)前記第一可動リンカーは、グリシン-セリンポリマーからなる可動リンカーである、(15)に記載のポリペプチド。
(18)前記第二可動リンカーは、グリシン-セリンポリマーからなる可動リンカーである、(16)に記載のポリペプチド。
(19)前記抗原結合ドメインは単ドメイン抗体を含み、もしくは単ドメイン抗体であり、前記運搬部分の前記抑制ドメインは当該単ドメイン抗体の抗原結合活性を抑制する、(1)から(18)のいずれかに記載のポリペプチド。
(20)前記単ドメイン抗体は、VHH、または単ドメインで抗原結合活性を有するVH、または単ドメインで抗原結合活性を有するVLである、(19)に記載のポリペプチド。
(21)前記抗原結合ドメインは単ドメイン抗体を含み、前記運搬部分の前記抑制ドメインはVHH、または抗体VH、または抗体VLであり、前記単ドメイン抗体は当該VHH、または抗体VH、または抗体VLにより抗原結合活性が抑制される、(1)から(20)のいずれかに記載のポリペプチド。
(22)前記抗原結合ドメインは単ドメイン抗体を含み、前記運搬部分の前記抑制ドメインはVHH、または抗体VH、または抗体VLであり、前記単ドメイン抗体は当該VHH、または抗体VH、または抗体VLと会合することにより抗原結合活性が抑制される、(1)から(21)のいずれかに記載のポリペプチド。
(23)前記単ドメイン抗体はVHH、または単ドメインで抗原結合活性を有するVHであり、前記運搬部分の前記抑制ドメインは抗体VLであり、前記VHHまたは単ドメインで抗原結合活性を有するVHは、前記抗体VLと会合することで抗原結合活性が抑制される、(19)から(22)のいずれかに記載のポリペプチド。
(24)前記単ドメイン抗体はVHHであり、当該VHHは37番、44番、45番、または47番(すべてKabatナンバリング)のアミノ酸から選ばれる少なくとも一つのポジションにおいてアミノ酸置換されている、(19)から(23)のいずれかに記載のポリペプチド。
(25)前記単ドメイン抗体はVHHであり、当該VHHは37V、44G、45L、または47W(すべてKabatナンバリング)のアミノ酸から選ばれる少なくとも一つのアミノ酸を含む、(19)から(23)のいずれかに記載のポリペプチド。
(26)前記単ドメイン抗体はVHHであり、当該VHHはF37V、Y37V、E44G、Q44G、R45L、H45L、G47W、F47W、L47W、T47W、またはS47W(すべてKabatナンバリング)のアミノ酸置換から選ばれる少なくとも一つのアミノ酸置換を含む、(19)から(23)のいずれかに記載のポリペプチド。
(27)前記単ドメイン抗体はVHHであり、当該VHHは37番/44番、37番/45番、37番/47番、44番/45番、44番/47番、45番/47番、37番/44番/45番、37番/44番/47番、37番/45番/47番、44番/45番/47番、37番/44番/45番/47番(すべてKabatナンバリング)から選ばれる少なくとも一組のポジションにおいてアミノ酸置換されている、(19)から(23)のいずれかに記載のポリペプチド。
(28)前記単ドメイン抗体はVHHであり、当該VHHは37V/44G、37V/45L、37V/47W、44G/45L、44G/47W、45L/47W、37V/44G/45L、37V/44G/47W、37V/45L/47W、44G/45L/47W、37V/44G/45L/47W(すべてKabatナンバリング)から選ばれる少なくとも一組のアミノ酸を含む、(19)から(23)のいずれかに記載のポリペプチド。
(29)前記単ドメイン抗体はVHHであり、当該VHHはF37V/R45L、F37V/G47W、R45L/G47W、F37V/R45L/G47W(すべてKabatナンバリング)から選ばれる少なくとも一組のアミノ酸置換を含む、(19)から(23)のいずれかに記載のポリペプチド。
(30)前記単ドメイン抗体は単ドメインで抗原結合活性を有するVLであり、前記運搬部分の前記抑制ドメインは抗体VHであり、前記単ドメインで抗原結合活性を有するVLは、前記抗体VHと会合することで抗原結合活性が抑制される、(19)から(22)のいずれかに記載のポリペプチド。
(31)前記運搬部分はFcRn結合領域を有する、(1)から(30)のいずれかに記載のポリペプチド。
(32)前記運搬部分は抗体定常領域を含む、(1)から(31)のいずれかに記載のポリペプチド。
(33)前記運搬部分の抗体定常領域と前記抗原結合ドメインは、リンカーを介して、またはリンカーを介さずに融合されている、(32)に記載のポリペプチド。
(34)前記運搬部分は抗体重鎖定常領域を含み、当該抗体重鎖定常領域と前記抗原結合ドメインは、リンカーを介して、またはリンカーを介さずに融合されている、(32)に記載のポリペプチド。
(35)前記運搬部分は抗体軽鎖定常領域を含み、当該抗体軽鎖定常領域と前記抗原結合ドメインは、リンカーを介して、またはリンカーを介さずに融合されている、(32)に記載のポリペプチド。
(36)前記ポリペプチドは前記運搬部分の抗体重鎖定常領域のN末端と前記抗原結合ドメインのC末端がリンカーを介してまたはリンカーを介さずに融合されており、更にプロテアーゼ切断配列を有し、当該プロテアーゼ切断配列は、前記抗原結合ドメインの配列中、または前記重鎖抗体定常領域の122番(EUナンバリング)のアミノ酸より前記抗原結合ドメイン側に位置する、(34)に記載のポリペプチド。
(37)前記ポリペプチドは前記運搬部分の抗体軽鎖定常領域のN末端と前記抗原結合ドメインのC末端がリンカーを介してまたはリンカーを介さずに融合されており、更にプロテアーゼ切断配列を有し、当該プロテアーゼ切断配列は、前記抗原結合ドメインの配列中、または前記軽鎖抗体定常領域の113番(EUナンバリング)(Kabatナンバリング113番)のアミノ酸より前記抗原結合ドメイン側に位置する、(35)に記載のポリペプチド。
(38)前記ポリペプチドは前記運搬部分の抗体定常領域のN末端と前記抗原結合ドメインのC末端がリンカーを介してまたはリンカーを介さずに融合されており、前記抗原結合ドメインはVHから作製された単ドメイン抗体またはVHHであり、前記ポリペプチドは更にプロテアーゼ切断配列を有し、当該プロテアーゼ切断配列は、前記抗体定常領域の配列中、または前記抗原結合ドメインの単ドメイン抗体の109番(Kabatナンバリング)のアミノ酸より前記抗体定常領域側に位置する、(33)から(35)のいずれかに記載のポリペプチド。
(39)前記ポリペプチドは前記運搬部分の抗体定常領域のN末端と前記抗原結合ドメインのC末端がリンカーを介してまたはリンカーを介さずに融合されており、更にプロテアーゼ切断配列を有し、当該プロテアーゼ切断配列は、前記抗原結合ドメインと前記抗体定常領域の境界付近に位置する、(33)に記載のポリペプチド。
(40)前記ポリペプチドは前記運搬部分の抗体重鎖定常領域のN末端と前記抗原結合ドメインのC末端がリンカーを介してまたはリンカーを介さずに融合されており、更にプロテアーゼ切断配列を有し、当該プロテアーゼ切断配列は、前記抗原結合ドメインと前記抗体重鎖定常領域の境界付近に位置する、(34)に記載のポリペプチド。
(41)前記ポリペプチドは前記運搬部分の抗体軽鎖定常領域のN末端と前記抗原結合ドメインのC末端がリンカーを介してまたはリンカーを介さずに融合されており、更にプロテアーゼ切断配列を有し、当該プロテアーゼ切断配列は、前記抗原結合ドメインと前記抗体軽鎖定常領域の境界付近に位置する、(35)に記載のポリペプチド。
(42)前記抗原結合ドメインはVHから作製された単ドメイン抗体またはVHHであり、前記プロテアーゼ切断配列は、前記抗原結合ドメインの単ドメイン抗体の109番(Kabatナンバリング)のアミノ酸と前記抗体重鎖定常領域の122番(EUナンバリング)のアミノ酸の間に位置する、(40)に記載のポリペプチド。
(43)前記抗原結合ドメインはVHから作製された単ドメイン抗体またはVHHであり、前記プロテアーゼ切断配列は、前記抗原結合ドメインの単ドメイン抗体の109番(Kabatナンバリング)のアミノ酸と前記抗体軽鎖定常領域の113番(EUナンバリング)(Kabatナンバリング113番)のアミノ酸の間に位置する、(41)に記載のポリペプチド。
(44)前記抗原結合ドメインはVLから作製された単ドメイン抗体であり、前記プロテアーゼ切断配列は、前記抗原結合ドメインの単ドメイン抗体の104番(Kabatナンバリング)のアミノ酸と前記抗体重鎖定常領域の122番(EUナンバリング)のアミノ酸の間に位置する、(40)に記載のポリペプチド。
(45)前記抗原結合ドメインはVLから作製された単ドメイン抗体であり、前記プロテアーゼ切断配列は、前記抗原結合ドメインの単ドメイン抗体の109番(Kabatナンバリング)のアミノ酸と前記抗体軽鎖定常領域の113番(EUナンバリング)(Kabatナンバリング113番)のアミノ酸の間に位置する、(41)に記載のポリペプチド。
(46)前記ポリペプチドの抗体定常領域はIgG抗体定常領域である、(32)から(45)のいずれかに記載のポリペプチド。
(47)前記ポリペプチドはIgG抗体様分子である、(1)から(46)のいずれかに記載のポリペプチド。
(48)前記抗原結合ドメインが未遊離の状態において、BLI(Bio-Layer Interferometry)法(Octet)を用いて測定を行うとき、抗原結合ドメインと抗原の結合が見られない、(1)から(47)のいずれかに記載のポリペプチド。
(49)前記抗原結合ドメインに更に第2の抗原結合ドメインが連結されている、(1)から(48)のいずれかに記載のポリペプチド。
(50)前記第2の抗原結合ドメインは、前記抗原結合ドメインと異なる抗原結合特異性を有する、(49)に記載のポリペプチド。
(51)前記第2の抗原結合ドメインは第2の単ドメイン抗体を含む、(49)または(50)に記載のポリペプチド。
(52)前記抗原結合ドメインは単ドメイン抗体であり、前記第2の抗原結合ドメインは第2の単ドメイン抗体であり、前記抗原結合ドメインおよび前記第2の抗原結合ドメインは前記ポリペプチドから遊離可能であり、前記抗原結合ドメインおよび前記第2の抗原結合ドメインの遊離状態において、前記単ドメイン抗体と前記第2の単ドメイン抗体とが二重特異的抗原結合分子を形成している、(51)に記載のポリペプチド。
(53)前記第2の抗原結合ドメインは、HER2またはGPC3を標的抗原とする、(49)から(52)のいずれかに記載のポリペプチド。
(54)前記ポリペプチドは、前記抗原結合ドメインと別の抗原結合ドメインを更に有し、当該別の抗原結合ドメインも前記ポリペプチドの前記運搬部分と連結することにより抗原結合活性が抑制される、(1)から(53)のいずれかに記載のポリペプチド。
(55)前記別の抗原結合ドメインと前記抗原結合ドメインと異なる抗原結合特異性を有する、(54)に記載のポリペプチド。
(56)前記抗原結合ドメインは、PlexinA1、IL-6RまたはCD3を標的抗原とする抗原結合ドメインである、(1)から(55)のいずれかに記載のポリペプチド。
(57)(1)から(56)のいずれかに記載のポリペプチドを含む医薬組成物。
(58)(1)から(56)のいずれかに記載のポリペプチドを製造する方法。
(59)以下の工程:
(a) 標的抗原に結合する単ドメイン抗体を取得する工程;
(b) (a)工程で取得した単ドメイン抗体の抗原結合活性が運搬部分の抑制ドメインによって抑制されるように、当該単ドメイン抗体と当該運搬部分を連結させてポリペプチド前駆体を形成させる工程;
(c) 前記ポリペプチド前駆体にプロテアーゼ切断配列を導入する工程;
を含む、(58)に記載の製造方法。
(60)以下の工程:
(a) 標的抗原に結合する単ドメイン抗体を取得する工程;
(b) (a)工程で取得した単ドメイン抗体の抗原結合活性が運搬部分の抑制ドメインによって抑制されるように、当該単ドメイン抗体と当該運搬部分を連結させてポリペプチド前駆体を形成させる工程;
(c) 前記単ドメイン抗体と前記運搬部分との境界付近にプロテアーゼ切断配列を導入する工程;
を含む、(58)に記載の製造方法。
(61)以下の工程:
(a) 標的抗原に結合する単ドメイン抗体を取得する工程;
(b) (a)工程で取得した単ドメイン抗体の抗原結合活性が運搬部分の抑制ドメインによって抑制されるように、当該単ドメイン抗体を、プロテアーゼ切断配列を介して当該運搬部分と連結させてポリペプチドを形成させる工程;
を含む、(58)に記載の製造方法。
(62)更に以下の工程:
(d) 前記ポリペプチドまたは前記ポリペプチド前駆体中に組み込まれた前記単ドメイン抗体の前記標的抗原に対する結合活性が弱められ、もしくは失われていることを確認する工程;
を含む、(59)から(61)のいずれかに記載の製造方法。
(63)更に以下の工程:
(e) 前記プロテアーゼ切断配列をプロテアーゼで切断することで前記単ドメイン抗体を遊離させ、遊離の単ドメイン抗体が抗原に結合することを確認する工程;
を含む、(59)から(62)のいずれかに記載の製造方法。
(64)前記ポリペプチドはIgG抗体様分子である、(58)に記載の製造方法。
(65)以下の工程:
(a) 標的抗原に結合する単ドメイン抗体を取得する工程;
(b) (a)工程で取得した単ドメイン抗体の抗原結合活性が抑制されるように、当該単ドメイン抗体をIgG抗体のVHの代わりとしてVLと会合させ、または当該単ドメイン抗体をIgG抗体のVLの代わりとしてVHと会合させることによって、前記単ドメイン抗体が導入されたIgG抗体様分子前駆体を形成させる工程;
(c) 前記単ドメイン抗体が導入されたIgG抗体様分子前駆体にプロテアーゼ切断配列を導入する工程;
を含む、(64)に記載の製造方法。
(66)以下の工程:
(a) 標的抗原に結合する単ドメイン抗体を取得する工程;
(b) (a)工程で取得した単ドメイン抗体の抗原結合活性が抑制されるように、当該単ドメイン抗体をIgG抗体のVHの代わりとしてVLと会合させ、または当該単ドメイン抗体をIgG抗体のVLの代わりとしてVHと会合させることによって、前記単ドメイン抗体が導入されたIgG抗体様分子前駆体を形成させる工程;
(c) 前記単ドメイン抗体と前記IgG抗体様分子前駆体中の抗体定常領域との境界付近にプロテアーゼ切断配列を導入する工程;
を含む、(64)に記載の製造方法。
(67)以下の工程:
(a) 標的抗原に結合する単ドメイン抗体を取得する工程;
(b) (a)工程で取得した単ドメイン抗体の抗原結合活性が抑制されるように、当該単ドメイン抗体をIgG抗体VHまたはVLの代わりとして、プロテアーゼ切断配列を介してIgG抗体の重鎖定常領域または軽鎖定常領域と連結させ、前記単ドメイン抗体が導入されたIgG抗体様分子を形成させる工程;
を含む、(64)に記載の製造方法。
(68)更に以下の工程:
(d) 前記IgG抗体様分子または前記IgG抗体様分子前駆体に導入された前記単ドメイン抗体の前記標的抗原に対する結合活性が弱められ、もしくは失われていることを確認する工程;
を含む、(65)から(67)のいずれかに記載の製造方法。
(69)更に以下の工程:
(e) 前記プロテアーゼ切断配列をプロテアーゼで切断することで前記単ドメイン抗体を遊離させ、遊離の単ドメイン抗体が前記標的抗原に結合することを確認する工程;
を含む、(65)から(68)のいずれかに記載の製造方法。
(70)以下の工程:
(a) 単ドメイン抗体中の、抗体VHとの会合に関与するアミノ酸残基を置換し、または単ドメイン抗体中の、抗体VLとの会合に関与するアミノ酸残基を置換し、当該単ドメイン抗体の標的抗原に対する結合活性を保持する改変単ドメイン抗体を作製する工程;
(b) (a)工程で作製した改変単ドメイン抗体の抗原結合活性を抑制するように、当該改変単ドメイン抗体を抗体VHと会合させ、または当該改変単ドメイン抗体を抗体VLと会合させることによって、当該改変単ドメイン抗体が導入された当該IgG抗体様分子前駆体を形成させる工程;
(c) 前記改変単ドメイン抗体が導入されたIgG抗体様分子前駆体にプロテアーゼ切断配列を導入する工程;
を含む、(64)に記載の製造方法。
(71)以下の工程:
(a) 単ドメイン抗体中の、抗体VHとの会合に関与するアミノ酸残基を置換し、または単ドメイン抗体中の、抗体VLとの会合に関与するアミノ酸残基を置換し、当該単ドメイン抗体の標的抗原に対する結合活性を保持する改変単ドメイン抗体を作製する工程;
(b) (a)工程で作製した改変単ドメイン抗体の抗原結合活性を抑制するように、当該改変単ドメイン抗体を抗体VHと会合させ、または当該改変単ドメイン抗体を抗体VLと会合させることによって、当該改変単ドメイン抗体が導入された当該IgG抗体様分子前駆体を形成させる工程;
(c) 前記改変単ドメイン抗体と前記IgG抗体様分子前駆体の定常領域との境界付近にプロテアーゼ切断配列を導入する工程;
を含む、(64)に記載の製造方法。
(72)以下の工程:
(a) 単ドメイン抗体中の、抗体VHとの会合に関与するアミノ酸残基を置換し、または単ドメイン抗体中の、抗体VLとの会合に関与するアミノ酸残基を置換し、当該単ドメイン抗体の標的抗原に対する結合活性を保持する改変単ドメイン抗体を作製する工程;
(b) (a)工程で作製した改変単ドメイン抗体の抗原結合活性を抑制するように、当該改変単ドメイン抗体をプロテアーゼ切断配列を介してIgG抗体の重鎖定常領域と連結させ、または当該改変単ドメイン抗体をプロテアーゼ切断配列を介してIgG抗体の軽鎖定常領域と連結させ、当該改変単ドメイン抗体が導入された当該IgG抗体様分子を形成させる工程;
を含む、(64)に記載の製造方法。
(73)更に以下の工程:
(d) 前記IgG抗体様分子または前記IgG抗体様分子前駆体に導入された前記改変単ドメイン抗体の前記標的抗原に対する結合活性が弱められ、もしくは失われていることを確認する工程;
を含む、(70)から(72)のいずれかに記載の製造方法。
(74)更に以下の工程:
(e) 前記プロテアーゼ切断配列をプロテアーゼで切断することで前記改変単ドメイン抗体を遊離させ、遊離の改変単ドメイン抗体が前記標的抗原に結合することを確認する工程;
を含む、(70)から(73)のいずれかに記載の製造方法。
(75)(1)から(56)のいずれかに記載のポリペプチドをエンコードするポリヌクレオチド。
(76)(75)に記載のポリヌクレオチドを含むベクター。
(77)(75)に記載のポリヌクレオチドまたは(76)に記載のベクターを含む宿主細胞。
(78)(77)に記載の宿主細胞を培養する工程を含む、(1)から(56)のいずれかに記載のポリペプチドを製造する方法。
(79)特定のVLと会合することで、もしくは特定のVHと会合することで、もしくは特定のVHHと会合することで抗原結合活性が抑制される単ドメイン抗体をスクリーニングする方法。
(80)特定のVLと会合することで抗原結合活性が抑制される単ドメイン抗体をスクリーニングする、(79)に記載のスクリーニング方法。
(81)以下の工程:
(a) 標的抗原結合活性を有する単ドメイン抗体を取得する工程;
(b) (a)工程で取得した単ドメイン抗体を特定のVLと会合させる工程;
(c) (b)工程で特定のVLと会合させた前記単ドメイン抗体の前記抗原に対する結合活性が会合前と比較して弱められ、もしくは失われていることを確認する工程;
を含む、(80)に記載のスクリーニング方法。
(82)以下の工程:
(a) 単ドメイン抗体を特定のVLと会合させる工程;
(b) (a)工程で特定のVLと会合させた前記単ドメイン抗体の前記抗原に対する結合活性がないもしくは一定値以下である、VLと単ドメイン抗体の会合体を選択する工程;
(c) (b)工程で選択した会合体中の単ドメイン抗体の、前記特定のVLと会合していない状態での前記抗原に対する結合活性が会合時と比較して強くなっていることを確認する工程;
を含む、(80)に記載のスクリーニング方法。
(83)特定のVHと会合することで抗原結合活性が抑制される単ドメイン抗体をスクリーニングする、(79)に記載のスクリーニング方法。
(84)以下の工程:
(a) 標的抗原結合活性を有する単ドメイン抗体を取得する工程;
(b) (a)工程で取得した単ドメイン抗体を特定のVHと会合させる工程;
(c) (b)工程で特定のVHと会合させた前記単ドメイン抗体の前記抗原に対する結合活性が会合前と比較して弱められ、もしくは失われていることを確認する工程;
を含む、(83)に記載のスクリーニング方法。
(85)以下の工程:
(a) 単ドメイン抗体を特定のVHと会合させる工程;
(b) (a)工程で特定のVHと会合させた前記単ドメイン抗体の前記抗原に対する結合活性がないもしくは一定値以下である、VHと単ドメイン抗体の会合体を選択する工程;
(c) (b)工程で選択した会合体中の単ドメイン抗体の、前記特定のVHと会合していない状態での前記抗原に対する結合活性が会合時と比較して強くなっていることを確認する工程;
を含む、(83)に記載のスクリーニング方法。
(86)特定のVHHと会合することで抗原結合活性が抑制される単ドメイン抗体をスクリーニングする、(79)に記載のスクリーニング方法。
(87)以下の工程:
(a) 標的抗原結合活性を有する単ドメイン抗体を取得する工程;
(b) (a)工程で取得した単ドメイン抗体を特定のVHHと会合させる工程;
(c) (b)工程で特定のVHHと会合させた前記単ドメイン抗体の前記抗原に対する結合活性が会合前と比較して弱められ、もしくは失われていることを確認する工程;
を含む、(86)に記載のスクリーニング方法。
(88)以下の工程:
(a) 単ドメイン抗体を特定のVHHと会合させる工程;
(b) (a)工程で特定のVHHと会合させた前記単ドメイン抗体の前記抗原に対する結合活性がないもしくは一定値以下である、VHHと単ドメイン抗体の会合体を選択する工程;
(c) (b)工程で選択した会合体中の単ドメイン抗体の、前記特定のVHHと会合していない状態での前記抗原に対する結合活性が会合時と比較して強くなっていることを確認する工程;
を含む、(86)に記載のスクリーニング方法。
(89)特定のVLと会合することで、もしくは特定のVHと会合することで、もしくは特定のVHHと会合することで抗原結合活性が抑制される単ドメイン抗体を製造する方法。
(90)特定のVLと会合することで抗原結合活性が抑制される単ドメイン抗体を製造する、(89)に記載の製造方法。
(91)以下の工程:
(a) 単ドメイン抗体中の、抗体VLとの会合に関与するアミノ酸残基を置換し、当該単ドメイン抗体の標的抗原に対する結合活性を保持する改変単ドメイン抗体を作製する工程;
を含む、(90)に記載の製造方法。
(92)更に以下の工程:
(b) (a)工程で作製された改変単ドメイン抗体を前記VLと会合させる工程;
(c) 当該VLと会合させた前記改変単ドメイン抗体の抗原結合活性が会合前と比較して弱められ、もしくは失われていることを確認する工程;
を含む、(91)に記載の製造方法。
(93)特定のVHと会合することで抗原結合活性が抑制される単ドメイン抗体を製造する、(89)に記載の製造方法。
(94)以下の工程:
(a) 単ドメイン抗体中の、抗体VHとの会合に関与するアミノ酸残基を置換し、当該単ドメイン抗体の標的抗原に対する結合活性を保持する改変単ドメイン抗体を作製する工程;
を含む、(93)に記載の製造方法。
(95)更に以下の工程:
(b) (a)工程で作製された改変単ドメイン抗体を前記VHと会合させる工程;
(c) 当該VHと会合させた前記改変単ドメイン抗体の抗原結合活性が会合前と比較して弱められ、もしくは失われていることを確認する工程;
を含む、(94)に記載の製造方法。
(96)特定のVHHと会合することで抗原結合活性が抑制される単ドメイン抗体を製造する、(89)に記載の製造方法。
(97)以下の工程:
(a) 単ドメイン抗体中の、VHHとの会合に関与するアミノ酸残基を置換し、当該単ドメイン抗体の標的抗原に対する結合活性を保持する改変単ドメイン抗体を作製する工程;
を含む、(96)に記載の製造方法。
(98)更に以下の工程:
(b) (a)工程で作製された改変単ドメイン抗体を前記VHHと会合させる工程;
(c) 当該VHHと会合させた前記改変単ドメイン抗体の抗原結合活性が会合前と比較して弱められ、もしくは失われていることを確認する工程;
を含む、(97)に記載の製造方法。
(99)単ドメイン抗体と第1会合支持ドメインとを連結させた融合ポリペプチドを複数含むライブラリであって、前記単ドメイン抗体は、特定のVLと会合することで抗原結合活性が抑制されるもしくは失われる単ドメイン抗体、または特定のVHと会合することで抗原結合活性が抑制されるもしくは失われる単ドメイン抗体、または特定のVHHと会合することで抗原結合活性が抑制されるもしくは失われる単ドメイン抗体を含む、ライブラリ。
(100)前記ライブラリ中の融合ポリペプチドの単ドメイン抗体部分は、ラクダ科動物もしくは単ドメイン抗体を産生できる遺伝子が導入された遺伝子導入動物から取得した単ドメイン抗体もしくはそのヒト化抗体、またはラクダ科動物もしくは単ドメイン抗体を産生できる遺伝子が導入された遺伝子導入動物を免疫させることで取得した単ドメイン抗体もしくはそのヒト化抗体、またはヒト抗体VHもしくはVLから出発して人工的に作製された単ドメイン抗体を含む、(99)に記載のライブラリ。
(101)単ドメイン抗体と第1会合支持ドメインとを連結させた融合ポリペプチドを複数含むライブラリであって、前記単ドメイン抗体は、特定のVLと会合することで抗原結合活性が抑制されるもしくは失われる単ドメイン抗体を含む、(99)または(100)に記載のライブラリ。
(102)単ドメイン抗体と第1会合支持ドメインとを連結させた融合ポリペプチドを複数含むライブラリであって、前記単ドメイン抗体は、特定のVHと会合することで抗原結合活性が抑制されるもしくは失われる単ドメイン抗体を含む、(99)または(100)に記載のライブラリ。
(103)単ドメイン抗体と第1会合支持ドメインとを連結させた融合ポリペプチドを複数含むライブラリであって、前記単ドメイン抗体は、特定のVHHと会合することで抗原結合活性が抑制されるもしくは失われる単ドメイン抗体を含む、(99)または(100)に記載のライブラリ。
(104)(99)または(100)に記載のライブラリから、特定のVLと会合することで抗原結合活性が抑制されるもしくは失われる単ドメイン抗体、または特定のVHと会合することで抗原結合活性が抑制されるもしくは失われる単ドメイン抗体、または特定のVHHと会合することで抗原結合活性が抑制されるもしくは失われる単ドメイン抗体を含む融合ポリペプチドをスクリーニングする方法。
(105)(101)に記載のライブラリから、特定のVLと会合することで抗原結合活性が抑制されるもしくは失われる単ドメイン抗体を含む融合ポリペプチドをスクリーニングする方法。
(106)以下の工程:
(a) 前記ライブラリの融合ポリペプチドをインビトロディスプレイさせる工程;
(b) 特定のVLと第2会合支持ドメインを融合した会合パートナーを用意する工程;
(c) (a)工程でディスプレイされた融合ポリペプチドと(b)工程で用意した会合パートナーとを会合させ、単ドメイン抗体と前記VLが会合する状態で抗原と結合しない、もしくは抗原結合活性が一定値以下である融合ポリペプチドを選択する工程;
(d) (c)工程で選択された融合ポリペプチドから、含まれる単ドメイン抗体と前記VLが会合しない状態で抗原と結合する、もしくは抗原結合活性が一定値以上である融合ポリペプチドを選択する工程;
を含む、(105)に記載のスクリーニング方法。
(107)前記(b)工程で用意された会合パートナーはプロテアーゼ切断配列を更に含み、前記(d)工程では、プロテアーゼ処理により前記会合パートナーを切断し、前記単ドメイン抗体と前記VL会合を解消させる、(106)に記載のスクリーニング方法。
(108)前記(b)工程で用意された会合パートナーの前記プロテアーゼ切断配列は、前記特定のVLと前記第2会合支持ドメインとの境界付近に位置する、(107)に記載のスクリーニング方法。
(109)前記ライブラリの融合ポリペプチドはプロテアーゼ切断配列を更に含み、前記(d)工程では、プロテアーゼ処理により前記融合ポリペプチドを切断し、前記単ドメイン抗体と前記VL会合を解消させる、(106)に記載のスクリーニング方法。
(110)前記融合ポリペプチドに含まれるプロテアーゼ切断配列は、前記単ドメイン抗体と前記第1会合支持ドメインとの境界付近に位置する、(109)に記載のスクリーニング方法。
(111)前記(d)工程では、前記(c)工程で選択された融合ポリペプチドの全長もしくは単ドメイン抗体を含む部分を再度インビトロディスプレイさせる、(106)に記載のスクリーニング方法。
(112)前記(d)工程では、前記(c)工程で選択された融合ポリペプチドの全長を再度インビトロディスプレイさせ、第2会合支持ドメインのみと会合させた状態で抗原と結合する、もしくは抗原結合活性が一定値以上である融合ポリペプチドを選択する、(106)に記載のスクリーニング方法。
(113)(102)に記載のライブラリから、特定のVHと会合することで抗原結合活性が抑制されるもしくは失われる単ドメイン抗体を含む融合ポリペプチドをスクリーニングする方法。
(114)以下の工程:
(a) 前記ライブラリの融合ポリペプチドをインビトロディスプレイさせる工程;
(b) 特定のVHと第2会合支持ドメインを融合した会合パートナーを用意する工程;
(c) (a)工程でディスプレイした融合ポリペプチドと(b)工程で用意した会合パートナーとを会合させ、単ドメイン抗体と前記VHが会合する状態で抗原と結合しない、もしくは抗原結合活性が一定値以下である融合ポリペプチドを選択する工程;
(d) (c)工程で選択された融合ポリペプチドから、含まれる単ドメイン抗体と前記VHが会合しない状態で抗原と結合する、もしくは抗原結合活性が一定値以上である融合ポリペプチドを選択する工程;
を含む、(113)に記載のスクリーニング方法。
(115)前記(b)工程で用意された会合パートナーはプロテアーゼ切断配列を更に含み、前記(d)工程では、プロテアーゼ処理により前記会合パートナーを切断し、前記単ドメイン抗体と前記VHの会合を解消させる、(114)に記載のスクリーニング方法。
(116)前記(b)工程で用意された会合パートナーの前記プロテアーゼ切断配列は、前記特定のVHと前記第2会合支持ドメインとの境界付近に位置する、(115)に記載のスクリーニング方法。
(117)前記ライブラリの融合ポリペプチドはプロテアーゼ切断配列を更に含み、前記(d)工程では、プロテアーゼ処理により前記融合ポリペプチドを切断し、前記単ドメイン抗体と前記VH会合を解消させる、(114)に記載のスクリーニング方法。
(118)前記融合ポリペプチドに含まれるプロテアーゼ切断配列は、前記単ドメイン抗体と前記第1会合支持ドメインとの境界付近に位置する、(117)に記載のスクリーニング方法。
(119)前記(d)工程では、前記(c)工程で選択された融合ポリペプチドの全長もしくは単ドメイン抗体を含む部分を再度インビトロディスプレイさせる、(114)に記載のスクリーニング方法。
(120)前記(d)工程では、前記(c)工程で選択された融合ポリペプチドの全長を再度インビトロディスプレイさせ、第2会合支持ドメインのみと会合させた状態で抗原と結合する、もしくは抗原結合活性が一定値以上である融合ポリペプチドを選択する、(114)に記載のスクリーニング方法。
(121)(103)に記載のライブラリから、特定のVHHと会合することで抗原結合活性が抑制されるもしくは失われる単ドメイン抗体を含む融合ポリペプチドをスクリーニングする方法。
(122)以下の工程:
(a) 前記ライブラリの融合ポリペプチドをインビトロディスプレイさせる工程;
(b) 特定のVHHと第2会合支持ドメインを融合した会合パートナーを用意する工程;
(c) (a)工程でディスプレイした融合ポリペプチドと(b)工程で用意した会合パートナーとを会合させ、単ドメイン抗体と前記特定のVHHが会合する状態で抗原と結合しない、もしくは抗原結合活性が一定値以下である融合ポリペプチドを選択する工程;
(d) (c)工程で選択された融合ポリペプチドから、含まれる単ドメイン抗体と前記VHHが会合しない状態で抗原と結合する、もしくは抗原結合活性が一定値以上である融合ポリペプチドを選択する工程;
を含む、(121)に記載のスクリーニング方法。
(123)前記(b)工程で用意された会合パートナーはプロテアーゼ切断配列を更に含み、前記(d)工程では、プロテアーゼ処理により前記会合パートナーを切断し、前記単ドメイン抗体と前記VHHの会合を解消させる、(122)に記載のスクリーニング方法。
(124)前記(b)工程で用意された会合パートナーの前記プロテアーゼ切断配列は、前記特定のVHHと前記第2会合支持ドメインとの境界付近に位置する、(123)に記載のスクリーニング方法。
(125)前記ライブラリの融合ポリペプチドはプロテアーゼ切断配列を更に含み、前記(d)工程では、プロテアーゼ処理により前記融合ポリペプチドを切断し、前記単ドメイン抗体と前記VHHの会合を解消させる、(122)に記載のスクリーニング方法。
(126)前記融合ポリペプチドに含まれるプロテアーゼ切断配列は、前記単ドメイン抗体と前記第1会合支持ドメインとの境界付近に位置する、(125)に記載のスクリーニング方法。
(127)前記(d)工程では、前記(c)工程で選択された融合ポリペプチドの全長もしくは単ドメイン抗体を含む部分を再度インビトロディスプレイさせる、(122)に記載のスクリーニング方法。
(128)前記(d)工程では、前記(c)工程で選択された融合ポリペプチドの全長を再度インビトロディスプレイさせ、第2会合支持ドメインのみと会合させた状態で抗原と結合する、もしくは抗原結合活性が一定値以上である融合ポリペプチドを選択する、(122)に記載のスクリーニング方法。
(129)前記(b)工程中の会合パートナーを用意する工程は、会合パートナーと融合ポリペプチドを同時にディスプレイさせる工程である、(106)から(112)、(114)から(120)、(122)から(128)のいずれかに記載のスクリーニング方法。
(130)前記第1会合支持ドメインはIgG抗体CH1ドメインまたは抗体軽鎖定常領域を含む、(99)から(103)のいずれかに記載のライブラリ。
(131)前記第1会合支持ドメインはIgG抗体CH1ドメインを含み、前記第2会合支持ドメインは抗体軽鎖定常領域を含む、(106)から(112)、(114)から(120)、(122)から(128)のいずれかに記載のスクリーニング方法。
(132)前記第1会合支持ドメインは抗体軽鎖定常領域を含み、前記第2会合支持ドメインはIgG抗体CH1ドメインを含む、(106)から(112)、(114)から(120)、(122)から(128)のいずれかに記載のスクリーニング方法。
(133)以下の工程:
(a) 前記ライブラリの融合ポリペプチドをインビトロディスプレイさせる工程;
(b) 特定のVLと第2会合支持ドメインを融合した会合パートナーを用意する工程;
(c) 前記融合ポリペプチドに含まれる単ドメイン抗体が抗原と結合する、もしくは抗原結合活性が一定値以上である融合ポリペプチドを選択する工程;
(d) (c)工程で選択された融合ポリペプチドと(b)工程で用意した会合パートナーとを会合させ、単ドメイン抗体と前記VLが会合する状態で抗原と結合しない、もしくは抗原結合活性が一定値以下である融合ポリペプチドを選択する工程;
を含む、(105)に記載のスクリーニング方法。
(134)前記(d)工程では、前記(c)工程で選択された融合ポリペプチドを再度インビトロディスプレイさせる、(129)に記載のスクリーニング方法。
(135)前記(c)工程では、前記融合ポリペプチドを第2会合支持ドメインのみと会合させる、または前記融合ポリペプチドを第2会合支持ドメインのみと会合させた状態で融合ポリペプチドに含まれる単ドメイン抗体の抗原結合を確認する、(133)に記載のスクリーニング方法。
(136)以下の工程:
(a) 前記ライブラリの融合ポリペプチドをインビトロディスプレイさせる工程;
(b) 特定のVHと第2会合支持ドメインを融合した会合パートナーを用意する工程;
(c) 前記融合ポリペプチドに含まれる単ドメイン抗体が抗原と結合する、もしくは抗原結合活性が一定値以上である融合ポリペプチドを選択する工程;
(d) (c)工程で選択された融合ポリペプチドと(b)工程で用意した会合パートナーとを会合させ、単ドメイン抗体と前記VHが会合する状態で抗原と結合しない、もしくは抗原結合活性が一定値以下である融合ポリペプチドを選択する工程;
を含む、(113)に記載のスクリーニング方法。
(137)前記(d)工程では、前記(c)工程で選択された融合ポリペプチドを再度インビトロディスプレイさせる、(136)に記載のスクリーニング方法。
(138)前記(c)工程では、前記融合ポリペプチドを第2会合支持ドメインのみと会合させる、または前記融合ポリペプチドを第2会合支持ドメインのみと会合させた状態で融合ポリペプチドに含まれる単ドメイン抗体の抗原結合を確認する、(136)に記載のスクリーニング方法。
(139)以下の工程:
(a)前記ライブラリの融合ポリペプチドをインビトロディスプレイさせる工程;
(b)特定のVHHと第2会合支持ドメインを融合した会合パートナーを用意する工程;
(c) 前記融合ポリペプチドに含まれる単ドメイン抗体が抗原と結合する、もしくは抗原結合活性が一定値以上である融合ポリペプチドを選択する工程;
(d) (c)工程で選択された融合ポリペプチドと(b)工程で用意した会合パートナーとを会合させ、単ドメイン抗体と前記VHHが会合する状態で抗原と結合しない、もしくは抗原結合活性が一定値以下である融合ポリペプチドを選択する工程;
を含む、(121)に記載のスクリーニング方法。
(140)前記(d)工程では、前記(c)工程で選択された融合ポリペプチドを再度インビトロディスプレイさせる、(139)に記載のスクリーニング方法。
(141)前記(c)工程では、前記融合ポリペプチドを第2会合支持ドメインのみと会合させる、または前記融合ポリペプチドを第2会合支持ドメインのみと会合させた状態で融合ポリペプチドに含まれる単ドメイン抗体の抗原結合を確認する、(139)に記載のスクリーニング方法。
(142)前記(d)工程中の融合ポリペプチドと会合パートナーとを会合させる工程は、会合パートナーと融合ポリペプチドを同時にディスプレイさせる工程である、(133)から(141)のいずれかに記載のスクリーニング方法。
(143)前記第1会合支持ドメインはIgG抗体CH1ドメインを含み、前記第2会合支持ドメインは抗体軽鎖定常領域を含む、(133)から(142)のいずれかに記載のスクリーニング方法。
(144)前記第1会合支持ドメインは抗体軽鎖定常領域を含み、前記第2会合支持ドメインはIgG抗体CH1ドメインを含む、(133)から(142)のいずれかに記載のスクリーニング方法。
【0015】
本発明はまた、具体的には以下に例示的に記載する実施態様を包含することができる。
(B1)ポリペプチドであって、当該ポリペプチドは抗原結合ドメインと運搬部分とを含み、当該運搬部分は前記抗原結合ドメインの抗原結合活性を抑制する抑制ドメインを有し、当該ポリペプチドは配列番号:833~852、1062~1081で示す配列、表1に記載の配列から選ばれる配列を一つまたは複数含むプロテアーゼ切断配列を有する、ポリペプチド。
(B2)前記プロテアーゼ切断配列がプロテアーゼにより切断された状態における前記抑制ドメインの前記抗原結合ドメインの抗原結合活性に対する抑制は、前記プロテアーゼ切断配列が未切断の状態における前記抑制ドメインの前記抗原結合ドメインの抗原結合活性に対する抑制より弱い、(B1)に記載のポリペプチド。
(B3)前記抗原結合ドメインは前記運搬部分より短い血中半減期を有する、(B1)または(B2)に記載のポリペプチド。
(B4)前記抗原結合ドメインの分子量は前記運搬部分の分子量より小さい、(B1)から(B3)のいずれか一つに記載のポリペプチド。
(B5)前記抗原結合ドメインの分子量は60kDa以下である、(B1)から(B4)のいずれか一つに記載のポリペプチド。
(B6)前記運搬部分はFcRn結合活性を有し、前記抗原結合ドメインはFcRn結合活性を有さないまたは前記運搬部分より弱いFcRn結合活性を有する、(B1)から(B5)のいずれか一つに記載のポリペプチド。
(B7)前記抗原結合ドメインは前記ポリペプチドから遊離可能であり、前記抗原結合ドメインは、前記ポリペプチドから遊離している状態下における抗原結合活性は、前記ポリペプチドから遊離していない状態下における抗原結合活性より高い、(B1)から(B6)のいずれか一つに記載のポリペプチド。
(B8)前記抗原結合ドメインと前記運搬部分の前記抑制ドメインが会合することで前記抗原結合ドメインの抗原結合活性が抑制される、(B1)から(B7)のいずれか一つに記載のポリペプチド。
(B9)前記プロテアーゼ切断配列がプロテアーゼにより切断されることで前記抗原結合ドメインが前記ポリペプチドから遊離可能になる、(B7)に記載のポリペプチド。
(B10)前記プロテアーゼ切断配列がプロテアーゼにより切断されることで前記抗原結合ドメインと前記運搬部分の前記抑制ドメインの会合が解消される、(B8)に記載のポリペプチド。
(B11)前記プロテアーゼは、標的組織特異的プロテアーゼである、(B1)から(B10)のいずれか一つに記載のポリペプチド。
(B12)前記標的組織は癌組織または炎症組織であり、前記プロテアーゼは癌組織特異的プロテアーゼまたは炎症組織特異的プロテアーゼである、(B11)に記載のポリペプチド。
(B13)前記プロテアーゼは、マトリプターゼ、ウロキナーゼ(uPA)、メタロプロテアーゼから選択される少なくとも一つのプロテアーゼである、(B1)から(B12)のいずれか一つに記載のポリペプチド。
(B14)前記プロテアーゼは、MT-SP1、uPA、MMP-2、MMP-9、ADAMTS5、MMP-7、MMP-13から選択される少なくとも一つのプロテアーゼである、(B1)から(B12)のいずれか一つに記載のポリペプチド。
(B15)前記プロテアーゼ切断配列の一端に、第一可動リンカーが更に付加されている、(B1)から(B14)のいずれか一つに記載のポリペプチド。
(B16)前記第一可動リンカーは、グリシン-セリンポリマーからなる可動リンカーである、(B15)に記載のポリペプチド。
(B17)前記プロテアーゼ切断配列の他端に、第二可動リンカーが更に付加されている、(B15)または(B16)に記載のポリペプチド。
(B18)前記第二可動リンカーは、グリシン-セリンポリマーからなる可動リンカーである、(B17)に記載のポリペプチド。
(B19)前記抗原結合ドメインは単ドメイン抗体を含み、もしくは単ドメイン抗体であり、前記運搬部分の前記抑制ドメインは当該単ドメイン抗体の抗原結合活性を抑制する、(B1)から(B18)のいずれか一つに記載のポリペプチド。
(B20)前記単ドメイン抗体は、VHH、または単ドメインで抗原結合活性を有するVH、または単ドメインで抗原結合活性を有するVLである、(B19)に記載のポリペプチド。
(B21)前記抗原結合ドメインは単ドメイン抗体を含み、前記運搬部分の前記抑制ドメインはVHH、または抗体VH、または抗体VLであり、前記単ドメイン抗体は当該VHH、または抗体VH、または抗体VLにより抗原結合活性が抑制される、(B1)から(B20)のいずれか一つに記載のポリペプチド。
(B22)前記抗原結合ドメインは単ドメイン抗体を含み、前記運搬部分の前記抑制ドメインはVHH、または抗体VH、または抗体VLであり、前記単ドメイン抗体は当該VHH、または抗体VH、または抗体VLと会合することにより抗原結合活性が抑制される、(B1)から(B21)のいずれか一つに記載のポリペプチド。
(B23)前記単ドメイン抗体はVHH、または単ドメインで抗原結合活性を有するVHであり、前記運搬部分の前記抑制ドメインは抗体VLであり、前記VHHまたは単ドメインで抗原結合活性を有するVHは、前記抗体VLと会合することで抗原結合活性が抑制される、(B19)から(B22)のいずれか一つに記載のポリペプチド。
(B24)前記単ドメイン抗体はVHHであり、当該VHHは37番、44番、45番、または47番(すべてKabatナンバリング)のアミノ酸から選ばれる少なくとも一つのポジションにおいてアミノ酸置換されている、(B19)から(B23)のいずれか一つに記載のポリペプチド。
(B25)前記単ドメイン抗体はVHHであり、当該VHHは37V、44G、45L、または47W(すべてKabatナンバリング)のアミノ酸から選ばれる少なくとも一つのアミノ酸を含む、(B19)から(B23)のいずれか一つに記載のポリペプチド。
(B26)前記単ドメイン抗体はVHHであり、当該VHHはF37V、Y37V、E44G、Q44G、R45L、H45L、G47W、F47W、L47W、T47W、またはS47W(すべてKabatナンバリング)のアミノ酸置換から選ばれる少なくとも一つのアミノ酸置換を含む、(B19)から(B23)のいずれか一つに記載のポリペプチド。
(B27)前記単ドメイン抗体はVHHであり、当該VHHは37番/44番、37番/45番、37番/47番、44番/45番、44番/47番、45番/47番、37番/44番/45番、37番/44番/47番、37番/45番/47番、44番/45番/47番、37番/44番/45番/47番(すべてKabatナンバリング)から選ばれる少なくとも一組のポジションにおいてアミノ酸置換されている、(B19)から(B23)のいずれか一つに記載のポリペプチド。
(B28)前記単ドメイン抗体はVHHであり、当該VHHは37V/44G、37V/45L、37V/47W、44G/45L、44G/47W、45L/47W、37V/44G/45L、37V/44G/47W、37V/45L/47W、44G/45L/47W、37V/44G/45L/47W(すべてKabatナンバリング)から選ばれる少なくとも一組のアミノ酸を含む、(B19)から(B23)のいずれか一つに記載のポリペプチド。
(B29)前記単ドメイン抗体はVHHであり、当該VHHはF37V/R45L、F37V/G47W、R45L/G47W、F37V/R45L/G47W(すべてKabatナンバリング)から選ばれる少なくとも一組のアミノ酸置換を含む、(B19)から(B23)のいずれか一つに記載のポリペプチド。
(B30)前記単ドメイン抗体は単ドメインで抗原結合活性を有するVLであり、前記運搬部分の前記抑制ドメインは抗体VHであり、前記単ドメインで抗原結合活性を有するVLは、前記抗体VHと会合することで抗原結合活性が抑制される、(B19)から(B22)のいずれか一つに記載のポリペプチド。
(B31)前記運搬部分はFcRn結合領域を有する、(B1)から(B30)のいずれか一つに記載のポリペプチド。
(B32)前記運搬部分は抗体定常領域を含む、(B1)から(B31)のいずれか一つに記載のポリペプチド。
(B33)前記運搬部分の抗体定常領域と前記抗原結合ドメインは、リンカーを介して、またはリンカーを介さずに融合されている、(B32)に記載のポリペプチド。
(B34)前記運搬部分は抗体重鎖定常領域を含み、当該抗体重鎖定常領域と前記抗原結合ドメインは、リンカーを介して、またはリンカーを介さずに融合されている、(B32)に記載のポリペプチド。
(B35)前記運搬部分は抗体軽鎖定常領域を含み、当該抗体軽鎖定常領域と前記抗原結合ドメインは、リンカーを介して、またはリンカーを介さずに融合されている、(B32)に記載のポリペプチド。
(B36)前記ポリペプチドは前記運搬部分の抗体重鎖定常領域のN末端と前記抗原結合ドメインのC末端がリンカーを介してまたはリンカーを介さずに融合されており、前記プロテアーゼ切断配列は、前記抗原結合ドメインの配列中、または前記重鎖抗体定常領域の122番(EUナンバリング)のアミノ酸より前記抗原結合ドメイン側に位置する、(B34)に記載のポリペプチド。
(B37)前記ポリペプチドは前記運搬部分の抗体軽鎖定常領域のN末端と前記抗原結合ドメインのC末端がリンカーを介してまたはリンカーを介さずに融合されており、前記プロテアーゼ切断配列は、前記抗原結合ドメインの配列中、または前記軽鎖抗体定常領域の113番(EUナンバリング)(Kabatナンバリング113番)のアミノ酸より前記抗原結合ドメイン側に位置する、(B35)に記載のポリペプチド。
(B38)前記ポリペプチドは前記運搬部分の抗体定常領域のN末端と前記抗原結合ドメインのC末端がリンカーを介してまたはリンカーを介さずに融合されており、前記抗原結合ドメインはVHから作製された単ドメイン抗体またはVHHであり、前記プロテアーゼ切断配列は、前記抗体定常領域の配列中、または前記抗原結合ドメインの単ドメイン抗体の109番(Kabatナンバリング)のアミノ酸より前記抗体定常領域側に位置する、(B33)から(B36)のいずれか一つに記載のポリペプチド。
(B39)前記ポリペプチドは前記運搬部分の抗体定常領域のN末端と前記抗原結合ドメインのC末端がリンカーを介してまたはリンカーを介さずに融合されており、前記プロテアーゼ切断配列は、前記抗原結合ドメインと前記抗体定常領域の境界付近に位置する、(B33)に記載のポリペプチド。
(B40)前記ポリペプチドは前記運搬部分の抗体重鎖定常領域のN末端と前記抗原結合ドメインのC末端がリンカーを介してまたはリンカーを介さずに融合されており、前記プロテアーゼ切断配列は、前記抗原結合ドメインと前記抗体重鎖定常領域の境界付近に位置する、(B34)に記載のポリペプチド。
(B41)前記ポリペプチドは前記運搬部分の抗体軽鎖定常領域のN末端と前記抗原結合ドメインのC末端がリンカーを介してまたはリンカーを介さずに融合されており、前記プロテアーゼ切断配列は、前記抗原結合ドメインと前記抗体軽鎖定常領域の境界付近に位置する、(B35)に記載のポリペプチド。
(B42)前記抗原結合ドメインはVHから作製された単ドメイン抗体またはVHHであり、前記プロテアーゼ切断配列は、前記抗原結合ドメインの単ドメイン抗体の109番(Kabatナンバリング)のアミノ酸と前記抗体重鎖定常領域の122番(EUナンバリング)のアミノ酸の間に位置する、(B40)に記載のポリペプチド。
(B43)前記抗原結合ドメインはVHから作製された単ドメイン抗体またはVHHであり、前記プロテアーゼ切断配列は、前記抗原結合ドメインの単ドメイン抗体の109番(Kabatナンバリング)のアミノ酸と前記抗体軽鎖定常領域の113番(EUナンバリング)(Kabatナンバリング113番)のアミノ酸の間に位置する、(B41)に記載のポリペプチド。
(B44)前記抗原結合ドメインはVLから作製された単ドメイン抗体であり、前記プロテアーゼ切断配列は、前記抗原結合ドメインの単ドメイン抗体の104番(Kabatナンバリング)のアミノ酸と前記抗体重鎖定常領域の122番(EUナンバリング)のアミノ酸の間に位置する、(B40)に記載のポリペプチド。
(B45)前記抗原結合ドメインはVLから作製された単ドメイン抗体であり、前記プロテアーゼ切断配列は、前記抗原結合ドメインの単ドメイン抗体の109番(Kabatナンバリング)のアミノ酸と前記抗体軽鎖定常領域の113番(EUナンバリング)(Kabatナンバリング113番)のアミノ酸の間に位置する、(B41)に記載のポリペプチド。
(B46)前記ポリペプチドの抗体定常領域はIgG抗体定常領域である、(B32)から(B45)のいずれか一つに記載のポリペプチド。
(B47)前記ポリペプチドはIgG抗体様分子である、(B1)から(B46)のいずれか一つに記載のポリペプチド。
(B48)前記抗原結合ドメインが未遊離の状態において、BLI(Bio-Layer Interferometry)法(Octet)を用いて測定を行うとき、抗原結合ドメインと抗原の結合が見られない、(B1)から(B47)のいずれか一つに記載のポリペプチド。
(B49)前記抗原結合ドメインに更に第2の抗原結合ドメインが連結されている、(B1)から(B48)のいずれか一つに記載のポリペプチド。
(B50)前記第2の抗原結合ドメインは、前記抗原結合ドメインと異なる抗原結合特異性を有する、(B49)に記載のポリペプチド。
(B51)前記第2の抗原結合ドメインは第2の単ドメイン抗体を含む、(B49)または(B50)に記載のポリペプチド。
(B52)前記抗原結合ドメインは単ドメイン抗体であり、前記第2の抗原結合ドメインは第2の単ドメイン抗体であり、前記抗原結合ドメインおよび前記第2の抗原結合ドメインは前記ポリペプチドから遊離可能であり、前記抗原結合ドメインおよび前記第2の抗原結合ドメインの遊離状態において、前記単ドメイン抗体と前記第2の単ドメイン抗体とが二重特異的抗原結合分子を形成している、(B51)に記載のポリペプチド。
(B53)前記第2の抗原結合ドメインは、HER2またはGPC3を標的抗原とする、(B49)から(B52)のいずれか一つに記載のポリペプチド。
(B54)前記ポリペプチドは、前記抗原結合ドメインと別の抗原結合ドメインを更に有し、当該別の抗原結合ドメインも前記ポリペプチドの前記運搬部分と連結することにより抗原結合活性が抑制される、(B1)から(B53)のいずれか一つに記載のポリペプチド。
(B55)前記別の抗原結合ドメインと前記抗原結合ドメインと異なる抗原結合特異性を有する、(B54)に記載のポリペプチド。
(B56)前記抗原結合ドメインは、PlexinA1、IL-6RまたはCD3を標的抗原とする抗原結合ドメインである、(B1)から(B55)のいずれか一つに記載のポリペプチド。
(B57)(B1)から(B56)のいずれか一つに記載のポリペプチドを含む医薬組成物。
(B58)(B1)から(B56)のいずれか一つに記載のポリペプチドを製造する方法。
(B59)以下の工程:
(a) 標的抗原に結合する単ドメイン抗体を取得する工程;
(b) (a)工程で取得した単ドメイン抗体の抗原結合活性が運搬部分の抑制ドメインによって抑制されるように、当該単ドメイン抗体と当該運搬部分を連結させてポリペプチド前駆体を形成させる工程;
(c) 前記ポリペプチド前駆体にプロテアーゼ切断配列を導入する工程;
を含む、(B58)に記載の製造方法。
(B60)以下の工程:
(a) 標的抗原に結合する単ドメイン抗体を取得する工程;
(b) (a)工程で取得した単ドメイン抗体の抗原結合活性が運搬部分の抑制ドメインによって抑制されるように、当該単ドメイン抗体と当該運搬部分を連結させてポリペプチド前駆体を形成させる工程;
(c) 前記単ドメイン抗体と前記運搬部分との境界付近に、配列番号:833~852、1062~1081で示す配列、表1に記載の配列から選ばれる配列を一つまたは複数含むプロテアーゼ切断配列を導入する工程;
を含む、(B58)に記載の製造方法。
(B61)以下の工程:
(a) 標的抗原に結合する単ドメイン抗体を取得する工程;
(b) (a)工程で取得した単ドメイン抗体の抗原結合活性が運搬部分の抑制ドメインによって抑制されるように、当該単ドメイン抗体を、配列番号:833~852、1062~1081で示す配列、表1に記載の配列から選ばれる配列を一つまたは複数含むプロテアーゼ切断配列を介して当該運搬部分と連結させてポリペプチドを形成させる工程;
を含む、(B58)に記載の製造方法。
(B62)更に以下の工程:
(d) 前記ポリペプチドまたは前記ポリペプチド前駆体中に組み込まれた前記単ドメイン抗体の前記標的抗原に対する結合活性が弱められ、もしくは失われていることを確認する工程;
を含む、(B59)から(B61)のいずれか一つに記載の製造方法。
(B63)更に以下の工程:
(e) 前記プロテアーゼ切断配列をプロテアーゼで切断することで前記単ドメイン抗体を遊離させ、遊離の単ドメイン抗体が抗原に結合することを確認する工程;
を含む、(B59)から(B62)のいずれか一つに記載の製造方法。
(B64)前記ポリペプチドはIgG抗体様分子である、(B58)に記載の製造方法。
(B65)以下の工程:
(a) 標的抗原に結合する単ドメイン抗体を取得する工程;
(b) (a)工程で取得した単ドメイン抗体の抗原結合活性が抑制されるように、当該単ドメイン抗体をIgG抗体のVHの代わりとしてVLと会合させ、または当該単ドメイン抗体をIgG抗体のVLの代わりとしてVHと会合させることによって、前記単ドメイン抗体が導入されたIgG抗体様分子前駆体を形成させる工程;
(c) 前記単ドメイン抗体が導入されたIgG抗体様分子前駆体に、配列番号:833~852、1062~1081で示す配列、表1に記載の配列から選ばれる配列を一つまたは複数含むプロテアーゼ切断配列を導入する工程;
を含む、(B64)に記載の製造方法。
(B66)以下の工程:
(a) 標的抗原に結合する単ドメイン抗体を取得する工程;
(b) (a)工程で取得した単ドメイン抗体の抗原結合活性が抑制されるように、当該単ドメイン抗体をIgG抗体のVHの代わりとしてVLと会合させ、または当該単ドメイン抗体をIgG抗体のVLの代わりとしてVHと会合させることによって、前記単ドメイン抗体が導入されたIgG抗体様分子前駆体を形成させる工程;
(c) 前記単ドメイン抗体と前記IgG抗体様分子前駆体中の抗体定常領域との境界付近に、配列番号:833~852、1062~1081で示す配列、表1に記載の配列から選ばれる配列を一つまたは複数含むプロテアーゼ切断配列を導入する工程;
を含む、(B64)に記載の製造方法。
(B67)以下の工程:
(a) 標的抗原に結合する単ドメイン抗体を取得する工程;
(b) (a)工程で取得した単ドメイン抗体の抗原結合活性が抑制されるように、当該単ドメイン抗体をIgG抗体VHまたはVLの代わりとして、配列番号:833~852、1062~1081で示す配列、表1に記載の配列から選ばれる配列を一つまたは複数含むプロテアーゼ切断配列を介してIgG抗体の重鎖定常領域または軽鎖定常領域と連結させ、前記単ドメイン抗体が導入されたIgG抗体様分子を形成させる工程;
を含む、(B64)に記載の製造方法。
(B68)更に以下の工程:
(d) 前記IgG抗体様分子または前記IgG抗体様分子前駆体に導入された前記単ドメイン抗体の前記標的抗原に対する結合活性が弱められ、もしくは失われていることを確認する工程;
を含む、(B65)から(B67)のいずれか一つに記載の製造方法。
(B69)更に以下の工程:
(e) 前記プロテアーゼ切断配列をプロテアーゼで切断することで前記単ドメイン抗体を遊離させ、遊離の単ドメイン抗体が前記標的抗原に結合することを確認する工程;
を含む、(B65)から(B68)のいずれか一つに記載の製造方法。
(B70)以下の工程:
(a) 単ドメイン抗体中の、抗体VHとの会合に関与するアミノ酸残基を置換し、または単ドメイン抗体中の、抗体VLとの会合に関与するアミノ酸残基を置換し、当該単ドメイン抗体の標的抗原に対する結合活性を保持する改変単ドメイン抗体を作製する工程;
(b) (a)工程で作製した改変単ドメイン抗体の抗原結合活性を抑制するように、当該改変単ドメイン抗体を抗体VHと会合させ、または当該改変単ドメイン抗体を抗体VLと会合させることによって、当該改変単ドメイン抗体が導入された当該IgG抗体様分子前駆体を形成させる工程;
(c) 前記改変単ドメイン抗体が導入されたIgG抗体様分子前駆体に、配列番号:833~852、1062~1081で示す配列、表1に記載の配列から選ばれる配列を一つまたは複数含むプロテアーゼ切断配列を導入する工程;
を含む、(B64)に記載の製造方法。
(B71)以下の工程:
(a) 単ドメイン抗体中の、抗体VHとの会合に関与するアミノ酸残基を置換し、または単ドメイン抗体中の、抗体VLとの会合に関与するアミノ酸残基を置換し、当該単ドメイン抗体の標的抗原に対する結合活性を保持する改変単ドメイン抗体を作製する工程;
(b) (a)工程で作製した改変単ドメイン抗体の抗原結合活性を抑制するように、当該改変単ドメイン抗体を抗体VHと会合させ、または当該改変単ドメイン抗体を抗体VLと会合させることによって、当該改変単ドメイン抗体が導入された当該IgG抗体様分子前駆体を形成させる工程;
(c) 前記改変単ドメイン抗体と前記IgG抗体様分子前駆体の定常領域との境界付近に、配列番号:833~852、1062~1081で示す配列、表1に記載の配列から選ばれる配列を一つまたは複数含むプロテアーゼ切断配列を導入する工程;
を含む、(B64)に記載の製造方法。
(B72)以下の工程:
(a) 単ドメイン抗体中の、抗体VHとの会合に関与するアミノ酸残基を置換し、または単ドメイン抗体中の、抗体VLとの会合に関与するアミノ酸残基を置換し、当該単ドメイン抗体の標的抗原に対する結合活性を保持する改変単ドメイン抗体を作製する工程;
(b) (a)工程で作製した改変単ドメイン抗体の抗原結合活性を抑制するように、当該改変単ドメイン抗体を、配列番号:833~852、1062~1081で示す配列、表1に記載の配列から選ばれる配列を一つまたは複数含むプロテアーゼ切断配列を介してIgG抗体の重鎖定常領域と連結させ、または当該改変単ドメイン抗体を、配列番号:833~852、1062~1081で示す配列、表1に記載の配列から選ばれる配列を一つまたは複数含むプロテアーゼ切断配列を介してIgG抗体の軽鎖定常領域と連結させ、当該改変単ドメイン抗体が導入された当該IgG抗体様分子を形成させる工程;
を含む、(B64)に記載の製造方法。
(B73)更に以下の工程:
(d) 前記IgG抗体様分子または前記IgG抗体様分子前駆体に導入された前記改変単ドメイン抗体の前記標的抗原に対する結合活性が弱められ、もしくは失われていることを確認する工程;
を含む、(B70)から(B72)のいずれか一つに記載の製造方法。
(B74)更に以下の工程:
(e) 前記プロテアーゼ切断配列をプロテアーゼで切断することで前記改変単ドメイン抗体を遊離させ、遊離の改変単ドメイン抗体が前記標的抗原に結合することを確認する工程;
を含む、(B70)から(B73)のいずれか一つに記載の製造方法。
(B75)(B1)から(B56)のいずれか一つに記載のポリペプチドをエンコードするポリヌクレオチド。
(B76)(B75)に記載のポリヌクレオチドを含むベクター。
(B77)(B75)に記載のポリヌクレオチドまたは(B76)に記載のベクターを含む宿主細胞。
(B78)(B77)に記載の宿主細胞を培養する工程を含む、(B1)から(B56)のいずれか一つに記載のポリペプチドを製造する方法。
【図面の簡単な説明】
【0016】
【
図1】Probody技術のコンセプトを示す図である。抗体の抗原結合部位をマスクするペプチドを病変部位で発現するプロテアーゼで切断されるリンカーで抗体とつなぐことで抗体の抗原結合活性を阻害した抗体分子である。
【
図2】Probodyが副作用を示す可能性のある一原因を示す図である。血中に蓄積した活性化されたProbodyは正常組織に発現する抗原に結合することで副作用を発揮してしまう可能性がある。
【
図3】Probodyが副作用を示す可能性のある一原因を示す図である。Probodyは、リンカーによって結ばれたマスクペプチドが抗原結合部位に結合した状態と解離した状態の平衡状態にあり、解離した状態の分子は抗原に結合することができてしまう。
【
図4】Probodyが副作用を示す可能性のある一原因を示す図である。マスクペプチドに対する抗薬物抗体(抗マスクペプチド抗体)は、活性化される前のProbodyのマスクペプチドに結合することで、プロテアーゼによる切断が起こらなくてもProbodyを活性化してしまう可能性がある。
【
図5】抗原結合ドメインと運搬部分を含むポリペプチドのコンセプトを示す図である。(A)抗原結合ドメインと運搬部分が連結された状態のポリペプチドは長い半減期を有し、抗原に結合しない。(B)切断サイトの切断等により抗原結合ドメインが遊離し抗原に結合し、遊離後の抗原結合ドメインは短い半減期を有する。
【
図6】本発明のポリペプチドを製造する方法の一実施態様を示す図である。本実施態様において、目的のポリペプチドはIgG抗体様分子である。(A)標的抗原に結合する単ドメイン抗体を取得する。(B)単ドメイン抗体の抗原結合活性が抑制されるように、単ドメイン抗体をIgG抗体のVHの代わりとしてVLと会合させる。(C)単ドメイン抗体が導入されたIgG抗体様分子前駆体にプロテアーゼ切断配列を導入する。
【
図7】本発明のポリペプチドの一実施態様を示す図である。本実施態様において、ポリペプチドがIgG抗体様分子であり、IgG抗体の二つの可変領域に相当する部分にそれぞれ抗原結合ドメインを設ける。二つの抗原結合ドメインは同様な抗原結合特異性を持っていても良く、異なる抗原結合特異性を持っていても良い。
【
図8】本発明の抗原結合ドメインに、更に第2の抗原結合ドメインが連結されている実施態様を示す図である。この実施態様では、遊離後の抗原結合ドメインと第2の抗原結合ドメインが二重特異的抗原結合分子を形成する。(A)未遊離状態のポリペプチドを示す図である。抗原結合ドメインの抗原結合活性は抑制されている。(B)抗原結合ドメインと第2の抗原結合ドメインが形成している二重特異的抗原結合分子の遊離を示す図である。(C)遊離後の二重特異的抗原結合分子の例として、例えばT細胞表面抗原と癌細胞表面抗原に対する二重特異的抗原結合分子を示す図である。
【
図9A】単ドメイン抗体と第1会合支持ドメインを連結させた融合ポリペプチドを複数含むライブラリから、特定の抑制ドメインと会合することで抗原結合活性が減弱するもしくは失われる単ドメイン抗体を含む融合ポリペプチドをスクリーニングする方法の一例を示す図である。(1)単ドメイン抗体と第1会合支持ドメインを連結させた融合ポリペプチドを複数含むライブラリを示す図である。(2)融合ポリペプチドと会合パートナーが会合する状態で、単ドメイン抗体の抗原結合活性を確認することを示す図である。この会合状態で、標的抗原に結合しない、もしくは抗原結合活性が一定値以下である単ドメイン抗体を含む融合ポリペプチドが選択される。(3)(2)で選択された融合ポリペプチド中の単ドメイン抗体と、会合パートナー中の抑制ドメインの会合を解消し、単ドメイン抗体の抗原結合活性を確認することを示す図である。この非会合状態で、標的抗原に結合する、もしくは抗原結合活性が一定値以上である単ドメイン抗体を含む融合ポリペプチドが選択される。(2')融合ポリペプチド中の単ドメイン抗体の抗原結合活性を確認することを示す図である。この融合ポリペプチドの単独存在状態で、標的抗原に結合する、もしくは抗原結合活性が一定値以上である単ドメイン抗体を含む融合ポリペプチドが選択される。(3')(2')で選択された融合ポリペプチドと会合パートナーが会合する状態で、単ドメイン抗体の抗原結合活性を確認することを示す図である。この会合状態で、標的抗原に結合しない、もしくは抗原結合活性が一定値以下である単ドメイン抗体を含む融合ポリペプチドが選択される。
【
図9B】単ドメイン抗体と第1会合支持ドメインを連結させた融合ポリペプチドを複数含むライブラリから、特定の抑制ドメインと会合することで抗原結合活性が減弱するもしくは失われる単ドメイン抗体を含む融合ポリペプチドをスクリーニングする方法のより具体的な一例を示す図である。(1)単ドメイン抗体と第1会合支持ドメインを含む融合ポリペプチドと、抑制ドメインと第2会合支持ドメインの間にプロテアーゼ切断配列が導入された会合パートナーを同時にディスプレイさせ、Fab状構造を形成させる;(2)ディスプレイされたFab状構造中に、抗原と結合しない、もしくは抗原に対する結合活性が一定値以下のものを選択する;(3)プロテアーゼにより会合パートナーを切断し、抗原に結合する、もしくは抗原結合活性が一定値以上の単ドメイン抗体を含む断片を選択する。
【
図9C】単ドメイン抗体と第1会合支持ドメインを連結させた融合ポリペプチドを複数含むライブラリから、特定の抑制ドメインと会合することで抗原結合活性が減弱するもしくは失われる単ドメイン抗体を含む融合ポリペプチドをスクリーニングする方法のより具体的な別の例を示す図である。(1)単ドメイン抗体と第1会合支持ドメイン間にプロテアーゼ切断配列を導入した融合ポリペプチドと、抑制ドメインと第2会合支持ドメインが連結された会合パートナーを同時にディスプレイさせ、Fab状構造を形成させる;(2)ディスプレイされたFab状構造中に、抗原と結合しない、もしくは抗原に対する結合活性が一定値以下のものを選択する;(3)プロテアーゼにより融合ポリペプチドを切断し、抗原に結合する、もしくは抗原結合活性が一定値以上の単ドメイン抗体を含む断片を選択する。
【
図9D】単ドメイン抗体と第1会合支持ドメインを連結させた融合ポリペプチドを複数含むライブラリから、特定の抑制ドメインと会合することで抗原結合活性が減弱するもしくは失われる単ドメイン抗体を含む融合ポリペプチドをスクリーニングする方法の別の例を示す図である。(1)単ドメイン抗体と第1会合支持ドメインを含む融合ポリペプチドと、抑制ドメインと第2会合支持ドメインが連結された会合パートナーを同時にディスプレイさせ、Fab状構造を形成させ、ディスプレイされたFab状構造中に、抗原と結合しない、もしくは抗原に対する結合活性が一定値以下のものを選択する;(2)(1)で選択されたFab状構造中の単ドメイン抗体を含む部分を、抑制ドメインを同時に発現させない形で再度ディスプレイさせ、抗原と結合する、もしくは抗原に対する結合活性が一定値以上の断片を選択する。(2')と(2'')は、(2)の中の、単ドメイン抗体を含む部分を、抑制ドメインを同時に発現させない形で再度ディスプレイさせる別の実施態様を示す図である。なお、(1)と(2)/(2')/(2'')の順番は(2)/(2')/(2'')から(1)でもよく、すなわち、単ドメイン抗体を含む部分を、抑制ドメインを同時に発現させない形でディスプレイさせ、抗原に対する結合活性が一定値以上の断片を選択する。次に、結合が一定以上であった断片を含む単ドメイン抗体と第1会合支持ドメインを含む融合ポリペプチドと抑制ドメインと第2会合支持ドメインが連結された会合パートナーを同時にディスプレイさせ、Fab状構造を形成させ、ディスプレイされたFab状構造中に、抗原と結合しない、もしくは抗原に対する結合活性が一定値以下のものを選択する。
【
図10】抗ヒトIL-6R VHH(IL6R90)をヒトIgG1の定常領域(CH1-hinge-CH2-CH3)に融合したIL6R90-G1mを様々な軽鎖と会合させて作製した抗体様分子の、ヒトIL-6Rに対する結合を評価した結果を示す図である。抗原が固相化されたセンサーと抗体様分子の作用を開始した時間が横軸の開始点である。
【
図11】(A)IL6R90-G1m のVHHと定常領域の境界付近にプロテアーゼ切断配列を挿入することで作製した抗体様分子のモデルを示す図である。(B)作製した各抗体重鎖の名前、アミノ酸配列を挿入した部位、挿入したアミノ酸配列を示す図である。挿入部位を [insert]で示す。
【
図12-1】IL6R90-G1m またはIL6R90-G1m のVHHと定常領域の境界付近にプロテアーゼ切断配列を挿入することで作製した抗体様分子をプロテアーゼ(MT-SP1)処理後、切断の程度を還元SDS-PAGEで評価した結果を示す図である。プロテアーゼ処理によって生じた2本の新たなバンドのうち、25 kDa以下に生じたバンドがVHHに由来するバンドであり、25-50 kDaの位置に現れたバンドが定常領域に由来するバンドである。
【
図13】IL6R90-G1m またはIL6R90-G1m のVHHと定常領域の境界付近にプロテアーゼ切断配列を挿入することで作製した抗体様分子またはそれらをプロテアーゼ(MT-SP1)処理した後のサンプルとヒトIL-6Rの結合を評価した結果を示す図である。Protease- がプロテアーゼ未処理抗体様分子と抗原の結合を評価したセンサーグラムであり、Protease+ がプロテアーゼ処理抗体様分子と抗原の結合を評価したセンサーグラムである。抗原が固相化されたセンサーと抗体様分子の作用を開始する30秒前が横軸の開始点である。
【
図14】抗ヒトIL-6R VHH(20A11)をヒトIgG1の定常領域(CH1-hinge-CH2-CH3)に融合した20A11-G1mを様々な軽鎖と会合させて作製した抗体様分子の、ヒトIL-6Rに対する結合を評価した結果を示す図である。抗原が固相化されたセンサーと抗体様分子の作用を開始する時間の30秒前が横軸の開始点である。
【
図15】20A11-G1mまたは20A11のVLとの界面に存在するアミノ酸に変異を導入して作製した20A11huをヒトIgG1の定常領域(CH1-hinge-CH2-CH3)に融合した20A11hu-G1mを様々な軽鎖と会合させて作製した抗体様分子の、ヒトIL-6Rに対する結合を評価した結果を示す図である。抗原が固相化されたセンサーと抗体様分子の作用を開始する時間の60秒前が横軸の開始点である。
【
図16】20A11-G1mまたは20A11hu-G1mの20A11huと定常領域の境界付近にプロテアーゼ切断配列を挿入して作製した4種類の抗体様分子をプロテアーゼ(MT-SP1)処理後、切断の程度を還元SDS-PAGEで評価した結果を示す図である。プロテアーゼ処理によって生じた2本の新たなバンドのうち、25 kDa 以下に生じたバンドがVHHに由来するバンドであり、25-50 kDaの位置に現れたバンドが定常領域に由来するバンドである。
【
図17】20A11-G1mまたは20A11hu-G1m のVHHと定常領域の境界付近にプロテアーゼ切断配列を挿入することで作製した抗体様分子またはそれらをプロテアーゼ(MT-SP1)処理した後のサンプルとヒトIL-6Rの結合を評価した結果を示す図である。Protease- がプロテアーゼ未処理抗体様分子と抗原の結合を評価したセンサーグラムであり、Protease+ がプロテアーゼ処理抗体様分子と抗原の結合を評価したセンサーグラムである。抗原が固相化されたセンサーと抗体の作用を開始する60秒前が横軸の開始点である。not tested と記載されたサンプルは未測定であることを示す。
【
図18】抗ヒトCD3 VHHを重鎖可変領域に持ち、VHHと重鎖定常領域の境界付近にプロテアーゼ切断配列を挿入することで作製した抗体様分子をプロテアーゼ(MT-SP1)処理後、還元SDS-PAGEで泳動し、CBBで検出することによって切断の程度を評価した結果を示す図である。プロテアーゼ処理によって生じた2本の新たなバンドのうち、10-15 kDa 付近に生じたバンドがVHHに由来するバンドであり、37kDa付近に生じたバンドが重鎖定常領域に由来するバンドである。
【
図19】抗ヒトCD3 VHHを重鎖可変領域に持ち、VHHと重鎖定常領域の境界付近にプロテアーゼ切断配列を挿入することで作製した抗体様分子をプロテアーゼ(MT-SP1)処理した後のサンプルとヒトCD3ed-Fcの結合を評価した結果を示す図である。Protease- がプロテアーゼ未処理抗体様分子と抗原の結合を評価したセンサーグラムであり、Protease+ がプロテアーゼ処理抗体様分子と抗原の結合を評価したセンサーグラムである。抗原が固相化されたセンサーと抗体様分子の作用を開始した30秒前が横軸の開始点である。抗原を結合する前の結合量(レスポンス)を0とし、抗体を作用させる前の結合量を100としたときの結合を示す。抗体を作用させる30秒前から表示してある。
【
図20】IL6R90-G1m を重鎖とし、Vk1-39-k0MTを軽鎖とする分子、またはIL6R90-G1m を重鎖とし、Vk1-39-k0MTを軽鎖とする分子の軽鎖可変領域と軽鎖定常領域の境界付近にプロテアーゼ切断配列を挿入することで作製した抗体様分子をプロテアーゼ(MT-SP1)処理後、還元SDS-PAGEで泳動し、CBBで検出することによって切断の程度を評価した結果を示す図である。プロテアーゼ処理によって軽鎖由来の2本のバンドが生じ、軽鎖がプロテアーゼによって切断されている。
【
図21】IL6R90-G1m を重鎖とし、Vk1-39-k0MTを軽鎖とする分子、またはIL6R90-G1m を重鎖とし、Vk1-39-k0MTを軽鎖とする分子の軽鎖可変領域と軽鎖定常領域の境界付近にプロテアーゼ切断配列を挿入することで作製した抗体様分子をプロテアーゼ(MT-SP1)処理した後のサンプルとヒトIL-6Rの結合を評価した結果を示す図である。Protease- がプロテアーゼ未処理抗体様分子と抗原の結合を評価したセンサーグラムであり、Protease+ がプロテアーゼ処理抗体様分子と抗原の結合を評価したセンサーグラムである。IL-6Rに結合することが確認されている抗体(MRA)をポジティブコントロールとして使用する。抗原が固相化されたセンサーと抗体様分子の作用を開始した時が横軸の開始点である。
【
図22】ヒトPlexinA1結合VHHが組み込まれたIgG抗体様分子のプロテアーゼ切断を評価したSDS-PAGE結果を示す図である。Protease(+) laneはプロテアーゼ切断処理を行ったサンプルであり、protease(-) laneはプロテアーゼ切断処理を受けていないネガティブコントロールのサンプルである。
【
図23】ヒトPlexinA1結合VHHが組み込まれたIgG抗体様分子がプロテアーゼ切断によりVHHを遊離させ、遊離したVHHとヒトPlexinA1の結合を評価したOctetセンサーグラムを示す図である。Protease + はプロテアーゼ切断処理を行ったサンプルであり、protease - はプロテアーゼ切断処理を受けていないサンプルである。使用したIgG抗体様分子の濃度は図の左側に記載されている。
【
図24】二重特異性VHH-VHH含有ポリペプチドのプロテアーゼ切断を評価したSDS-PAGE結果を示す図である。
【
図25】プロテアーゼ切断前後のルシフェラーゼ活性を示す図である。破線はプロテアーゼ処理無しのサンプル、実線はプロテアーゼ処理有りのサンプルである。
【
図26】プロテアーゼ切断前後のルシフェラーゼ活性を示す図である。破線はプロテアーゼ処理無しのサンプル、実線はプロテアーゼ処理有りのサンプルである。
【
図27】抗ヒトIL-6R VHH含有IgG抗体様分子のプロテアーゼによる切断をSDS-PAGEで評価した図である。
【
図28】軽鎖にプロテアーゼ切断配列を導入したIgG抗体様分子のプロテアーゼ切断の評価を示す図である。
【
図29】軽鎖にプロテアーゼ切断配列を導入したIgG様抗体分子の、プロテアーゼ処理の有無による活性化の程度の評価を示す図である。
【
図30A】重鎖にプロテアーゼ切断配列を導入したIgG抗体様分子のプロテアーゼ切断の評価を示す図である。
【
図30B】重鎖にプロテアーゼ切断配列を導入したIgG抗体様分子のプロテアーゼ切断の評価を示す図である。プロテアーゼによる切断をassay buffer(MMP Activity Assay Kit (Fluorometric - Green) (ab112146), Component C: Assay Buffer)で実施した。
【
図31】プロテアーゼ切断配列を挿入した抗体分子をマウスに投与し、生体内での切断効率を評価した図である。
【発明を実施するための形態】
【0017】
本発明におけるポリペプチドとは、通常、4アミノ酸程度以上の長さを有するペプチド、およびタンパク質を指す。また、本発明におけるポリペプチドは通常、人工的に設計された配列からなるポリペプチドであるが、特に限定されず、例えば、生物由来のポリペプチドであってもよい。また、天然ポリペプチド、あるいは合成ポリペプチド、組換えポリペプチド等のいずれであってもよい。さらに、上記のポリペプチドの断片もまた、本発明のポリペプチドに含まれる。
【0018】
本明細書において、たとえば、Ala/A、Leu/L、Arg/R、Lys/K、Asn/N、Met/M、Asp/D、Phe/F、Cys/C、Pro/P、Gln/Q、Ser/S、Glu/E、Thr/T、Gly/G、Trp/W、His/H、Tyr/Y、Ile/I、Val/Vと表されるように、アミノ酸は1文字コードまたは3文字コード、またはその両方で表記されている。特定の位置にあるアミノ酸を表現するとき、特定の位置を表す数字とアミノ酸の1文字コードまたは3文字コードを併記した表現が適宜使用され得る。例えば、単ドメイン抗体に含まれるアミノ酸である37Vというアミノ酸は、Kabatナンバリングで表される37位の位置にあるValを表す。
【0019】
ポリペプチドのアミノ酸配列中のアミノ酸の改変のためには、部位特異的変異誘発法(Kunkelら(Proc. Natl. Acad. Sci. USA (1985) 82, 488-492))やOverlap extension PCR等の公知の方法が適宜採用され得る。また、天然のアミノ酸以外のアミノ酸に置換するアミノ酸の改変方法として、複数の公知の方法もまた採用され得る(Annu. Rev. Biophys. Biomol. Struct. (2006) 35, 225-249、Proc. Natl. Acad. Sci. U.S.A. (2003) 100 (11), 6353-6357)。例えば、終止コドンの1つであるUAGコドン(アンバーコドン)の相補的アンバーサプレッサーtRNAに非天然アミノ酸が結合されたtRNAが含まれる無細胞翻訳系システム(Clover Direct(Protein Express))等も好適に用いられる。本明細書においては、改変として置換が挙げられるがこれに限定されない。
【0020】
本明細書において、アミノ酸の改変部位を表す際に用いられる「および/または」の用語の意義は、「および」と「または」が適宜組み合わされたあらゆる組合せを含む。具体的には、例えば「37番、45番、および/または47番のアミノ酸が置換されている」とは以下のアミノ酸の改変のバリエーションが含まれる;
(a) 37番、(b)45番、(c)47番、(d) 37番および45番、(e) 37番および47番、(f) 45番および47番、(g) 37番および45番および47番。
【0021】
本明細書において、また、アミノ酸の改変を表す表現として、特定の位置を表す数字の前後に改変前と改変後のアミノ酸の1文字コードまたは3文字コードを併記した表現が適宜使用され得る。例えば、抗体可変領域または単ドメイン抗体に含まれるアミノ酸の置換を加える際に用いられるF37VまたはPhe37Valという改変は、Kabatナンバリングで表される37位のPheのValへの置換を表す。すなわち、数字はKabatナンバリングで表されるアミノ酸の位置を表し、その前に記載されるアミノ酸の1文字コード又は3文字コードは置換前のアミノ酸、そのあとに記載されるアミノ酸の1文字コードまたは3文字コードは置換後のアミノ酸を表す。同様に、抗体定常領域に含まれるFc領域にアミノ酸の置換を加える際に用いられるP238AまたはPro238Alaという改変は、EUナンバリングで表される238位のProのAlaへの置換を表す。すなわち、数字はEUナンバリングで表されるアミノ酸の位置を表し、その前に記載されるアミノ酸の1文字コードまたは3文字コードは置換前のアミノ酸、そのあとに記載されるアミノ酸の1文字コードまたは3文字コードは置換後のアミノ酸を表す。
【0022】
本明細書で用語「抗体」は、最も広い意味で使用され、所望の抗原結合活性を示す限りは、それだけに限定されるものではないが、モノクローナル抗体、ポリクローナル抗体、多重特異性抗体(例えば、二重特異性抗体)、単ドメイン抗体、および抗体断片を含む、種々の抗体構造を包含する。
【0023】
「抗体断片」は、完全抗体が結合する抗原に結合する当該完全抗体の一部分を含む、当該完全抗体以外の分子のことをいう。抗体断片の例は、それだけに限定されるものではないが、Fv、Fab、Fab'、Fab'-SH、F(ab')2、ダイアボディ、線状抗体、単鎖抗体分子(例えば、scFv)、および抗体断片から形成された多重特異性抗体を含む。
【0024】
用語「全長抗体」、「完全抗体」、および「全部抗体」は、本明細書では相互に交換可能に用いられ、天然型抗体構造に実質的に類似した構造を有する、または本明細書で定義するFc領域を含む重鎖を有する抗体のことをいう。
【0025】
用語「可変領域」または「可変ドメイン」は、抗体を抗原へと結合させることに関与する、抗体の重鎖または軽鎖のドメインのことをいう。抗体の重鎖および軽鎖の可変ドメイン(それぞれVHおよびVL)は、通常、各ドメインが4つの保存されたフレームワーク領域 (FR) および3つの相補性決定領域 (CDR) を含む、類似の構造を有する。(例えば、Kindt et al. Kuby Immunology, 6th ed., W.H. Freeman and Co., page 91 (2007) 参照。)1つのVHまたはVLドメインで、抗原結合特異性を与えるに充分であろう。
【0026】
本明細書で用いられる用語「相補性決定領域」または「CDR」は、配列において超可変であり、および/または構造的に定まったループ(「超可変ループ」)を形成し、および/または抗原接触残基(「抗原接触」)、抗体の可変ドメインの各領域のことをいう。通常、抗体は6つのCDRを含む:VHに3つ(H1、H2、H3)、およびVLに3つ(L1、L2、L3)である。本明細書での例示的なCDRは、以下のものを含む:
(a) アミノ酸残基26-32 (L1)、50-52 (L2)、91-96 (L3)、26-32 (H1)、53-55 (H2)、および96-101 (H3)のところで生じる超可変ループ (Chothia and Lesk, J. Mol. Biol. 196:901-917 (1987));
(b) アミノ酸残基24-34 (L1)、50-56 (L2)、89-97 (L3)、31-35b (H1)、50-65 (H2)、 および95-102 (H3)のところで生じるCDR (Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD (1991));
(c) アミノ酸残基27c-36 (L1)、46-55 (L2)、89-96 (L3)、30-35b (H1)、47-58 (H2)、および93-101 (H3) のところで生じる抗原接触 (MacCallum et al. J. Mol. Biol. 262: 732-745 (1996));ならびに、
(d) HVRアミノ酸残基46-56 (L2)、47-56 (L2)、48-56 (L2)、49-56 (L2)、26-35 (H1)、26-35b (H1)、49-65 (H2)、93-102 (H3)、および94-102 (H3)を含む、(a)、(b)、および/または(c)の組合せ。
【0027】
通常、単ドメイン抗体は3つのCDRを含む:CDR1、CDR2、CDR3。単ドメイン抗体がVHHまたは抗体VHから作製された単ドメイン抗体の場合、単ドメイン抗体のCDRは、例示的に以下のものを含む:
(a) アミノ酸残基26-32 (CDR1)、53-55 (CDR2)、および96-101 (CDR3)のところで生じる超可変ループ (Chothia and Lesk, J. Mol. Biol. 196:901-917 (1987));
(b) アミノ酸残基31-35b (CDR1)、50-65 (CDR2)、 および95-102 (CDR3)のところで生じるCDR (Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD (1991));
(c) アミノ酸残基30-35b (CDR1)、47-58 (CDR2)、および93-101 (CDR3) のところで生じる抗原接触 (MacCallum et al. J. Mol. Biol. 262: 732-745 (1996));ならびに、
(d) CDRアミノ酸残基26-35 (CDR1)、26-35b (CDR1)、49-65 (CDR2)、93-102 (CDR3)、または94-102 (CDR3)を含む、(a)、(b)、および/または(c)の組合せ。
【0028】
単ドメイン抗体が抗体VLから作製された単ドメイン抗体の場合、単ドメイン抗体のCDRは、例示的に以下のものを含む:
(a) アミノ酸残基26-32 (CDR1)、50-52 (CDR2)、および91-96 (CDR3)のところで生じる超可変ループ (Chothia and Lesk, J. Mol. Biol. 196:901-917 (1987));
(b) アミノ酸残基24-34 (CDR1)、50-56 (CDR2)、および89-97 (CDR3)のところで生じるCDR (Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD (1991));
(c) アミノ酸残基27c-36 (CDR1)、46-55 (CDR2)、および89-96 (CDR3)のところで生じる抗原接触 (MacCallum et al. J. Mol. Biol. 262: 732-745 (1996));ならびに、
(d) CDRアミノ酸残基46-56 (CDR2)、47-56 (CDR2)、48-56 (CDR2)、または49-56 (CDR2)を含む、(a)、(b)、および/または(c)の組合せ。
【0029】
別段示さない限り、CDR残基および可変ドメイン中の他の残基(例えば、FR残基)は、本明細書では上記のKabatらにしたがって番号付けされる。
【0030】
「フレームワーク」または「FR」は、相補性決定領域 (CDR) 残基以外の、可変ドメイン残基のことをいう。可変ドメインのFRは、通常4つのFRドメイン:FR1、FR2、FR3、およびFR4からなる。それに応じて、CDRおよびFRの配列は、通常次の順序でVH(またはVL)に現れる:FR1-H1(L1)-FR2-H2(L2)-FR3-H3(L3)-FR4。単ドメイン抗体においては、CDRおよびFRの配列は、通常次の順序で現れる:FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4。
【0031】
本発明の単ドメイン抗体は、概して、
a)3つの相補性決定領域/配列が間に挿入された4つのフレームワーク領域/配列から成るアミノ酸配列(Kabatナンバリングによる11位のアミノ酸残基はL、M、S、V、Wからなる群から選択される、好ましくはLである)、及び/又は
b)3つの相補性決定領域/配列が間に挿入された4つのフレームワーク領域/配列から成るアミノ酸配列(Kabatナンバリングによる37位のアミノ酸残基はF、Y、H、I、L、Vからなる群から選択される、好ましくはFまたはYである)、及び/又は
c)3つの相補性決定領域/配列が間に挿入された4つのフレームワーク領域/配列から成るアミノ酸配列(Kabatナンバリングによる44位のアミノ酸残基はG、E、A、D、Q、R、S、Lからなる群から選択される、好ましくはG、EまたはQである、より好ましくはGまたはEである)、及び/又は
d)3つの相補性決定領域/配列が間に挿入された4つのフレームワーク領域/配列から成るアミノ酸配列(Kabatナンバリングによる45位のアミノ酸残基はL、R、C、I、L、P、Q、Vからなる群から選択される、好ましくはLまたはRである)、及び/又は
e)3つの相補性決定領域/配列が間に挿入された4つのフレームワーク領域/配列から成るアミノ酸配列(Kabatナンバリングによる47位のアミノ酸残基はW、L、F、A、G、I、M、R、S、V、Yからなる群から選択される、好ましくはW、L、FまたはRである)、及び/又は
f)3つの相補性決定領域/配列が間に挿入された4つのフレームワーク領域/配列から成るアミノ酸配列(Kabatナンバリングによる83位のアミノ酸残基はR、K、N、E、G、I、M、Q、Tからなる群から選択される、好ましくはKまたはRである、より好ましくはKである)、及び/又は
g)3つの相補性決定領域/配列が間に挿入された4つのフレームワーク領域/配列から成るアミノ酸配列(Kabatナンバリングによる84位のアミノ酸残基はP、A、L、R、S、T、D、Vからなる群から選択される、好ましくはPである)、及び/又は
h)3つの相補性決定領域/配列が間に挿入された4つのフレームワーク領域/配列から成るアミノ酸配列(Kabatナンバリングによる103位のアミノ酸残基はW、P、R、Sからなる群から選択される、このましくはWである)、及び/又は
i)3つの相補性決定領域/配列が間に挿入された4つのフレームワーク領域/配列から成るアミノ酸配列(Kabatナンバリングによる104位のアミノ酸残基はGまたはDである、好ましくはGである)、及び/又は
j)3つの相補性決定領域/配列が間に挿入された4つのフレームワーク領域/配列から成るアミノ酸配列(Kabatナンバリングによる108位のアミノ酸残基はQ、L、Rからなる群から選択される、好ましくはQまたはLである)を含む、ポリペプチドと定義することができる。
【0032】
より具体的に、排他的ではないが、下記の3つの相補性決定領域/配列が間に挿入された4つのフレームワーク領域/配列から成るアミノ酸配列のいずれかを含むポリペプチドと定義することができる:
k)Kabatナンバリングによる43位~46位のアミノ酸残基はKEREまたはKQREであるアミノ酸配列;
l)Kabatナンバリングによる44位~47位のアミノ酸残基はGLEWであるアミノ酸配列;
m)Kabatナンバリングによる83位~84位のアミノ酸残基はKPまたはEPであるアミノ酸配列。
【0033】
本明細書で用語「定常領域」または「定常ドメイン」は、抗体の可変領域以外の部分を言う。例えば、IgG抗体は、ジスルフィド結合している2つの同一の軽鎖と2つの同一の重鎖から構成される約150,000ダルトンのヘテロ四量体糖タンパク質であり、N末端からC末端に向かって、各重鎖は、可変重鎖ドメインまたは重鎖可変ドメインとも呼ばれる可変領域 (VH) を有し、CH1ドメイン、ヒンジ領域、CH2ドメイン、CH3ドメインを含む重鎖定常領域(CH)が続く。同様に、N末端からC末端に向かって、各軽鎖は、可変軽鎖ドメインまたは軽鎖可変ドメインとも呼ばれる可変領域 (VL) を有し、それに定常軽鎖 (CL) ドメインが続く。天然型抗体の軽鎖は、その定常ドメインのアミノ酸配列に基づいて、カッパ(κ)およびラムダ(λ)と呼ばれる、2つのタイプの1つに帰属させられてよい。
【0034】
本明細書で用語「Fc領域」は、少なくとも定常領域の一部分を含む免疫グロブリン重鎖のC末端領域を定義するために用いられる。この用語は、天然型配列のFc領域および変異体Fc領域を含む。一実施態様において、ヒトIgG1の場合、重鎖Fc領域はCys226から、またはPro230から、重鎖のカルボキシル末端まで延びる。ただし、Fc領域のC末端のリジン (Lys447) またはグリシン‐リジン(Gly446-Lys447)は、存在していてもしていなくてもよい。本明細書では別段特定しない限り、Fc領域または定常領域中のアミノ酸残基の番号付けは、Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD 1991 に記載の、EUナンバリングシステム(EUインデックスとも呼ばれる)にしたがう。
【0035】
抗体の「クラス」は、抗体の重鎖に備わる定常ドメインまたは定常領域のタイプのことをいう。抗体には5つの主要なクラスがある:IgA、IgD、IgE、IgG、およびIgMである。そして、このうちいくつかはさらにサブクラス(アイソタイプ)に分けられてもよい。例えば、IgG1、IgG2、IgG3、IgG4、IgA1、およびIgA2である。異なるクラスの免疫グロブリンに対応する重鎖定常ドメインを、それぞれ、α、δ、ε、γ、およびμと呼ぶ。
【0036】
本明細書において、「抗原結合ドメイン」は目的とする抗原に結合することのみで制限される。抗原結合ドメインは、目的とする抗原に結合するかぎりどのような構造のドメインも使用され得る。そのようなドメインの例として、それだけに限定するものではないが、例えば、抗体の重鎖可変領域(VH)および抗体の軽鎖可変領域(VL)、単ドメイン抗体(sdAb)、生体内に存在する細胞膜タンパクであるAvimerに含まれる35アミノ酸程度のAドメインと呼ばれるモジュール(国際公開WO2004/044011、WO2005/040229)、細胞膜に発現する糖たんぱく質であるfibronectin中のタンパク質に結合するドメインである10Fn3ドメインを含むAdnectin(国際公開WO2002/032925)、ProteinAの58アミノ酸からなる3つのヘリックスの束(bundle)を構成するIgG結合ドメインをscaffoldとするAffibody(国際公開WO1995/001937)、33アミノ酸残基を含むターンと2つの逆並行ヘリックスおよびループのサブユニットが繰り返し積み重なった構造を有するアンキリン反復(ankyrin repeat:AR)の分子表面に露出する領域であるDARPins(Designed Ankyrin Repeat proteins)(国際公開WO2002/020565)、好中球ゲラチナーゼ結合リポカリン(neutrophil gelatinase-associated lipocalin(NGAL))等のリポカリン分子において高度に保存された8つの逆並行ストランドが中央方向にねじれたバレル構造の片側を支える4つのループ領域であるAnticalin等(国際公開WO2003/029462)、ヤツメウナギ、ヌタウナギなど無顎類の獲得免疫システムとしてイムノグロブリンの構造を有さない可変性リンパ球受容体(variable lymphocyte receptor(VLR))のロイシン残基に富んだリピート(leucine-rich-repeat(LRR))モジュールが繰り返し積み重なった馬てい形の構造の内部の並行型シート構造のくぼんだ領域(国際公開WO2008/016854)が挙げられる。
【0037】
本発明の抗原結合ドメインの好適な例として、当該抗原結合ドメインのみで構成される分子で抗原結合機能を発揮出来る抗原結合ドメイン、連結されている他のペプチドから遊離した後に単独で抗原結合機能を発揮できる抗原結合ドメイン等が挙げられる。そのような抗原結合ドメインの例として、それだけに限定されないが、単ドメイン抗体、scFv、Fv、Fab、Fab'、F(ab')2等が挙げられる。
【0038】
本発明の抗原結合ドメインの好適な例の一つとして、分子量60kDa以下の抗原結合ドメインが挙げられる。そのような抗原結合ドメインの例として、それだけに限定されないが、単ドメイン抗体、scFv、Fab、Fab'が挙げられる。分子量が60kDa以下である抗原結合ドメインは通常、単量体として血中に存在する時、腎臓によるクリアランスが発生する可能性が高い(J Biol Chem. 1988 Oct 15;263(29):15064-70参照)。
別の面から見て、本発明の抗原結合ドメインの好適な例の一つとして、血中半減期が12時間以下の抗原結合ドメインが挙げられる。そのような抗原結合ドメインの例として、それだけに限定されないが、単ドメイン抗体、scFv、Fab、Fab'等が挙げられる。
【0039】
本発明の抗原結合ドメインの好適な例の一つとして、単ドメイン抗体(sdAb)が挙げられる。
【0040】
本明細書で用語「単ドメイン抗体」は、そのドメイン単独で抗原結合活性を発揮できるかぎりその構造は限定されない。IgG抗体等で例示される通常の抗体は、VHとVLのペアリングにより可変領域を形成された状態では抗原結合活性を示すのに対し、単ドメイン抗体は他のドメインとペアリングすることなく、単ドメイン抗体自身のドメイン構造単独で抗原結合活性を発揮できると知られている。単ドメイン抗体は通常比較的に低分子量を有し、単量体の形態で存在する。
単ドメイン抗体の例として、それだけに限定されないが、例えば、ラクダ科の動物のVHH、サメのVNARのような、先天的に軽鎖を欠如する抗原結合分子、または抗体のVHドメインのすべてもしくは一部分またはVLドメインのすべてもしくは一部分を含む抗体断片が挙げられる。抗体のVH/VLドメインのすべてもしくは一部分を含む抗体断片である単ドメイン抗体の例として、それだけに限定されないが、例えば、米国特許第6,248,516号B1等に記載されているようなヒト抗体VHまたはヒト抗体VLから出発して人工的に作製された単ドメイン抗体が挙げられる。本発明のいくつかの実施態様において、1つの単ドメイン抗体は3つのCDR(CDR1、CDR2及びCDR3)を有する。
単ドメイン抗体は、単ドメイン抗体を産生できる動物から、または単ドメイン抗体を産生できる動物を免疫することにより取得し得る。単ドメイン抗体を産生できる動物の例として、それだけに限定されないが、例えば、ラクダ科動物、単ドメイン抗体を産生できる遺伝子が導入された遺伝子導入動物(transgenic animals)が挙げられる。ラクダ科動物はラクダ、ラマ、アルパカ、ヒトコブラクダおよびグアナコ等を含む。単ドメイン抗体を産生できる遺伝子が導入された遺伝子導入動物の例として、それだけに限定されないが、国際公開WO2015/143414号、米国特許公開US2011/0123527号A1に記載の遺伝子導入動物が挙げられる。動物から取得した単ドメイン抗体のフレームワーク配列をヒトジャームライン配列あるいはそれに類似した配列とすることで、ヒト化した単ドメイン抗体を取得することも出来る。ヒト化した単ドメイン抗体(例えば、ヒト化VHH)はまた、本発明の単ドメイン抗体の一実施態様である。「ヒト化単ドメイン抗体」は、非ヒトCDRからのアミノ酸残基およびヒトFRからのアミノ酸残基を含む、キメラ単ドメイン抗体のことをいう。ある態様では、ヒト化単ドメイン抗体は、すべてのもしくは実質的にすべてのCDRは非ヒト抗体のものに対応し、かつ、すべてのもしくは実質的にすべてのFRはヒト抗体のものに対応する。ヒト化抗体において、FR中の残基の一部がヒト抗体のものと対応しない場合も、実質的にすべてのFRはヒト抗体のものに対応する一例として考えられる。たとえば、単ドメイン抗体の一態様であるVHHをヒト化する場合、FR中の残基の一部をヒト抗体のものと対応しない残基にする必要がある(C Vinckeら、The Journal of Biological Chemistry 284, 3273-3284.)。
また、単ドメイン抗体は、単ドメイン抗体を含むポリペプチドライブラリから、ELISA、パニング等により取得し得る。単ドメイン抗体を含むポリペプチドライブラリの例として、それだけに限定されないが、例えば、各種動物若しくはヒトから取得したナイーブ抗体ライブラリ(例:Methods in Molecular Biology 2012 911 (65-78)、Biochimica et Biophysica Acta - Proteins and Proteomics 2006 1764:8 (1307-1319))、各種動物を免疫することで取得した抗体ライブラリ(例:Journal of Applied Microbiology 2014 117:2 (528-536))、または各種動物若しくはヒトの抗体遺伝子より作製した合成抗体ライブラリ(例:Journal of Biomolecular Screening 2016 21:1 (35-43)、Journal of Biological Chemistry 2016 291:24 (12641-12657)、AIDS 2016 30:11 (1691-1701))が挙げられる。
【0041】
本明細書において、「抗原」は抗原結合ドメインが結合するエピトープを含むことのみで制限される。抗原の好適な例として、それだけに限定されないが、例えば、動物またはヒト由来のペプチド、ポリペプチド、タンパク質が挙げられる。標的組織に起因する疾患を治療するために用いられる抗原の好適な例として、それだけに限定されないが、例えば、標的細胞(例:癌細胞、炎症細胞)の表面に発現する分子や、標的細胞を含む組織中の他の細胞表面に発現する分子、標的細胞と標的細胞を含む組織に対して免疫学的役割を持つ細胞の表面に発現する分子、標的細胞を含む組織の間質中に存在する大分子等が挙げられる。
【0042】
抗原としては下記のような分子:17-IA、4-1BB、4Dc、6-ケト-PGF1a、8-イソ-PGF2a、8-オキソ-dG、A1 アデノシン受容体、A33、ACE、ACE-2、アクチビン、アクチビンA、アクチビンAB、アクチビンB、アクチビンC、アクチビンRIA、アクチビンRIA ALK-2、アクチビンRIB ALK-4、アクチビンRIIA、アクチビンRIIB、ADAM、ADAM10、ADAM12、ADAM15、ADAM17/TACE、ADAM8、ADAM9、ADAMTS、ADAMTS4、ADAMTS5、アドレシン、aFGF、ALCAM、ALK、ALK-1、ALK-7、アルファ-1-アンチトリプシン、アルファ-V/ベータ-1アンタゴニスト、ANG、Ang、APAF-1、APE、APJ、APP、APRIL、AR、ARC、ART、アルテミン、抗Id、ASPARTIC、心房性ナトリウム利尿因子、av/b3インテグリン、Axl、b2M、B7-1、B7-2、B7-H、B-リンパ球刺激因子(BlyS)、BACE、BACE-1、Bad、BAFF、BAFF-R、Bag-1、BAK、Bax、BCA-1、BCAM、Bcl、BCMA、BDNF、b-ECGF、bFGF、BID、Bik、BIM、BLC、BL-CAM、BLK、BMP、BMP-2 BMP-2a、BMP-3 オステオゲニン(Osteogenin)、BMP-4 BMP-2b、BMP-5、BMP-6 Vgr-1、BMP-7(OP-1)、BMP-8(BMP-8a、OP-2)、BMPR、BMPR-IA(ALK-3)、BMPR-IB(ALK-6)、BRK-2、RPK-1、BMPR-II(BRK-3)、BMP、b-NGF、BOK、ボンベシン、骨由来神経栄養因子、BPDE、BPDE-DNA、BTC、補体因子3(C3)、C3a、C4、C5、C5a、C10、CA125、CAD-8、カルシトニン、cAMP、癌胎児性抗原(CEA)、癌関連抗原、カテプシンA、カテプシンB、カテプシンC/DPPI、カテプシンD、カテプシンE、カテプシンH、カテプシンL、カテプシンO、カテプシンS、カテプシンV、カテプシンX/Z/P、CBL、CCI、CCK2、CCL、CCL1、CCL11、CCL12、CCL13、CCL14、CCL15、CCL16、CCL17、CCL18、CCL19、CCL2、CCL20、CCL21、CCL22、CCL23、CCL24、CCL25、CCL26、CCL27、CCL28、CCL3、CCL4、CCL5、CCL6、CCL7、CCL8、CCL9/10、CCR、CCR1、CCR10、CCR10、CCR2、CCR3、CCR4、CCR5、CCR6、CCR7、CCR8、CCR9、CD1、CD2、CD3、CD3E、CD4、CD5、CD6、CD7、CD8、CD10、CD11a、CD11b、CD11c、CD13、CD14、CD15、CD16、CD18、CD19、CD20、CD21、CD22、CD23、CD25、CD27L、CD28、CD29、CD30、CD30L、CD32、CD33(p67タンパク質)、CD34、CD38、CD40、CD40L、CD44、CD45、CD46、CD49a、CD52、CD54、CD55、CD56、CD61、CD64、CD66e、CD74、CD80(B7-1)、CD89、CD95、CD123、CD137、CD138、CD140a、CD146、CD147、CD148、CD152、CD164、CEACAM5、CFTR、cGMP、CINC、ボツリヌス菌毒素、ウェルシュ菌毒素、CKb8-1、CLC、CMV、CMV UL、CNTF、CNTN-1、COX、C-Ret、CRG-2、CT-1、CTACK、CTGF、CTLA-4、PD-1、PD-L1、LAG3、TIM3、galectin-9、CX3CL1、CX3CR1、CXCL、CXCL1、CXCL2、CXCL3、CXCL4、CXCL5、CXCL6、CXCL7、CXCL8、CXCL9、CXCL10、CXCL11、CXCL12、CXCL13、CXCL14、CXCL15、CXCL16、CXCR、CXCR1、CXCR2、CXCR3、CXCR4、CXCR5、CXCR6、サイトケラチン腫瘍関連抗原、DAN、DCC、DcR3、DC-SIGN、補体制御因子(Decay accelerating factor)、des(1-3)-IGF-I(脳IGF-1)、Dhh、ジゴキシン、DNAM-1、Dnase、Dpp、DPPIV/CD26、Dtk、ECAD、EDA、EDA-A1、EDA-A2、EDAR、EGF、EGFR(ErbB-1)、EMA、EMMPRIN、ENA、エンドセリン受容体、エンケファリナーゼ、eNOS、Eot、エオタキシン1、EpCAM、エフリンB2/EphB4、EPO、ERCC、E-セレクチン、ET-1、ファクターIIa、ファクターVII、ファクターVIIIc、ファクターIX、線維芽細胞活性化タンパク質(FAP)、Fas、FcR1、FEN-1、フェリチン、FGF、FGF-19、FGF-2、FGF3、FGF-8、FGFR、FGFR-3、フィブリン、FL、FLIP、Flt-3、Flt-4、卵胞刺激ホルモン、フラクタルカイン、FZD1、FZD2、FZD3、FZD4、FZD5、FZD6、FZD7、FZD8、FZD9、FZD10、G250、Gas6、GCP-2、GCSF、GD2、GD3、GDF、GDF-1、GDF-3(Vgr-2)、GDF-5(BMP-14、CDMP-1)、GDF-6(BMP-13、CDMP-2)、GDF-7(BMP-12、CDMP-3)、GDF-8(ミオスタチン)、GDF-9、GDF-15(MIC-1)、GDNF、GDNF、GFAP、GFRa-1、GFR-アルファ1、GFR-アルファ2、GFR-アルファ3、GITR、グルカゴン、Glut4、糖タンパク質IIb/IIIa(GPIIb/IIIa)、GM-CSF、gp130、gp72、GRO、成長ホルモン放出因子、ハプテン(NP-capまたはNIP-cap)、HB-EGF、HCC、HCMV gBエンベロープ糖タンパク質、HCMV gHエンベロープ糖タンパク質、HCMV UL、造血成長因子(HGF)、Hep B gp120、ヘパラナーゼ、Her2、Her2/neu(ErbB-2)、Her3(ErbB-3)、Her4(ErbB-4)、単純ヘルペスウイルス(HSV) gB糖タンパク質、HSV gD糖タンパク質、HGFA、高分子量黒色腫関連抗原(HMW-MAA)、HIV gp120、HIV IIIB gp 120 V3ループ、HLA、HLA-DR、HM1.24、HMFG PEM、HRG、Hrk、ヒト心臓ミオシン、ヒトサイトメガロウイルス(HCMV)、ヒト成長ホルモン(HGH)、HVEM、I-309、IAP、ICAM、ICAM-1、ICAM-3、ICE、ICOS、IFNg、Ig、IgA受容体、IgE、IGF、IGF結合タンパク質、IGF-1R、IGFBP、IGF-I、IGF-II、IL、IL-1、IL-1R、IL-2、IL-2R、IL-4、IL-4R、IL-5、IL-5R、IL-6、IL-6R、IL-8、IL-9、IL-10、IL-12、IL-13、IL-15、IL-18、IL-18R、IL-21、IL-23、IL-27、インターフェロン(INF)-アルファ、INF-ベータ、INF-ガンマ、インヒビン、iNOS、インスリンA鎖、インスリンB鎖、インスリン様増殖因子1、インテグリンアルファ2、インテグリンアルファ3、インテグリンアルファ4、インテグリンアルファ4/ベータ1、インテグリンアルファ4/ベータ7、インテグリンアルファ5(アルファV)、インテグリンアルファ5/ベータ1、インテグリンアルファ5/ベータ3、インテグリンアルファ6、インテグリンベータ1、インテグリンベータ2、インターフェロンガンマ、IP-10、I-TAC、JE、カリクレイン2、カリクレイン5、カリクレイン6、カリクレイン11、カリクレイン12、カリクレイン14、カリクレイン15、カリクレインL1、カリクレインL2、カリクレインL3、カリクレインL4、KC、KDR、ケラチノサイト増殖因子(KGF)、ラミニン5、LAMP、LAP、LAP(TGF-1)、潜在的TGF-1、潜在的TGF-1 bp1、LBP、LDGF、LECT2、レフティ、ルイス-Y抗原、ルイス-Y関連抗原、LFA-1、LFA-3、Lfo、LIF、LIGHT、リポタンパク質、LIX、LKN、Lptn、L-セレクチン、LT-a、LT-b、LTB4、LTBP-1、肺表面、黄体形成ホルモン、リンホトキシンベータ受容体、Mac-1、MAdCAM、MAG、MAP2、MARC、MCAM、MCAM、MCK-2、MCP、M-CSF、MDC、Mer、METALLOPROTEASES、MGDF受容体、MGMT、MHC(HLA-DR)、MIF、MIG、MIP、MIP-1-アルファ、MK、MMAC1、MMP、MMP-1、MMP-10、MMP-11、MMP-12、MMP-13、MMP-14、MMP-15、MMP-2、MMP-24、MMP-3、MMP-7、MMP-8、MMP-9、MPIF、Mpo、MSK、MSP、ムチン(Muc1)、MUC18、ミュラー管抑制物質、Mug、MuSK、NAIP、NAP、NCAD、N-Cアドヘリン、NCA 90、NCAM、NCAM、ネプリライシン、ニューロトロフィン-3、-4、または-6、ニュールツリン、神経成長因子(NGF)、NGFR、NGF-ベータ、nNOS、NO、NOS、Npn、NRG-3、NT、NTN、OB、OGG1、OPG、OPN、OSM、OX40L、OX40R、p150、p95、PADPr、副甲状腺ホルモン、PARC、PARP、PBR、PBSF、PCAD、P-カドヘリン、PCNA、PDGF、PDGF、PDK-1、PECAM、PEM、PF4、PGE、PGF、PGI2、PGJ2、PIN、PLA2、胎盤性アルカリホスファターゼ(PLAP)、PlGF、PLP、PP14、プロインスリン、プロレラキシン、プロテインC、PS、PSA、PSCA、前立腺特異的膜抗原(PSMA)、PTEN、PTHrp、Ptk、PTN、R51、RANK、RANKL、RANTES、RANTES、レラキシンA鎖、レラキシンB鎖、レニン、呼吸器多核体ウイルス(RSV)F、RSV Fgp、Ret、リウマイド因子、RLIP76、RPA2、RSK、S100、SCF/KL、SDF-1、SERINE、血清アルブミン、sFRP-3、Shh、SIGIRR、SK-1、SLAM、SLPI、SMAC、SMDF、SMOH、SOD、SPARC、Stat、STEAP、STEAP-II、TACE、TACI、TAG-72(腫瘍関連糖タンパク質-72)、TARC、TCA-3、T細胞受容体(例えば、T細胞受容体アルファ/ベータ)、TdT、TECK、TEM1、TEM5、TEM7、TEM8、TERT、睾丸PLAP様アルカリホスファターゼ、TfR、TGF、TGF-アルファ、TGF-ベータ、TGF-ベータ Pan Specific、TGF-ベータRI(ALK-5)、TGF-ベータRII、TGF-ベータRIIb、TGF-ベータRIII、TGF-ベータ1、TGF-ベータ2、TGF-ベータ3、TGF-ベータ4、TGF-ベータ5、トロンビン、胸腺Ck-1、甲状腺刺激ホルモン、Tie、TIMP、TIQ、組織因子、TMEFF2、Tmpo、TMPRSS2、TNF、TNF-アルファ、TNF-アルファベータ、TNF-ベータ2、TNFc、TNF-RI、TNF-RII、TNFRSF10A(TRAIL R1 Apo-2、DR4)、TNFRSF10B(TRAIL R2 DR5、KILLER、TRICK-2A、TRICK-B)、TNFRSF10C(TRAIL R3 DcR1、LIT、TRID)、TNFRSF10D(TRAIL R4 DcR2、TRUNDD)、TNFRSF11A(RANK ODF R、TRANCE R)、TNFRSF11B(OPG OCIF、TR1)、TNFRSF12(TWEAK R FN14)、TNFRSF13B(TACI)、TNFRSF13C(BAFF R)、TNFRSF14(HVEM ATAR、HveA、LIGHT R、TR2)、TNFRSF16(NGFR p75NTR)、TNFRSF17(BCMA)、TNFRSF18(GITR AITR)、TNFRSF19(TROY TAJ、TRADE)、TNFRSF19L(RELT)、TNFRSF1A(TNF RI CD120a、p55-60)、TNFRSF1B(TNF RII CD120b、p75-80)、TNFRSF26(TNFRH3)、TNFRSF3(LTbR TNF RIII、TNFC R)、TNFRSF4(OX40 ACT35、TXGP1 R)、TNFRSF5(CD40 p50)、TNFRSF6(Fas Apo-1、APT1、CD95)、TNFRSF6B(DcR3 M68、TR6)、TNFRSF7(CD27)、TNFRSF8(CD30)、TNFRSF9(4-1BB CD137、ILA)、TNFRSF21(DR6)、TNFRSF22(DcTRAIL R2 TNFRH2)、TNFRST23(DcTRAIL R1 TNFRH1)、TNFRSF25(DR3 Apo-3、LARD、TR-3、TRAMP、WSL-1)、TNFSF10(TRAIL Apo-2リガンド、TL2)、TNFSF11(TRANCE/RANKリガンド ODF、OPGリガンド)、TNFSF12(TWEAK Apo-3リガンド、DR3リガンド)、TNFSF13(APRIL TALL2)、TNFSF13B(BAFF BLYS、TALL1、THANK、TNFSF20)、TNFSF14(LIGHT HVEMリガンド、LTg)、TNFSF15(TL1A/VEGI)、TNFSF18(GITRリガンド AITRリガンド、TL6)、TNFSF1A(TNF-a コネクチン(Conectin)、DIF、TNFSF2)、TNFSF1B(TNF-b LTa、TNFSF1)、TNFSF3(LTb TNFC、p33)、TNFSF4(OX40リガンド gp34、TXGP1)、TNFSF5(CD40リガンド CD154、gp39、HIGM1、IMD3、TRAP)、TNFSF6(Fasリガンド Apo-1リガンド、APT1リガンド)、TNFSF7(CD27リガンド CD70)、TNFSF8(CD30リガンド CD153)、TNFSF9(4-1BBリガンド CD137リガンド)、TP-1、t-PA、Tpo、TRAIL、TRAIL R、TRAIL-R1、TRAIL-R2、TRANCE、トランスフェリン受容体、TRF、Trk、TROP-2、TLR(Toll-like receptor)1、TLR2、TLR3、TLR4、TLR5、TLR6、TLR7、TLR8、TLR9、TLR10、TSG、TSLP、腫瘍関連抗原CA125、腫瘍関連抗原発現ルイスY関連炭水化物、TWEAK、TXB2、Ung、uPAR、uPAR-1、ウロキナーゼ、VCAM、VCAM-1、VECAD、VE-Cadherin、VE-cadherin-2、VEFGR-1(flt-1)、VEGF、VEGFR、VEGFR-3(flt-4)、VEGI、VIM、ウイルス抗原、VLA、VLA-1、VLA-4、VNRインテグリン、フォン・ヴィレブランド因子、WIF-1、WNT1、WNT2、WNT2B/13、WNT3、WNT3A、WNT4、WNT5A、WNT5B、WNT6、WNT7A、WNT7B、WNT8A、WNT8B、WNT9A、WNT9A、WNT9B、WNT10A、WNT10B、WNT11、WNT16、XCL1、XCL2、XCR1、XCR1、XEDAR、XIAP、XPD、HMGB1、IgA、Aβ、CD81, CD97, CD98, DDR1, DKK1, EREG、Hsp90, IL-17/IL-17R、IL-20/IL-20R、酸化LDL, PCSK9, prekallikrein , RON, TMEM16F、SOD1, Chromogranin A, Chromogranin B、tau, VAP1、高分子キニノーゲン、IL-31、IL-31R、Nav1.1、Nav1.2、Nav1.3、Nav1.4、Nav1.5、Nav1.6、Nav1.7、Nav1.8、Nav1.9、EPCR、C1, C1q, C1r, C1s, C2, C2a, C2b, C3, C3a, C3b, C4, C4a, C4b, C5, C5a, C5b, C6, C7, C8, C9, factor B, factor D, factor H, properdin、sclerostin、fibrinogen, fibrin, prothrombin, thrombin, 組織因子, factor V, factor Va, factor VII, factor VIIa, factor VIII, factor VIIIa, factor IX, factor IXa, factor X, factor Xa, factor XI, factor XIa, factor XII, factor XIIa, factor XIII, factor XIIIa, TFPI, antithrombin III, EPCR, トロンボモデュリン、TAPI, tPA, plasminogen, plasmin, PAI-1, PAI-2、GPC3、Syndecan-1、Syndecan-2、Syndecan-3、Syndecan-4、LPA、S1Pならびにホルモンおよび成長因子のための受容体が例示され得る。
【0043】
上記の抗原の例示には受容体も記載されるが、これらの受容体が生体液中に可溶型で存在する場合にも、本発明の抗原結合ドメインが結合する抗原として使用され得る。そのような可溶型受容体の非限定な一態様として、例えば、Mullbergら(J. Immunol. (1994) 152 (10), 4958-4968)によって記載されているような可溶型IL-6Rである、配列番号:35で表されるタンパク質が例示され得る。
【0044】
上記の抗原の例示には、細胞膜に発現する膜型分子、および細胞から細胞外に分泌される可溶型分子が含まれる。本発明の抗原結合ドメインが細胞から分泌された可溶型分子に結合する場合、当該抗原結合ドメインとしては中和活性を有していることが好適である。
【0045】
可溶型分子が存在する溶液に限定はなく生体液、すなわち生体内の脈管又は組織・細胞の間を満たす全ての液体に本可溶型分子は存在し得る。非限定な一態様では、本発明の抗原結合ドメインが結合する可溶型分子は、細胞外液に存在することができる。細胞外液とは、脊椎動物では血漿、組織間液、リンパ液、密な結合組織、脳脊髄液、髄液、穿刺液、または関節液等の骨および軟骨中の成分、肺胞液(気管支肺胞洗浄液)、腹水、胸水、心嚢水、嚢胞液、または眼房水(房水)等の細胞透過液(細胞の能動輸送・分泌活動の結果生じた各種腺腔内の液、および消化管腔その他の体腔内液)の総称をいう。
【0046】
抗原中に存在する抗原決定基を意味するエピトープは、本明細書において開示される抗原結合ドメインが結合する抗原上の部位を意味する。よって、例えば、エピトープは、その構造によって定義され得る。また、当該エピトープを認識する抗原結合ドメイン中の抗原に対する結合活性によっても当該エピトープが定義され得る。抗原がペプチド又はポリペプチドである場合には、エピトープを構成するアミノ酸残基によってエピトープを特定することも可能である。また、エピトープが糖鎖である場合には、特定の糖鎖構造によってエピトープを特定することも可能である。
【0047】
線状エピトープは、アミノ酸一次配列が認識されたエピトープを含むエピトープである。線状エピトープは、典型的には、少なくとも3つ、および最も普通には少なくとも5つ、例えば約8ないし約10個、6ないし20個のアミノ酸が固有の配列において含まれる。
【0048】
立体エピトープは、線状エピトープとは対照的に、エピトープを含むアミノ酸の一次配列が、認識されたエピトープの単一の規定成分ではないエピトープ(例えば、アミノ酸の一次配列が、必ずしもエピトープを規定する抗体により認識されないエピトープ)である。立体エピトープは、線状エピトープに対して増大した数のアミノ酸を包含するかもしれない。立体エピトープの認識に関して、抗原結合ドメインは、ペプチドまたはタンパク質の三次元構造を認識する。例えば、タンパク質分子が折り畳まれて三次元構造を形成する場合には、立体エピトープを形成するあるアミノ酸および/またはポリペプチド主鎖は、並列となり、抗体がエピトープを認識するのを可能にする。エピトープの立体構造を決定する方法には、例えばX線結晶学、二次元核磁気共鳴分光学並びに部位特異的なスピン標識および電磁常磁性共鳴分光学が含まれるが、これらには限定されない。例えば、Epitope Mapping Protocols in Methods in Molecular Biology (1996)、第66巻、Morris(編)を参照。
【0049】
エピトープに結合する抗原結合ドメインの構造はパラトープと呼ばれる。エピトープとパラトープの間に作用する、水素結合、静電気力、ファンデルワールス力、疎水結合等によりエピトープとパラトープは安定して結合する。このエピトープとパラトープの間の結合力はアフィニティー(affinity)と呼ばれる。複数の抗原と複数の抗原結合ドメインが結合するときの結合力の総和はアビディティ(avidity)と呼ばれる。複数の抗原結合ドメインを含む(すなわち多価の)抗体等が複数のエピトープに結合する際には、結合力(affinity)が相乗的に働くため、アビディティはアフィニティーよりも高くなる。
【0050】
特定の実施態様において、本明細書で提供される抗原結合ドメインは、≦1μM、≦100nM、≦10nM、≦1nM、≦0.1nM、≦0.01nMまたは≦0.001nM(例えば、10-8M以下、例えば10-8M~10-13M、例えば10-9M~10-13M)の解離定数 (Kd) を有する。
【0051】
以下にIL-6Rに対する抗原結合ドメイン、または抗原結合ドメインを含むポリペプチドによるエピトープへの結合の確認方法が例示されるが、IL-6R以外の抗原に対する抗原結合ドメイン、または抗原結合ドメインを含むポリペプチドによるエピトープへの結合の確認方法も以下の例示に準じて適宜実施され得る。
【0052】
例えば、IL-6Rに対する抗原結合ドメインが、IL-6R分子中に存在する線状エピトープを認識することは、たとえば次のようにして確認することができる。上記の目的のためにIL-6Rの細胞外ドメインを構成するアミノ酸配列からなる線状のペプチドが合成される。当該ペプチドは、化学的に合成され得る。あるいは、IL-6RのcDNA中の、細胞外ドメインに相当するアミノ酸配列をコードする領域を利用して、遺伝子工学的手法により得られる。次に、細胞外ドメインを構成するアミノ酸配列からなる線状ペプチドと、IL-6Rに対する抗原結合ドメインとの結合活性が評価される。たとえば、固定化された線状ペプチドを抗原とするELISAによって、当該ペプチドに対する当該抗原結合ドメインの結合活性が評価され得る。あるいは、IL-6R発現細胞に対する当該抗原結合ドメインの結合における、線状ペプチドによる阻害のレベルに基づいて、線状ペプチドに対する結合活性が明らかにされ得る。これらの試験によって、線状ペプチドに対する当該抗原結合ドメインの結合活性が明らかにされ得る。
【0053】
また、IL-6Rに対する抗原結合ドメインが立体エピトープを認識することは、次のようにして確認され得る。上記の目的のために、IL-6Rを発現する細胞が調製される。IL-6Rに対する抗原結合ドメインがIL-6R発現細胞に接触した際に当該細胞に強く結合する一方で、当該抗原結合ドメインが固定化されたIL-6Rの細胞外ドメインを構成するアミノ酸配列からなる線状ペプチドに対して、または当該抗原結合ドメインがグアニジン等の一般的な変性剤を用いて変性させられたIL-6Rの細胞外ドメインを構成するアミノ酸配列からなる線状ペプチドに対して実質的に結合しないとき等が挙げられる。ここで、実質的に結合しないとは、ヒトIL-6R発現細胞に対する結合活性の80%以下、通常50%以下、好ましくは30%以下、特に好ましくは15%以下の結合活性をいう。
【0054】
また、抗原結合ドメインの抗原結合活性を確認する方法として、例えば、放射性標識抗原結合測定法 (radiolabeled antigen binding assay: RIA) によってKd値を測定する方法がある。一実施態様において、RIAは、目的の抗原結合ドメインおよびその抗原を用いて実施される。例えば、抗原に対する抗原結合ドメインの溶液中結合アフィニティーは、非標識抗原の漸増量系列の存在下で最小濃度の (125I) 標識抗原により抗原結合ドメインを平衡化させ、次いで結合した抗原を抗原結合ドメインでコーティングされたプレートにより捕捉することによって測定される。(例えば、Chen et al., J. Mol. Biol. 293:865-881(1999) を参照のこと)。
【0055】
別の実施態様によれば、Kdは、BIACORE(登録商標)を用いた表面プラズモン共鳴法で測定される。例えば、BIACORE(登録商標)-2000またはBIACORE(登録商標)-3000 (BIAcore, Inc., Piscataway, NJ) を用いる測定法が、およそ10反応単位 (response unit: RU) の抗原が固定されたCM5チップを用いて25℃で実施される。一実施態様において、カルボキシメチル化デキストランバイオセンサーチップ (CM5、BIACORE, Inc.) は、供給元の指示にしたがいN-エチル-N'- (3-ジメチルアミノプロピル)-カルボジイミドヒドロクロリド (EDC) およびN-ヒドロキシスクシンイミド (NHS) を用いて活性化される。抗原は、およそ10反応単位 (RU) のタンパク質の結合を達成するよう、5μl/分の流速で注入される前に、10mM酢酸ナトリウム、pH4.8を用いて5μg/ml(およそ0.2μM)に希釈される。抗原の注入後、未反応基をブロックするために1Mエタノールアミンが注入される。キネティクスの測定のために、25℃、およそ25μl/分の流速で、0.05%ポリソルベート20(TWEEN-20(商標))界面活性剤含有PBS (PBST) 中の抗原結合ドメインの2倍段階希釈物 (0.78nM~500nM) が注入される。結合速度 (kon) および解離速度 (koff) は、単純な1対1ラングミュア結合モデル(BIACORE(登録商標)評価ソフトウェアバージョン3.2)を用いて、結合および解離のセンサーグラムを同時にフィッティングすることによって計算される。平衡解離定数 (Kd) は、koff/kon比として計算される。さらに、平衡法解析を用いることで、見かけの解離定数(Kd)を求めることも可能である。これらの方法はBIACORE(登録商標)に付属されているプロトコルを参照する。例えば、Chen et al., J. Mol. Biol. 293:865-881 (1999) やMethods Enzymol. 2000;323:325-40.を参照のこと。また、表面プラズモン共鳴アッセイにおいて、固相化するタンパク質量や反応に用いるタンパク質量、温度、溶液組成は当業者であればいかようにも変えられる。上記の表面プラズモン共鳴アッセイによってオン速度が106M-1s-1を超える場合、オン速度は、分光計(例えばストップフロー式分光光度計 (Aviv Instruments) または撹拌キュベットを用いる8000シリーズのSLM-AMINCO(商標)分光光度計 (ThermoSpectronic))において測定される、漸増濃度の抗原の存在下でのPBS、pH7.2中20nMの抗原結合ドメインの25℃での蛍光発光強度(励起=295nm;発光=340nm、バンドパス16nm)の増加または減少を測定する蛍光消光技術を用いることによって決定され得る。
【0056】
更に、抗原結合ドメインの抗原結合活性は、電気化学発光法等、既知の分子間相互作用の測定方法でも測定し得る。
【0057】
IL-6Rに対する抗原結合ドメインのIL-6R発現細胞に対する結合活性を測定する方法としては、例えば、Antibodies A Laboratory Manual記載の方法(Ed Harlow, David Lane, Cold Spring Harbor Laboratory (1988) 359-420)が挙げられる。即ちIL-6R発現細胞を抗原とするELISAやFACS(fluorescence activated cell sorting)の原理によって評価され得る。
【0058】
ELISAフォーマットにおいて、IL-6Rに対する抗原結合ドメインのIL-6R発現細胞に対する結合活性は、酵素反応によって生成するシグナルレベルを比較することによって定量的に評価される。すなわち、IL-6R発現細胞を固定化したELISAプレートに被験抗原結合ドメインを加え、細胞に結合した被験抗原結合ドメインが、被験抗原結合ドメインを認識する酵素標識抗体を利用して検出される。あるいはFACSにおいては、被験抗原結合ドメインの希釈系列を作製し、IL-6R発現細胞に対する抗体結合力価(titer)を決定することにより、IL-6R発現細胞に対する被験抗原結合ドメインの結合活性が比較され得る。
【0059】
緩衝液等に懸濁した細胞表面上に発現している抗原に対する被験抗原結合ドメインの結合は、フローサイトメーターによって検出することができる。フローサイトメーターとしては、例えば、次のような装置が知られている。
FACSCantoTM II
FACSAriaTM
FACSArrayTM
FACSVantageTM SE
FACSCaliburTM (いずれもBD Biosciences社の商品名)
EPICS ALTRA HyPerSort
Cytomics FC 500
EPICS XL-MCL ADC EPICS XL ADC
Cell Lab Quanta / Cell Lab Quanta SC(いずれもBeckman Coulter社の商品名)
【0060】
例えば、IL-6Rに対する抗原結合ドメインの抗原に対する結合活性の好適な測定方法の一例として、次の方法が挙げられる。まず、IL-6Rを発現する細胞と反応させた被験抗原結合ドメインを認識するFITC標識した二次抗体で染色する。被験抗原結合ドメインを適宜好適な緩衝液によって希釈することによって、当該抗原結合ドメインが所望の濃度に調製して用いられる。例えば、10μg/mlから10 ng/mlまでの間のいずれかの濃度で使用され得る。次に、FACSCalibur(BD社)により蛍光強度と細胞数が測定される。当該細胞に対する抗原結合ドメインの結合量は、CELL QUEST Software(BD社)を用いて解析することにより得られた蛍光強度、すなわちGeometric Meanの値に反映される。すなわち、当該Geometric Meanの値を得ることにより、被験抗原結合ドメインの結合量によって表される被験抗原結合ドメインの結合活性が測定され得る。
【0061】
IL-6Rに対する抗原結合ドメインが、ある抗原結合ドメインとエピトープを共有することは、両者の同じエピトープに対する競合によって確認され得る。抗原結合ドメイン間の競合は、交叉ブロッキングアッセイなどによって検出される。例えば競合ELISAアッセイは、好ましい交叉ブロッキングアッセイである。
【0062】
具体的には、交叉ブロッキングアッセイにおいては、マイクロタイタープレートのウェル上にコートしたIL-6Rタンパク質が、候補となる競合抗原結合ドメインの存在下、または非存在下でプレインキュベートされた後に、被験抗原結合ドメインが添加される。ウェル中のIL-6Rタンパク質に結合した被験抗原結合ドメインの量は、同じエピトープへの結合に対して競合する候補となる競合抗原結合ドメインの結合能に間接的に相関している。すなわち同一エピトープに対する競合抗原結合ドメインの親和性が大きくなればなる程、被験抗原結合ドメインのIL-6Rタンパク質をコートしたウェルへの結合活性は低下する。
【0063】
IL-6Rタンパク質を介してウェルに結合した被験抗原結合ドメインの量は、予め抗原結合ドメインを標識しておくことによって、容易に測定され得る。たとえば、ビオチン標識された抗原結合ドメインは、アビジンペルオキシダーゼコンジュゲートと適切な基質を使用することにより測定される。ペルオキシダーゼなどの酵素標識を利用した交叉ブロッキングアッセイは、特に競合ELISAアッセイといわれる。抗原結合ドメインは、検出あるいは測定が可能な他の標識物質で標識され得る。具体的には、放射標識あるいは蛍光標識などが公知である。
【0064】
候補の競合抗原結合ドメインの非存在下で実施されるコントロール試験において得られる結合活性と比較して、競合抗原結合ドメインが、IL-6Rに対する抗原結合ドメインの結合を少なくとも20%、好ましくは少なくとも20-50%、さらに好ましくは少なくとも50%ブロックできるならば、当該被験抗原結合ドメインは競合抗原結合ドメインと実質的に同じエピトープに結合するか、又は同じエピトープへの結合に対して競合する抗原結合ドメインである。
【0065】
IL-6Rに対する抗原結合ドメインが結合するエピトープの構造が同定されている場合には、被験抗原結合ドメインと対照抗原結合ドメインとがエピトープを共有することは、当該エピトープを構成するペプチドにアミノ酸変異を導入したペプチドあるいはポリペプチドに対する両者の抗原結合ドメインの結合活性を比較することによって評価され得る。
【0066】
こうした結合活性を測定する方法としては、例えば、前記のELISAフォーマットにおいて変異を導入した線状のペプチドに対する被験抗原結合ドメイン及び対照抗原結合ドメインの結合活性を比較することによって測定され得る。ELISA以外の方法としては、カラムに結合した当該変異ペプチドに対する結合活性を、当該カラムに被検抗原結合ドメインと対照抗原結合ドメインを流下させた後に溶出液中に溶出される抗原結合ドメインを定量することによっても測定され得る。変異ペプチドを例えばGSTとの融合ペプチドとしてカラムに吸着させる方法は公知である。
【0067】
また、同定されたエピトープが立体エピトープの場合には、被験抗原結合ドメインと対照抗原結合ドメインとがエピトープを共有することは、次の方法で評価され得る。まず、IL-6Rを発現する細胞とエピトープに変異が導入されたIL-6Rを発現する細胞が調製される。これらの細胞がPBS等の適切な緩衝液に懸濁された細胞懸濁液に対して被験抗原結合ドメインと対照抗原結合ドメインが添加される。次いで、適宜緩衝液で洗浄された細胞懸濁液に対して、被験抗原結合ドメインと対照抗原結合ドメインを認識することができるFITC標識された抗体が添加される。標識抗体によって染色された細胞の蛍光強度と細胞数がFACSCalibur(BD社)によって測定される。被験抗原結合ドメインと対照抗原結合ドメインの濃度は好適な緩衝液によって適宜希釈することによって所望の濃度に調製して用いられる。例えば、10μg/mlから10 ng/mlまでの間のいずれかの濃度で使用される。当該細胞に対する標識抗体の結合量は、CELL QUEST Software(BD社)を用いて解析することにより得られた蛍光強度、すなわちGeometric Meanの値に反映される。すなわち、当該Geometric Meanの値を得ることにより、標識抗体の結合量によって表される被験抗原結合ドメインと対照抗原結合ドメインの結合活性を測定することができる。
【0068】
更に、抗原結合ドメインが別の抗原結合ドメインと同じエピトープに対する競合の確認、は、上記のELISAやFACS以外に、放射性標識抗原結合測定法 (radiolabeled antigen binding assay: RIA)、BIACORE(登録商標)表面プラズモン共鳴アッセイ、電気化学発光法等を利用することもできる。
【0069】
本方法において、例えば「変異IL-6R発現細胞に実質的に結合しない」ことは、以下の方法によって判断することができる。まず、変異IL-6Rを発現する細胞に対して結合した被験抗原結合ドメインと対照抗原結合ドメインが、標識抗体で染色される。次いで細胞の蛍光強度が検出される。蛍光検出にフローサイトメトリーとしてFACSCaliburを用いた場合、得られた蛍光強度はCELL QUEST Softwareを用いて解析され得る。ポリペプチド会合体存在下および非存在下でのGeometric Meanの値から、この比較値(ΔGeo-Mean)を下記の式1に基づいて算出することにより、抗原結合ドメインの結合による蛍光強度の増加割合を求めることができる。
【0070】
(式1)
ΔGeo-Mean=Geo-Mean(ポリペプチド会合体存在下)/Geo-Mean(ポリペプチド会合体非存在下)
【0071】
解析によって得られる被験抗原結合ドメインの変異IL-6R発現細胞に対する結合量が反映されたGeometric Mean比較値(変異IL-6R分子ΔGeo-Mean値)を、被験抗原結合ドメインのIL-6R発現細胞に対する結合量が反映されたΔGeo-Mean比較値と比較する。この場合において、変異IL-6R発現細胞及びIL-6R発現細胞に対するΔGeo-Mean比較値を求める際に使用する被験抗原結合ドメインの濃度は互いに同一又は実質的に同一の濃度で調製されることが特に好ましい。予めIL-6R中のエピトープを認識していることが確認された抗原結合ドメインが、対照抗原結合ドメインとして利用される。
【0072】
被験抗原結合ドメインの変異IL-6R発現細胞に対するΔGeo-Mean比較値が、被験抗原結合ドメインのIL-6R発現細胞に対するΔGeo-Mean比較値の、少なくとも80%、好ましくは50%、更に好ましくは30%、特に好ましくは15%より小さければ、「変異IL-6R発現細胞に実質的に結合しない」ものとする。Geo-Mean値(Geometric Mean)を求める計算式は、CELL QUEST Software User's Guide(BD biosciences社)に記載されている。比較値を比較することによってそれが実質的に同視し得る程度であれば、被験抗原結合ドメインと対照抗原結合ドメインのエピトープは同一であると評価され得る。
【0073】
本明細書で用語「運搬部分」は、ポリペプチド中の抗原結合ドメイン以外の部分を言う。本発明の運搬部分は通常、アミノ酸により構成されたペプチドまたはポリペプチドであり、具体的な一実施態様として、ポリペプチド中の運搬部分は切断サイトを介して抗原結合ドメインと連結されている。本発明の運搬部分は、アミド結合により繋がれた一連のペプチドもしくはポリペプチドであっても良く、複数のペプチドもしくはポリペプチドがジスルフィド結合等の共有結合もしくは水素結合、疎水性相互作用等の非共有結合により形成された複合体であっても良い。
【0074】
本発明の運搬部分は、抗原結合ドメインの抗原結合活性を抑制する抑制ドメインを有する。本明細書において用語「抑制ドメイン」は、抗原結合ドメインの抗原結合活性を抑制することのみで制限される。抑制ドメインは、抗原結合ドメインの抗原結合活性を抑制できるかぎりどのような構造のドメインも使用され得る。そのような抑制ドメインの例として、それだけに限定するものではないが、例えば、抗体の重鎖可変領域(VH)、抗体の軽鎖可変領域(VL)、プレB細胞レセプター、および単ドメイン抗体が挙げられる。抑制ドメインは、運搬部分の全部により構成されても、運搬部分の一部により構成されても良い。
【0075】
本発明のいくつかの実施態様において、抗原結合ドメインがポリペプチドから遊離することで、抗原結合活性が遊離前より高くなる。言い換えれば、抗原結合ドメインがポリペプチドから遊離していない状態では、その抗原結合活性は抑制ドメインにより抑制された状態にある。抗原結合ドメインの抗原結合活性が抑制ドメインにより抑制されることを確認する方法として、FACS(fluorescence activated cell sorting)、ELISA(Enzyme-Linked ImmunoSorbent Assay)、ECL(electrogenerated chemiluminescence、電気化学発光法)、SPR(Surface Plasmon Resonance、表面プラズモン共鳴)法(Biacore)、BLI(Bio-Layer Interferometry)法(Octet)等の方法がある。本発明のいくつかの実施態様においては、抗原結合ドメインがポリペプチドから遊離していない状態における結合活性に比べて、抗原結合ドメインがポリペプチドから遊離した状態における抗原結合活性は、2倍、3倍、4倍、5倍、6倍、7倍、8倍、9倍、10倍、20倍、30倍、40倍、50倍、60倍、70倍、80倍、90倍、100倍、200倍、300倍、400倍、500倍、600倍、700倍、800倍、900倍、1000倍、2000倍、または3000倍以上の値となる。本発明のより具体的ないくつかの実施態様においては、遊離前の抗原結合ドメインは、前記方法中から選ばれる一つの方法で抗原結合ドメインの抗原結合活性の測定を行うとき、抗原結合ドメインと抗原との結合が見られない。
本発明のいくつかの態様においては、切断サイトが切断されることによって抗原結合ドメインがポリペプチドから遊離可能になるので、このような態様における抗原結合活性の比較は、ポリペプチドの切断前後の抗原結合活性を比較することにより行うことができる。即ち、未切断のポリペプチドを用いて測定した抗原結合活性に比べて、切断後のポリペプチドを用いて測定した抗原結合活性は、2倍、3倍、4倍、5倍、6倍、7倍、8倍、9倍、10倍、20倍、30倍、40倍、50倍、60倍、70倍、80倍、90倍、100倍、200倍、300倍、400倍、500倍、600倍、700倍、800倍、900倍、1000倍、2000倍、または3000倍以上の値となる。より具体的ないくつかの実施態様においては、未切断のポリペプチドは、前記方法中から選ばれる一つの方法で抗原結合活性の測定を行うとき、抗原結合ドメインと抗原との結合が見られない。
本発明のいくつかの態様においては、切断サイトはプロテアーゼにより切断されるので、このような態様における抗原結合活性の比較は、ポリペプチドのプロテアーゼ処理前後の抗原結合活性を比較することにより行うことができる。即ち、プロテアーゼ処理を行っていないポリペプチドを用いて測定した抗原結合活性に比べて、プロテアーゼ処理後のポリペプチドを用いて測定した抗原結合活性は、2倍、3倍、4倍、5倍、6倍、7倍、8倍、9倍、10倍、20倍、30倍、40倍、50倍、60倍、70倍、80倍、90倍、100倍、200倍、300倍、400倍、500倍、600倍、700倍、800倍、900倍、1000倍、2000倍、または3000倍以上の値となる。より具体的ないくつかの実施態様においては、プロテアーゼ未処理のポリペプチドは、前記方法中から選ばれる一つの方法で抗原結合活性の測定を行うとき、抗原結合ドメインと抗原との結合が見られない。
【0076】
本発明において、単独で存在している抗原結合ドメインに比べ、抗原結合ドメインと運搬部分を含むポリペプチドはより長い血中半減期を有する。ポリペプチドの半減期をより長くするために、本発明のいくつかの実施態様において、運搬部分はより長い血中半減期を有するように設計されている。運搬部分の血中半減期を延長する実施態様の例として、それだけに限定されないが、運搬部分の分子量が大きいこと、または運搬部分がFcRn結合性を有すること、または運搬部分がアルブミン結合性を有すること、または運搬部分がPEG化されていることが挙げられる。また、本発明のいくつかの実施態様において、運搬部分は抗原結合ドメインより長い血中半減期(言い換えれば、抗原結合ドメインは運搬部分より短い血中半減期)を有する。
【0077】
本発明においては、抗原結合ドメイン単独とポリペプチドの半減期比較、または抗原結合ドメインと運搬部分の血中半減期比較は、ヒトにおける血中半減期で比較することが好ましい。ヒトでの血中半減期を測定することが困難である場合には、マウス(例えば、正常マウス、ヒト抗原発現トランスジェニックマウス、ヒトFcRn発現トランスジェニックマウス、等)またはサル(例えば、カニクイザルなど)での血中半減期をもとに、ヒトでの血中半減期を予測することができる。
【0078】
運搬部分の血中半減期を延長する一実施態様として、運搬部分の分子量が大きいことが挙げられる。運搬部分の血中半減期を抗原結合ドメインの血中半減期より長くする一実施態様として、運搬部分の分子量を抗原結合ドメインの分子量より大きくすることが挙げられる。
【0079】
運搬部分の血中半減期を延長する一実施態様として、運搬部分にFcRn結合性を有させることが挙げられる。運搬部分にFcRn結合性を有させるには、通常、運搬部分中にFcRn結合領域を設ける方法がある。FcRn結合領域とは、FcRnへ結合性を持つ領域を言い、FcRnへの結合性を持つ限りどんな構造でも使用可能である。
FcRn結合領域を含む運搬部分は、FcRnのサルベージ経路により細胞内に取り込まれた後に再び血漿中に戻ることが可能である。例えば、IgG分子の血漿中滞留性が比較的長い(消失が遅い)のは、IgG分子のサルベージレセプターとして知られているFcRnが機能しているためである。ピノサイトーシスによってエンドソームに取り込まれたIgG分子は、エンドソーム内の酸性条件下においてエンドソーム内に発現しているFcRnに結合する。FcRnに結合できなかったIgG分子はライソソームへと進みそこで分解されるが、FcRnへ結合したIgG分子は細胞表面へ移行し血漿中の中性条件下においてFcRnから解離することで再び血漿中に戻る。
FcRn結合領域は、直接FcRnと結合する領域であることが好ましい。FcRn結合領域の好ましい例として、抗体のFc領域を挙げることができる。しかしながら、アルブミンやIgGなどのFcRnとの結合能を有するポリペプチドに結合可能な領域は、アルブミンやIgGなどを介して間接的にFcRnと結合することが可能であるので、本発明におけるFcRn結合領域はそのようなFcRnとの結合能を有するポリペプチドに結合する領域であってもよい。
【0080】
本発明におけるFcRn結合領域のFcRn、特にヒトFcRnに対する結合活性は、前記結合活性の項で述べられているように、当業者に公知の方法により測定することが可能であり、条件については当業者が適宜決定することが可能である。ヒトFcRnへの結合活性は、KD(Dissociation constant:解離定数)、見かけのKD(Apparent dissociation constant:見かけの解離定数)、解離速度であるkd(Dissociation rate:解離速度)、又は見かけのkd(Apparent dissociation:見かけの解離速度)等として評価され得る。これらは当業者公知の方法で測定され得る。例えばBiacore(GE healthcare)、スキャッチャードプロット、フローサイトメーター等を使用され得る。
【0081】
FcRn結合領域のFcRnに対する結合活性を測定する際の条件は当業者が適宜選択することが可能であり、特に限定されない。例えば、WO2009/125825に記載されているようにMESバッファー、37℃の条件において測定され得る。また、本発明のFcRn結合領域のFcRnに対する結合活性の測定は当業者公知の方法により行うことが可能であり、例えば、Biacore(GE Healthcare)などを用いて測定され得る。FcRn結合領域とFcRnの結合活性の測定は、FcRn結合領域またはFcRn結合領域を含む運搬部分あるいはFcRnを固定化したチップへ、それぞれFcRnあるいはFcRn結合領域またはFcRn結合領域を含む運搬部分をアナライトとして流すことによって評価され得る。
【0082】
測定条件に使用されるpHとして、FcRn結合領域とFcRnとの結合アフィニティは、pH4.0~pH6.5の任意のpHで評価してもよい。好ましくは、FcRn結合領域とヒトFcRnとの結合アフィニティを決定するために、生体内の早期エンドソーム内のpHに近いpH5.8~pH6.0のpHが使用される。測定条件に使用される温度として、FcRn結合領域とFcRnとの結合アフィニティは、10℃~50℃の任意の温度で評価してもよい。好ましくは、FcRn結合領域とヒトFcRnとの結合アフィニティを決定するために、15℃~40℃の温度が使用される。より好ましくは、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、および35℃のいずれか1つのような20℃から35℃までの任意の温度も同様に、FcRn結合領域とFcRnとの結合アフィニティを決定するために使用される。25℃という温度は本発明の態様の非限定な一例である。
【0083】
FcRn結合領域の一つの例として、それだけに限定されないが、例えば、IgG抗体Fc領域が挙げられる。IgG抗体のFc領域を用いる場合、その種類は限定されず、IgG1、IgG2、IgG3、IgG4などのFc領域を用いることが可能である。例えば、配列番号:21、22、23、24で示されるアミノ酸配列から選ばれる一つの配列を含むFc領域を用いることが可能である。
【0084】
また、天然型IgG抗体のFc領域はもちろん、FcRn結合性を有する限り、一つまたはそれ以上のアミノ酸が置換された改変Fc領域も使用可能である。
例えば、IgG抗体Fc領域におけるEUナンバリング237番目、238番目、239番目、248番目、250番目、252番目、254番目、255番目、256番目、257番目、258番目、265番目、270番目、286番目、289番目、297番目、298番目、303番目、305番目、307番目、308番目、309番目、311番目、312番目、314番目、315番目、317番目、325番目、332番目、334番目、360番目、376番目、380番目、382番目、384番目、385番目、386番目、387番目、389番目、424番目、428番目、433番目、434番目および436番目から選択される少なくとも1つのアミノ酸を他のアミノ酸に置換したアミノ酸配列を含む改変Fc領域を使用ことは可能である。
【0085】
より具体的には、IgG抗体Fc領域におけるEUナンバリング
237番目のGlyをMetに置換するアミノ酸置換、
238番目のProをAlaに置換するアミノ酸置換、
239番目のSerをLysに置換するアミノ酸置換、
248番目のLysをIleに置換するアミノ酸置換、
250番目のThrをAla、Phe、Ile、Met、Gln、Ser、Val、Trp、またはTyrに置換するアミノ酸置換、
252番目のMetをPhe、Trp、またはTyrに置換するアミノ酸置換、
254番目のSerをThrに置換するアミノ酸置換、
255番目のArgをGluに置換するアミノ酸置換、
256番目のThrをAsp、Glu、またはGlnに置換するアミノ酸置換、
257番目のProをAla、Gly、Ile、Leu、Met、Asn、Ser、Thr、またはValに置換するアミノ酸置換、
258番目のGluをHisに置換するアミノ酸置換、
265番目のAspをAlaに置換するアミノ酸置換、
270番目のAspをPheに置換するアミノ酸置換、
286番目のAsnをAlaまたはGluに置換するアミノ酸置換、
289番目のThrをHisに置換するアミノ酸置換、
297番目のAsnをAlaに置換するアミノ酸置換、
298番目のSerをGlyに置換するアミノ酸置換、
303番目のValをAlaに置換するアミノ酸置換、
305番目のValをAlaに置換するアミノ酸置換、
307番目のThrをAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Val、Trp、またはTyrに置換するアミノ酸置換、
308番目のValをAla、Phe、Ile、Leu、Met、Pro、Gln、またはThrに置換するアミノ酸置換、
309番目のLeuまたはValをAla、Asp、Glu、Pro、またはArgに置換するアミノ酸置換、
311番目のGlnをAla、His、またはIleに置換するアミノ酸置換、
312番目のAspをAlaまたはHisに置換するアミノ酸置換、
314番目のLeuをLysまたはArgに置換するアミノ酸置換、
315番目のAsnをAlaまたはHisに置換するアミノ酸置換、
317番目のLysをAlaに置換するアミノ酸置換、
325番目のAsnをGlyに置換するアミノ酸置換、
332番目のIleをValに置換するアミノ酸置換、
334番目のLysをLeuに置換するアミノ酸置換、
360番目のLysをHisに置換するアミノ酸置換、
376番目のAspをAlaに置換するアミノ酸置換、
380番目のGluをAlaに置換するアミノ酸置換、
382番目のGluをAlaに置換するアミノ酸置換、
384番目のAsnまたはSerをAlaに置換するアミノ酸置換、
385番目のGlyをAspまたはHisに置換するアミノ酸置換、
386番目のGlnをProに置換するアミノ酸置換、
387番目のProをGluに置換するアミノ酸置換、
389番目のAsnをAlaまたはSerに置換するアミノ酸置換、
424番目のSerをAlaに置換するアミノ酸置換、
428番目のMetをAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Asn、Pro、Gln、Ser、Thr、Val、Trp、またはTyrに置換するアミノ酸置換、
433番目のHisをLysに置換するアミノ酸置換、
434番目のAsnをAla、Phe、His、Ser、Trp、またはTyrに置換するアミノ酸置換、および
436番目のTyrまたはPheをHisに置換するアミノ酸置換
から選択される少なくとも1つのアミノ酸置換を含む、改変Fc領域を使用することは可能である。
【0086】
別の面から見れば、IgG抗体Fc領域における、EUナンバリング
237番目のアミノ酸におけるMet、
238番目のアミノ酸におけるAla、
239番目のアミノ酸におけるLys、
248番目のアミノ酸におけるIle、
250番目のアミノ酸におけるAla、Phe、Ile、Met、Gln、Ser、Val、Trp、またはTyr、
252番目のアミノ酸におけるPhe、Trp、またはTyr、
254番目のアミノ酸におけるThr、
255番目のアミノ酸におけるGlu、
256番目のアミノ酸におけるAsp、Glu、またはGln、
257番目のアミノ酸におけるAla、Gly、Ile、Leu、Met、Asn、Ser、Thr、またはVal、
258番目のアミノ酸におけるHis、
265番目のアミノ酸におけるAla、
270番目のアミノ酸におけるPhe、
286番目のアミノ酸におけるAlaまたはGlu、
289番目のアミノ酸におけるHis、
297番目のアミノ酸におけるAla、
298番目のアミノ酸におけるGly、
303番目のアミノ酸におけるAla、
305番目のアミノ酸におけるAla、
307番目のアミノ酸におけるAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Met、Asn、Pro、Gln、Arg、Ser、Val、Trp、またはTyr、
308番目のアミノ酸におけるAla、Phe、Ile、Leu、Met、Pro、Gln、またはThr、
309番目のアミノ酸におけるAla、Asp、Glu、Pro、またはArg、
311番目のアミノ酸におけるAla、His、またはIle、
312番目のアミノ酸におけるAlaまたはHis、
314番目のアミノ酸におけるLysまたはArg、
315番目のアミノ酸におけるAlaまたはHis、
317番目のアミノ酸におけるAla、
325番目のアミノ酸におけるGly、
332番目のアミノ酸におけるVal、
334番目のアミノ酸におけるLeu、
360番目のアミノ酸におけるHis、
376番目のアミノ酸におけるAla、
380番目のアミノ酸におけるAla、
382番目のアミノ酸におけるAla、
384番目のアミノ酸におけるAla、
385番目のアミノ酸におけるAspまたはHis、
386番目のアミノ酸におけるPro、
387番目のアミノ酸におけるGlu、
389番目のアミノ酸におけるAlaまたはSer、
424番目のアミノ酸におけるAla、
428番目のアミノ酸におけるAla、Asp、Phe、Gly、His、Ile、Lys、Leu、Asn、Pro、Gln、Ser、Thr、Val、Trp、またはTyr、
433番目のアミノ酸におけるLys、
434番目のアミノ酸におけるAla、Phe、His、Ser、Trp、またはTyr、および
436番目のアミノ酸におけるHis
から選択される少なくとも1つのアミノ酸を含むFc領域を使用することは可能である。
【0087】
運搬部分にFcRn結合性を有させることは、抗原結合ドメインにFcRn結合性を有させないことを意味するものではない。運搬部分の血中半減期を抗原結合ドメインの血中半減期より長くする実施態様として、抗原結合ドメインがFcRn結合性を有さないことはもちろん、抗原結合ドメインがFcRn結合性を有していても、運搬部分より弱いFcRn結合性を有すればよい。
【0088】
また、運搬部分の血中半減期を延長する一実施態様として、運搬部分とアルブミンを結合させる方法がある。アルブミンは腎排泄を受けず、かつFcRn結合性を有するため、血中半減期が17~19日と長い(J Clin Invest. 1953 Aug; 32(8): 746-768.)。そのためアルブミンと結合しているタンパク質は嵩高くなり、かつ間接的にFcRnと結合することが可能となるため、血中半減期が増加することが報告されている(Antibodies 2015, 4(3), 141-156)。
【0089】
更に、運搬部分の血中半減期を延長する一実施態様として、運搬部分をPEG化する方法がある。タンパク質をPEG化することでタンパク質を嵩高くし、同時に血中のプロテアーゼによる分解を抑えることで、タンパク質の血中半減期が延長すると考えられている(J Pharm Sci. 2008 Oct;97(10):4167-83.)。
【0090】
本発明のいくつかの実施態様において、運搬部分は抗体Fc領域を含む。具体的な一実施態様として、運搬部分はヒトIgG抗体のCH2ドメイン及びCH3ドメインを含む。具体的な一実施態様として、運搬部分は、ヒトIgG1抗体重鎖Cys226から、またはPro230から、重鎖のカルボキシル末端まで伸びる部分を含む。ただし、Fc領域のC末端のリジン (Lys447) またはグリシン‐リジン(Gly446-Lys447)は、存在していてもしていなくてもよい。
【0091】
本発明のいくつかの実施態様において、運搬部分は抗体定常領域を含む。より好ましい実施態様において、運搬部分はIgG抗体定常領域を含む。より好ましい実施態様において、運搬部分はヒトIgG抗体定常領域を含む。
【0092】
更なる本発明のいくつかの実施態様において、運搬部分は抗体重鎖定常領域と実質的に類似する構造を有する領域と、当該領域とジスルフィド結合等の共有結合または水素結合、疎水性相互作用等の非共有結合により結合されている、抗体軽鎖と実質に類似する構造を有する領域とを含む。
【0093】
本明細書において、「抗原結合ドメインと運搬部分とを含むポリペプチド」は、通常、アミド結合により繋がれた一連のポリペプチド、またはアミド結合により繋がれた一連のポリペプチドを複数含むタンパク質である。
【0094】
本発明のいくつかの実施態様において、抗原結合ドメインはポリペプチドから遊離可能であり、抗原結合ドメインがポリペプチドから遊離することで、抗原結合活性が高くなる。本明細書において、用語「遊離」は、ポリペプチドの二つの部分が相互に離れることをいう。抗原結合ドメインがポリペプチドから遊離することは、抗原結合ドメインと運搬部分間の相互作用が解消されることに起因しうる。ポリペプチドに組み込まれた抗原結合ドメインの抗原結合活性が抑制されるため、抗原結合ドメインがポリペプチドから遊離していることの確認は、対象物の抗原結合活性を測定し、ポリペプチドに組み込まれた状態の抗原結合ドメインの抗原結合活性と比較することで行うことができる。
【0095】
いくつかの実施態様において、ポリペプチドが切断サイトを含んでおり、当該切断サイトが切断されることで抗原結合ドメインがポリペプチドから遊離する。切断サイトは、例えば酵素によって切断することが出来るか、また還元剤によって還元することが出来るか、または光分解することが出来る。切断サイトは、抗原結合ドメインを遊離させることができ、且つ遊離後の抗原結合ドメインの抗原結合活性を失わせなければ、ポリペプチド中のどの位置に配置されても良い。また、抗原結合ドメインを遊離させるための切断サイトと別に、他の切断サイトが更にポリペプチドに含まれていても良い。本発明の一実施態様において、切断サイトはプロテアーゼ切断配列を含み、プロテアーゼによって切断することが出来る。
【0096】
本明細書において、用語「切断された」は、プロテアーゼによる切断サイトの改変および/または切断サイトのシステイン-システインジスルフィド結合の還元および/または光活性化後の、抗原結合ドメインと運搬部分が分断された状態をいう。本明細書において、用語「切断されていない」は、プロテアーゼによる切断サイトの切断の非存在下および/または切断サイトのシステイン-システインジスルフィド結合の還元の非存在下および/または光の非存在下における、抗原結合ドメインと運搬部分が連結されている状態をいう。
【0097】
切断サイトの切断は、切断サイト含有ポリペプチドを含む溶液をSDS-PAGE(ポリアクリルアミドゲル電気泳動)に供し、断片の分子量を測定する、もしくは切断前後の分子量の変化を検出することにより検出することができる。
【0098】
切断サイトは、薬剤(すなわち、プロテアーゼ、還元剤、光)によって、約0.001~1500×104M-1S-1または少なくとも0.001、0.005、0.01、0.05、0.1、0.5、1、2.5、5、7.5、10、15、20、25、50、75、100、125、150、200、250、500、750、1000、1250、もしくは1500×104M-1S-1の速度で特異的に修飾される(切断、還元または光分解)ことができる。
【0099】
プロテアーゼによる特異的切断には、プロテアーゼと切断サイトもしくは切断サイトを含む分子との間の接触を行わせる。十分な酵素活性の存在下にある場合、切断サイトを切断することができる。十分な酵素活性とは、切断サイトと接触して切断をもたらす、酵素の能力をいうことができる。
【0100】
本明細書において、用語 「プロテアーゼ」は、ペプチド結合を加水分解するエンドペプチダーゼまたはエキソペプチダーゼなどの酵素、通常はエンドペプチダーゼを言う。本発明に用いられるプロテアーゼは、プロテアーゼ切断配列を切断できることのみによって制限され、その種類は特に限定されない。いくつかの実施態様において、標的組織特異的プロテアーゼが使用される。標的組織特異的プロテアーゼは、例えば、
(1)標的組織にて正常組織より高レベルで発現するプロテアーゼ、
(2)標的組織にて正常組織より高い活性を有するプロテアーゼ、
(3)標的細胞にて正常細胞より高レベルで発現するプロテアーゼ、
(4)標的細胞にて正常細胞より高い活性を有するプロテアーゼ、
のいずれかを指すことができる。
より具体的な実施態様において、癌組織特異的プロテアーゼまたは炎症組織特異的プロテアーゼが使用される。
【0101】
本明細書で用語「標的組織」は、少なくとも一つの標的細胞を含む組織を意味する。本発明のいくつかの実施態様においては、標的組織は癌組織である。本発明のいくつかの実施態様においては、標的組織は炎症組織である。
【0102】
用語「癌組織」とは、少なくとも一つの癌細胞を含む組織を意味する。したがって、例えば癌組織が癌細胞と血管を含んでいるように、癌細胞および内皮細胞を含む腫瘤(tumor mass)の形成に寄与するすべての細胞型をいう。本明細書において、腫瘤とは腫瘍組織巣(a foci of tumor tissue)をいう。「腫瘍」という用語は、一般に、良性新生物または悪性新生物を意味するために用いられる。
【0103】
本明細書において、「炎症組織」とは、例えば、以下が例示的に挙げられる。
・関節リウマチや変形性関節症における関節
・気管支喘息やCOPDにおける肺(肺胞)
・炎症性腸疾患やクローン病や潰瘍性大腸炎における消化器官
・肝臓、腎臓、肺における線維化症における線維化組織
・臓器移植における拒絶反応が起こっている組織
・動脈硬化や心不全における血管、心臓(心筋)
・メタボリック症候群における内臓脂肪
・アトピー性皮膚炎その他皮膚炎における皮膚組織
・椎間板ヘルニアや慢性腰痛における脊髄神経
【0104】
いくつかの種類の標的組織において、特異的に発現するもしくは特異的に活性化されるプロテアーゼまたは標的組織の疾患状態と関連すると考えられるプロテアーゼ(標的組織特異的プロテアーゼ)が知られている。例えば、国際公開WO2013/128194号、国際公開WO2010/081173号、国際公開WO2009/025846号等で癌組織に特異的に発現するプロテアーゼが開示されている。また、J Inflamm (Lond). 2010; 7: 45.、Nat Rev Immunol. 2006 Jul;6(7):541-50.、Nat Rev Drug Discov. 2014 Dec;13(12):904-27.、Respir Res. 2016 Mar 4;17:23.、Dis Model Mech. 2014 Feb;7(2):193-203.、Biochim Biophys Acta. 2012 Jan;1824(1):133-45.で炎症と関連すると考えられるプロテアーゼが開示されている。
標的組織にて特異的に発現するプロテアーゼ以外に、標的組織で特異的に活性化されるプロテアーゼも存在する。例えば、プロテアーゼは不活性型で発現し、その後活性型となる場合があり、多くの組織では活性型プロテアーゼを阻害する物質が存在し、活性化のプロセスと阻害剤の存在によって活性がコントロールされている(Nat Rev Cancer. 2003 Jul;3(7):489-501.)。標的組織において、活性型プロテアーゼが阻害から逃れ、特異的に活性化されることがある。
活性型プロテアーゼの測定方法は、活性化型のプロテアーゼを認識する抗体を用いる方法(PNAS 2013 Jan 2; 110(1): 93-98.)やプロテアーゼが認識するペプチドを蛍光標識し、切断前は消光(クエンチ)しているが、切断後に発光する方法(Nat Rev Drug Discov. 2010 Sep;9(9):690-701. doi: 10.1038/nrd3053.)を用いて測定されうる。
一つの視点から、用語「標的組織特異的プロテアーゼ」は、
(i) 標的組織にて正常組織より高レベルで発現するプロテアーゼ、
(ii) 標的組織にて正常組織より高い活性を有するプロテアーゼ、
(iii) 標的細胞にて正常細胞より高レベルで発現するプロテアーゼ、
(iv) 標的細胞にて正常細胞より高い活性を有するプロテアーゼ、
のいずれかを指すことができる。
【0105】
限定して解釈されるものではないが、具体的なプロテアーゼとしては、システインプロテアーゼ(カテプシンファミリーB、L、Sなどを含む)、アスパルチルプロテアーゼ(カテプシンD、E、K、O等)、セリンプロテアーゼ(マトリプターゼ(MT-SP1を含む)、カテプシンAおよびG、トロンビン、プラスミン、ウロキナーゼ(uPA)、組織プラスミノーゲン活性化因子(tPA)、エラスターゼ、プロテイナーゼ3、トロンビン、カリクレイン、トリプターゼ、キマーゼを含む)、メタロプロテアーゼ(膜結合型(MMP14-17およびMMP24-25)および分泌型(MMP1-13およびMMP18-23およびMMP26-28)の両方を含むメタロプロテアーゼ(MMP1-28)、プロテアーゼのAディスインテグリンおよびメタロプロテアーゼ(ADAM)、Aディスインテグリンまたはトロンボスポンジンモチーフを有するメタロプロテアーゼ(ADAMTS)、メプリン(メプリンα(meprin alpha)、メプリンβ(meprin beta)))、CD10(CALLA)、ならびに前立腺特異的抗原(PSA)、レグマイン、TMPRSS3、TMPRSS4、好中球エラスターゼ(HNE)、ベータセクレターゼ(BACE)、線維芽細胞活性化蛋白質アルファ(FAP)、グランザイムB、 グアニジノベンゾアターゼ(GB)、ヘプシン、ネプリライシン、NS3/4A、HCV-NS3/4、カルパイン、ADAMDEC1、レニン、カテプシンC、カテプシンV/L2、カテプシン X/Z/P、クルジパイン、オツバイン2、カリクレイン関連ペプチダーゼ(KLKs(KLK3、KLK4、KLK5、KLK6、KLK7、KLK8、KLK10、KLK11、KLK13、KLK14))、骨形成タンパク質1(BMP-1)、活性化プロテインC、血液凝固関連プロテアーゼ(Factor VIIa、Factor IXa、Factor Xa、Factor XIa、Factor XIIa)、HtrA1、ラクトフェリン、マラプシン、PACE4、DESC1、ジペプチジルペプチダーゼ4(DPP-4)、TMPRSS2、カテプシンF、カテプシンH、カテプシンL2、カテプシンO、カテプシンS、グランザイムA、Gepsinカルパイン2、グルタミン酸カルボキシペプチダーゼ2、AMSH-Like Proteases、AMSH、ガンマセクレターゼ、抗プラスミン切断酵素(APCE)、Decysin 1、N-Acetylated Alpha-Linked Acidic Dipeptidase-Like 1(NAALADL1)、フーリン(furin)等が挙げられる。
【0106】
別の視点から、標的組織特異的プロテアーゼは、癌組織特異的プロテアーゼまたは炎症組織特異的プロテアーゼを指すことができる。
癌組織特異的プロテアーゼとしては、例えば、国際公開WO2013/128194号、国際公開WO2010/081173号、国際公開WO2009/025846号等で開示される癌組織に特異的に発現するプロテアーゼが挙げられる。
【0107】
癌組織特異的プロテアーゼの種類は、治療対象の癌組織での発現の特異性が高いほど、副作用低減効果が得られる。癌組織特異的プロテアーゼは、癌組織における濃度が正常組織における濃度の5倍以上高いことが好ましく、10倍以上高いことがより好ましく、100倍以上高いことがさらに好ましく、500倍以上高いことが特に好ましく、1000倍以上高いことが最も好ましい。また、癌組織特異的プロテアーゼは、癌組織における活性が正常組織における活性の2倍以上高いことが好ましく、3倍以上高いこと、4倍以上高いこと、5倍以上高いこと、10倍以上高いことがより好ましく、100倍以上高いことがさらに好ましく、500倍以上高いことが特に好ましく、1000倍以上高いことが最も好ましい。
また、癌組織特異的プロテアーゼは、癌細胞の細胞膜に結合しているものでもよく、細胞膜に結合しておらず細胞外に分泌されるものでもよい。癌組織特異的プロテアーゼが癌細胞の細胞膜に結合していない場合、免疫細胞による細胞傷害が癌細胞に特異的であるためには、癌組織特異的プロテアーゼは癌組織の内部または近傍に存在するものであることが好ましい。本明細書で「癌組織の近傍」とは、癌組織特異的プロテアーゼ切断配列が切断されて、抗原結合ドメインが抗原結合活性を発揮する範囲内であることを意味する。ただし、できるだけ正常細胞を傷害しない範囲であることが好ましい。
別の視点から、癌組織特異的プロテアーゼは、
(i) 癌組織にて正常組織より高レベルで発現するプロテアーゼ、
(ii) 癌組織にて正常組織より高い活性を有するプロテアーゼ、
(iii) 癌細胞にて正常細胞より高レベルで発現するプロテアーゼ、
(iv) 癌細胞にて正常細胞より高い活性を有するプロテアーゼ、
のいずれかである。
癌組織特異的プロテアーゼは、1種単独でもよく、2種以上が組み合せられてもよい。癌組織特異的プロテアーゼの種類数は、治療対象の癌種を考慮して、当業者が適宜設定することができる。
【0108】
以上の観点から、癌組織特異的プロテアーゼとしては、上記例示したプロテアーゼの中でも、セリンプロテアーゼとメタロプロテアーゼが好ましく、マトリプターゼ(MT-SP1を含む)、ウロキナーゼ(uPA)とメタロプロテアーゼがより好ましく、MT-SP1、uPA、MMP-2、MMP-9が更に好ましい。
【0109】
炎症組織特異的プロテアーゼの種類は、治療対象の炎症組織での発現の特異性が高いほど、副作用低減効果が得られる。炎症組織特異的プロテアーゼは、炎症組織における濃度が正常組織における濃度の5倍以上高いことが好ましく、10倍以上高いことがより好ましく、100倍以上高いことがさらに好ましく、500倍以上高いことが特に好ましく、1000倍以上高いことが最も好ましい。また、炎症組織特異的プロテアーゼは、炎症組織における活性が正常組織における活性の2倍以上高いことが好ましく、3倍以上高いこと、4倍以上高いこと、5倍以上高いこと、10倍以上高いことがより好ましく、100倍以上高いことがさらに好ましく、500倍以上高いことが特に好ましく、1000倍以上高いことが最も好ましい。
また、炎症組織特異的プロテアーゼは、炎症細胞の細胞膜に結合しているものでもよく、細胞膜に結合しておらず細胞外に分泌されるものでもよい。炎症組織特異的プロテアーゼが炎症細胞の細胞膜に結合していない場合、免疫細胞による細胞傷害が炎症細胞に特異的であるためには、炎症組織特異的プロテアーゼは炎症組織の内部または近傍に存在するものであることが好ましい。本明細書で「炎症組織の近傍」とは、炎症組織特異的プロテアーゼ切断配列が切断されて、抗原結合ドメインが抗原結合活性を発揮する範囲内であることを意味する。ただし、できるだけ正常細胞を傷害しない範囲であることが好ましい。
別の視点から、炎症組織特異的プロテアーゼは、
(i) 炎症組織にて正常組織より高レベルで発現するプロテアーゼ、
(ii) 炎症組織にて正常組織より高い活性を有するプロテアーゼ、
(iii) 炎症細胞にて正常細胞より高レベルで発現するプロテアーゼ、
(iv) 炎症細胞にて正常細胞より高い活性を有するプロテアーゼ、
のいずれかである。
炎症組織特異的プロテアーゼは、1種単独でもよく、2種以上が組み合せられてもよい。炎症組織特異的プロテアーゼの種類数は、治療対象の病状を考慮して、当業者が適宜設定することができる。
【0110】
以上の観点から、炎症組織特異的プロテアーゼとしては、上記例示したプロテアーゼの中でも、メタロプロテアーゼが好ましく、メタロプロテアーゼの中でも、ADAMTS5、MMP-2、MMP-7、MMP-9、MMP-13がより好ましい。
【0111】
プロテアーゼ切断配列は、水溶液中でポリペプチドが標的組織特異的プロテアーゼによって加水分解を受ける際に、該標的組織特異的プロテアーゼにより特異的に認識される特定のアミノ酸配列である。
プロテアーゼ切断配列は、副作用低減の点から、治療対象の標的組織/細胞においてより特異的に発現している、もしくは治療対象の標的組織/細胞においてより特異的に活性化されている標的組織特異的プロテアーゼにより、高い特異性で加水分解されるアミノ酸配列であることが好ましい。
具体的なプロテアーゼ切断配列としては、例えば、国際公開WO2013/128194号、国際公開WO2010/081173号、国際公開WO2009/025846号等で開示されている上記で例示した癌組織に特異的に発現するプロテアーゼ、炎症組織特異的プロテアーゼ等によって特異的に加水分解される標的配列が挙げられる。既知のプロテアーゼによって特異的に加水分解される標的配列に、適宜なアミノ酸変異を導入する等、人工的に改変した配列も使用できる。また、プロテアーゼ切断配列は、Nature Biotechnology 19, 661 - 667 (2001)に記載のような当業者公知の方法で同定したものを用いてもよい。
更に、天然に存在するプロテアーゼ切断配列を用いても良い。例えば、TGFβがプロテアーゼの切断を受けることで潜在型に変化するように、プロテアーゼの切断を受けることで分子形が変わるタンパク質中のプロテアーゼ切断を受ける配列を使用することもできる。
【0112】
プロテアーゼ切断配列の例として、それだけに限定されないが、国際公開WO2015/116933号、国際公開WO2015/048329号、国際公開WO2016/118629号、国際公開WO2016/179257号、国際公開WO2016/179285号、国際公開WO2016/179335号、国際公開WO2016/179003号、国際公開WO2016/046778号、国際公開WO2016/014974号、米国特許公開US2016/0289324号、米国特許公開US2016/0311903号、PNAS (2000) 97: 7754-7759.、Biochemical Journal (2010) 426: 219-228.、Beilstein J Nanotechnol. (2016) 7: 364-373.中で示された配列を用いることができる。
プロテアーゼ切断配列は、上述のように、好適な標的組織特異的プロテアーゼより特異的に加水分解されるアミノ酸配列であることがより好ましい。標的組織特異的プロテアーゼにより特異的に加水分解されるアミノ酸配列の中でも、以下のアミノ酸配列を含む配列が好ましい。
LSGRSDNH(配列番号:12、MT-SP1、uPAにより切断可能)
PLALAG(配列番号:25、MMP-2、MMP-9により切断可能)
VPLSLTMG(配列番号:26、MMP-7により切断可能)
プロテアーゼ切断配列として、以下の配列を用いることもできる。
TSTSGRSANPRG(配列番号:74、MT-SP1、uPAにより切断可能)
ISSGLLSGRSDNH(配列番号:75、MT-SP1、uPAにより切断可能)
AVGLLAPPGGLSGRSDNH(配列番号:76、MT-SP1、uPAにより切断可能)
GAGVPMSMRGGAG(配列番号:77、MMP-1により切断可能)
GAGIPVSLRSGAG(配列番号:78、MMP-2により切断可能)
GPLGIAGQ(配列番号:79、MMP-2により切断可能)
GGPLGMLSQS(配列番号:80、MMP-2により切断可能)
PLGLWA(配列番号:81、MMP-2により切断可能)
GAGRPFSMIMGAG(配列番号:82、MMP-3により切断可能)
GAGVPLSLTMGAG(配列番号:83、MMP-7により切断可能)
GAGVPLSLYSGAG(配列番号:84、MMP-9により切断可能)
AANLRN(配列番号:85、MMP-11により切断可能)
AQAYVK(配列番号:86、MMP-11により切断可能)
AANYMR(配列番号:87、MMP-11により切断可能)
AAALTR(配列番号:88、MMP-11により切断可能)
AQNLMR(配列番号:89、MMP-11により切断可能)
AANYTK(配列番号:90、MMP-11により切断可能)
GAGPQGLAGQRGIVAG(配列番号:91、MMP-13により切断可能)
PRFKIIGG(配列番号:92、pro-ウロキナーゼにより切断可能)
PRFRIIGG(配列番号:93、pro-ウロキナーゼにより切断可能)
GAGSGRSAG(配列番号:94、uPAにより切断可能)
SGRSA(配列番号:95、uPAにより切断可能)
GSGRSA(配列番号:96、uPAにより切断可能)
SGKSA(配列番号:97、uPAにより切断可能)
SGRSS(配列番号:98、uPAにより切断可能)
SGRRA(配列番号:99、uPAにより切断可能)
SGRNA(配列番号:100、uPAにより切断可能)
SGRKA(配列番号:101、uPAにより切断可能)
QRGRSA(配列番号:102、tPAにより切断可能)
GAGSLLKSRMVPNFNAG(配列番号:103、カテプシンBにより切断可能)
TQGAAA(配列番号:104、カテプシンBにより切断可能)
GAAAAA(配列番号:105、カテプシンBにより切断可能)
GAGAAG(配列番号:106、カテプシンBにより切断可能)
AAAAAG(配列番号:107、カテプシンBにより切断可能)
LCGAAI(配列番号:108、カテプシンBにより切断可能)
FAQALG(配列番号:109、カテプシンBにより切断可能)
LLQANP(配列番号:110、カテプシンBにより切断可能)
LAAANP(配列番号:111、カテプシンBにより切断可能)
LYGAQF(配列番号:112、カテプシンBにより切断可能)
LSQAQG(配列番号:113、カテプシンBにより切断可能)
ASAASG(配列番号:114、カテプシンBにより切断可能)
FLGASL(配列番号:115、カテプシンBにより切断可能)
AYGATG(配列番号:116、カテプシンBにより切断可能)
LAQATG(配列番号:117、カテプシンBにより切断可能)
GAGSGVVIATVIVITAG(配列番号:118、カテプシンLにより切断可能)
APMAEGGG(配列番号:119、メプリンα、メプリンβにより切断可能)
EAQGDKII(配列番号:120、メプリンα、メプリンβにより切断可能)
LAFSDAGP(配列番号:121、メプリンα、メプリンβにより切断可能)
YVADAPK(配列番号:122、メプリンα、メプリンβにより切断可能)
RRRRR(配列番号:123、フーリンにより切断可能)
RRRRRR(配列番号:124、フーリンにより切断可能)
GQSSRHRRAL(配列番号:125、フーリンにより切断可能)
SSRHRRALD(配列番号:126)
RKSSIIIRMRDVVL(配列番号:127、プラスミノーゲン(Plasminogen)により切断可能)
SSSFDKGKYKKGDDA(配列番号:128、Staphylokinaseにより切断可能)
SSSFDKGKYKRGDDA(配列番号:129、Staphylokinaseにより切断可能)
IEGR(配列番号:130、Factor Xaにより切断可能)
IDGR(配列番号:131、Factor Xaにより切断可能)
GGSIDGR(配列番号:132、Factor Xaにより切断可能)
GPQGIAGQ(配列番号:133、Collagenaseにより切断可能)
GPQGLLGA(配列番号:134、Collagenaseにより切断可能)
GIAGQ(配列番号:135、Collagenaseにより切断可能)
GPLGIAG(配列番号:136、Collagenaseにより切断可能)
GPEGLRVG(配列番号:137、Collagenaseにより切断可能)
YGAGLGVV(配列番号:138、Collagenaseにより切断可能)
AGLGVVER(配列番号:139、Collagenaseにより切断可能)
AGLGISST(配列番号:140、Collagenaseにより切断可能)
EPQALAMS(配列番号:141、Collagenaseにより切断可能)
QALAMSAI(配列番号:142、Collagenaseにより切断可能)
AAYHLVSQ(配列番号:143、Collagenaseにより切断可能)
MDAFLESS(配列番号:144、Collagenaseにより切断可能)
ESLPVVAV(配列番号:145、Collagenaseにより切断可能)
SAPAVESE(配列番号:146、Collagenaseにより切断可能)
DVAQFVLT(配列番号:147、Collagenaseにより切断可能)
VAQFVLTE(配列番号:148、Collagenaseにより切断可能)
AQFVLTEG(配列番号:149、Collagenaseにより切断可能)
PVQPIGPQ(配列番号:150、Collagenaseにより切断可能)
LVPRGS(配列番号:151、Thrombinにより切断可能)
TSGSGRSANARG(配列番号:168、uPA及びMT-SP1により切断可能)
TSQSGRSANQRG(配列番号:169、uPA及びMT-SP1により切断可能)
TSPSGRSAYPRG(配列番号:170、uPA及びMT-SP1により切断可能)
TSGSGRSATPRG(配列番号:171、uPA及びMT-SP1により切断可能)
TSQSGRSATPRG(配列番号:172、uPA及びMT-SP1により切断可能)
TSASGRSATPRG(配列番号:173、uPA及びMT-SP1により切断可能)
TSYSGRSAVPRG(配列番号:174、uPA及びMT-SP1により切断可能)
TSYSGRSANFRG(配列番号:175、uPA及びMT-SP1により切断可能)
TSSSGRSATPRG(配列番号:176、uPA及びMT-SP1により切断可能)
TSTTGRSASPRG(配列番号:177、uPA及びMT-SP1により切断可能)
TSTSGRSANPRG(配列番号:178、uPA及びMT-SP1により切断可能)
【0113】
プロテアーゼ切断配列として、表1で示す配列を用いることもできる。
【0114】
【0115】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X1-X2-X3-X4-X5-X6-X7-X8(配列番号:833)
中で、X1からX8はそれぞれ一つのアミノ酸を表し、X1 は A, D, E ,F ,G, H, I, K, M, N, P, Q, S, T, W および Yから選択されるアミノ酸である;X2 は A, D, E ,F, H, K, L, M, P, Q, S, T, V, W および Yから選択されるアミノ酸である;X3 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X4 はRを表し、X5 はA, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X6 は A, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X7 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X8 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である。
【0116】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X1-X2-X3-X4-X5-X6-X7-X8(配列番号:834)
中で、X1からX8はそれぞれ一つのアミノ酸を表し、X1 は A, E ,F ,G, H, K, M, N, P, Q, W および Yから選択されるアミノ酸である;X2 は A, D, E ,F, H, K, L, M, P, Q, S, T, V, W および Yから選択されるアミノ酸である;X3 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X6 は A, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X7 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X8 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である。
【0117】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X1-X2-X3-X4-X5-X6-X7-X8(配列番号:835)
中で、X1からX8はそれぞれ一つのアミノ酸を表し、X1 は A, D, E ,F ,G, H, I, K, M, N, P, Q, S, T, W および Yから選択されるアミノ酸である;X2 は A, D, F, L, M, P, Q, V, W および Yから選択されるアミノ酸である;X3 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X6 は A, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X7 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X8 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である。
【0118】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X1-X2-X3-X4-X5-X6-X7-X8(配列番号:836)
中で、X1からX8はそれぞれ一つのアミノ酸を表し、X1 は A, D, E ,F ,G, H, I, K, M, N, P, Q, S, T, W および Yから選択されるアミノ酸である;X2 は A, D, E ,F, H, K, L, M, P, Q, S, T, V, W および Yから選択されるアミノ酸である;X3 は A, E, F, H, I, K, L, M, N, P, Q, R, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X6 は A, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X7 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X8 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である。
【0119】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X1-X2-X3-X4-X5-X6-X7-X8(配列番号:837)
中で、X1からX8はそれぞれ一つのアミノ酸を表し、X1 は A, D, E ,F ,G, H, I, K, M, N, P, Q, S, T, W および Yから選択されるアミノ酸である;X2 は A, D, E ,F, H, K, L, M, P, Q, S, T, V, W および Yから選択されるアミノ酸である;X3 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, G, H, I, K, L, M, N, Q, R, T, V, W および Yから選択されるアミノ酸である;X6 は A, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X7 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X8 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である。
【0120】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X1-X2-X3-X4-X5-X6-X7-X8(配列番号:838)
中で、X1からX8はそれぞれ一つのアミノ酸を表し、X1 は A, D, E ,F ,G, H, I, K, M, N, P, Q, S, T, W および Yから選択されるアミノ酸である;X2 は A, D, E ,F, H, K, L, M, P, Q, S, T, V, W および Yから選択されるアミノ酸である;X3 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X6 は E, F, K, M, N, P, Q, R, SおよびW から選択されるアミノ酸である;X7 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X8 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である。
【0121】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X1-X2-X3-X4-X5-X6-X7-X8(配列番号:839)
中で、X1からX8はそれぞれ一つのアミノ酸を表し、X1 は A, D, E ,F ,G, H, I, K, M, N, P, Q, S, T, W および Yから選択されるアミノ酸である;X2 は A, D, E ,F, H, K, L, M, P, Q, S, T, V, W および Yから選択されるアミノ酸である;X3 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X6 は A, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X7 は A, D, F ,G, L, M, P, Q, VおよびWから選択されるアミノ酸である;X8 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である。
【0122】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X1-X2-X3-X4-X5-X6-X7-X8(配列番号:840)
中で、X1からX8はそれぞれ一つのアミノ酸を表し、X1 は A, D, E ,F ,G, H, I, K, M, N, P, Q, S, T, W および Yから選択されるアミノ酸である;X2 は A, D, E ,F, H, K, L, M, P, Q, S, T, V, W および Yから選択されるアミノ酸である;X3 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X6 は A, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X7 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X8 は A, D, E, F ,G, I, K, N, TおよびWから選択されるアミノ酸である。
【0123】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X1-X2-X3-X4-X5-X6-X7-X8(配列番号:841)
中で、X1からX8はそれぞれ一つのアミノ酸を表し、X1はA, G, I, P, Q, SおよびYから選択されるアミノ酸である;X2はKもしくはTから選択されるアミノ酸である;X3はGである;X4はRである;X5はSである;X6はAである;X7はH, IおよびVから選択されるアミノ酸である;X8はH, VおよびYから選択されるアミノ酸である。
【0124】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X1-X2-X3-X4-X5-X6-X7-X8(配列番号:842)
中で、X1からX8はそれぞれ一つのアミノ酸を表し、X1はYである;X2はSおよびTから選択されるアミノ酸である;X3はGである;X4はRである;X5はSである;X6はAおよびEから選択されるアミノ酸である;X7はNおよびVから選択されるアミノ酸である;X8はH, P, VおよびYから選択されるアミノ酸である。
【0125】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X1-X2-X3-X4-X5-X6-X7-X8-X9(配列番号:843)
中で、X1からX9はそれぞれ一つのアミノ酸を表し、X1 は A, D, E ,F ,G, H, I, K, M, N, P, Q, S, T, W および Yから選択されるアミノ酸である;X2 は A, D, E ,F, H, K, L, M, P, Q, S, T, V, W および Yから選択されるアミノ酸である;X3 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X6 は A, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X7 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X8 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X9はA, G, H, I, LおよびRから選択されるアミノ酸である。
【0126】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X1-X2-X3-X4-X5-X6-X7-X8-X9(配列番号:844)
中で、X1からX9はそれぞれ一つのアミノ酸を表し、X1 は A, E ,F ,G, H, K, M, N, P, Q, W および Yから選択されるアミノ酸である;X2 は A, D, E ,F, H, K, L, M, P, Q, S, T, V, W および Yから選択されるアミノ酸である;X3 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X6 は A, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X7 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X8 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X9はA, G, H, I, LおよびRから選択されるアミノ酸である。
【0127】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X1-X2-X3-X4-X5-X6-X7-X8-X9(配列番号:845)
中で、X1からX9はそれぞれ一つのアミノ酸を表し、X1 は A, D, E ,F ,G, H, I, K, M, N, P, Q, S, T, W および Yから選択されるアミノ酸である;X2 は A, D, F, L, M, P, Q, V, W および Yから選択されるアミノ酸である;X3 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X6 は A, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X7 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X8 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X9はA, G, H, I, LおよびRから選択されるアミノ酸である。
【0128】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X1-X2-X3-X4-X5-X6-X7-X8-X9(配列番号:846)
中で、X1からX9はそれぞれ一つのアミノ酸を表し、X1 は A, D, E ,F ,G, H, I, K, M, N, P, Q, S, T, W および Yから選択されるアミノ酸である;X2 は A, D, E ,F, H, K, L, M, P, Q, S, T, V, W および Yから選択されるアミノ酸である;X3 は A, E, F, H, I, K, L, M, N, P, Q, R, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X6 は A, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X7 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X8 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X9はA, G, H, I, LおよびRから選択されるアミノ酸である。
【0129】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X1-X2-X3-X4-X5-X6-X7-X8-X9(配列番号:847)
中で、X1からX9はそれぞれ一つのアミノ酸を表し、X1 は A, D, E ,F ,G, H, I, K, M, N, P, Q, S, T, W および Yから選択されるアミノ酸である;X2 は A, D, E ,F, H, K, L, M, P, Q, S, T, V, W および Yから選択されるアミノ酸である;X3 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, G, H, I, K, L, M, N, Q, R, T, V, W および Yから選択されるアミノ酸である;X6 は A, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X7 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X8 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X9はA, G, H, I, LおよびRから選択されるアミノ酸である。
【0130】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X1-X2-X3-X4-X5-X6-X7-X8-X9(配列番号:848)
中で、X1からX9はそれぞれ一つのアミノ酸を表し、X1 は A, D, E ,F ,G, H, I, K, M, N, P, Q, S, T, W および Yから選択されるアミノ酸である;X2 は A, D, E ,F, H, K, L, M, P, Q, S, T, V, W および Yから選択されるアミノ酸である;X3 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X6 は E, F, K, M, N, P, Q, R, SおよびW から選択されるアミノ酸である;X7 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X8 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X9はA, G, H, I, LおよびRから選択されるアミノ酸である。
【0131】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X1-X2-X3-X4-X5-X6-X7-X8-X9(配列番号:849)
中で、X1からX9はそれぞれ一つのアミノ酸を表し、X1 は A, D, E ,F ,G, H, I, K, M, N, P, Q, S, T, W および Yから選択されるアミノ酸である;X2 は A, D, E ,F, H, K, L, M, P, Q, S, T, V, W および Yから選択されるアミノ酸である;X3 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X6 は A, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X7 は A, D, F ,G, L, M, P, Q, VおよびWから選択されるアミノ酸である;X8 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X9はA, G, H, I, LおよびRから選択されるアミノ酸である。
【0132】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X1-X2-X3-X4-X5-X6-X7-X8-X9(配列番号:850)
中で、X1からX9はそれぞれ一つのアミノ酸を表し、X1 は A, D, E ,F ,G, H, I, K, M, N, P, Q, S, T, W および Yから選択されるアミノ酸である;X2 は A, D, E ,F, H, K, L, M, P, Q, S, T, V, W および Yから選択されるアミノ酸である;X3 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X6 は A, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X7 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X8 は A, D, E, F ,G, I, K, N, TおよびWから選択されるアミノ酸である;X9はA, G, H, I, LおよびRから選択されるアミノ酸である。
【0133】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X1-X2-X3-X4-X5-X6-X7-X8-X9(配列番号:851)
中で、X1からX9はそれぞれ一つのアミノ酸を表し、X1はA, G, I, P, Q, SおよびYから選択されるアミノ酸である;X2はKもしくはTから選択されるアミノ酸である;X3はGである;X4はRである;X5はSである;X6はAである;X7はH, IおよびVから選択されるアミノ酸である;X8はH, VおよびYから選択されるアミノ酸である;X9はA, G, H, I, LおよびRから選択されるアミノ酸である。
【0134】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X1-X2-X3-X4-X5-X6-X7-X8-X9(配列番号:852)
中で、X1からX9はそれぞれ一つのアミノ酸を表し、X1はYである;X2はSおよびTから選択されるアミノ酸である;X3はGである;X4はRである;X5はSである;X6はAおよびEから選択されるアミノ酸である;X8はH, P, VおよびYから選択されるアミノ酸である;X9はA, G, H, I, LおよびRから選択されるアミノ酸である。
【0135】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X10-X11-X1-X2-X3-X4-X5-X6-X7-X8(配列番号:1062)
中で、X1からX11はそれぞれ一つのアミノ酸を表し、X10 は I, Tおよび Yから選択されるアミノ酸である;X11 は Sである;X1 は A, D, E ,F ,G, H, I, K, M, N, P, Q, S, T, W および Yから選択されるアミノ酸である;X2 は A, D, E ,F, H, K, L, M, P, Q, S, T, V, W および Yから選択されるアミノ酸である;X3 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X6 は A, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X7 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X8 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である。
【0136】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X10-X11-X1-X2-X3-X4-X5-X6-X7-X8(配列番号:1063)
中で、X1からX11はそれぞれ一つのアミノ酸を表し、X10 は I, Tおよび Yから選択されるアミノ酸である;X11 は Sである;X1 は A, E ,F ,G, H, K, M, N, P, Q, W および Yから選択されるアミノ酸である;X2 は A, D, E ,F, H, K, L, M, P, Q, S, T, V, W および Yから選択されるアミノ酸である;X3 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X6 は A, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X7 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X8 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である。
【0137】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X10-X11-X1-X2-X3-X4-X5-X6-X7-X8(配列番号:1064)
中で、X1からX11はそれぞれ一つのアミノ酸を表し、X10 は I, Tおよび Yから選択されるアミノ酸である;X11 は Sである;X1 は A, D, E ,F ,G, H, I, K, M, N, P, Q, S, T, W および Yから選択されるアミノ酸である;X2 は A, D, F, L, M, P, Q, V, W および Yから選択されるアミノ酸である;X3 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X6 は A, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X7 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X8 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である。
【0138】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X10-X11-X1-X2-X3-X4-X5-X6-X7-X8(配列番号:1065)
中で、X1からX11はそれぞれ一つのアミノ酸を表し、X10 は I, Tおよび Yから選択されるアミノ酸である;X11 は Sである;X1 は A, D, E ,F ,G, H, I, K, M, N, P, Q, S, T, W および Yから選択されるアミノ酸である;X2 は A, D, E ,F, H, K, L, M, P, Q, S, T, V, W および Yから選択されるアミノ酸である;X3 は A, E, F, H, I, K, L, M, N, P, Q, R, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X6 は A, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X7 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X8 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である。
【0139】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X10-X11-X1-X2-X3-X4-X5-X6-X7-X8(配列番号:1066)
中で、X1からX11はそれぞれ一つのアミノ酸を表し、X10 は I, Tおよび Yから選択されるアミノ酸である;X11 は Sである;X1 は A, D, E ,F ,G, H, I, K, M, N, P, Q, S, T, W および Yから選択されるアミノ酸である;X2 は A, D, E ,F, H, K, L, M, P, Q, S, T, V, W および Yから選択されるアミノ酸である;X3 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, G, H, I, K, L, M, N, Q, R, T, V, W および Yから選択されるアミノ酸である;X6 は A, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X7 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X8 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である。
【0140】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X10-X11-X1-X2-X3-X4-X5-X6-X7-X8(配列番号:1067)
中で、X1からX11はそれぞれ一つのアミノ酸を表し、X10 は I, Tおよび Yから選択されるアミノ酸である;X11 は Sである;X1 は A, D, E ,F ,G, H, I, K, M, N, P, Q, S, T, W および Yから選択されるアミノ酸である;X2 は A, D, E ,F, H, K, L, M, P, Q, S, T, V, W および Yから選択されるアミノ酸である;X3 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X6 は E, F, K, M, N, P, Q, R, SおよびW から選択されるアミノ酸である;X7 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X8 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である。
【0141】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X10-X11-X1-X2-X3-X4-X5-X6-X7-X8(配列番号:1068)
中で、X1からX11はそれぞれ一つのアミノ酸を表し、X10 は I, Tおよび Yから選択されるアミノ酸である;X11 は Sである;X1 は A, D, E ,F ,G, H, I, K, M, N, P, Q, S, T, W および Yから選択されるアミノ酸である;X2 は A, D, E ,F, H, K, L, M, P, Q, S, T, V, W および Yから選択されるアミノ酸である;X3 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X6 は A, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X7 は A, D, F ,G, L, M, P, Q, VおよびWから選択されるアミノ酸である;X8 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である。
【0142】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X10-X11-X1-X2-X3-X4-X5-X6-X7-X8(配列番号:1069)
中で、X1からX11はそれぞれ一つのアミノ酸を表し、X10 は I, Tおよび Yから選択されるアミノ酸である;X11 は Sである;X1 は A, D, E ,F ,G, H, I, K, M, N, P, Q, S, T, W および Yから選択されるアミノ酸である;X2 は A, D, E ,F, H, K, L, M, P, Q, S, T, V, W および Yから選択されるアミノ酸である;X3 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X6 は A, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X7 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X8 は A, D, E, F ,G, I, K, N, TおよびWから選択されるアミノ酸である。
【0143】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X10-X11-X1-X2-X3-X4-X5-X6-X7-X8(配列番号:1070)
中で、X1からX11はそれぞれ一つのアミノ酸を表し、X10 は I, Tおよび Yから選択されるアミノ酸である;X11 は Sである;X1はA, G, I, P, Q, SおよびYから選択されるアミノ酸である;X2はKもしくはTから選択されるアミノ酸である;X3はGである;X4はRである;X5はSである;X6はAである;X7はH, IおよびVから選択されるアミノ酸である;X8はH, VおよびYから選択されるアミノ酸である。
【0144】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X10-X11-X1-X2-X3-X4-X5-X6-X7-X8(配列番号:1071)
中で、X1からX11はそれぞれ一つのアミノ酸を表し、X10 は I, Tおよび Yから選択されるアミノ酸である;X11 は Sである;X1はYである;X2はSおよびTから選択されるアミノ酸である;X3はGである;X4はRである;X5はSである;X6はAおよびEから選択されるアミノ酸である;X7はNおよびVから選択されるアミノ酸である;X8はH, P, VおよびYから選択されるアミノ酸である。
【0145】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X10-X11-X1-X2-X3-X4-X5-X6-X7-X8-X9(配列番号:1072)
中で、X1からX11はそれぞれ一つのアミノ酸を表し、X10 は I, Tおよび Yから選択されるアミノ酸である;X11 は Sである;X1 は A, D, E ,F ,G, H, I, K, M, N, P, Q, S, T, W および Yから選択されるアミノ酸である;X2 は A, D, E ,F, H, K, L, M, P, Q, S, T, V, W および Yから選択されるアミノ酸である;X3 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X6 は A, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X7 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X8 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X9はA, G, H, I, LおよびRから選択されるアミノ酸である。
【0146】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X10-X11-X1-X2-X3-X4-X5-X6-X7-X8-X9(配列番号:1073)
中で、X1からX11はそれぞれ一つのアミノ酸を表し、X10 は I, Tおよび Yから選択されるアミノ酸である;X11 は Sである;X1 は A, E ,F ,G, H, K, M, N, P, Q, W および Yから選択されるアミノ酸をである;X2 は A, D, E ,F, H, K, L, M, P, Q, S, T, V, W および Yから選択されるアミノ酸である;X3 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X6 は A, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X7 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X8 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X9はA, G, H, I, LおよびRから選択されるアミノ酸である。
【0147】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X10-X11-X1-X2-X3-X4-X5-X6-X7-X8-X9(配列番号:1074)
中で、X1からX11はそれぞれ一つのアミノ酸を表し、X10 は I, Tおよび Yから選択されるアミノ酸である;X11 は Sである;X1 は A, D, E ,F ,G, H, I, K, M, N, P, Q, S, T, W および Yから選択されるアミノ酸である;X2 は A, D, F, L, M, P, Q, V, W および Yから選択されるアミノ酸である;X3 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X6 は A, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X7 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X8 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X9はA, G, H, I, LおよびRから選択されるアミノ酸である。
【0148】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X10-X11-X1-X2-X3-X4-X5-X6-X7-X8-X9(配列番号:1075)
中で、X1からX11はそれぞれ一つのアミノ酸を表し、X10 は I, Tおよび Yから選択されるアミノ酸である;X11 は Sである;X1 は A, D, E ,F ,G, H, I, K, M, N, P, Q, S, T, W および Yから選択されるアミノ酸である;X2 は A, D, E ,F, H, K, L, M, P, Q, S, T, V, W および Yから選択されるアミノ酸である;X3 は A, E, F, H, I, K, L, M, N, P, Q, R, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X6 は A, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X7 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X8 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X9はA, G, H, I, LおよびRから選択されるアミノ酸である。
【0149】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X10-X11-X1-X2-X3-X4-X5-X6-X7-X8-X9(配列番号:1076)
中で、X1からX11はそれぞれ一つのアミノ酸を表し、X10 は I, Tおよび Yから選択されるアミノ酸である;X11 は Sである;X1 は A, D, E ,F ,G, H, I, K, M, N, P, Q, S, T, W および Yから選択されるアミノ酸である;X2 は A, D, E ,F, H, K, L, M, P, Q, S, T, V, W および Yから選択されるアミノ酸である;X3 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, G, H, I, K, L, M, N, Q, R, T, V, W および Yから選択されるアミノ酸である;X6 は A, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X7 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X8 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X9はA, G, H, I, LおよびRから選択されるアミノ酸である。
【0150】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X10-X11-X1-X2-X3-X4-X5-X6-X7-X8-X9(配列番号:1077)
中で、X1からX11はそれぞれ一つのアミノ酸を表し、X10 は I, Tおよび Yから選択されるアミノ酸である;X11 は Sである;X1 は A, D, E ,F ,G, H, I, K, M, N, P, Q, S, T, W および Yから選択されるアミノ酸である;X2 は A, D, E ,F, H, K, L, M, P, Q, S, T, V, W および Yから選択されるアミノ酸である;X3 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X6 は E, F, K, M, N, P, Q, R, SおよびW から選択されるアミノ酸である;X7 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X8 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X9はA, G, H, I, LおよびRから選択されるアミノ酸である。
【0151】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X10-X11-X1-X2-X3-X4-X5-X6-X7-X8-X9(配列番号:1078)
中で、X1からX11はそれぞれ一つのアミノ酸を表し、X10 は I, Tおよび Yから選択されるアミノ酸である;X11 は Sである;X1 は A, D, E ,F ,G, H, I, K, M, N, P, Q, S, T, W および Yから選択されるアミノ酸である;X2 は A, D, E ,F, H, K, L, M, P, Q, S, T, V, W および Yから選択されるアミノ酸である;X3 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X6 は A, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X7 は A, D, F ,G, L, M, P, Q, VおよびWから選択されるアミノ酸である;X8 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X9はA, G, H, I, LおよびRから選択されるアミノ酸である。
【0152】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X10-X11-X1-X2-X3-X4-X5-X6-X7-X8-X9(配列番号:1079)
中で、X1からX11はそれぞれ一つのアミノ酸を表し、X10 は I, Tおよび Yから選択されるアミノ酸である;X11 は Sである;X1 は A, D, E ,F ,G, H, I, K, M, N, P, Q, S, T, W および Yから選択されるアミノ酸である;X2 は A, D, E ,F, H, K, L, M, P, Q, S, T, V, W および Yから選択されるアミノ酸である;X3 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X4 はRである;X5 はA, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X6 は A, D, E, F, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X7 は A, D, E, F ,G, H, I, K, L, M, N, P, Q, R, S, T, V, W および Yから選択されるアミノ酸である;X8 は A, D, E, F ,G, I, K, N, TおよびWから選択されるアミノ酸である;X9はA, G, H, I, LおよびRから選択されるアミノ酸である。
【0153】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X10-X11-X1-X2-X3-X4-X5-X6-X7-X8-X9(配列番号:1080)
中で、X1からX11はそれぞれ一つのアミノ酸を表し、X10 は I, Tおよび Yから選択されるアミノ酸である;X11 は Sである;X1はA, G, I, P, Q, SおよびYから選択されるアミノ酸である;X2はKもしくはTから選択されるアミノ酸である;X3はGである;X4はRである;X5はSである;X6はAである;X7はH, IおよびVから選択されるアミノ酸である;X8はH, VおよびYから選択されるアミノ酸である;X9はA, G, H, I, LおよびRから選択されるアミノ酸である。
【0154】
プロテアーゼ切断配列として以下で示すものを用いることもできる:
X10-X11-X1-X2-X3-X4-X5-X6-X7-X8-X9(配列番号:1081)
中で、X1からX11はそれぞれ一つのアミノ酸を表し、X10 は I, Tおよび Yから選択されるアミノ酸である;X11 は Sである;X1はYである;X2はSおよびTから選択されるアミノ酸である;X3はGである;X4はRである;X5はSである;X6はAおよびEから選択されるアミノ酸である;X7はNおよびVから選択されるアミノ酸である;X8はH, P, VおよびYから選択されるアミノ酸である;X9はA, G, H, I, LおよびRから選択されるアミノ酸である。
【0155】
上記プロテアーゼ切断配列を使用する以外に、プロテアーゼ切断配列を新たにスクリーニングにより取得しても良い。例えば、既知のプロテアーゼ切断配列の結晶構造解析の結果から、切断配列と酵素の活性残基・認識残基の相互作用を変えて、新たなプロテアーゼ切断配列を探索できる。また、既知のプロテアーゼ切断配列中のアミノ酸に改変を加え、プロテアーゼとの相互作用を確認することにより新たなプロテアーゼ切断配列を探索できる。別の例として、ペプチドライブラリをファージディスプレイ、リボソームディスプレイ等のin vitroディスプレイ法を用いてディスプレイし、またはチップあるいはビーズに固定したペプチドアレイを用いてプロテアーゼとの相互作用を確認することにより、プロテアーゼで切断される配列を探索できる。
プロテアーゼ切断配列とプロテアーゼの相互作用を確認する方法として、in vitroもしくはin vivoでのプロテアーゼ切断を確認することにより行うことができる。
【0156】
SDS-PAGE等の電気泳動法により分離したプロテアーゼ処理後の切断断片量を定量することにより、プロテアーゼ切断配列、プロテアーゼ活性の評価、およびプロテアーゼ切断配列を導入した分子の切断率の評価が可能である。プロテアーゼ切断配列を導入した分子の切断率を評価する方法の非限定な一態様として以下の方法が挙げられる。例えばプロテアーゼ切断配列を導入した抗体改変体をリコンビナントヒトu-Plasminogen Activator/Urokinase(human uPA, huPA)(R&D Systems;1310-SE-010)もしくはリコンビナントヒトMatriptase/ST14 Catalytic Domain (human MT-SP1, hMT-SP1) (R&D Systems; 3946-SE-010)を用いて切断率を評価する場合、huPA 40 nMもしくはhMT-SP1 3 nM、抗体改変体 100μg/mL、PBS、37℃の条件下で1時間反応させたのちに、キャピラリー電気泳動イムノアッセイに供する。キャピラリー電気泳動イムノアッセイにはWes (Protein Simple) が使用可能であるが、これに限定されずキャピラリー電気泳動イムノアッセイに代わる方法としてSDS-PAGE等により分離後にWestern Blotting法で検出してもよいし、これらの方法に限定されるものではない。切断前後の軽鎖の検出には抗ヒトlambda鎖HRP標識抗体 (abcam; ab9007) が使用可能であるが、切断断片を検出できる抗体はいずれの抗体も使用可能である。プロテアーゼ処理後に得られた各ピークの面積をWes専用のソフトウェア (Compass for SW; Protein Simple) を用いて出力することで、抗体改変体の切断率 (%) を(切断軽鎖ピーク面積)*100/(切断軽鎖ピーク面積+未切断軽鎖ピーク面積)の式により算出できる。切断率の算出は、プロテアーゼ処理前後のタンパク質断片が検出できれば可能であり、プロテアーゼ切断配列を導入した分子は抗体改変体に限らず様々なタンパク質において切断率を算出することが可能である。
【0157】
プロテアーゼ切断配列を導入した分子を動物に投与した後、血液サンプル中の投与分子を検出することにより、生体内における切断率の算出が可能である。例えばプロテアーゼ切断配列を導入した抗体改変体をマウスに投与後、血液サンプルから血漿を回収しDynabeads Protein A (Thermo; 10001D) を用いて当業者公知の方法で抗体を精製し、キャピラリー電気泳動イムノアッセイに供することで抗体改変体のプロテアーゼ切断率の評価が可能である。キャピラリー電気泳動イムノアッセイにはWes (Protein Simple) が使用可能であるが、これに限定されずキャピラリー電気泳動イムノアッセイに代わる方法としてSDS-PAGE等により分離後にWestern Blotting法で検出してもよいし、これらの方法に限定されるものではない。マウスから回収された抗体改変体の軽鎖の検出には抗ヒトlambda鎖HRP標識抗体 (abcam; ab9007) が使用可能であるが、切断断片を検出できる抗体はいずれの抗体も使用可能である。キャピラリー電気泳動イムノアッセイにより得られた各ピークの面積をWes専用のソフトウェア (Compass for SW; Protein Simple) で出力し、軽鎖残存比として(軽鎖ピーク面積)/(重鎖ピーク面積)を計算することで、マウス体内で切断されずに残った全長軽鎖の割合の算出が可能である。生体内における切断効率の算出には、生体から回収されたタンパク質断片が検出できれば可能であり、プロテアーゼ切断配列を導入した分子は抗体改変体に限らず様々なタンパク質において切断率を算出することが可能である。上述した方法を用いて切断率を算出することにより、例えば異なる切断配列を導入した抗体改変体の生体内における切断率を比較することが可能であるし、また同一の抗体改変体の切断率を正常マウスモデルや腫瘍移植マウスモデルなどの異なる動物モデル間で比較することも可能である。
【0158】
たとえば、表1に例示したプロテアーゼ切断配列は、いずれも本発明者らによって新たに見出された。これらのプロテアーゼ切断配列を含むポリペプチドは、いずれもプロテアーゼの作用によって加水分解されるプロテアーゼ基質として有用である。すなわち本発明は、配列番号:833~852、1062~1081で示す配列、表1に記載の配列から選ばれる配列を含む、プロテアーゼ基質を提供する。本発明のプロテアーゼ基質は、たとえば本発明のポリペプチドへの組み込みに当たって、目的に応じた性状を備えたものを選択するためのライブラリーとして活用することができる。具体的には、本発明のポリペプチドを病巣に局在するプロテアーゼによって選択的に切断するために、そのプロテアーゼ感受性を評価することができる。本発明のポリペプチドは、生体に投与された後に、様々なプロテアーゼとの接触を経て、病巣に到達する可能性が有る。したがって、病巣に局在するプロテアーゼには感受性を持ちながら、それ以外のプロテアーゼにはできるだけ高い耐性を持つことが望ましい。目的に応じて、望ましいプロテアーゼ切断配列を選ぶために、予め、各プロテアーゼ基質について、種々のプロテアーゼによる感受性を網羅的に解析すれば、プロテアーゼ耐性を知ることができる。得られたプロテアーゼ耐性スペクトルに基づいて、必要な感受性と耐性を備えたプロテアーゼ切断配列を見出すことができる。
あるいは、プロテアーゼ切断配列を組み込まれたポリペプチドは、プロテアーゼによる酵素的な作用のみならず、pHの変化、温度、酸化還元ストレス等の様々な環境負荷を経て病巣に到達する。このような外部要因に対しても、各プロテアーゼ基質の耐性を比較した情報に基づいて、目的に応じた望ましい性状を備えたプロテアーゼ切断配列を選択することもできる。
【0159】
本発明の一実施態様において、プロテアーゼ切断配列のどちらか一端または両端に、可動リンカーを更に付加している。プロテアーゼ切断配列の一端の可動リンカーを第一可動リンカーと呼称することが出来、他端の可動リンカーを第二可動リンカーと呼称することが出来る。特定の実施形態では、プロテアーゼ切断配列と可動リンカーは以下の式のうちの一つを含む。
(プロテアーゼ切断配列)
(第一可動リンカー)-(プロテアーゼ切断配列)
(プロテアーゼ切断配列)-(第二可動リンカー)
(第一可動リンカー)-(プロテアーゼ切断配列)-(第二可動リンカー)
本実施態様における可動リンカーはペプチドリンカーが好ましい。第一可動リンカーと第二可動リンカーは、それぞれ独立かつ任意的に存在し、少なくとも1つのフレキシブルアミノ酸(Glyなど)を含む同一または異なる可動リンカーである。例えば、プロテアーゼ切断配列が所望のプロテアーゼアクセス性を得られるほどの十分な数の残基(Arg、Ile、Gln、Glu、Cys、Tyr、Trp、Thr、Val、His、Phe、Pro、Met、Lys、Gly、Ser、Asp、Asn、Alaなどから任意に選択されるアミノ酸、特にGly、Ser、Asp、Asn、Ala 、ことさらGlyおよびSer、特にGlyなど)が含まれる。
【0160】
プロテアーゼ切断配列の両端で使用するのに適した可動リンカーは通常、プロテアーゼ切断配列へのプロテアーゼのアクセスを向上させ、プロテアーゼの切断効率を上昇させるものである。好適な可動リンカーは容易に選択可能であり、1アミノ酸(Glyなど)から20アミノ酸、2アミノ酸から15アミノ酸あるいは、4アミノ酸から10アミノ酸、5アミノ酸から9アミノ酸、6アミノ酸から8アミノ酸または7アミノ酸から8アミノ酸をはじめとして3アミノ酸から12アミノ酸など、異なる長さのうちからの好適なものを選択できる。本発明のいくつかの実施態様においては、可動リンカーは1から7アミノ酸のペプチドリンカーである。
【0161】
可動リンカーの例として、それだけに限定されないが、例えば、グリシンポリマー(G)n、グリシン-セリンポリマー(例えば、(GS)n、(GSGGS:配列番号:27)nおよび(GGGS:配列番号:28)nを含み、nは少なくとも1の整数である)、グリシン-アラニンポリマー、アラニン-セリンポリマー、従来技術において周知の他の可動リンカーが挙げられる。
このうちグリシンおよびグリシン-セリンポリマーが注目されているが、これらのアミノ酸が比較的構造化されておらず、成分間の中性テザーとして機能しやすいことがその理由である。
グリシン-セリンポリマーからなる可動リンカーの例として、それだけに限定されないが、例えば、
Ser
Gly・Ser(GS)
Ser・Gly(SG)
Gly・Gly・Ser(GGS)
Gly・Ser・Gly(GSG)
Ser・Gly・Gly(SGG)
Gly・Ser・Ser(GSS)
Ser・Ser・Gly(SSG)
Ser・Gly・Ser(SGS)
Gly・Gly・Gly・Ser(GGGS、配列番号:28)
Gly・Gly・Ser・Gly(GGSG、配列番号:29)
Gly・Ser・Gly・Gly(GSGG、配列番号:46)
Ser・Gly・Gly・Gly(SGGG、配列番号:47)
Gly・Ser・Ser・Gly(GSSG、配列番号:48)
Gly・Gly・Gly・Gly・Ser(GGGGS、配列番号:49)
Gly・Gly・Gly・Ser・Gly(GGGSG、配列番号:33)
Gly・Gly・Ser・Gly・Gly(GGSGG、配列番号:30)
Gly・Ser・Gly・Gly・Gly(GSGGG、配列番号:32)
Gly・Ser・Gly・Gly・Ser(GSGGS、配列番号:27)
Ser・Gly・Gly・Gly・Gly(SGGGG、配列番号:51)
Gly・Ser・Ser・Gly・Gly(GSSGG、配列番号:52)
Gly・Ser・Gly・Ser・Gly(GSGSG、配列番号:31)
Ser・Gly・Gly・Ser・Gly(SGGSG、配列番号:53)
Gly・Ser・Ser・Ser・Gly(GSSSG、配列番号:34)
Gly・Gly・Gly・Gly・Gly・Ser(GGGGGS、配列番号:50)
Ser・Gly・Gly・Gly・Gly・Gly(SGGGGG、配列番号:54)
Gly・Gly・Gly・Gly・Gly・Gly・Ser(GGGGGGS、配列番号:55)
Ser・Gly・Gly・Gly・Gly・Gly・Gly(SGGGGGG、配列番号:56)
(Gly・Gly・Gly・Gly・Ser(GGGGS、配列番号:49))n
(Ser・Gly・Gly・Gly・Gly(SGGGG、配列番号:51))n
などが挙げられる。
【0162】
本明細書における「会合」とは、例えば、2以上のポリペプチド領域が相互作用する状態を指すものと換言することができる。一般的に、対象となるポリペプチド領域の間に、疎水結合、水素結合、イオン結合等が作られ会合体が形成される。よく見る会合の一つの例として、天然型抗体を代表とする抗体においては、重鎖可変領域(VH)と軽鎖可変領域(VL)が両者間の非共有結合等によりペアリング構造を保持することが知られている。
【0163】
本発明のいくつかの実施態様において、運搬部分の抑制ドメインは抗原結合ドメインと会合する。抑制ドメインは運搬部分の一部であっても、運搬部分の全部であっても良い。別の視点から、運搬部分中の、抗原結合ドメインと会合する部分を抑制ドメインと言い換えることも出来る。
より具体的な実施態様として、単ドメイン抗体である抗原結合ドメインと、VLもしくはVHもしくはVHHである抑制ドメインが、抗体VHと抗体VLのような会合を形成する。更に具体的な実施態様として、単ドメイン抗体である抗原結合ドメインとVLもしくはVHもしくはVHHである抑制ドメインが、抗体VHと抗体VLのような会合を形成し、当該会合が形成された状態においては、抑制ドメインが、抗原結合ドメインと抗原の結合を立体構造的に阻害すること、または抗原結合ドメインの抗原結合部位の立体構造を変化させることで、当該単ドメイン抗体の抗原結合活性が当該VLもしくはVHもしくはVHHにより抑制される。単ドメイン抗体としてVHHを利用する実施態様においては、VHHの主たる抗原結合部位であるCDR3またはその近傍の部位が抑制ドメインと会合する界面に存在すると、抑制ドメインによりVHHと抗原の結合が立体構造的に阻害されると考えられる。
また、抑制ドメインと抗原結合ドメインの会合は、例えば切断サイトを切断することにより解消可能である。会合の解消とは、例えば、2以上のポリペプチド領域の相互作用状態が解消されると換言することができる。2以上のポリペプチド領域の相互作用が全部解消されても、2以上のポリペプチド領域の相互作用の中の一部が解消されても良い。
【0164】
本明細書における「界面」とは、通常、会合(相互作用)する際の会合面を指し、界面を形成するアミノ酸残基とは、通常、その会合に供されるポリペプチド領域に含まれる1または複数のアミノ酸残基であって、より好ましくは、会合の際に接近し相互作用に関与するアミノ酸残基を言う。該相互作用には、具体的には、会合の際に接近するアミノ酸残基同士が水素結合、静電的相互作用、塩橋を形成している場合等の非共有結合が含まれる。
【0165】
本明細書における「界面を形成するアミノ酸残基」とは、詳述すれば、界面を構成するポリペプチド領域において、該ポリペプチド領域に含まれるアミノ酸残基を言う。界面を構成するポリペプチド領域とは、一例を示せば、抗体、リガンド、レセプター、基質等において、その分子内、または分子間において選択的な結合を担うポリペプチド領域を指す。具体的には、抗体においては、重鎖可変領域、軽鎖可変領域等を例示することができ、本発明のいくつかの実施態様においては、抗原結合ドメインと抑制ドメインを例示することができる。
界面を形成するアミノ酸残基の例として、それだけに限定されないが、例えば、会合の際に接近するアミノ酸残基が挙げられる。会合の際に接近するアミノ酸残基は、例えば、ポリペプチドの立体構造を解析し、該ポリペプチドの会合の際に界面を形成するポリペプチド領域のアミノ酸配列を調べることにより見出すことができる。
【0166】
本発明のいくつかの実施態様において、抗原結合ドメインと抑制ドメインの会合を促進するために、抗原結合ドメイン中の会合に関与するアミノ酸残基、または抑制ドメイン中の会合に関与するアミノ酸残基を改変することが出来る。更に具体的な実施態様として、抗原結合ドメイン中の、抑制ドメインとの界面を形成するアミノ酸残基、または抑制ドメイン中の、抗原結合ドメインとの界面を形成するアミノ酸残基を改変することが出来る。好ましい実施態様において、界面を形成するアミノ酸残基の改変が、界面を形成する2残基以上のアミノ酸残基が異種の電荷となるように該界面にアミノ酸残基の変異を導入する方法である。異種の電荷となるようなアミノ酸残基の改変は、正の電荷を有するアミノ酸残基から負の電荷を有するアミノ酸残基または電荷を有しないアミノ酸残基への改変、負の電荷を有するアミノ酸残基から正の電荷を有するアミノ酸残基または電荷を有しないアミノ酸残基への改変、および電荷を有しないアミノ酸残基から正または負の電荷を有するアミノ酸残基への改変を含む。そのようなアミノ酸改変は、会合を促進させるためであり、会合促進の目的が達成できる限りアミノ酸改変の位置やアミノ酸の種類は限定されない。改変としては置換が挙げられるがこれに限定されない。
【0167】
本発明のいくつかの実施態様において、抗原結合ドメインであるVHHが抑制ドメインであるVLと会合している。VHH中の、VLとの会合に関与するアミノ酸残基の例として、VHHとVLの界面を形成するアミノ酸残基を指すことが出来る。また、VHH中の、VLとの会合に関与するアミノ酸残基の例として、それだけに限定されないが、例えば、37位、44位、45位、47位のアミノ酸残基が挙げられる(J. Mol. Biol. (2005) 350, 112-125.)。VHHとVLの会合が促進されることにより、VHHの活性が抑制される。同時に、VL中の、VHHとの会合に関与するアミノ酸残基の例として、VHHとVLの界面を形成するアミノ酸残基を指すことが出来る。
【0168】
VHHとVLの会合を促進するために、VHH中のVLとの会合に関与するアミノ酸残基を改変することが出来る。このようなアミノ酸置換の例として、それだけに限定されないが、F37V、Y37V、E44G、Q44G、R45L、H45L、G47W、F47W、L47W、T47W、または/およびS47Wが挙げられる。更に、VHH中の各残基に対して改変をせず、最初から37V、44G、45L、または/および47Wのアミノ酸残基を有するVHHを使用することも出来る。
更に、VHHとVLの会合を促進する目的が達成できる限り、VHH中のアミノ酸ではなく、VL中のVHHとの会合に関与するアミノ酸残基を改変することが可能であり、更にVHHとVLの両方にアミノ酸改変を導入することも可能である。
【0169】
本発明の別のいくつかの実施態様において、抗原結合ドメインとしてVHHを使用し、抑制ドメインとしてVHまたはVHHを使用し、抗原結合ドメインと抑制ドメインを会合させることが出来る。抗原結合ドメインであるVHHと、抑制ドメインであるVHまたはVHHとの会合を促進するために、抗原結合ドメインであるVHH中の、抑制ドメインであるVHまたはVHHとの会合に関与するアミノ酸残基を特定し、それらのアミノ酸残基を改変することができる。また、抑制ドメインであるVHまたはVHH中の、抗原結合ドメインであるVHH中との会合に関与するアミノ酸残基を特定し、それらのアミノ酸残基を改変することができる。
【0170】
また、抗原結合ドメインとしてVHH以外の単ドメイン抗体を使用する時も、同じように抗原結合ドメイン若しくは抑制ドメイン中の、会合に関与するアミノ酸残基を特定して、それらのアミノ酸残基に対して改変することが出来る。
【0171】
本発明のいくつかの実施態様としては、運搬部分と抗原結合ドメインはリンカーを介して融合されている。より具体的な実施態様としては、運搬部分と抗原結合ドメインは、切断サイトを含むリンカーを介して融合されている。別の具体的な実施態様としては、運搬部分と抗原結合ドメインは、リンカーを介して融合されており、融合後の融合タンパク質には切断サイトが含まれている。
【0172】
本発明の別の一実施態様としては、運搬部分と抗原結合ドメインはリンカーを介さず融合されている。より具体的な実施態様としては、運搬部分のN末端アミノ酸と抗原結合ドメインのC末端アミノ酸の間でアミノ結合を形成させ、融合タンパク質を形成させている。形成された融合タンパク質には切断サイトが含まれている。特定の実施態様においては、運搬部分のN末端の1アミノ酸~数アミノ酸または/および抗原結合ドメインC末端の1アミノ酸~数アミノ酸を改変し、運搬部分のN末端と抗原結合ドメインのC末端を融合させることで、融合位置附近に切断サイトを形成させる。より具体的に、例えば、抗原結合ドメインC末端の4個のアミノ酸をLSGR配列にし、運搬部分のN末端の4個のアミノ酸をSDNH配列にして切断サイトを形成させることが出来る。
【0173】
本発明のいくつかの実施態様において、運搬部分と抗原結合ドメインを含むポリペプチドの切断サイトは、プロテアーゼ切断配列を含む。プロテアーゼ切断配列は、プロテアーゼの切断を受けたとき、抗原結合ドメインを遊離させ、且つ遊離後の抗原結合ドメインの抗原結合活性を失わせない限り、ポリペプチドのどの部分に配置しても良い。
【0174】
本発明のいくつかの実施態様において、運搬部分は抗体定常領域を含み、当該抗体定常領域のN末端と抗原結合ドメインのC末端がリンカーを介してまたはリンカーを介さずに融合されている。
特定の実施態様において、プロテアーゼ切断配列は運搬部分に含まれる抗体定常領域内に位置する。この場合、プロテアーゼ切断配列は、プロテアーゼの切断を受けたとき、抗原結合ドメインを遊離させられるように抗体定常領域内に位置すれば良い。具体的な実施態様において、プロテアーゼ切断配列は運搬部分に含まれる抗体重鎖定常領域内に位置し、より具体的には、抗体重鎖定常領域中の140番(EUナンバリング)アミノ酸より抗原結合ドメイン側、好ましくは、抗体重鎖定常領域中の122番(EUナンバリング)アミノ酸より抗原結合ドメイン側に位置する。別の具体的な実施態様において、プロテアーゼ切断配列は運搬部分に含まれる抗体軽鎖定常領域内に位置し、より具体的には、抗体軽鎖定常領域中の130番(EUナンバリング)(Kabatナンバリング130番)アミノ酸より抗原結合ドメイン側、好ましくは、抗体軽鎖定常領域中の113番(EUナンバリング)(Kabatナンバリング113番)アミノ酸より抗原結合ドメイン側に位置する。
【0175】
本発明のいくつかの実施態様において、抗原結合ドメインは単ドメイン抗体であり、当該単ドメイン抗体のC末端と運搬部分のN末端がリンカーを介してまたはリンカーを介さずに融合されている。
特定の実施態様において、プロテアーゼ切断配列は単ドメイン抗体内に位置する。より具体的な実施態様において、単ドメイン抗体はVHから作製された単ドメイン抗体またはVHHであり、プロテアーゼ切断配列は当該単ドメイン抗体の35b番(Kabatナンバリング)アミノ酸より運搬部分側、好ましくは、当該単ドメイン抗体の95番(Kabatナンバリング)アミノ酸より運搬部分側、より好ましくは、当該単ドメイン抗体の109番(Kabatナンバリング)アミノ酸より運搬部分側に位置する。別の具体的な実施態様において、単ドメイン抗体はVLから作製された単ドメイン抗体であり、プロテアーゼ切断配列は当該単ドメイン抗体の32番(Kabatナンバリング)アミノ酸より運搬部分側、好ましくは、当該単ドメイン抗体の91番(Kabatナンバリング)アミノ酸より運搬部分側、より好ましくは、当該単ドメイン抗体の104番(Kabatナンバリング)アミノ酸より運搬部分側に位置する。
【0176】
本発明のいくつかの実施態様において、運搬部分は抗体定常領域を含み、抗原結合ドメインは単ドメイン抗体であり、当該抗体定常領域と当該単ドメイン抗体がリンカーを介してまたはリンカーを介さずに融合されている。より具体的な一実施態様において、抗体定常領域のN末端と当該単ドメイン抗体のC末端がリンカーを介してまたはリンカーを介さずに融合されている。別の具体的な一実施態様において、抗体定常領域のC末端と当該単ドメイン抗体のN末端がリンカーを介してまたはリンカーを介さずに融合されている。
特定の実施態様において、プロテアーゼ切断配列は運搬部分に含まれる抗体定常領域内に位置する。より具体的な実施態様において、プロテアーゼ切断配列は、抗体重鎖定常領域中の140番(EUナンバリング)アミノ酸より単ドメイン抗体側、好ましくは、抗体重鎖定常領域中の122番(EUナンバリング)アミノ酸より単ドメイン抗体側に位置する。別の具体的な実施態様において、プロテアーゼ切断配列は抗体軽鎖定常領域中の130番(EUナンバリング)(Kabatナンバリング130番)アミノ酸より抗原結合ドメイン側、好ましくは、抗体軽鎖定常領域中の113番(EUナンバリング)(Kabatナンバリング113番)アミノ酸より抗原結合ドメイン側に位置する。
特定の実施態様において、プロテアーゼ切断配列は単ドメイン抗体内に位置する。より具体的な実施態様において、単ドメイン抗体はVHから作製された単ドメイン抗体またはVHHであり、プロテアーゼ切断配列は当該単ドメイン抗体の35b番(Kabatナンバリング)アミノ酸より抗体定常領域側、好ましくは、当該単ドメイン抗体の95番(Kabatナンバリング)アミノ酸より抗体定常領域側、より好ましくは、当該単ドメイン抗体の109番(Kabatナンバリング)アミノ酸より抗体定常領域側に位置する。別の具体的な実施態様において、単ドメイン抗体はVLから作製された単ドメイン抗体であり、プロテアーゼ切断配列は当該単ドメイン抗体の32番(Kabatナンバリング)アミノ酸より抗体定常領域側、好ましくは、当該単ドメイン抗体の91番(Kabatナンバリング)アミノ酸より抗体定常領域側、より好ましくは、当該単ドメイン抗体の104番(Kabatナンバリング)アミノ酸より抗体定常領域側に位置する。
特定の実施態様において、プロテアーゼ切断配列は抗原結合ドメインと運搬部分の境界付近に位置する。抗原結合ドメインと運搬部分の境界付近とは、抗原結合ドメインと運搬部分が連結されている部位の前後で、抗原結合ドメインの二次構造に大きく影響しない部分を言う。
より具体的な実施態様において、抗原結合ドメインは運搬部分中に含まれている抗体定常領域と連結されており、プロテアーゼ切断配列は抗原結合ドメインと抗体定常領域の境界付近に位置する。抗原結合ドメインと抗体定常領域の境界付近は、抗原結合ドメインと抗体重鎖定常領域の境界付近、または抗原結合ドメインと抗体軽鎖定常領域の境界付近を指すことができる。抗原結合ドメインがVHから作製された単ドメイン抗体またはVHHであり、抗体重鎖定常領域と繋がれている場合、抗原結合ドメインと抗体定常領域の境界付近とは、単ドメイン抗体101番(Kabatナンバリング)のアミノ酸から抗体重鎖定常領域140番(EUナンバリング)のアミノ酸の間を指すことができ、好ましくは単ドメイン抗体109番(Kabatナンバリング)のアミノ酸から抗体重鎖定常領域122番(EUナンバリング)のアミノ酸の間を指すことが出来る。抗原結合ドメインがVHから作製された単ドメイン抗体またはVHHであり、抗体軽鎖定常領域と繋がれている場合、抗原結合ドメインと抗体軽鎖定常領域の境界付近とは、単ドメイン抗体101番(Kabatナンバリング)のアミノ酸から抗体軽鎖定常領域130番(EUナンバリング)(Kabatナンバリング130番)のアミノ酸の間を指すことができ、好ましくは単ドメイン抗体109番(Kabatナンバリング)のアミノ酸から抗体軽鎖定常領域113番(EUナンバリング)(Kabatナンバリング113番)のアミノ酸の間を指すことが出来る。抗原結合ドメインがVLから作製された単ドメイン抗体の場合、抗原結合ドメインと抗体定常領域の境界付近とは、単ドメイン抗体96番(Kabatナンバリング)から、好ましくは単ドメイン抗体104番(Kabatナンバリング)からである。
【0177】
本発明のいくつかの実施態様においては、ポリペプチドはIgG抗体様分子である。このような実施態様の例として、それだけに限定されないが、例えば、運搬部分がIgG抗体定常領域を含み、抗原結合ドメインである単ドメイン抗体がIgG抗体のVHを取って代わり、VLにより抗原結合活性が抑制される実施態様、または運搬部分がIgG抗体定常領域を含み、抗原結合ドメインである単ドメイン抗体がIgG抗体のVLを取って代わり、VHにより抗原結合活性が抑制される実施態様、または運搬部分がIgG抗体定常領域を含み、抗原結合ドメインである単ドメイン抗体がIgG抗体のVH/VLの一方を取って代わり、抗原結合ドメインの抗原結合活性を抑制する別の単ドメイン抗体がIgG抗体のVH/VLの他方を取って代わる実施態様等が挙げられる。
【0178】
本明細書で用いられる用語「IgG抗体様分子」は、IgG抗体のような定常ドメインまたは定常領域の構造と実質的に類似する部分と、IgG抗体のような可変ドメインまたは可変領域の構造と実質的に類似する部分を有し、IgG抗体と実質的に類似した立体構造を持つ分子を定義するために用いられる。IgG抗体様分子中の抗体CH1に類似したドメインとCLに類似したドメインは、お互いに互換的に使用することができ、即ち、両ドメイン間はIgG抗体のCH1とCLのような相互作用を持つ限り、抗体ヒンジ領域に類似した部分と連結されているドメインは抗体CH1ドメインであっても抗体CLドメインであっても良い。ただし、本明細書の「IgG抗体様分子」は、IgG抗体と類似する構造を保持したまま抗原結合活性を発揮することに限定されない。
【0179】
ポリペプチド中に含まれる抗原結合ドメインは、一つであっても複数であっても良い。複数の抗原結合ドメインの抗原結合活性をそれぞれ抑制する抑制ドメインも、一つであっても複数であっても良い。複数の抗原結合ドメインがそれぞれ抑制ドメインと会合を形成していても良い。複数の抗原結合ドメインがそれぞれ運搬部分と融合していても良い。複数の抗原結合ドメインがそれぞれポリペプチドから遊離することが可能であっても良い。複数の抗原結合ドメインを遊離させるための切断サイトは、各抗原結合ドメインと対応して複数であっても良い。
【0180】
ポリペプチドがIgG抗体様分子である場合、
図7に示されたような、IgG抗体の二つの可変領域に相当する部分にそれぞれ抗原結合ドメインを設ける実施態様は、本発明に触れた当業者であれば理解できる実施態様であろう。その両腕に組み込まれた抗原結合ドメインは、同様の抗原結合特異性を持っていても、異なる抗原結合特異性を持っていても、本発明に触れた当業者であれば当然理解できる実施態様であり、本発明の範囲に逸脱していないことは明らかである。
【0181】
本発明のいくつかの実施態様において、抗原結合ドメインが更に第2の抗原結合ドメインと連結されている。第2の抗原結合ドメインの例として、それだけに限定されないが、例えば、単ドメイン抗体、抗体断片、生体内に存在する細胞膜タンパクであるAvimerに含まれる35アミノ酸程度のAドメインと呼ばれるモジュール(国際公開WO2004/044011、WO2005/040229)、細胞膜に発現する糖たんぱく質であるfibronectin中のタンパク質に結合するドメインである10Fn3ドメインを含むAdnectin(国際公開WO2002/032925)、ProteinAの58アミノ酸からなる3つのヘリックスの束(bundle)を構成するIgG結合ドメインをscaffoldとするAffibody(国際公開WO1995/001937)、33アミノ酸残基を含むターンと2つの逆並行ヘリックスおよびループのサブユニットが繰り返し積み重なった構造を有するアンキリン反復(ankyrin repeat:AR)の分子表面に露出する領域であるDARPins(Designed Ankyrin Repeat proteins)(国際公開WO2002/020565)、好中球ゲラチナーゼ結合リポカリン(neutrophil gelatinase-associated lipocalin(NGAL))等のリポカリン分子において高度に保存された8つの逆並行ストランドが中央方向にねじれたバレル構造の片側を支える4つのループ領域であるAnticalin等(国際公開WO2003/029462)、ヤツメウナギ、ヌタウナギなど無顎類の獲得免疫システムとしてイムノグロブリンの構造を有さない可変性リンパ球受容体(variable lymphocyte receptor(VLR))のロイシン残基に富んだリピート(leucine-rich-repeat(LRR))モジュールが繰り返し積み重なった馬てい形の構造の内部の並行型シート構造のくぼんだ領域(国際公開WO2008/016854)等が挙げられる。好ましい実施態様においては、第2の抗原結合ドメインは、抗原結合ドメインと異なる抗原結合特異性を有する。好ましい実施態様においては、連結された抗原結合ドメインと第2の抗原結合ドメインの分子量は60kDa以下である。
より具体的ないくつかの実施態様において、抗原結合ドメインと第2の抗原結合ドメインはそれぞれ異なる抗原結合特異性を有する単ドメイン抗体であり、連結された抗原結合ドメインと第2の抗原結合ドメインはポリペプチドから遊離可能であり、遊離後の抗原結合ドメインと第2の抗原結合ドメインが二重特異的抗原結合分子を形成している。このような二重特異的抗原結合分子の例として、それだけに限定されないが、例えば、抗原結合ドメインが標的細胞表面抗原に特異的に結合し、第2の抗原結合ドメインは免疫細胞表面抗原に特異的に結合する二重特異的抗原結合分子、抗原結合ドメインと第2の抗原結合ドメインが同じ抗原の異なるサブユニットに結合する二重特異的抗原結合分子、抗原結合ドメインと第2の抗原結合ドメインが同じ抗原中の異なるエピトープに結合する二重特異的抗原結合分子等が挙げられる。このような二重特異的抗原結合分子は、標的細胞に起因する疾患の治療において、免疫細胞を標的細胞の近傍までにリクルーティングすることができ、有用であると考えられる。
第2の抗原結合ドメインの抗原結合活性は、運搬部分により抑制されていても、運搬部分により抑制されていなくても良い。また、第2の抗原結合ドメインは、運搬部分の一部構造と会合を形成していても、形成していなくても良い。特に、抗原結合ドメインと第2の抗原結合ドメインが異なる抗原結合特異性を有する場合、例えば、
図8に示すように、第2の抗原結合ドメインの抗原結合活性が抑制されていなくても、また第2の抗原結合ドメインが運搬部分の一部構造と会合を形成していなくても、抗原結合ドメインが遊離しない状態において、抗原結合ドメインの抗原結合活性を発揮することが出来ず、抗原結合ドメインと第2の抗原結合ドメインが連結されている二重特異的抗原結合分子は、二重特異的に2種類の抗原に結合する機能を発揮できない。
図8において、抗原結合ドメインが更に第2の抗原結合ドメインと連結されている一態様を例示している。
【0182】
本明細書において、用語「特異性」とは、特異的に結合する分子の一方の分子がその一または複数の結合する相手方の分子以外の分子に対しては実質的に結合しない性質をいう。抗原結合ドメインが特定の抗原中に含まれるエピトープに特異性を有する場合にも用いられる。また、抗原結合ドメインがある抗原中に含まれる複数のエピトープのうち特定のエピトープに対して特異性を有する場合にも用いられる。ここで、実質的に結合しないとは結合活性の項で記載される方法に準じて決定され、前記相手方以外の分子に対する特異的結合分子の結合活性が、前記相手方の分子に対する結合活性の80%以下、通常50%以下、好ましくは30%以下、特に好ましくは15%以下の結合活性を示すことをいう。
【0183】
また本発明は、本発明のポリペプチドおよび医薬的に許容される担体を含む医薬組成物(薬剤)に関する。
【0184】
本明細書で用いられる「治療」(および、その文法上の派生語、例えば「治療する」、「治療すること」など)は、治療される個体の自然経過を改変することを企図した臨床的介入を意味し、予防のためにも、臨床的病態の経過の間にも実施され得る。治療の望ましい効果は、それだけに限定されるものではないが、疾患の発生または再発の防止、症状の軽減、疾患による任意の直接的または間接的な病理的影響の減弱、転移の防止、疾患の進行速度の低減、疾患状態の回復または緩和、および寛解または改善された予後を含む。いくつかの実施態様において、本発明のポリペプチドは、疾患の発症を遅らせる、または疾患の進行を遅くするために用いられる。
【0185】
本発明において医薬組成物とは、通常、疾患の治療もしくは予防、あるいは検査・診断のための薬剤をいう。また、本発明において、「ポリペプチド含む医薬組成物」との用語は、「ポリペプチドを治療対象に投与することを含む疾患の治療方法」と言い換えることも可能であるし、「疾患を治療するための医薬の製造におけるポリペプチドの使用」と言い換えることも可能である。また、「ポリペプチドを含む医薬組成物」との用語を、「疾患を治療するためのポリペプチドの使用」と言い換えることも可能である。
【0186】
本発明の医薬組成物は、当業者に公知の方法を用いて製剤化され得る。例えば、水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、又は懸濁液剤の注射剤の形で非経口的に使用され得る。例えば、薬理学上許容される担体もしくは媒体、具体的には、滅菌水や生理食塩水、植物油、乳化剤、懸濁剤、界面活性剤、安定剤、香味剤、賦形剤、ベヒクル、防腐剤、結合剤等と適宜組み合わせて、一般に認められた製薬実施に要求される単位用量形態で混和することによって製剤化され得る。これら製剤における有効成分量は、指示された範囲の適当な容量が得られるように設定される。
【0187】
注射のための無菌組成物は注射用蒸留水のようなベヒクルを用いて通常の製剤実施にしたがって処方され得る。注射用の水溶液としては、例えば生理食塩水、ブドウ糖やその他の補助薬(例えばD-ソルビトール、D-マンノース、D-マンニトール、塩化ナトリウム)を含む等張液が挙げられる。適切な溶解補助剤、例えばアルコール(エタノール等)、ポリアルコール(プロピレングリコール、ポリエチレングリコール等)、非イオン性界面活性剤(ポリソルベート80(TM)、HCO-50等)が併用され得る。
【0188】
油性液としてはゴマ油、大豆油が挙げられ、溶解補助剤として安息香酸ベンジル及び/またはベンジルアルコールも併用され得る。また、緩衝剤(例えば、リン酸塩緩衝液及び酢酸ナトリウム緩衝液)、無痛化剤(例えば、塩酸プロカイン)、安定剤(例えば、ベンジルアルコール及びフェノール)、酸化防止剤と配合され得る。調製された注射液は通常、適切なアンプルに充填される。
【0189】
本発明の医薬組成物は、好ましくは非経口投与により投与される。例えば、注射剤型、経鼻投与剤型、経肺投与剤型、経皮投与型の組成物が投与される。例えば、静脈内注射、筋肉内注射、腹腔内注射、皮下注射などにより全身または局部的に投与され得る。
【0190】
投与方法は、患者の年齢、症状により適宜選択され得る。ポリペプチドを含有する医薬組成物の投与量は、例えば、一回につき体重1 kgあたり0.0001 mgから1000 mgの範囲に設定され得る。または、例えば、患者あたり0.001~100000 mgの投与量が設定され得るが、本発明はこれらの数値に必ずしも制限されるものではない。投与量及び投与方法は、患者の体重、年齢、症状などにより変動するが、当業者であればそれらの条件を考慮し適当な投与量及び投与方法を設定することが可能である。
【0191】
また、本発明は、抑制ドメインを有する運搬部分と抗原結合ドメインとを含むポリペプチドを製造する方法にも関する。
本発明のポリペプチドを製造する一つの方法として、抗原結合活性を有する抗原結合ドメインを取得し、当該抗原結合ドメインの抗原結合活性が抑制ドメインにより抑制されるように、抗原結合ドメインと運搬部分を連結させてポリペプチド前駆体を形成させ、当該ポリペプチド前駆体に更に切断サイトを挿入、もしくは当該ポリペプチド前駆体の一部を切断サイトに改変する方法がある。ポリペプチド前駆体に切断サイトを導入できれば良く、切断サイトの導入方法は、切断サイトの挿入とポリペプチド前駆体の一部の改変のどちらでも良い。更に、両方の手段を合わせて、ポリペプチド前駆体に改変サイトを導入することも出来ることについては、本明細書に触れた当業者であれば明らかであり、本発明の範囲を逸脱しないであろう。
また、本発明のポリペプチドを製造する他の方法として、抗原結合活性を有する抗原結合ドメインを取得し、当該抗原結合ドメインの抗原結合活性が抑制ドメインにより抑制されるように、抗原結合ドメインと運搬部分を切断サイトを介して連結させてポリペプチドを形成させる方法もある。抗原結合ドメインと運搬部分を切断サイトを介して連結させるとき、抗原結合ドメインと運搬部分の間に切断サイトが挟まれる形でも良く、抗原結合ドメインの一部または/および運搬部分の一部を改変して切断サイトの一部として使用する形でも良い。
【0192】
アミノ酸配列Aをアミノ酸配列B中に「挿入」することは、アミノ酸配列Bを欠損させず二つの部分に分け、二つの部分の間をアミノ酸配列Aで繋げること(即ち、「アミノ酸配列B前半-アミノ酸配列A-アミノ酸配列B後半」のようなアミノ酸配列を新たに作ること)を指す。アミノ酸配列Aをアミノ酸配列B中に「導入」することは、アミノ酸配列Bを二つの部分に分け、二つの部分の間をアミノ酸配列Aで繋げることを指し、前記アミノ酸配列Aをアミノ酸配列B中に「挿入」すること以外に、アミノ酸配列Aと隣接するアミノ酸配列Bのアミノ酸残基を始めとする一つまたは複数のアミノ酸残基を欠損させてからアミノ酸配列Aで二つの部分を繋げること(即ち、アミノ酸配列Bの一部をアミノ酸配列Aに置き換えること)も可能である。
【0193】
抗原結合ドメインとして単ドメイン抗体を使用し、切断サイトとしてプロテアーゼ切断配列を使用する実施態様について、以下のポリペプチド製造方法を記載する。
【0194】
本発明の一実施態様において、抑制ドメインを有する運搬部分と抗原結合ドメインを含むポリペプチドの製造方法は、以下の工程:
(a) 標的抗原に結合する単ドメイン抗体を取得する工程;
(b) (a)工程で取得した単ドメイン抗体の抗原結合活性が運搬部分の抑制ドメインに抑制されるように、当該単ドメイン抗体と当該運搬部分を連結させてポリペプチド前駆体を形成させる工程;
(c) 前記ポリペプチド前駆体にプロテアーゼ切断配列を導入する工程;
を含む製造方法である。
【0195】
本発明の一実施態様において、抑制ドメインを有する運搬部分と抗原結合ドメインを含むポリペプチドの製造方法は、以下の工程:
(a) 標的抗原に結合する単ドメイン抗体を取得する工程;
(b) (a)工程で取得した単ドメイン抗体の抗原結合活性が運搬部分の抑制ドメインに抑制されるように、当該単ドメイン抗体と当該運搬部分を連結させてポリペプチド前駆体を形成させる工程;
(c) 前記単ドメイン抗体と前記運搬部分との境界付近にプロテアーゼ切断配列を導入する工程;
を含む製造方法である。
【0196】
本発明の一実施態様において、抑制ドメインを有する運搬部分と抗原結合ドメインを含むポリペプチドの製造方法は、以下の工程:
(a) 標的抗原に結合する単ドメイン抗体を取得する工程;
(b) (a)工程で取得した単ドメイン抗体の抗原結合活性が運搬部分の抑制ドメインに抑制されるように、当該単ドメイン抗体を、プロテアーゼ切断配列を介して当該運搬部分と連結させてポリペプチドを形成させる工程;
を含む製造方法である。
【0197】
特定の実施態様において、抑制ドメインを有する運搬部分と抗原結合ドメインを含むポリペプチドの製造方法は、更に以下の工程:
(d) 前記ポリペプチドまたは前記ポリペプチド前駆体中に組み込まれた前記単ドメイン抗体の前記標的抗原に対する結合活性が弱められ、もしくは失われていることを確認する工程;
を含む製造方法である。本発明において「結合活性が弱められ」ているとは、連結前と比較して標的抗原に対する結合活性が減少していることを意味し、減少の程度は問わない。
【0198】
特定の実施態様において、抑制ドメインを有する運搬部分と抗原結合ドメインを含むポリペプチドの製造方法は、更に以下の工程:
(e) 前記プロテアーゼ切断配列をプロテアーゼで切断することで前記単ドメイン抗体を遊離させ、遊離の単ドメイン抗体が抗原に結合することを確認する工程;
を含む製造方法である。
【0199】
本発明の一実施態様において、抑制ドメインを有する運搬部分と抗原結合ドメインを含みIgG抗体様分子であるポリペプチドの製造方法は、以下の工程:
(a) 標的抗原に結合する単ドメイン抗体を取得する工程;
(b) (a)工程で取得した単ドメイン抗体の抗原結合活性が抑制されるように、当該単ドメイン抗体をIgG抗体のVHの代わりとしてVLと会合させ 、または当該単ドメイン抗体をIgG抗体のVLの代わりとしてVHと会合させることによって、前記単ドメイン抗体が導入されたIgG抗体様分子前駆体を形成させる工程;
(c) 前記単ドメイン抗体が導入されたIgG抗体様分子前駆体にプロテアーゼ切断配列を導入する工程;
を含む製造方法である。
【0200】
本発明の一実施態様において、抑制ドメインを有する運搬部分と抗原結合ドメインを含みIgG抗体様分子であるポリペプチドの製造方法は、以下の工程:
(a) 標的抗原に結合する単ドメイン抗体を取得する工程;
(b) (a)工程で取得した単ドメイン抗体の抗原結合活性が抑制されるように、当該単ドメイン抗体をIgG抗体のVHの代わりとしてVLと会合させ 、または当該単ドメイン抗体をIgG抗体のVLの代わりとしてVHと会合させることによって、前記単ドメイン抗体が導入されたIgG抗体様分子前駆体を形成させる工程;
(c) 前記単ドメイン抗体と前記IgG抗体様分子前駆体中の抗体定常領域との境界付近にプロテアーゼ切断配列を導入する工程;
を含む製造方法である。
【0201】
本発明の一実施態様において、抑制ドメインを有する運搬部分と抗原結合ドメインを含みIgG抗体様分子であるポリペプチドの製造方法は、以下の工程:
(a) 標的抗原に結合する単ドメイン抗体を取得する工程;
(b) (a)工程で取得した単ドメイン抗体の抗原結合活性が抑制されるように、当該単ドメイン抗体をIgG抗体VHまたはVLの代わりとして、プロテアーゼ切断配列を介してIgG抗体の重鎖定常領域または軽鎖定常領域と連結させ、前記単ドメイン抗体が導入されたIgG抗体様分子を形成させる工程;
を含む製造方法である。
【0202】
特定の実施態様において、抑制ドメインを有する運搬部分と抗原結合ドメインを含みIgG抗体様分子であるポリペプチドの製造方法は、更に以下の工程:
(d) 前記IgG抗体様分子または前記IgG抗体様分子前駆体に導入された前記単ドメイン抗体の前記標的抗原に対する結合活性が弱められ、もしくは失われていることを確認する工程;
を含む製造方法である。本発明において「結合活性が弱められ」ているとは、会合前または連結前と比較して標的抗原に対する結合活性が減少していることを意味し、減少の程度は問わない。
【0203】
特定の実施態様において、抑制ドメインを有する運搬部分と抗原結合ドメインを含みIgG抗体様分子であるポリペプチドの製造方法は、更に以下の工程:
(e) 前記プロテアーゼ切断配列をプロテアーゼで切断することで前記単ドメイン抗体を遊離させ、遊離の単ドメイン抗体が前記標的抗原に結合することを確認する工程;
を含む製造方法である。
【0204】
抑制ドメインとしてVH/VL/VHHを使用する場合、単ドメイン抗体の抗原結合活性を運搬部分の抑制ドメインで抑制させる方法として、単ドメイン抗体とVH/VL/VHHを会合させる方法がある。用意した単ドメイン抗体の抗原結合活性を抑制するVH/VL/VHHは、既知のVH/VL/VHHを当該単ドメイン抗体と会合させ、会合前後の単ドメイン抗体の抗原結合活性を比較することでスクリーニングできる。
また、単ドメイン抗体の抗原結合活性を特定のVH/VL/VHHで抑制させる別の方法として、単ドメイン抗体中の、VH/VL/VHHとの会合に関与しているアミノ酸残基を置換して会合を促進すること、もしくはそれらのアミノ酸残基が最初から会合を促進できるアミノ酸である単ドメイン抗体を使用することにより、会合前後の抗原結合活性の差が所望のレベルにある単ドメイン抗体/抑制ドメインペアを用意することもできる。
【0205】
本発明の一実施態様において、抑制ドメインを有する運搬部分と抗原結合ドメインを含むIgG抗体様分子ポリペプチドの製造方法は、以下の工程:
(a) 単ドメイン抗体中の、抗体VHとの会合に関与するアミノ酸残基を置換し、または単ドメイン抗体中の、抗体VLとの会合に関与するアミノ酸残基を置換し、当該単ドメイン抗体の標的抗原に対する結合活性を保持する改変単ドメイン抗体を作製する工程;
(b) (a)工程で作製した改変単ドメイン抗体の抗原結合活性を抑制するように、当該改変単ドメイン抗体を抗体VHと会合させ、または当該改変単ドメイン抗体を抗体VLと会合させることによって、当該改変単ドメイン抗体が導入されたIgG抗体様分子前駆体を形成させる工程;
(c) 前記改変単ドメイン抗体が導入されたIgG抗体様分子前駆体にプロテアーゼ切断配列を導入する工程;
を含む製造方法である。
【0206】
本発明の一実施態様において、抑制ドメインを有する運搬部分と抗原結合ドメインを含みIgG抗体様分子であるポリペプチドの製造方法は、以下の工程:
(a) 単ドメイン抗体中の、抗体VHとの会合に関与するアミノ酸残基を置換し、または単ドメイン抗体中の、抗体VLとの会合に関与するアミノ酸残基を置換し、当該単ドメイン抗体の標的抗原に対する結合活性を保持する改変単ドメイン抗体を作製する工程;
(b) (a)工程で作製した改変単ドメイン抗体の抗原結合活性を抑制するように、当該改変単ドメイン抗体を抗体VHと会合させ、または当該改変単ドメイン抗体を抗体VLと会合させることによって、当該改変単ドメイン抗体が導入されたIgG抗体様分子前駆体を形成させる工程;
(c) 前記改変単ドメイン抗体と前記IgG抗体様分子前駆体の定常領域との境界付近にプロテアーゼ切断配列を導入する工程;
を含む製造方法である。
【0207】
本発明の一実施態様において、抑制ドメインを有する運搬部分と抗原結合ドメインを含みIgG抗体様分子であるポリペプチドの製造方法は、以下の工程:
(a) 単ドメイン抗体中の、抗体VHとの会合に関与するアミノ酸残基を置換し、または単ドメイン抗体中の、抗体VLとの会合に関与するアミノ酸残基を置換し、当該単ドメイン抗体の標的抗原に対する結合活性を保持する改変単ドメイン抗体を作製する工程;
(b) (a)工程で作製した改変単ドメイン抗体の抗原結合活性を抑制するように、当該改変単ドメイン抗体をプロテアーゼ切断配列を介してIgG抗体の重鎖定常領域と連結させ、または当該改変単ドメイン抗体をプロテアーゼ切断配列を介してIgG抗体の軽鎖定常領域と連結させ、当該改変単ドメイン抗体が導入されたIgG抗体様分子を形成させる工程;
を含む製造方法である。
【0208】
特定の実施態様において、抑制ドメインを有する運搬部分と抗原結合ドメインを含みIgG抗体様分子であるポリペプチドの製造方法は、更に以下の工程:
(d) 前記IgG抗体様分子または前記IgG抗体様分子前駆体に導入された前記改変単ドメイン抗体の前記標的抗原に対する結合活性が弱められ、もしくは失われていることを確認する工程;
を含む製造方法である。本発明において「結合活性が弱められ」ているとは、会合前または連結前と比較して標的抗原に対する結合活性が減少していることを意味し、減少の程度は問わない。
【0209】
特定の実施態様において、抑制ドメインを有する運搬部分と抗原結合ドメインを含みIgG抗体様分子であるポリペプチドの製造方法は、更に以下の工程:
(e) 前記プロテアーゼ切断配列をプロテアーゼで切断することで前記改変単ドメイン抗体を遊離させ、遊離の改変単ドメイン抗体が前記標的抗原に結合することを確認する工程;
を含む製造方法である。
【0210】
また、本発明は、抑制ドメインを有する運搬部分と抗原結合ドメインを含むポリペプチドをエンコードするポリヌクレオチドにも関する。
【0211】
本発明におけるポリヌクレオチドは、通常、適当なベクターへ担持(挿入)され、宿主細胞へ導入される。該ベクターとしては、挿入した核酸を安定に保持するものであれば特に制限されず、例えば宿主に大腸菌を用いるのであれば、クローニング用ベクターとしてはpBluescriptベクター(Stratagene社製)などが好ましいが、市販の種々のベクターを利用することができる。本発明のポリペプチドを生産する目的においてベクターを用いる場合には、特に発現ベクターが有用である。発現ベクターとしては、試験管内、大腸菌内、培養細胞内、生物個体内でポリペプチドを発現するベクターであれば特に制限されないが、例えば、試験管内発現であればpBESTベクター(プロメガ社製)、大腸菌であればpETベクター(Invitrogen社製)、培養細胞であればpME18S-FL3ベクター(GenBank Accession No. AB009864)、生物個体であればpME18Sベクター(Mol Cell Biol. 8:466-472(1988))などが好ましい。ベクターへの本発明のDNAの挿入は、常法により、例えば、制限酵素サイトを用いたリガーゼ反応により行うことができる(Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley & Sons.Section 11.4-11.11)。
【0212】
上記宿主細胞としては特に制限はなく、目的に応じて種々の宿主細胞が用いられる。ポリペプチドを発現させるための細胞としては、例えば、細菌細胞(例:ストレプトコッカス、スタフィロコッカス、大腸菌、ストレプトミセス、枯草菌)、真菌細胞(例:酵母、アスペルギルス)、昆虫細胞(例:ドロソフィラS2、スポドプテラSF9)、動物細胞(例:CHO、COS、HeLa、C127、3T3、BHK、HEK293、Bowes メラノーマ細胞)および植物細胞を例示することができる。宿主細胞へのベクター導入は、例えば、リン酸カルシウム沈殿法、電気パルス穿孔法(Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley & Sons.Section 9.1-9.9)、リポフェクタミン法(GIBCO-BRL社製)、マイクロインジェクション法などの公知の方法で行うことが可能である。
【0213】
宿主細胞において発現したポリペプチドを小胞体の内腔に、細胞周辺腔に、または細胞外の環境に分泌させるために、適当な分泌シグナルを目的のポリペプチドに組み込むことができる。これらのシグナルは目的のポリペプチドに対して内因性であっても、異種シグナルであってもよい。
【0214】
上記製造方法におけるポリペプチドの回収は、本発明のポリペプチドが培地に分泌される場合は、培地を回収する。本発明のポリペプチドが細胞内に産生される場合は、その細胞をまず溶解し、その後にポリペプチドを回収する。
【0215】
組換え細胞培養物から本発明のポリペプチドを回収し精製するには、硫酸アンモニウムまたはエタノール沈殿、酸抽出、アニオンまたはカチオン交換クロマトグラフィー、ホスホセルロースクロマトグラフィー、疎水性相互作用クロマトグラフィー、アフィニティクロマトグラフィー、ヒドロキシルアパタイトクロマトグラフィーおよびレクチンクロマトグラフィーを含めた公知の方法を用いることができる。
【0216】
また、本発明のいつくかの実施態様に用いられる抗原結合ドメインとして単ドメイン抗体が挙げられ、それらの実施態様において、当該単ドメイン抗体は、特定のVLと会合することで、もしくは特定のVHと会合することで、もしくは特定のVHHと会合することで抗原結合活性が抑制される。本発明はまた、そのような単ドメイン抗体をスクリーニングする方法にも関する。
【0217】
単ドメイン抗体の抗原結合活性を抑制するVL/VH/VHHとして、配列既知のVL/VH/VHH、例えば配列がIMGTやKabatデータベースに登録されているものを使用することが出来る。また、新たにVL/VH/VHHをヒト抗体ライブラリ等から同定した配列も使用できる。これらの配列を組み合わせてタンパク質を調製し、前記の方法を用いて結合活性を測定することで、単ドメイン抗体の結合活性を抑制するVL/VH/VHHを選定することができる。
【0218】
本発明のいくつかの実施態様において、単ドメイン抗体の抗原結合活性を抑制するVL/VH/VHHとして、ヒト抗体ジャームライン配列を有するものを使用できる。例えば、抑制ドメインとしてVLを使用する場合、kappa鎖のフレームワーク配列を有するVL、lamda鎖のフレームワーク配列を有するVLを使用することができる。また、kappa鎖のフレームワーク配列とlamda鎖のフレームワーク配列を組み合わせたフレームワーク配列のような、改変されたフレームワーク配列を有するVLを使用することもできる。
【0219】
本発明の一実施態様において、以下の工程:
(a) 標的抗原結合活性を有する単ドメイン抗体を取得する工程;
(b) (a)工程で取得した単ドメイン抗体を特定のVLと会合させる工程;
(c) (b)工程で特定のVLと会合させた前記単ドメイン抗体の前記抗原に対する結合活性が弱められ、もしくは失われていることを確認する工程;
を含む、特定のVLと会合することで抗原結合活性が抑制される単ドメイン抗体をスクリーニングする方法を提供する。本発明において「結合活性が弱められ」ているとは、会合前と比較して標的抗原に対する結合活性が減少していることを意味し、減少の程度は問わない。
【0220】
本発明の一実施態様において、以下の工程:
(a) 標的抗原結合活性を有する単ドメイン抗体を取得する工程;
(b) (a)工程で取得した単ドメイン抗体を特定のVHと会合させる工程;
(c) (b)工程で特定のVHと会合させた前記単ドメイン抗体の前記抗原に対する結合活性が弱められ、もしくは失われていることを確認する工程;
を含む、特定のVHと会合することで抗原結合活性が抑制される単ドメイン抗体をスクリーニングする方法を提供する。本発明において「結合活性が弱められ」ているとは、会合前と比較して標的抗原に対する結合活性が減少していることを意味し、減少の程度は問わない。
【0221】
本発明の一実施態様において、以下の工程:
(a) 標的抗原結合活性を有する単ドメイン抗体を取得する工程;
(b) (a)工程で取得した単ドメイン抗体を特定のVHHと会合させる工程;
(c) (b)工程で特定のVHHと会合させた前記単ドメイン抗体の前記抗原に対する結合活性が弱められ、もしくは失われていることを確認する工程;
を含む、特定のVHHと会合することで抗原結合活性が抑制される単ドメイン抗体をスクリーニングする方法を提供する。本発明において「結合活性が弱められ」ているとは、会合前と比較して標的抗原に対する結合活性が減少していることを意味し、減少の程度は問わない。
【0222】
単ドメイン抗体と特定のVL/VH/VHHを会合させる方法の例として、完全抗体、Fab、Fab'、(Fab)2等VHとVL両方を含む抗体または抗体断片中の、VHとVLの一方の配列の代わりに単ドメイン抗体の配列を使用する分子を設計し、当該配列を有するポリペプチドを発現させる方法が挙げられる。
【0223】
また、本発明は、特定のVLと会合することで、もしくは特定のVHと会合することで、もしくは特定のVHHと会合することで抗原結合活性が抑制される単ドメイン抗体をスクリーニングすることに加え、特定のVLとの会合を促進することで、もしくは特定のVHとの会合を促進することで、もしくは特定のVHHとの会合を促進することで抗原結合活性が抑制される単ドメイン抗体を製造する方法にも関する。
【0224】
本発明の一実施態様において、以下の工程:
(a) 単ドメイン抗体中の、抗体VLとの会合に関与するアミノ酸残基を置換し、当該単ドメイン抗体の標的抗原に対する結合活性を保持する改変単ドメイン抗体を作製する工程;
を含む、特定のVLと会合することで抗原結合活性が抑制される単ドメイン抗体を製造する方法を提供する。
【0225】
特定の実施態様において、更に以下の工程:
(b) (a)工程で作製された改変単ドメイン抗体を特定のVLと会合させる工程;
(c) 当該VLと会合させた前記改変単ドメイン抗体の抗原結合活性が弱められ、もしくは失われていることを確認する工程;
を含む、特定のVLと会合することで抗原結合活性が抑制される単ドメイン抗体を製造する方法を提供する。本発明において「結合活性が弱められ」ているとは、会合前と比較して標的抗原に対する結合活性が減少していることを意味し、減少の程度は問わない。
【0226】
本発明の一実施態様において、以下の工程:
(a) 単ドメイン抗体中の、抗体VHとの会合に関与するアミノ酸残基を置換し、当該単ドメイン抗体の標的抗原に対する結合活性を保持する改変単ドメイン抗体を作製する工程;
を含む、特定のVHと会合することで抗原結合活性が抑制される単ドメイン抗体を製造する方法を提供する。
【0227】
特定の実施態様において、更に以下の工程:
(b) (a)工程で作製された改変単ドメイン抗体を特定のVHと会合させる工程;
(c) 当該VHと会合させた前記改変単ドメイン抗体の抗原結合活性が弱められ、もしくは失われていることを確認する工程;
を含む、特定のVHと会合することで抗原結合活性が抑制される単ドメイン抗体を製造する方法を提供する。本発明において「結合活性が弱められ」ているとは、会合前と比較して標的抗原に対する結合活性が減少していることを意味し、減少の程度は問わない。
【0228】
本発明の一実施態様において、以下の工程:
(a) 単ドメイン抗体中の、VHHとの会合に関与するアミノ酸残基を置換し、当該単ドメイン抗体の標的抗原に対する結合活性を保持する改変単ドメイン抗体を作製する工程;
を含む、特定のVHHと会合することで抗原結合活性が抑制される単ドメイン抗体を製造する方法を提供する。
【0229】
特定の実施態様において、更に以下の工程:
(b) (a)工程で作製された改変単ドメイン抗体を特定のVHHと会合させる工程;
(c) 当該VHHと会合させた前記改変単ドメイン抗体の抗原結合活性が弱められ、もしくは失われていることを確認する工程;
を含む、特定のVHHと会合することで抗原結合活性が抑制される単ドメイン抗体を製造する方法を提供する。本発明において「結合活性が弱められ」ているとは、会合前と比較して標的抗原に対する結合活性が減少していることを意味し、減少の程度は問わない。
【0230】
単ドメイン抗体を特定のVL/VH/VHHと会合させる工程は、完全抗体、Fab、Fab'、(Fab)2等VHとVL両方を含む抗体または抗体断片中の、VHとVLの一方の配列の代わりに単ドメイン抗体の配列を使用するものを設計し、当該配列を有するポリペプチドを発現させる方法により行われる。
【0231】
本発明のある一実施態様によれば、本発明の特定のVL/VH/VHHと会合することで抗原結合活性が抑制されるもしくは失われる単ドメイン抗体は、単ドメイン抗体と第1会合支持ドメインを連結させた融合ポリペプチドを複数含むライブラリから取得され得る。
【0232】
本明細書における「ライブラリ」の実施態様として、特定のVL/VH/VHHと会合することで抗原結合活性が抑制されるもしくは失われる単ドメイン抗体を効率的に取得できるライブラリを提供することが出来る。
【0233】
本明細書において「ライブラリ」とはそれぞれ異なる配列を有する複数の融合ポリペプチド、またはこれらの融合ポリペプチドをコードする核酸若しくはポリヌクレオチドのセットをいう。ライブラリ中に含まれる複数の融合ポリペプチドは単一の配列ではなく、互いに配列の異なる融合ポリペプチドである。
【0234】
本明細書においては、互いに配列の異なる複数の融合ポリペプチドという記載における「互いに配列の異なる」との用語は、ライブラリ中の個々の融合ポリペプチドの配列が相互に異なることを意味する。より好ましくは、ライブラリ中の個々の融合ポリペプチド中の単ドメイン抗体部分の配列が異なることを意味する。すなわち、ライブラリ中における互いに異なる配列の数は、ライブラリ中の配列の異なる独立クローンの数が反映され、「ライブラリサイズ」と指称される場合もある。通常のファージディスプレイライブラリでは106から1012であり、リボゾームディスプレイ法等の公知の技術を適用することによってライブラリサイズを1014まで拡大することが可能である。しかしながら、ファージライブラリのパニング選択時に使用されるファージ粒子の実際の数は、通常、ライブラリサイズよりも10ないし10,000倍大きい。この過剰倍数は、「ライブラリ当量数」とも呼ばれるが、同じアミノ酸配列を有する個々のクローンが10ないし10,000存在し得ることを表す。よって本発明における「互いに配列の異なる」との用語はライブラリ当量数が除外されたライブラリ中の個々のポリペプチドの配列が相互に異なること、より具体的には互いに配列の異なるポリペプチドが106から1014分子、好ましくは107から1012分子存在することを意味する。
【0235】
また、本発明の、複数の融合ポリペプチドから主としてなるライブラリという記載における「複数の」との用語は、例えば本発明のポリペプチド、ポリヌクレオチド分子、ベクターまたはウイルスは、通常、その物質の2つ以上の種類の集合を指す。例えば、ある2つ以上の物質が特定の形質に関して互いに異なるならば、その物質には2種類以上が存在することを表す。例としては、アミノ酸配列中の特定のアミノ酸位置で観察される変異体アミノ酸が挙げられ得る。例えば、表面に露出した非常に多様なアミノ酸位置の特定の変異体アミノ酸以外は実質的に同じ、好ましくは同一の配列である本発明の2つ以上のポリペプチドがある場合、本発明のポリペプチドは複数個存在する。他の例では、表面に露出した非常に多様なアミノ酸位置の特定の変異体アミノ酸をコードする塩基以外は実質的に同じ、好ましくは同一の配列である本発明の2つ以上のポリヌクレオチド分子があるならば、本発明のポリヌクレオチド分子は複数個存在する。
【0236】
結合活性を指標とする融合ポリペプチドのスクリーニング方法として、ファージベクターを利用したパニング法も好適に用いられる。単ドメイン抗体をコードする遺伝子と、IgG抗体CH1ドメインもしくは軽鎖定常領域をコードする遺伝子は、適当な実施態様で連結することによって融合ポリペプチドを形成することができる。融合ポリペプチドをコードする遺伝子をファージベクターに挿入することにより、融合ポリペプチドを表面に発現するファージが取得され得る。このファージと所望の抗原との接触の後に、抗原に結合したファージを回収することによって、目的の結合活性を有する融合ポリペプチドをコードするDNAが回収され得る。この操作を必要に応じて繰り返すことにより、所望の結合活性を有する融合ポリペプチドが濃縮され得る。
【0237】
ファージディスプレイ法以外にも、ライブラリを用いて、パニングにより融合ポリペプチドを取得する技術として、無細胞翻訳系を使用する技術、細胞またはウイルス表面に融合ポリペプチドを提示する技術、エマルジョンを使用する技術等が知られている。例えば、無細胞翻訳系を使用する技術としては、終止コドンの除去等によりリボゾームを介してmRNAと翻訳されたタンパク質の複合体を形成させるリボゾームディスプレイ法、ピューロマイシン等の化合物を用いて遺伝子配列と翻訳されたタンパク質を共有結合させるcDNAディスプレイ法、mRNAディスプレイ法や、核酸に対する結合タンパク質を用いて遺伝子と翻訳されたタンパク質の複合体を形成させるCISディスプレイ法等が使用され得る。また、細胞またはウイルス表面に融合ポリペプチドを提示する技術としては、ファージディスプレイ法以外にも、E. coliディスプレイ法、グラム陽性菌ディスプレイ法、酵母ディスプレイ法、哺乳類細胞ディスプレイ法、ウイルスディスプレイ法等が使用され得る。エマルジョンを使用する技術としては、エマルジョン中に遺伝子及び翻訳関連分子を内包させることによる、インビトロウイルスディスプレイ法等が使用され得る。これらの方法は既に公知である(Nat Biotechnol. 2000 Dec;18(12):1287-92、Nucleic Acids Res. 2006;34(19):e127、Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2806-10、Proc Natl Acad Sci U S A. 2004 Jun 22;101(25):9193-8、Protein Eng Des Sel. 2008 Apr;21(4):247-55、Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):10701-5、MAbs. 2010 Sep-Oct;2(5):508-18、Methods Mol Biol. 2012;911:183-98)。
【0238】
単ドメイン抗体と第1会合支持ドメインを連結させた融合ポリペプチドを複数含むライブラリから、目的とする単ドメイン抗体を取得する方法として、抑制ドメインと第2会合支持ドメインを連結させた会合パートナーを利用することができる。
本明細書において「第1会合支持ドメイン」、「第2会合支持ドメイン」とは、お互いに疎水結合、水素結合、イオン結合等の結合で相互作用し、会合体を形成できるドメインを言う。第1会合支持ドメインと第2会合支持ドメインの好適な例として、それだけに限定されないが、例えば、抗体の軽鎖定常領域(CL)と重鎖定常領域のCH1ドメインが挙げられる。
【0239】
第1会合支持ドメインと第2会合支持ドメインは相互作用するものであり、単ドメイン抗体と抑制ドメインの会合性の程度に関わらず、融合ポリペプチドと会合パートナーが会合を形成できるものである。
【0240】
本発明の別の実施態様において、単ドメイン抗体とIgG抗体軽鎖定常領域とを連結させた融合ポリペプチドを複数含むライブラリであって、前記単ドメイン抗体中には、特定のVL/VH/VHHと会合することで抗原結合活性が抑制されるもしくは失われる単ドメイン抗体を含むライブラリ、及び当該ライブラリから特定のVL/VH/VHHと会合することで抗原結合活性が抑制されるもしくは失われる単ドメイン抗体をスクリーニングする方法が提供される。
【0241】
具体的な一実施態様では、
図9Aの(1)(2)(3)、
図9B、
図9Cに示すように、
(1)単ドメイン抗体と第1会合支持ドメインを連結させた融合ポリペプチドを、ファージディスプレイ等のディスプレイ法でファージ等の表面にディスプレイさせる;
(2)抑制ドメインと第2会合支持ドメインを連結させた会合パートナーを用意し、融合ポリペプチドと会合パートナーを会合させる。この融合ポリペプチドと会合パートナーが会合している状態において、標的抗原に結合しない、もしくは抗原結合活性が一定値以下の融合ポリペプチドを選択する;
(3)(2)で選択した融合ポリペプチド中の単ドメイン抗体と会合パートナー中の抑制ドメインとの会合を解消させ、単ドメイン抗体とが抑制ドメインと会合しない状態で、標的抗原と結合する、もしくは抗原結合活性が一定値以上である融合ポリペプチドを選択する。
ここで、単ドメイン抗体と抑制ドメインの会合を解消する方法として、
図9Bに示す会合パートナーの抑制ドメインと第2会合支持ドメインの境界付近を切断する方法、
図9Cに示す融合ポリペプチドの単ドメイン抗体と第1会合支持ドメインの境界付近を切断する方法等を使用し得る。
【0242】
本発明の更なる実施態様においては、
図9Aから
図9Cで示される単ドメイン抗体と抑制ドメインの会合解消/非解消状態における単ドメイン抗体の結合活性の違いを比較する代わりに、
図9Dで示されるように、単ドメイン抗体と抑制ドメインを同時発現させるとき/抑制ドメインを同時に発現させない状態で単ドメイン抗体を発現させるときの、単ドメイン抗体の結合活性の違いを比較する方法が提供される。
図9D(1)で示されるように、単ドメイン抗体と抑制ドメインを同時に発現させて会合を形成させ、当該状態において抗原と結合しない、もしくは抗原結合活性が一定値以下である単ドメイン抗体を含む融合ポリペプチドを選択し、
図9D(2)/(2')/(2'')で示されるように、抑制ドメインを同時に発現させない状態で単ドメイン抗体を発現させ、当該状態において抗原と結合する、もしくは抗原結合活性が一定値以上である単ドメイン抗体を含む融合ポリペプチドを選択することで、単ドメイン抗体と第1会合支持ドメインを連結させた融合ポリペプチドを複数含むライブラリから、特定の抑制ドメイン、例えばVH/VL/VHH、と会合することで抗原結合活性が抑制されるもしくは失われる単ドメイン抗体をスクリーニングすることが可能である。抑制ドメインを同時に発現させない状態で単ドメイン抗体を発現させ、当該状態において抗原と結合する、もしくは抗原結合活性が一定値以上である単ドメイン抗体を含むポリペプチドを選択し、その後単ドメイン抗体と抑制ドメインを同時に発現させて会合を形成させ、当該状態において抗原と結合しない、もしくは抗原結合活性が一定値以下である単ドメイン抗体を含むポリペプチドを選択する方法でも、単ドメイン抗体と第1会合支持ドメインを連結させた融合ポリペプチドを複数含むライブラリから、特定の抑制ドメイン、例えばVH/VL/VHH、と会合することで抗原結合活性が抑制されるもしくは失われる単ドメイン抗体をスクリーニングすることが可能である。また、
図9D(2)/(2')/(2'')で示されるような、抑制ドメインを同時に発現させない状態で単ドメイン抗体を発現させ(単ドメイン抗体のみを発現させる、または単ドメイン抗体と第1会合支持ドメインと含む融合ポリペプチドのみを発現させる、または単ドメイン抗体と第1会合支持ドメインを含む融合ポリペプチドを第2会合支持ドメインのみと会合させる)、当該状態において抗原と結合する、もしくは抗原結合活性が一定値以上である単ドメイン抗体を含む融合ポリペプチドを選択し、選択された融合ポリペプチドから、
図9D(1)で示されるような、単ドメイン抗体と抑制ドメインを同時に発現させて会合を形成させ、当該状態において抗原と結合しない、もしくは抗原結合活性が一定値以下である単ドメイン抗体を含む融合ポリペプチドを選択することでも、単ドメイン抗体と第1会合支持ドメインを連結させた融合ポリペプチドを複数含むライブラリから、特定の抑制ドメイン、例えばVH/VL/VHH、と会合することで抗原結合活性が抑制されるもしくは失われる単ドメイン抗体をスクリーニングすることが可能である。
「抗原結合活性が一定値以下」とは、例えば、本願明細書で例示される方法で抗原結合活性を測定した時、一定の基準を下回る抗原結合活性を指すことができる。「抗原結合活性が一定値以上」とは、同様に、例えば、本願明細書で例示される方法で抗原結合活性を測定した時、一定の基準を上回る抗原結合活性を指すことができる。抗原結合活性が一定値以上である融合ポリペプチドは、抗原結合活性が一定値以下である融合ポリペプチドより抗原に強く結合する。
【0243】
上記(3)で選択した融合ポリペプチドは、抑制ドメインと会合する状態で抗原結合活性がなくもしくは弱く、抑制ドメインと会合しない状態で抗原結合活性があるもしくは強い単ドメイン抗体を含む。このような方法で選択した融合ポリペプチドの配列を解析すれば、その中に含まれる単ドメイン抗体の配列も解明でき、当該単ドメイン抗体を製造できる。
【0244】
融合ポリペプチドと会合パートナーを使用して、目的とする単ドメイン抗体を含む融合ポリペプチドをスクリーニングする方法に重要なのは、単ドメイン抗体の抑制ドメインと会合/非会合状態での抗原結合活性を比較することである。
図9(A)(2')(3')に示すように、ディスプレイされた融合ポリペプチドの抗原結合活性を先に確認し、抗原と結合する、もしくは抗原結合活性が一定値以上である融合ポリペプチドを選択してから、それらの融合ポリペプチドと会合パートナーと会合させ、会合状態下で抗原と結合しない、もしくは抗原結合活性が一定値以下である融合ポリペプチドを選択する方法でも、目的とする単ドメイン抗体を含む融合ポリペプチドを取得し得る。
【0245】
以下、第1会合支持ドメインとしてIgG抗体CH1ドメインを使用し、第2会合支持ドメインとしてIgG抗体CLを使用するいくつかの実施態様について説明する。
単ドメイン抗体とIgG抗体CH1ドメインとを連結させた融合ポリペプチドを複数含むライブラリから目的とする単ドメイン抗体を含む融合ポリペプチドをスクリーニングすることができる。
【0246】
本発明のいくつかの実施態様において、単ドメイン抗体とIgG抗体CH1ドメインとを連結させた融合ポリペプチドを複数含むライブラリであって、前記単ドメイン抗体中には、特定のVL/VH/VHHと会合することで抗原結合活性が抑制されるもしくは失われる単ドメイン抗体を含むライブラリ、及び当該ライブラリから特定のVL/VH/VHHと会合することで抗原結合活性が抑制されるもしくは失われる単ドメイン抗体を含む融合ポリペプチドをスクリーニングする方法が提供される。
【0247】
特定の実施態様において、単ドメイン抗体とIgG抗体CH1ドメインとを連結させた融合ポリペプチドを複数含むライブラリから、特定のVLと会合することで抗原結合活性が抑制されるもしくは失われる単ドメイン抗体を含む融合ポリペプチドをスクリーニングする方法が提供される。具体的に、以下の工程:
(a) 本発明におけるライブラリの融合ポリペプチドをインビトロディスプレイさせる工程;
(b) 特定のVLとIgG抗体軽鎖定常領域を融合した会合パートナーを用意する工程;
(c) (a)工程でディスプレイされた融合ポリペプチドと(b)工程で用意した会合パートナーとを会合させ、単ドメイン抗体と前記VLが会合する状態で抗原と結合しない、もしくは抗原結合活性が一定値以下である融合ポリペプチドを選択する工程;
(d) (c)工程で選択された融合ポリペプチドに含まれる単ドメイン抗体が前記VLが会合しない状態で抗原と結合する、もしくは抗原結合活性が一定値以上である融合ポリペプチドを選択する工程;
を含む単ドメイン抗体のスクリーニング方法が提供される。
【0248】
前記(b)工程で用意された会合パートナーはプロテアーゼ切断配列を更に含み、前記(d)工程では、プロテアーゼ処理により前記単ドメイン抗体と前記VLの会合を解消させ、単ドメイン抗体とVLが会合しない状態で単ドメイン抗体の抗原結合活性を確認することが可能である。会合パートナー中のプロテアーゼ切断配列は、切断時に単ドメイン抗体とVLの会合を解消される限り、その位置は限定されない。プロテアーゼ切断配列の位置の例として、例えば、会合パートナーのVLとIgG抗体軽鎖定常領域の境界付近、好ましくはVLの96番(Kabatナンバリング)アミノ酸から抗体軽鎖定常領域130番(EUナンバリング)(Kabatナンバリング130番)アミノ酸の間、より好ましくはVLの104番(Kabatナンバリング)アミノ酸から抗体軽鎖定常領域113番(EUナンバリング)(Kabatナンバリング113番)アミノ酸の間に位置することが可能である。
また、プロテアーゼ切断配列を含む会合パートナーを使用する代わりに、ライブラリ中の融合ポリペプチドにプロテアーゼ切断配列を導入し、融合ポリペプチドがプロテアーゼに切断されることで単ドメイン抗体とVLの会合を解消させることも可能である。融合ポリペプチド中のプロテアーゼ切断配列は、切断時に単ドメイン抗体とVLの会合が解消され、且つ切断後も単ドメイン抗体の抗原結合活性が保持される限り、その位置は限定されない。プロテアーゼ切断配列の位置の例として、例えば、融合ポリペプチド中の単ドメイン抗体とIgG抗体CH1ドメインの境界付近に位置することが可能である。
【0249】
更に、前記(d)工程では、(c)工程で選択した融合ポリペプチドの全長もしくは単ドメイン抗体を含む部分を再度ディスプレイさせ、単ドメイン抗体とVLが会合しない状態で単ドメイン抗体の抗原結合活性を確認することも可能である。
【0250】
特定の実施態様において、単ドメイン抗体とIgG抗体軽鎖定常領域を連結させた融合ポリペプチドを複数含むライブラリから、特定のVHと会合することで抗原結合活性が抑制されるもしくは失われる単ドメイン抗体を含む融合ポリペプチドをスクリーニングする方法が提供される。具体的に、以下の工程:
(a) 本発明におけるライブラリの融合ポリペプチドをインビトロディスプレイさせる工程;
(b) 特定のVHとIgG抗体CH1ドメインを融合した会合パートナーを用意する工程;
(c) (a)工程でディスプレイされた融合ポリペプチドと(b)工程で用意した会合パートナーとを会合させ、単ドメイン抗体と前記VHが会合する状態で抗原と結合しない、もしくは抗原結合活性が一定値以下である融合ポリペプチドを選択する工程;
(d) (c)工程で選択された融合ポリペプチドに含まれる単ドメイン抗体が前記VHと会合しない状態で抗原と結合する、もしくは抗原結合活性が一定値以上である融合ポリペプチドを選択する工程;
を含む単ドメイン抗体を含む融合ポリペプチドのスクリーニング方法が提供される。
【0251】
前記(b)工程で用意された会合パートナーはプロテアーゼ切断配列を更に含み、前記(d)工程では、プロテアーゼ処理により前記単ドメイン抗体と前記VHの会合を解消させ、単ドメイン抗体とVHが会合しない状態で単ドメイン抗体の抗原結合活性を確認することが可能である。会合パートナー中のプロテアーゼ切断配列は、切断時に単ドメイン抗体とVHの会合を解消される限り、その位置は限定されない。プロテアーゼ切断配列の位置の例として、例えば、会合パートナーのVHとIgG抗体CH1ドメインの境界付近、好ましくはVHの101番(Kabatナンバリング)アミノ酸から抗体重鎖定常領域140番(EUナンバリング)アミノ酸の間、更に好ましくはVHの109番(Kabatナンバリング)アミノ酸から抗体重鎖定常領域122番(EUナンバリング)アミノ酸の間に位置することが可能である。
また、プロテアーゼ切断配列を含む会合パートナーを使用する代わりに、ライブラリ中の融合ポリペプチドにプロテアーゼ切断配列を導入し、融合ポリペプチドがプロテアーゼに切断されることで単ドメイン抗体とVHの会合を解消させることも可能である。融合ポリペプチド中のプロテアーゼ切断配列は、切断時に単ドメイン抗体とVHの会合が解消され、且つ切断後も単ドメイン抗体の抗原結合活性が保持される限り、その位置は限定されない。プロテアーゼ切断配列の位置の例として、例えば、融合ポリペプチド中の単ドメイン抗体とIgG抗体軽鎖定常領域の境界付近に位置することが可能である。
【0252】
更に、前記(d)工程では、(c)工程で選択した融合ポリペプチドの全長もしくは単ドメイン抗体を含む部分を再度ディスプレイさせ、単ドメイン抗体とVHが会合しない状態で単ドメイン抗体の抗原結合活性を確認することも可能である。
【0253】
本発明に記載するアミノ酸配列に含まれるアミノ酸は翻訳後に修飾(例えば、N末端のグルタミンのピログルタミル化によるピログルタミン酸への修飾は当業者によく知られた修飾である)を受ける場合もあるが、そのようにアミノ酸が翻訳後修飾された場合であっても当然のことながら本発明に記載するアミノ酸配列に含まれる。
【0254】
本明細書に記載の1又は複数の実施態様を任意に組み合わせたものも、当業者の技術常識に基づいて技術的に矛盾しない限り、本発明に含まれることが当業者には当然に理解される。
【実施例0255】
以下は、本発明の方法および組成物の実施例である。上述の一般的な記載に照らし、種々の他の実施態様が実施され得ることが、理解されるであろう。
【0256】
実施例1 既存のプロテアーゼ活性化抗体の課題
癌組織や炎症性組織のような病変部位で発現するプロテアーゼで切断されることによって、初めて抗原結合活性を発揮する抗体を作製する方法が報告されている。Probodyと呼ばれる同抗体は、
図1に示すように抗体の抗原結合部位をマスクするペプチドを病変部位で発現するプロテアーゼで切断されるリンカーで抗体とつなぐことで抗体の抗原結合活性を阻害した抗体分子である(非特許文献18)。Probodyを構成するリンカーが標的の病態部位において発現するプロテアーゼによって切断されることでマスクペプチドが解離し、抗原結合活性が回復した抗体分子が生成され、標的の病態組織において抗原に結合することが可能となる。
Probodyは上述のようなメカニズムにより標的の病態部位で選択的に抗原に結合することでtherapeutic windowを拡大することが出来ると考えられる。しかしながら、Probodyにおけるプロテアーゼによる抗体の切断は不可逆的であるため、病態部位で切断された抗体は、病態部位から再び血中に戻ることが可能であり、血流に乗って正常組織に分布し、正常組織に発現する抗原に結合する可能性があると考えられる。プロテアーゼで活性化されたProbodyは、活性化前のProbodyと同様にFc領域を保有するため長い血中滞留性を保有する。そのため、病態部位に発現するプロテアーゼで活性化された抗体は長く血中に滞留する可能性がある。また、病態部位で発現が上昇しているプロテアーゼであっても、そのようなプロテアーゼは正常組織にも低いレベルでは発現しており、また病態部位で産生された遊離型プロテアーゼが血中に漏出していることもあるため(The Chinese-German Journal of Clinical Oncology Jun. 2004, Vol. 3, No. 2 P78-P80)、そのような遊離型プロテアーゼでProbodyは活性化されうる。そのため、Probodyは病態部位以外でも活性化される可能性が考えられ、そのように活性化されたProbodyも同様に長く血中に滞留する。このように病態部位、正常組織、血中において継続的にProbodyは活性化され、活性化されたProbodyは長い血中滞留性を有すると、血中に蓄積する可能性がある。血中に蓄積した活性化されたProbodyは正常組織に発現する抗原に結合することで副作用を発揮してしまう可能性がある(
図2)。
Probodyはリンカーによって抗体と連結されたマスクペプチドによってその抗原結合活性が阻害されているが、抗原結合活性は完全に阻害されているわけではない。Probodyは、リンカーによって連結されたマスクペプチドが抗原結合部位に結合した状態と解離した状態の平衡状態にあり、解離した状態の分子は抗原に結合することができてしまう(
図3)。実際、非特許文献17に記載されている抗EGFR Probodyは、プロテアーゼによるリンカーの切断の前でもEGFRに対する結合活性を有する。プロテアーゼによるリンカーの切断により30-100倍の結合活性上昇がみられるが、活性化される前のProbodyも活性化されたProbodyの1/30-1/100の結合活性を有することから、活性化される前のProbodyが高い濃度で存在すると、正常組織に発現する抗原に結合することで副作用を発揮してしまう可能性がある。
また、Probodyは抗体の抗原結合部位をマスクするために人工的なペプチドを使用する。人工ペプチドは天然ヒト蛋白質に存在しない配列を有するため、ヒトにおいて免疫原性を有する可能性がある。免疫原性は抗薬物抗体を誘導することで、抗体医薬の作用を減じることが知られている(Blood. 2016 Mar 31;127(13):1633-41.)。
さらにProbodyに対する抗薬物抗体として、抗体とマスクペプチドの複合体(活性化される前のProbody)に対する抗薬物抗体、マスクペプチドが解離した抗体(活性化されたProbody)に対する抗薬物抗体、マスクペプチド(活性化されたProbodyから解離したマスクペプチド)に対する抗薬物抗体などが考えられる。このうち、マスクペプチドに対する抗薬物抗体(抗マスクペプチド抗体)は、活性化される前のProbodyのマスクペプチドに結合することで、プロテアーゼによる切断が起こらなくてもProbodyを活性化してしまう可能性がある(
図4)。抗マスクペプチド抗体によって活性化されたProbodyは正常組織に発現する抗原に結合することで副作用を発揮してしまう可能性がある。
【0257】
実施例2 単ドメイン抗体を利用したプロテアーゼ活性化ポリペプチドのコンセプト
実施例1に示したようにProbody技術には以下の課題がある。
1. プロテアーゼによる切断で活性化されたProbodyが長い血中滞留性を有する
2. プロテアーゼによる切断前のProbodyであっても抗原に対する結合活性を有する
3. マスクペプチドが人工的な非ヒト配列であり、抗マスクペプチド抗体を誘導しうる
これらの課題を解決した、病態部位で活性を発揮する抗体医薬を提供するためには以下の条件を満たすことが有用であると考えた。
1. プロテアーゼによる切断で活性化された抗原結合ドメインが短い血中半減期を有する
2. プロテアーゼによる切断前の分子の抗原結合活性を最少化する
3. 人工的な非ヒト配列を有するマスクペプチドを使用しない
上記条件を満たすポリペプチドの一例として
図5に示す分子を考案した。抗原結合ドメインと運搬部分が連結された状態のポリペプチドは長い半減期を有し、抗原結合ドメインの抗原結合活性が抑制されており、抗原に結合しない(A)。抗原結合ドメインが遊離後、抗原結合活性が回復し、半減期も短い(B)。
図5に示すポリペプチドは様々なバリエーションを有するが、IgG抗体様分子を使用する場合、
図6に例示されるような製造方法で製造することが可能である。まず標的の抗原に結合する単ドメイン抗体(例:VHあるいはVHH)を取得する(A)。得られた単ドメイン抗体を、ジャームライン配列を有するIgG抗体のVHとVLの一方と入れ替えて、VHとVLの他方と会合させ、IgG抗体様分子を形成させる(B)。IgG抗体様分子中にプロテアーゼ切断配列を導入する(C)。導入位置の例として、導入した単ドメイン抗体(VHあるいはVHH)と定常領域(CH1またはCL)との境界付近が挙げられる。
単ドメイン抗体は単ドメインで存在する場合において抗原結合活性を有するが、VL/VH/VHH等と可変領域を形成すると抗原結合活性を失う。VL/VHはジャームライン配列を有する天然のヒト抗体配列であることから免疫原性のリスクは低く、同VL/VHを認識する抗薬物抗体が誘導される可能性は極めて低い。また、VHHを使用して単ドメイン抗体と可変領域を形成する場合、VHHをヒト化することによって、免疫原性のリスクを低減し、同ヒト化VHHを認識する抗薬物抗体が誘導される可能性を低下させられる。IgG抗体様分子に挿入されたプロテアーゼ切断配列がプロテアーゼで切断されることによって、単ドメイン抗体が遊離する。遊離した単ドメイン抗体は抗原結合活性を有する。プロテアーゼによる切断前のIgG抗体様分子は一般的なIgG分子と類似する構造であることから長い血中滞留性を有するのに対して、プロテアーゼによる切断で遊離した単ドメイン抗体は、Fc領域を保有せず、分子量が約13kDa程度であることから腎排泄により速やかに消失する。実際、全長IgGの半減期は2~3週間程度であるのに対して(Blood. 2016 Mar 31;127(13):1633-41.)、単ドメイン抗体の半減期は約2時間である(Antibodies 2015, 4(3), 141-156)。そのためプロテアーゼにより活性化された抗原結合分子は血中半減期が短く、正常組織の抗原に結合する可能性は低くなる。
単ドメイン抗体がVLの場合は、プロテアーゼ切断配列を、例えばVLとCLの境界付近に導入することで同様のコンセプトを達成可能である。
【0258】
実施例3 IL-6Rに結合するVHHを利用したプロテアーゼ活性化ポリペプチドの作製
3-1 IL-6Rに結合するVHHを組み込んだポリペプチドの調製
国際公開WO2010/115998号に記載されている、ヒトIL-6Rに対して結合および中和活性を有するVHHであるIL6R90(配列番号:1)をヒトIgG1の定常領域(CH1-hinge-CH2-CH3)に融合したIL6R90-G1m(配列番号:2)をコードする発現ベクターを当業者公知の方法で調製した。
ヒトジャームライン配列を有する様々なサブクラスの軽鎖(可変領域-定常領域)としてVK1-39-k0MT(配列番号:3)、VK2-28-k0MT(配列番号:4)、VK3-20-k0MT(配列番号:5)、VL1-40-lamL(配列番号:6)、VL1-44-lamL(配列番号:7)、VL2-14-lamL(配列番号:8)、VL3-21-lamL(配列番号:9)、k0(配列番号:10)、lamL(配列番号:11)をコードする発現ベクターを当業者公知の方法で調製した。
IgG抗体様分子であるIL6R90-G1m/VK1-39-k0MT(重鎖配列番号:2、軽鎖配列番号:3)、IL6R90-G1m/VK2-28-k0MT(重鎖配列番号:2、軽鎖配列番号:4)、IL6R90-G1m/VK3-20-k0MT(重鎖配列番号;2、軽鎖配列番号:5)、IL6R90-G1m/VL1-40-lamL(重鎖配列番号:2、軽鎖配列番号:6)、IL6R90-G1m/VL1-44-lamL(重鎖配列番号:2、軽鎖配列番号:7)、IL6R90-G1m/VL2-14-lamL(重鎖配列番号:2、軽鎖配列番号:8)、IL6R90-G1m/VL3-21-lamL(重鎖配列番号:2、軽鎖配列番号:9)、IL6R90-G1m/k0(重鎖配列番号:2、軽鎖配列番号:10)、IL6R90-G1m/lamL(重鎖配列番号:2、軽鎖配列番号:11)を当業者公知の方法でFreeStyle293細胞 (Invitrogen)を用いた一過性発現により発現し、プロテインAを用いた当業者公知の方法により精製を行った。
【0259】
3-2 ヒトIL-6Rに結合するVHHを組み込んだポリペプチドのIL-6R結合評価
IL6R90-G1m/VK1-39-k0MT、IL6R90-G1m/VK2-28-k0MT、IL6R90-G1m/VK3-20-k0MT、IL6R90-G1m/VL1-40-lamL、IL6R90-G1m/VL1-44-lamL、IL6R90-G1m/VL2-14-lamL、IL6R90-G1m/VL3-21-lamL、IL6R90-G1m/k0、IL6R90-G1m/lamLのヒトIL-6Rに対する結合活性を以下の方法で評価した。
抗原として用いた組み換えヒトIL-6Rは以下のように調製した。J. Immunol. 152, 4958-4968 (1994)で報告されているN末端側1番目から357番目のアミノ酸配列からなる可溶型ヒトIL-6R(以下、hsIL-6R、IL6RあるいはIL-6Rとも呼ぶ)のCHO定常発現株を当業者公知の方法で構築し、培養し、hsIL-6Rを発現させた。得られた培養上清から、Blue Sepharose 6 FFカラムクロマトグラフィー、ゲルろ過カラムクロマトグラフィーの2工程によりhsIL-6Rを精製した。最終工程においてメインピークとして溶出した画分を最終精製品とした。
各分子とhsIL-6Rの結合評価を、OctetHTX ( ForteBio ) を用いて行った。具体的には、Biosensor / Protein A (ProA) ( ForteBio, 18-5013 ) に各分子を結合させ、hsIL-6Rを作用させて、30℃における結合を評価した。OctetHTXで測定した継時的な結合量を表すセンサーグラムを
図10に示した。VLが欠損したIL6R90-G1m/k0とIL6R90-G1m/lamLはhsIL-6Rに結合したが、VLと可変領域を形成したIL6R90-G1m/VK1-39-k0MT、IL6R90-G1m/VK2-28-k0MT、IL6R90-G1m/VK3-20-k0MT、IL6R90-G1m/VL1-40-lamL、IL6R90-G1m/VL1-44-lamL、IL6R90-G1m/VL2-14-lamLはhsIL-6Rと結合することができないことが示された。このことから、ヒトIL-6Rに対して結合活性を有するVHHをVLと会合させて可変領域を形成することでIL-6R結合活性を失わせることが出来ることが見いだされた。
【0260】
3-3 IL-6Rに結合するVHHを組み込んだポリペプチドへのプロテアーゼ切断配列の導入
抗ヒトIL-6R VHHであるIL6R90とCH1の境界付近にプロテアーゼ切断配列を挿入する検討を行った。癌特異的に発現しているウロキナーゼ(uPA)およびMT-SP1で切断されることが報告されている配列であるペプチド配列A(配列番号:12)をIL6R90とCH1の境界付近の3か所にグリシン-セリンリンカーの有り無しで挿入した
図11に示す6種類の重鎖を設計した。IL6R90H1001(配列番号:13)、IL6R90H1002(配列番号:14)、IL6R90H1003(配列番号:15)、IL6R90H1004(配列番号:16)、IL6R90H1005(配列番号:17)、IL6R90H1006(配列番号:18)をコードする発現ベクターを当業者公知の方法で作製した。
これらの重鎖と、軽鎖としてVK1-39-k0MT(配列番号:3)を用いて、IgG抗体様分子であるIL6R90H1001/VK1-39-k0MT(重鎖配列番号:13、軽鎖配列番号:3)、IL6R90H1002/VK1-39-k0MT(重鎖配列番号:14、軽鎖配列番号:3)、IL6R90H1003/VK1-39-k0MT(重鎖配列番号:15、軽鎖配列番号:3)、IL6R90H1004/VK1-39-k0MT(重鎖配列番号:16、軽鎖配列番号:3)、IL6R90H1005/VK1-39-k0MT(重鎖配列番号:17、軽鎖配列番号:3)、IL6R90H1006/VK1-39-k0MT(重鎖配列番号:18、軽鎖配列番号:3)を当業者公知の方法でFreeStyle293細胞 (Invitrogen)を用いた一過性発現により発現し、プロテインAを用いた当業者公知の方法により精製を行った。
【0261】
3-4 プロテアーゼ切断配列を導入したポリペプチドのプロテアーゼ切断による活性化
IL6R90H1001/VK1-39-k0MT、IL6R90H1002/VK1-39-k0MT、IL6R90H1003/VK1-39-k0MT、IL6R90H1004/VK1-39-k0MT、IL6R90H1005/VK1-39-k0MT、IL6R90H1006/VK1-39-k0MTをプロテアーゼにより切断し、IL-6Rへの結合活性を有するVHHが遊離するかどうかを検証した。
可溶型ヒトIL-6Rは当業者公知の方法で調製した。調製した可溶型ヒトIL-6Rを当業者公知の方法でビオチン化した。
可溶型ヒトIL-6R(hsIL-6Rあるいは可溶型ヒトIL-6Rとも呼ぶ、配列番号:35)のC末端にビオチンを付加する目的で、hsIL-6Rをコードする遺伝子断片の下流に、ビオチンリガーゼによってビオチンが付加される特異的な配列(AviTag配列、配列番号:36)をコードする遺伝子断片をリンカーを介して連結させた。hsIL-6RとAviTag配列が連結されたタンパク質(hsIL6R-Avitag、配列番号:37)をコードする遺伝子断片を動物細胞発現用ベクターに組み込み、構築されたプラスミドベクターを293Fectin (Invitrogen)を用いてFreeStyle293細胞 (Invitrogen)に導入した。このときEBNA1(配列番号:57)を発現する遺伝子およびビオチンリガーゼ(BirA、配列番号:58)を発現する遺伝子を同時に導入し、さらにhsIL-6R-Avitagをビオチン標識する目的でビオチンを添加した。前述の手順に従って遺伝子が導入された細胞を37℃、8% CO
2で培養し、目的のタンパク質( hsIL-6R-BAP1 )を培養上清中に分泌させた。この細胞培養液を0.22μmボトルトップフィルターでろ過し、培養上清を得た。
メーカーのプロトコールに従いHiTrap NHS-activated HP (GEヘルスケア)に、抗ヒトIL-6R抗体を固定化したカラム(抗ヒトIL-6R抗体カラム)を作製した。TBSで平衡化した抗ヒトIL-6R抗体カラムに培養上清をアプライし、2 M Arginine, pH4.0で吸着したhsIL-6Rを溶出させた。次に、TBSで平衡化されたSoftLink Avidin カラム(Promega)に、同緩衝液で希釈した抗ヒトIL-6R抗体カラム溶出液をアプライし、5 mM ビオチン, 50 mM Tris-HCl, pH8.0および2 M Arginine, pH4.0でhsIL-6R-BAP1を溶出した。この溶出液を、Superdex200(GEヘルスケア)を用いたゲルろ過クロマトグラフィーによって、hsIL-6R-BAP1の会合体を除去し、バッファーがD-PBS, 0.05% CHAPSに置換された精製hsIL-6R-BAP1を得た。
プロテアーゼとしてリコンビナントヒトマトリプターゼ/ST14 触媒ドメイン ( R&D Systems, 3946-SE-010 ) を用い、プロテアーゼ12.5nM、IgG抗体様分子 100ug/mL、PBS、37℃の条件下で20時間反応させたのちに、プロテアーゼによる切断を還元SDS-PAGEによって評価した結果を
図12に示す。その結果、IL6R90H1002/VK1-39-k0MT、IL6R90H1004/VK1-39-k0MT、IL6R90H1005/VK1-39-k0MT、IL6R90H1006/VK1-39-k0MTにおいて、プロテアーゼ切断配列がVHHと重鎖定常領域の境界付近でプロテアーゼによって切断されることが確認された。
次に、プロテアーゼ処理によって遊離したVHHとIL-6Rの結合評価を、OctetHTX ( ForteBio ) を用いて行った。具体的には、ストレプトアビジンセンサー( ForteBio, 18-5021 ) に hsIL-6R-BAP1 を結合させ、切断したIgG抗体様分子を作用させて、30℃における結合を評価した。OctetHTXで測定した継時的な結合量を表すセンサーグラムを
図13に示す。その結果、IL6R90H1002/VK1-39-k0MT、IL6R90H1004/VK1-39-k0MT、IL6R90H1005/VK1-39-k0MT、IL6R90H1006/VK1-39-k0MTにおいて結合が確認された。IL6R90-G1m/k0、IL6R90-G1m/lamLは2価で結合するためavidityで結合するのに対して、遊離するVHHはaffinityで結合するため、プロテアーゼ処理したIL6R90H1002/VK1-39-k0MT、IL6R90H1004/VK1-39-k0MT、IL6R90H1005/VK1-39-k0MT、IL6R90H1006/VK1-39-k0MTはIL6R90-G1m/k0、IL6R90-G1m/lamLと比較してIL-6Rからの早い解離速度を示した。また、VHHはIL6R90-G1m/k0、IL6R90-G1m/lamLと比較して分子量が小さいため、その分結合量(リスポンス)が低くなっている。
これらの結果から、IL6R90H1002/VK1-39-k0MT、IL6R90H1004/VK1-39-k0MT、IL6R90H1005/VK1-39-k0MT、IL6R90H1006/VK1-39-k0MTは、そのままではIL-6Rに対して結合活性を示さないが、プロテアーゼ処理によりVHHと重鎖定常領域の境界付近に挿入したペプチド配列Aが切断され、その結果としてVHHドメインが遊離し、遊離したVHHはIL-6Rに対して結合することができることが確認された。このことから実施例2に記載されたコンセプトの分子を実際に作製することが出来たと言える。
【0262】
実施例4 改変によるIL-6Rに結合するVHHを利用したプロテアーゼ活性化ポリペプチドの作製
4-1 IL-6Rに結合するVHHを組み込んだポリペプチドのIL-6R結合評価
国際公開WO2010/115998号に記載されているIL-6Rに対して結合および中和活性を有するVHHである20A11(配列番号:19)を、実施例3と同様にしてヒトIgG1の定常領域(CH1-hinge-CH2-CH3)に融合した20A11-G1m(配列番号:38)をコードする発現ベクターを当業者公知の方法で調製した。
この重鎖と、軽鎖としてVK1-39-k0MT(配列番号:3)、VK2-28-k0MT(配列番号:4)、VK3-20-k0MT(配列番号:5)、VL1-40-lamL(配列番号:6)、VL1-44-lamL(配列番号:7)、VL2-14-lamL(配列番号:8)、VL3-21-lamL(配列番号:9)を用いて、実施例3と同様の方法によりポリペプチド20A11-G1m/VK1-39-k0MT、20A11-G1m/VK2-28-k0MT、20A11-G1m/VK3-20-k0MT、20A11-G1m/VL1-40-lamL、20A11-G1m/VL1-44-lamL、20A11-G1m/VL2-14-lamL、20A11-G1m/VL3-21-lamLの発現・精製を行った。
実施例3と同様の方法で、得られた20A11-G1m/VK1-39-k0MT(重鎖配列番号:38、軽鎖配列番号:3)、20A11-G1m/VK2-28-k0MT(重鎖配列番号:38、軽鎖配列番号:4)、20A11-G1m/VK3-20-k0MT(重鎖配列番号:38、軽鎖配列番号:5)、20A11-G1m/VL1-40-lamL(重鎖配列番号:38、軽鎖配列番号:6)、20A11-G1m/VL1-44-lamL(重鎖配列番号:38、軽鎖配列番号:7)、20A11-G1m/VL2-14-lamL(重鎖配列番号:38、軽鎖配列番号:8)、20A11-G1m/VL3-21-lamL(重鎖配列番号:38、軽鎖配列番号:9)のIL-6Rに対する結合を評価した結果を
図14に示す。その結果、本実施例で使用した軽鎖の中で、20A11とヒトジャームラインIgG1の定常領域(CH1-hinge-CH2-CH3)と融合させた重鎖と会合することで20A11のIL-6R結合活性を失わせるものはなかった。
この理由として、20A11と本実施例で使用したVLが安定な可変領域を形成していないことが考えられた。
【0263】
4-2 抗原結合が失われないVHHを組み込んだポリペプチドにおける、VHHとVLの界面部位へのアミノ酸改変の導入
20A11とVLを安定な可変領域を形成させるために、20A11のVLとの界面に存在するアミノ酸に変異を導入した。20A11に対して37番目のFをVに(F37V)、45番目のRをLに、47番目のGをWに(すべてKabatナンバリング)置換する変異を導入した20A11hu(配列番号:20)を実施例3と同様にしてヒトIgG1の定常領域(CH1-hinge-CH2-CH3)に融合した20A11hu-G1m(配列番号:39)をコードする発現ベクターを当業者公知の方法で調製した。
この重鎖と、軽鎖としてVK1-39-k0MT(配列番号:3)、VK2-28-k0MT(配列番号:4)、VK3-20-k0MT(配列番号:5)、VL1-40-lamL(配列番号:6)、VL1-44-lamL(配列番号:7)、VL2-14-lamL(配列番号:8)、VL3-21-lamL(配列番号:9)を用いて、ポリペプチドの20A11hu-G1m/VK1-39-k0MT(重鎖配列番号:39、軽鎖配列番号:3)、20A11hu-G1m/VK2-28-k0MT(重鎖配列番号:39、軽鎖配列番号:4)、20A11hu-G1m/VK3-20-k0MT(重鎖配列番号:39、軽鎖配列番号:5)、20A11hu-G1m/VL1-40-lamL(重鎖配列番号:39、軽鎖配列番号:6)、20A11hu-G1m/VL1-44-lamL(重鎖配列番号:39、軽鎖配列番号:7)、20A11hu-G1m/VL2-14-lamL(重鎖配列番号:39、軽鎖配列番号:8)、20A11hu-G1m/VL3-21-lamL(重鎖配列番号:39、軽鎖配列番号:9)の発現・精製を実施例3と同様の方法により行った。
【0264】
4-3 VHHとVLの界面部位へのアミノ酸改変を導入したVHHを組み込んだポリペプチドのIL-6R結合評価
得られた20A11hu-G1m/VK1-39-k0MT、20A11hu-G1m/VK2-28-k0MT、20A11hu-G1m/VK3-20-k0MT、20A11hu-G1m/VL1-40-lamL、20A11hu-G1m/VL1-44-lamL、20A11hu-G1m/VL2-14-lamL、20A11hu-G1m/VL3-21-lamLのIL-6Rに対する30℃または25℃における結合を実施例3と同様の方法で評価した結果を
図15に示す。
その結果、20A11hu-G1m/VK1-39-k0MT、20A11hu-G1m/VK2-28-k0MT、20A11hu-G1m/VK3-20-k0MT、20A11hu-G1m/VL1-40-lamL、20A11hu-G1m/VL1-44-lamL、20A11hu-G1m/VL2-14-lamLはIL-6Rと結合することができないことが示された。
これらの結果から、実施例3で使用したVLと会合させてもIL-6R結合活性を失わなかった20A11に、VHHとVLの界面部位に存在するアミノ酸を、37V, 45L, 47W(Kabatナンバリング)にし、20A11huに改変することで、VHHとVLを安定な可変領域を形成させることができ、VHHのIL-6R結合活性を失わせられることが示された。
【0265】
4-4 VL界面部位へのアミノ酸改変を導入したVHHを組み込んだポリペプチドへのプロテアーゼ切断配列の導入
実施例3と同様の方法で、20A11huとCH1の境界付近にプロテアーゼ切断配列(配列番号:12)または可動リンカーと連結されたプロテアーゼ切断配列(配列番号:44)を挿入した重鎖20A11huH1001(配列番号:40)、20A11huH1002(配列番号:41)、20A11huH1004(配列番号:42)、20A11huH1006(配列番号:43)を作製した。
これらの重鎖と、軽鎖としてVK1-39-k0MT(配列番号:3)を用いて、ポリペプチド20A11huH1001/VK1-39-k0MT(重鎖配列番号:40、軽鎖配列番号:3)、20A11huH1002/VK1-39-k0MT(重鎖配列番号:41、軽鎖配列番号:3)、20A11huH1004/VK1-39-k0MT(重鎖配列番号:42、軽鎖配列番号:3)、20A11huH1006/VK1-39-k0MT(重鎖配列番号:43、軽鎖配列番号:3)の発現・精製を実施例3と同様の方法により行った。
【0266】
4-5 プロテアーゼ切断配列を導入したポリペプチドのプロテアーゼ切断による活性化
20A11huH1001/VK1-39-k0MT、20A11huH1002/VK1-39-k0MT、20A11huH1004/VK1-39-k0MT、20A11huH1006/VK1-39-k0MTを実施例3と同様の方法でプロテアーゼにより切断し、切断の程度を還元SDS-PAGEによって評価した結果を
図16に示す。
その結果、20A11huH1002/VK1-39-k0MT、20A11huH1004/VK1-39-k0MT、20A11huH1006/VK1-39-k0MTにおいて、VHHとCH1の境界付近がプロテアーゼによって切断されることが確認された。
次に、プロテアーゼ処理によって遊離したVHHとIL-6Rの30℃または25℃における結合評価を実施例3と同様の方法で行った。Octetのセンサーグラムを
図17に示す。
その結果、プロテアーゼ処理によってVHHとCH1の境界付近の切断が確認された20A11huH1002/VK1-39-k0MT、20A11huH1004/VK1-39-k0MT、20A11huH1006/VK1-39-k0MTにおいてIL-6Rへの結合が確認された。
これらの結果から、VHHを組み込んだポリペプチドにおいて、特定のVLと会合させる際に直ちに抗原結合活性が失われない場合でも、VHHのVLとの界面に存在するアミノ酸に会合促進の変異を導入することで抗原結合活性を失わせることができることが確認された。
この結果から、実施例3のようにあらかじめ得られているVHHを軽鎖と組み合わせる方法以外に、軽鎖との会合に関与するアミノ酸を置換したVHHを軽鎖と組み合わせる方法によっても、実施例2に記載されたコンセプトの分子を作製できることが示された。
【0267】
実施例5 免疫アルパカ由来VHHを利用したプロテアーゼ活性化ポリペプチドの作製
5-1 免疫アルパカ由来VHHの取得
当業者公知の方法でIL-6R、CD3およびPlexinA1をアルパカに免疫し、4及び8週後にPBMCを回収した。回収したPBMCからJ. Immunol. Methods (2007) 324, 13に記載の方法を参考にVHH遺伝子を増幅した。増幅したVHH遺伝子断片は、gene3遺伝子と接続してファージミドベクターに挿入した。VHH断片が挿入されたファージミドベクターを大腸菌にエレクトロポレーション法で導入し、当業者既知の方法でVHHを提示するファージを得た。得られたファージを用いて、ELISA法でIL-6R、CD3またはPlexinA1に対する結合を評価し、結合するクローンの配列を当業者公知の方法で解析して抗原に結合するVHHを同定した。
【0268】
5-2 CD3に結合するVHHの濃縮
実施例5-1で構築されたVHHライブラリからヒトCD3に結合するVHHを同定した。抗原として、ビオチン標識されたヒトCD3ε及びヒトCD3δをヒト抗体定常領域に連結したタンパク質(ヒトCD3ed-Fc)を用いて、ヒトCD3に対して結合能をもつVHHの濃縮を行った。ヒトCD3ed-Fcは以下のように調製された。配列番号:59で示すアミノ酸配列をコードする遺伝子と配列番号:60で示すアミノ酸配列をコードする遺伝子およびBirA(配列番号:58)をコードする遺伝子を持った動物細胞発現ベクターをFreeStyle293細胞(Invitrogen)に導入した。導入後L-ビオチンを加えてビオチン化を培養液中で実施し、細胞培養はプロトコルに従って37℃で振とう培養し、4から5日後に上清を回収した。上清からProteinAカラム(Eshmuno A (Merck))を用いて、抗体の定常領域が融合しているタンパク質を得た。さらにCD3εδヘテロダイマーのみを取得する目的でAnti-FLAG M2カラムを用いて、抗体の定常領域が融合しているCD3εδヘテロダイマー(ヒトCD3ed-Fcと呼ぶ)を分画した。引き続き、ゲル濾過クロマトグラフィー(Superdex200、GE Healthcare)を実施して目的のCD3εδヘテロダイマー(ヒトCD3ed-Fcと呼ぶ)を分取した。
構築されたファージディスプレイ用ファージミドを保持した大腸菌からファージ産生が行われた。ファージ産生が行われた大腸菌の培養液に2.5 M NaCl/10%PEGを添加することによって沈殿させたファージの集団をTBSにて希釈することによってファージライブラリ液が得られた。次に、ファージライブラリ液に終濃度4%BSAとなるようにBSAが添加された。パニング方法として、一般的な方法である磁気ビーズに固定化した抗原を用いたパニング方法が参照された(J. Immunol. Methods. (2008) 332 (1-2), 2-9、J. Immunol. Methods. (2001) 247 (1-2), 191-203、Biotechnol. Prog. (2002) 18 (2) 212-20、Mol. Cell Proteomics (2003) 2 (2), 61-9)。磁気ビーズとして、NeutrAvidin coated beads(FG beads NeutrAvidin)もしくはStreptavidin coated beads(Dynabeads MyOne Streptavidin T1)が用いられた。
具体的には、調製されたファージライブラリ液に100 pmolのビオチン標識抗原を加えることによって、当該ファージライブラリ液を室温にて60分間抗原と接触させた。BSAでブロッキングされた磁気ビーズが加えられ、抗原とファージとの複合体を磁気ビーズと室温にて15分間結合させた。ビーズは0.5 mLのTBST(0.1%Tween20を含有するTBS, TBSはTaKaRa社製)にて2回洗浄された後、0.5 mLのTBSにてさらに1回洗浄された。その後、0.5 mLの1 mg/mLのトリプシンが加えられたビーズは室温で15分懸濁された後、即座に磁気スタンドを用いてビーズが分離され、ファージ溶液が回収された。回収されたファージ溶液が、対数増殖期(OD600が0.4-0.5)となった20 mLの大腸菌株ER2738に添加された。37℃で1時間緩やかに上記大腸菌の攪拌培養を行うことによって、ファージを大腸菌に感染させた。感染させた大腸菌は、225 mm x 225 mmのプレートへ播種された。次に、播種された大腸菌の培養液からファージを回収することによって、ファージライブラリ液が調製された。このサイクルをパニングと呼び、全部で2回繰り返した。なお2回目のパニングでは、ビーズの洗浄はTBSTで3回、続けてTBSで2回行われた。また、ヒトCD3ed-Fcとファージの結合時には4 nmolのヒトFcが加えられた。
【0269】
5-3 CD3に結合するVHHを組み込んだプロテアーゼ活性化IgG抗体様分子の調製
実施例5-1または5-2から得られたヒトCD3結合クローンのVHH配列(表2)をコードする塩基配列を実施例3に記載の方法で、プロテアーゼ切断サイトおよび定常領域をコードする塩基配列に接続し、動物細胞発現ベクターに挿入し、IgG抗体様分子の重鎖として使用した。
【0270】
【0271】
以下表3で示すプロテアーゼ活性化IgG抗体様分子を、当業者公知の方法でFreeStyle293細胞 (Invitrogen)を用いた一過性発現により発現し、プロテインAを用いた当業者公知の方法により精製を行った。
【0272】
【0273】
5-4 プロテアーゼ活性化IgG抗体様分子のプロテアーゼ切断による活性化
実施例5-3で調製したIgG抗体様分子を実施例3と同様の方法でプロテアーゼにより切断し、切断の程度を還元SDS-PAGEによって評価した結果を
図18に示す。なおプロテアーゼ濃度は25 nMで実施し、測定にはOctetRED ( ForteBio )を用いた。
その結果、IgG抗体様分子中のプロテアーゼ切断配列がプロテアーゼによって切断されることが確認された。
次に、プロテアーゼ処理によって遊離したVHHとCD3の結合評価を実施例3と同様の方法で行った。Octetのセンサーグラムを
図19に示す。
その結果、bC3edL1R1N160H01-G1mISHI01/VK1-39-k0MT、bC3edL1R1N161H01-G1mISHI01/VK1-39-k0MT、bC3edL1R1N164H01-G1mISHI01/VK1-39-k0MTにおいて、プロテアーゼ処理前のIgG抗体様分子は抗原結合を示さないのに対し、プロテアーゼ処理後に抗原結合が確認された。また、表2に記載されたVHHと同様な方法で得られた複数のCD3に対して結合するVHHも、表3に記載されたIgG抗体様分子と同様なプロテアーゼ切断サイトを含むIgG様分子を作製したところ、プロテアーゼ処理によって抗原との結合が確認された。これらの結果から、実施例3、4で示されたポリペプチド以外にも、プロテアーゼ切断配列を組み込むことで、プロテアーゼ処理によってプロテアーゼ切断配列が切断され、抗原結合ドメインが遊離し、遊離した抗原結合ドメインが抗原に結合することができるIgG抗体様分子が示された。
【0274】
実施例6 軽鎖にプロテアーゼ切断配列を導入したポリペプチド
実施例3と同様に軽鎖の各位置にプロテアーゼ切断配列を組み込んだVK1-39P-2-Pk0MT(配列番号:67)、VK1-39P-1-Pk0MT(配列番号:68)、VK1-39P-Pk0MT(配列番号:69)、VK1-39P+2-Pk0MT(配列番号:70)、VK1-39P+3-Pk0MT(配列番号:71)、VK1-39P+4-Pk0MT(配列番号:72)、及びVK1-39P+5-Pk0MT(配列番号:73)を作製した。
これらの軽鎖と、重鎖としてIL6R90-G1m(配列番号:2)を用いたIgG抗体様分子の発現・精製を実施例3と同様の方法により行った。なおプロテアーゼ濃度は25 nMで実施した。切断配列を導入されていないIgG抗体様分子としてIL6R90-G1m/VK1-39-k0MT(重鎖配列番号:2、軽鎖配列番号:3)を用いた。
続いて調製したIgG抗体様分子を実施例3と同様の方法でプロテアーゼにより切断し、切断の程度を還元SDS-PAGEによって評価した結果を
図20に示す。その結果、VK1-39P+2-Pk0MT(配列番号:70)、VK1-39P+3-Pk0MT(配列番号:71)、VK1-39P+4-Pk0MT(配列番号:72)、及びVK1-39P+5-Pk0MT(配列番号:73)において、プロテアーゼ切断配列がプロテアーゼによって切断されることが確認された。さらにプロテアーゼ処理によって露出したVHHとIL-6Rの結合評価を実施例3と同様の方法で行った。Octetのセンサーグラムを
図21に示す。その結果、軽鎖に切断配列を導入した場合にも、プロテアーゼ処理によって結合が認められ、軽鎖にプロテアーゼ切断配列を導入して軽鎖をプロテアーゼで切断したときに、抗原結合ドメインが露出し抗原結合能を示す、プロテアーゼ活性化ポリペプチドを取得可能なことが示された。
【0275】
実施例7 抗原結合ドメインを有する重鎖とプロテアーゼ切断配列が導入された軽鎖を含むライブラリ、及び当該ライブラリからファージディスプレイ法によるプロテアーゼ活性化ポリペプチドの取得
実施例6で確認されたように、プロテアーゼ活性化ポリペプチドの軽鎖にプロテアーゼ切断配列を導入した場合でも、軽鎖切断後に抗原結合ドメインが露出し、抗原に結合する。
そこで、単ドメイン抗体等の抗原結合ドメインを含む重鎖とプロテアーゼ切断配列を導入した軽鎖をファージミドに組み込み、ファージに提示させる。異なる種類の抗原結合ドメインを含む複数のファージディスプレイ用ファージミドが構築され、それらのファージミドを保持した大腸菌からファージ産生が行われる。ファージ産生が行われた大腸菌の培養液に2.5 M NaCl/10%PEGを添加することによって沈殿させたファージの集団をTBSにて希釈することによってファージライブラリ液が得られる。ファージライブラリ液に、終濃度4%BSAとなるようにBSAが添加される。
上記のように作製されたファージライブラリからプロテアーゼ活性化ポリペプチドをパニングにより取得する。パニング方法として、一般的な方法である磁気ビーズに固定化した抗原を用いたパニング方法が参照され(J. Immunol. Methods. (2008) 332 (1-2), 2-9、J. Immunol. Methods. (2001) 247 (1-2), 191-203、Biotechnol. Prog. (2002) 18 (2) 212-20、Mol. Cell Proteomics (2003) 2 (2), 61-9)、プロテアーゼ添加前では抗原が固定されている磁気ビーズに結合しなかったファージを回収し、プロテアーゼ添加後に抗原が固定されている磁気ビーズに結合したファージを回収する。磁気ビーズとして、NeutrAvidin coated beads(Sera-Mag SpeedBeads NeutrAvidin-coated、FG beads NeutrAvidin)もしくはStreptavidin coated beads(Dynabeads M-280 Streptavidin)が用いられる。回収したファージから前項に記載されたファージELISAで抗原と結合するクローンを選定しても良く、あるいは抗体遺伝子を動物発現用ベクターへサブクローニングを行って動物細胞を用いて発現し、プロテアーゼ処理前後の結合活性を比較して、結合クローンを選定する。
【0276】
実施例8 抗原結合ドメインを有する重鎖と軽鎖を含むライブラリ、及び当該ライブラリからファージディスプレイ法による軽鎖によって抗原結合能が制御される重鎖の取得
実施例3で確認されたように、軽鎖の会合によって抗原結合ドメインを含む重鎖の抗原結合能が制御される。そこで、軽鎖と会合した時に抗原結合能を失い、重鎖のみまたは重鎖と軽鎖定常領域を提示した時に抗原結合能を示す重鎖をファージディスプレイ法により取得する。
単ドメイン抗体等の抗原結合ドメインを含む重鎖をファージミドに組み込み、ファージに提示させる。異なる種類の抗原結合ドメインを含む複数のファージディスプレイ用ファージミドが構築され、それらのファージミドを保持した大腸菌からファージ産生が行われる。ファージ産生が行われた大腸菌の培養液に2.5 M NaCl/10%PEGを添加することによって沈殿させたファージの集団をTBSにて希釈することによってファージライブラリ液が得られる。ファージライブラリ液に、終濃度4%BSAとなるようにBSAが添加される。
上記のように作製されたファージライブラリから重鎖のみまたは重鎖と軽鎖定常領域を提示しているときに抗原結合能を示し、重鎖が軽鎖可変領域と会合した時に抗原結合能が失われる重鎖をパニングにより取得する。パニング方法として、実施例5に記載された磁気ビーズに固定化した抗原を用いたパニング方法が参照される。重鎖または重鎖と軽鎖定常領域を提示したファージライブラリから、抗原が固定されている磁気ビーズに結合したファージを回収する。回収したファージを大腸菌に感染させ、軽鎖を発現するヘルパーファージを用いて重鎖と軽鎖を提示するファージを産生する。ファージ産生が行われた大腸菌の培養液から上述の方法で抗原結合ドメインを含む重鎖と軽鎖を提示したファージが得られる。重鎖と軽鎖を提示したファージの集団から、抗原が固定されている磁気ビーズに結合しないファージを回収する。
なお、
図9Dに示されたようにパニングは、抗原が固定されている磁気ビーズに結合する重鎖のみまたは重鎖と軽鎖定常領域を提示したファージ集団の回収、および抗原が固定されている磁気ビーズに結合しない重鎖と軽鎖を提示したファージ集団の回収の順序を入れ替えて実施することもある。なお、ヘルパーファージを用いて軽鎖を発現する方法以外に、通常通り重鎖と同じファージミドに軽鎖をコードする領域を組み込み、パニングごとに軽鎖定常領域のみあるいは軽鎖全長をコードする遺伝子を組み込んで用いることもある。
回収したファージから前項に記載されたファージELISAで抗原と結合するクローンを選定しても良く、あるいは抗体遺伝子を動物発現用ベクターへサブクローニングを行って動物細胞を用いて発現し、プロテアーゼ処理前後の結合活性を比較して、結合クローンを選定する。
【0277】
実施例9 ファージディスプレイ法を用いて軽鎖によって抗原結合能が制御されるVHHの取得及びそれを含むIgG抗体様分子の作製
実施例3で、軽鎖との会合によって重鎖にVHの代わりとして含まれるVHHの抗原結合能が制御されることが確認された。そこで、特定の軽鎖と会合した時に抗原結合能を失い、重鎖のみまたは重鎖と軽鎖定常領域を提示した時、即ち軽鎖可変領域と会合していない時に抗原結合能を示すVHHを免疫アルパカPBMC由来のVHHとCH1を連結したものを提示させたファージライブラリから取得し、当該VHHを含むIgG抗体様分子を作製した。
【0278】
9-1 軽鎖発現ユニットを組み込んだ軽鎖発現ヘルパーファージの構築
国際公開公報WO2015/046554号に記載の方法に基づき、ヘルパーファージのゲノムに、プロモーター、シグナル配列、抗体軽鎖可変領域及び軽鎖定常領域の遺伝子、または軽鎖定常領域の遺伝子などを組み込むことにより、軽鎖発現ヘルパーファージの構築を行った。本ヘルパーファージが感染した大腸菌からは抗体軽鎖可変領域及び軽鎖定常領域、または軽鎖定常領域のみの発現が可能となる。
具体的には国際公開公報WO2015/046554号に記載の方法で構築したヘルパーファージM13KO7TCのゲノム抽出を行い、軽鎖発現ユニットを導入した。導入する軽鎖遺伝子として、軽鎖可変領域及び軽鎖定常領域(VK1-39-k0MTdC、配列番号:152)をコードする遺伝子、または軽鎖定常領域(k0MTdC、配列番号: 153)をコードする遺伝子を用いた。lacプロモーター - pelBシグナル配列 - 軽鎖遺伝子を上記方法でM13KO7TC/SacIへ挿入し、大腸菌株ER2738へエレクトロポレーション法により導入した。
得られた大腸菌を培養し、培養上清に2.5 M NaCl/10%PEGを添加してPEG沈殿法によりヘルパーファージを精製した。得られたヘルパーファージM13KO7TC-Vk1-39-k0MTdC及びM13KO7TC-k0MTdCのタイターを一般的なプラーク形成法にて確認した。
【0279】
9-2 VHH-CH1を複数含むライブラリの調製
当業者公知の方法で、ヒトIL-6Rの細胞外ドメイン、ヒトCD3εγヘテロダイマー、サルCD3εγヘテロダイマー及びヒトPlexinA1の細胞ドメインの4種類を免疫原として、アルパカに免疫し、4週間後にPBMCを回収した。CD3εγヘテロダイマーはJournal of Molecular Biology (2000) 302:899-916.を参考に調製した。回収したPBMCからJ. Immunol. Methods (2007) 324, 13に記載の方法を参考にVHH遺伝子を増幅した。増幅したVHH遺伝子断片は、CH1-gene3遺伝子と接続してファージミドベクターに挿入し、VHHとCH1を連結させたVHH-CH1を複数含むライブラリを調製した。
【0280】
9-3 VHH-CH1/全長軽鎖、またはVHH-CH1/軽鎖定常領域を提示するファージ集団の作製方法
VHH-CH1をコードする遺伝子が挿入されたファージミドベクターを大腸菌にエレクトロポレーション法で導入し、得られた大腸菌を培養し、実施例9-1で調製したヘルパーファージM13KO7TC-Vk1-39-k0MTdCを感染させることで、ファージミドベクターから発現するVHH-CH1とヘルパーファージから発現する全長軽鎖がFab構造を形成し、VHH-CH1をコードする遺伝子が含まれるファージミドの表面に、VHH-CH1/全長軽鎖(VHH-CH1/Vk1-39-k0MTdC)を提示するファージ集団を作製できる。また、VHH-CH1をコードする遺伝子が挿入されたファージミドベクターが導入された大腸菌を培養し、実施例9-1で調製したヘルパーファージM13KO7TC-k0MTdCを感染させることで、ファージミドベクターから発現するVHH-CH1とヘルパーファージから発現する軽鎖定常領域がVHH-CH1とCLが会合した構造を形成し、VHH-CH1/軽鎖定常領域(VHH-CH1/k0MTdC)を提示するファージ集団を作製できる。培養上清に2.5 M NaCl/10% PEGを添加してPEG沈殿法によりファージを精製できる。得られたファージのタイターを一般的なプラーク形成法にて確認できる。
【0281】
9-4 VHH-CH1ファージライブラリから、軽鎖可変領域との会合で抗原結合が阻害され、軽鎖可変領域がないときに抗原結合能を示すPlexinA1 VHHを含むVHH-CH1の取得
実施例9-2で作製されたVHH-CH1ライブラリから、軽鎖可変領域との会合で抗原結合が阻害され、軽鎖可変領域がないときに抗原結合能を示すVHHを含むVHH-CH1をパニングにより取得した。
抗原として、参考実施例で作製したビオチン標識されたヒトPlexinA1を用いた。
パニング方法として、以下のステップ:
(1)実施例9-2で作製されたVHH-CH1ファージライブラリに対し、実施例9-3の方法でVHH-CH1/軽鎖定常領域(VHH-CH1/k0MTdC)を提示するファージ集団を制作し、中から抗原が固定されている磁気ビーズに結合したファージを回収する
(2)回収したファージに対して実施例9-3の方法でVHH-CH1/全長軽鎖(VHH-CH1/Vk1-39-k0MTdC)を提示するファージ集団を制作し、中から抗原が固定されている磁気ビーズに結合しないファージを回収する;
(3)回収したファージに対して、ステップ(1)と(2)を繰り返し、所望のファージを回収する;
に沿って行った。パニングの結果、軽鎖Vk1-39-k0MTdCとの会合でPlexinA1に対する結合が阻害され、軽鎖可変領域がないときにPlexinA1に対する結合能を示すVHH-CH1を複数個選択できた。
また、別のパニング方法として、以下のステップ:
(1)実施例9-2で作製されたVHH-CH1ファージライブラリに対し、実施例9-3方法でVHH-CH1/軽鎖定常領域(VHH-CH1/k0MTdC)を提示するファージ集団を制作し、中から抗原が固定されている磁気ビーズに結合したファージを回収する;
(2)回収したファージに対して実施例9-3の方法でVHH-CH1/全長軽鎖(VHH-CH1/Vk1-39-k0MTdC)を提示するファージ集団を制作し、中から抗原が固定されている磁気ビーズに結合しないファージを回収し、回収したファージから更に、抗軽鎖抗体 (EY Laboratories, Cat. BAT-2107-2)が固定された磁気ビーズに対して結合するファージを回収する;
(3)回収したファージに対して、ステップ(1)と(2)を繰り返し、所望のファージを回収する;
に沿って行った。パニングの結果、軽鎖Vk1-39-k0MTdCとの会合でPlexinA1に対する結合が阻害され、軽鎖可変領域がないときにPlexinA1に対する結合能を示すVHH-CH1を複数個選択できた。
パニングにより選択されたVHH-CH1中のVHHは、IgG抗体様分子の作製に使用できる。
【0282】
9-5 PlexinA1に結合するVHHを組み込んだプロテアーゼ活性化IgG抗体様分子の作製
実施例9-4で選択されたVHH-CH1に含まれるVHHをコードする塩基配列を実施例3に記載の方法で、プロテアーゼ切断サイトおよび重鎖定常領域をコードする塩基配列に接続してIgG抗体様分子の重鎖として使用し、全長軽鎖VK1-39-k0MT(配列番号:3)と組み合わせて、当業者公知の方法でFreeStyle293細胞 (Invitrogen)を用いた一過性発現により発現し、プロテインAを用いた当業者公知の方法により精製を行った。
作製されたIgG抗体様分子は表4に示す。
【0283】
【0284】
9-6 プロテアーゼ活性化IgG抗体様分子のプロテアーゼ切断による活性化
実施例9-4で調製したIgG抗体様分子を実施例3と同様の方法でプロテアーゼにより切断し、切断の程度を還元SDS-PAGEによって評価した結果を
図22に示す。なお、プロテアーゼ濃度は25 nMで実施した。
その結果、作製した各IgG抗体様分子中のプロテアーゼ切断配列がプロテアーゼによって切断されることが確認された。
次に、プロテアーゼ処理によって遊離したVHHとヒトPlexinA1の結合評価を実施例3と同様の方法で行った。Octetのセンサーグラムを
図23に示す。
その結果、作製した各IgG抗体様分子において、プロテアーゼ処理前のIgG抗体様分子は抗原結合を示さないのに対し、プロテアーゼ処理後に遊離VHHによる抗原結合が確認された。
【0285】
実施例10 二重特異性VHH-VHH含有ポリペプチド
10-1 癌抗原とCD3に結合する二重特異性VHH-VHH及び二重特異性VHH-VHH含有ポリペプチドの作製
図8に示されたように、プロテアーゼによって活性化される抗原結合ドメインは第2の抗原結合ドメインと二重特異的抗原結合分子を形成してもよい。
ヒトグリピカン3を認識するVHH HN3(配列番号:159)とCD3を認識するVHH G03(配列番号:160)をグリシンとセリンで構成されるリンカーを介して接続し、二重特異的VHH-VHH HN3G03を作製し、さらにプロテアーゼ切断配列を介して配列番号:161に示す抗体重鎖定常領域を接続した二重特異的VHH-VHH含有重鎖HN3G03-cF760mnHIF(配列番号:162)を動物発現用ベクターに挿入した。
Her2を認識するVHH HerF07(配列番号:163)とCD3を認識するVHH G03(配列番号:160)をグリシンとセリンで構成されるリンカーを介して接続し、二重特異的VHH-VHH HerF07G03を作製し、さらにプロテアーゼ切断配列を介して配列番号:161に示す抗体重鎖定常領域を接続した二重特異的VHH-VHH含有重鎖HerF07G03-cF760mnHIF(配列番号:164)を動物発現用ベクターに挿入した。
それぞれの二重特異的VHH-VHH含有重鎖を、軽鎖VK1.39-k0MT(配列番号:3)と、ヒンジ領域からC末端までのヒト定常領域配列VHn-Kn010dGK(配列番号:166)がそれぞれ挿入されている動物発現用ベクターと共にExpi293細胞(Life technologies)に導入し、二重特異性VHH-VHH含有ポリペプチドを発現した。その後、当業者公知の方法でMonoSpin ProA 96ウェルプレートタイプ (GL science, Cat No.:7510-11312)を用いて二重特異性VHH-VHH含有ポリペプチドを精製した。二重特異的VHH-VHH HN3G03を含むポリペプチドはHN3G03-cF760mnHIF/VHn-Kn010dGK/VK1.39-k0MTであり、二重特異的VHH-VHH HerF07G03を含むポリペプチドはHerF07G03-cF760mnHIF/VHn-Kn010dGK/VK1.39-k0MTである。
次に、プロテアーゼ処理として、精製した二重特異性VHH-VHH含有ポリペプチド 40μgに終濃度25nMとなるようにuPA(Recombinant Human u-Plasminogen Activator、R&D systems)を加え20時間以上37℃で保温した。プロテアーゼを処理しないサンプルは、プロテアーゼの代わりにPBSをプロテーゼの量と同じ量加えて保温した。プロテアーゼ切断を実施した二重特異性VHH-VHH含有ポリペプチドが目的通り切断されているかを還元SDS-PAGEで確認した結果を
図24に示す。
図24に示す通り、プロテアーゼ切断によって二重特異的VHH-VHHが全体から切り離されたことが示唆された。
【0286】
10-2 GPC3とCD3の二重特異的VHH-VHH含有ポリペプチドのプロテアーゼ切断によるCD3活性化評価
CD3へのアゴニスト活性はJurkat-NFAT レポーター細胞(NFAT luc2_jurkat cell)を用いて評価された。Jurkat-NFATレポーター細胞は、CD3を発現しているヒト急性T細胞性白血病由来細胞にNFAT応答エレメントとルシフェラーゼ (luc2P) が融合しているセルラインであり、CD3の下流のシグナルが活性化するとルシフェラーゼが発現する 。標的細胞として、GPC3を用いた抗体はヒト肝がん由来細胞株のSK-HEP-1にhuman GPC3を強制発現させて樹立したSK-pca60細胞株を使用した。White-bottomed, 96-well assay plate (Costar, 3917)の各ウェルに、1.25E+04 cells /well, 7.50E+04 cells/wellとなるようにTarget cellとEffector cellをそれぞれ加え、当該wellにプロテアーゼ処理有りもしくはプロテアーゼ処理無しのHN3G03-cF760mnHIF/VHn-Kn010dGK/VK1.39-k0MTの終濃度が1, 10, 100nMになるように添加した。5% CO2存在下で37℃, 24 hours incubateしたのち、Luciferase酵素活性をBio-Glo luciferase assay system (Promega, G7940) を使用して添付のprotocolに従って発光量を測定した。検出には2104 EnVisionを使用した。その結果を
図25に示す。プロテアーゼ処理無しのサンプルの場合ルシフェラーゼ活性が上昇しなかったのに対して、プロテアーゼ処理有りのHN3G03-cF760mnHIF/VHn-Kn010dGK/VK1.39-k0MTはではルシフェラーゼ活性が上昇することが示された。すなわち、プロテアーゼ処理有りのHN3G03-cF760mnHIF/VHn-Kn010dGK/VK1.39-k0MT の場合、CD3に対するアゴニスト活性が確認でき、プロテアーゼ切断によってHN3G03-cF760mnHIF/VHn-Kn010dGK/VK1.39-k0MTからGPC3とCD3の二重特異的VHH-VHHが遊離され、未切断時に阻害されたCD3結合活性を発揮した。
【0287】
10-3 Her2とCD3の二重特異的VHH-VHH含有ポリペプチドのプロテアーゼ切断によるCD3活性化評価
CD3へのアゴニスト活性はJurkat-NFAT レポーター細胞(NFAT luc2_jurkat cell)を用いて評価された。Jurkat-NFATレポーター細胞(Effector cell)は、CD3を発現しているヒト急性T細胞性白血病由来細胞にNFAT応答エレメントとルシフェラーゼ (luc2P) が融合しているセルラインであり、CD3の下流のシグナルが活性化するとルシフェラーゼが発現する 。標的細胞(Target cell)として、LS1034細胞株を使用した。White-bottomed, 96-well assay plate (Costar, 3917)の各ウェルに、2.50E+04 cells /well, 7.50E+04 cells/wellとなるようにTarget cellとEffector cellをそれぞれ加え、当該wellにプロテアーゼ処理有りもしくはプロテアーゼ処理無しのHerF07G03-cF760mnHIF/VHn-Kn010dGK/VK1.39-k0MTの終濃度が0.01, 0.1, 1nMになるように添加した。5% CO2存在下で37℃, 24 hours incubateしたのち、Luciferase酵素活性をBio-Glo luciferase assay system (Promega, G7940) を使用して添付のprotocolに従って発光量を測定した。検出には2104 EnVisionを使用した。その結果を
図26に示す。プロテアーゼ処理無しのサンプルの場合ルシフェラーゼ活性が上昇しなかったのに対して、プロテアーゼ処理有りのHerF07G03-cF760mnHIF/VHn-Kn010dGK/VK1.39-k0MTではルシフェラーゼ活性が上昇することが示された。すなわち、プロテアーゼ処理有りのHerF07G03-cF760mnHIF/VHn-Kn010dGK/VK1.39-k0MT の場合、CD3に対するアゴニスト活性が確認でき、プロテアーゼ切断によってHerF07G03-cF760mnHIF/VHn-Kn010dGK/VK1.39-k0MTからHer2とCD3の二重特異的VHH-VHHが遊離し、未切断時に阻害されたCD3結合活性を発揮した。
【0288】
実施例11 VHHを組み込んだポリペプチドへの多種のプロテアーゼ切断サイトの導入
11-1.IL-6Rに結合するVHHを組み込んだポリペプチドへの多種のプロテアーゼ切断配列の導入
国際公開WO2010/115998号に記載されている、ヒトIL-6Rに対して結合および中和活性を有するVHHであるIL6R90(配列番号:1)をヒトIgG1の定常領域(CH1-hinge-CH2-CH3)に融合したIL6R90-G1T4(配列番号:167)をコードする発現ベクターを当業者公知の方法で調製した。IgG抗体様分子であるIL6R90-G1T4/VK1-39-k0MT(重鎖配列番号:167、軽鎖配列番号:3)を当業者公知の方法でFreeStyle293細胞 (Invitrogen) もしくはExpi293細胞 (Life technologies) を用いた一過性発現により発現し、プロテインAを用いた当業者公知の方法により精製を行った。
IL6R90-G1T4/VK1-39-k0MTの重鎖のVHHとCH1の境界付近に多種のプロテアーゼ切断配列を挿入した。表5に示すプロテアーゼ切断配列をVHHとCH1の境界付近に挿入したものの発現ベクターを、当業者公知の方法で作製した。プロテアーゼ切断配列が挿入されたVHH含有重鎖配列を表6に示す。
これらの重鎖と軽鎖を組み合わせて、VHHとCH1の境界付近にプロテアーゼ切断配列を挿入した表7に示すIgG1抗体様分子を当業者公知の方法でFreeStyle293細胞 (Invitrogen) もしくはExpi293細胞 (Life technologies)を用いた一過性発現により発現し、プロテインAを用いた当業者公知の方法により精製を行った。
【0289】
【0290】
【0291】
【0292】
11-2 複数のプロテアーゼ切断配列を重鎖領域に導入した抗ヒトIL-6R VHH含有IgG抗体様分子のプロテアーゼによる切断の評価
実施例11-1で調製したIgG抗体様分子がプロテアーゼにより切断されるどうかを検証した。プロテアーゼとしてリコンビナントヒトマトリプターゼ/ST14 触媒ドメイン( MT-SP1 ) ( R&D Systems, 3946-SE-010 ) を用い、プロテアーゼ 10nM、抗体 50μg/mL、PBS、37℃の条件下で20時間反応させたのちに、プロテアーゼによる切断を還元SDS-PAGEによって評価した結果を
図27に示す。その結果、どのプロテアーゼ切断配列を挿入したIgG抗体様分子でも、プロテアーゼ処理によって37kDa付近に新たなバンドが生じた。即ち、IgG抗体様分子VHHとCH1の境界付近に挿入された、表5で示すプロテアーゼ切断配列がプロテアーゼによって切断されることが確認された。また、類似する方法で、表5で示すプロテアーゼ切断配列はIgG抗体に組み込まれるときにhuman uPA, mouse uPAに切断されることも確認された。
【0293】
実施例12 プロテアーゼ切断配列を軽鎖に導入したIgG抗体様分子のプロテアーゼ切断による活性化の程度の評価
国際公開WO2010/115998号に記載されている、ヒトIL-6Rに対して結合および中和活性を有するVHHであるIL6R75(配列番号:190)をヒトIgG1の定常領域(CH1-hinge-CH2-CH3)に融合したIL6R75-G1m(配列番号:191)をコードする発現ベクターを当業者公知の方法で調製した。実施例4-2と同様にVHHとVLの界面部位へアミノ酸改変を導入したIL6R75hu-G1m(配列番号:192)を作製した。プロテアーゼ切断配列を組み込んだ軽鎖VK1-39P+4-Pk0MT(配列番号:72)と、重鎖としてIL6R90-G1m(配列番号:2)、20A11hu-G1m(配列番号:39)、IL6R75hu-G1m(配列番号:192)を用いたIgG抗体様分子IL6R90-G1m/ VK1-39P+4-Pk0MT(重鎖配列番号:2、軽鎖配列番号:72)、20A11hu-G1m/ VK1-39P+4-Pk0MT(重鎖配列番号:39、軽鎖配列番号:72)、IL6R75hu-G1m/ VK1-39P+4-Pk0MT(重鎖配列番号:192、軽鎖配列番号:72)の発現・精製を実施例3と同様の方法により行った。
IL6R90-G1m/VK1-39P+4-Pk0MT、20A11hu-G1m/VK1-39P+4-Pk0MT、IL6R75hu-G1m/VK1-39P+4-Pk0MTを実施例3と同様の方法でプロテアーゼにより切断し、切断の程度を評価した結果を
図28に示す。具体的には、プロテアーゼとしてリコンビナントヒトマトリプターゼ/ST14 触媒ドメイン ( R&D Systems, 3946-SE-010 ) を用い、プロテアーゼ50nM、IgG抗体様分子 50μg/mL、PBS、37℃の条件下で20時間反応させたのちに、プロテアーゼによる切断を還元SDS-PAGEによって評価した。その結果、IL6R90-G1m/VK1-39P+4-Pk0MT、20A11hu-G1m/VK1-39P+4-Pk0MT、IL6R75hu-G1m/VK1-39P+4-Pk0MTにおいて、VLとCLの境界付近がプロテアーゼによって切断されることが確認された。
次に、プロテアーゼ処理によって露出したVHHとIL6Rの結合をELISAで評価した。具体的には、ストレプトアビジン・コート384ウェルプレート ( Greiner, 781990 ) に実施例3で使用した hsIL-6R-BAP1 を固相し、切断したIgG抗体様分子を室温で結合させた。30分間の反応後、HRP標識抗ヒトIgG抗体 ( Sigma, SAB3701362-2MG ) を室温で 10分間作用させ、TMB Chromogen Solution ( life technologies, 002023 ) を反応させた。室温で30分反応させた後、硫酸で反応を停止させ、Synergy HTX マルチモードリーダー (BioTek) で450 nm吸光度を測定した。抗原を固相したウェルとしなかったウェルの吸光度の比を算出し、S/N比とした。ELISAのS/N比(平均値)を縦軸、各IgG抗体様分子の濃度を横軸に、結果を
図29に示す。この結果から、軽鎖に切断配列を導入したIgG抗体様分子20A11hu-G1m/VK1-39P+4-Pk0MTのプロテアーゼ処理後では、プロテアーゼ未処理のIgG抗体様分子と比べてIL-6Rへの結合活性が10倍以上になり、IgG抗体様分子IL6R90-G1m/VK1-39P+4-Pk0MTの場合、プロテアーゼ処理によりIL-6Rへの結合活性が1000倍以上となったことが示された。
【0294】
実施例13 多様なプロテアーゼ切断配列が導入されたIgG抗体様分子の作製と評価
13-1 多様なプロテアーゼ切断配列が導入されたポリペプチドの作製
ウロキナーゼやマトリプターゼ以外のプロテアーゼの認識配列を用いて、実施例3と同様にIgG抗体様分子を作製した。IL6R90-G1mの可変領域と定常領域の境界付近に、MMP-2、MMP-7、MMP-9、MMP-13で切断されることが知られている各種ペプチド配列およびそれらの切断配列の近傍にグリシン-セリンポリマーからなる可動リンカーを含むペプチド配列を挿入した。挿入した配列は表8に示す。
【0295】
【0296】
これら配列をIL6R90-G1mの可変領域と定常領域の境界付近に挿入した重鎖を設計した。重鎖改変体である6R90EIVHEMP2.1-6R90EICHEMP2.1G1m(配列番号:165)、6R90EIVHEMP2.2-6R90EICHEMP2.2G1m(配列番号:202)、 6R90EIVHEMP2.3-6R90EICHEMP2.3G1m(配列番号:203)、 6R90EIVHEMP2.4-6R90EICHEMP2.4G1m(配列番号:204)、6R90EIVHEMP7.1-6R90EICHEMP7.1G1m(配列番号:205)、6R90EIVHEMP7.2-6R90EICHEMP7.2G1m(配列番号:206)、6R90EIVHEMP13-6R90EICHEMP13G1m(配列番号:207)、6R90EIVHEG4SMP2MP9G4S-6R90EICHEG4SMP2MP9G4SG1m(配列番号:196)、6R90EIVHEG4SMP2.2G4S-6R90EIVHEG4SMP2.2G4SG1m(配列番号:197)、6R90EIVHEG4SMP9G4S-6R90EIVHEG4SMP9G4SG1m(配列番号:198)をコードする発現ベクターを当業者公知の方法で作製した。
これらの重鎖改変体と軽鎖を組み合わせて、重鎖の可変領域と定常領域の境界付近にプロテアーゼ切断配列を挿入したIgG抗体様分子を表9に示す。これらのIgG抗体様分子を当業者公知の方法でFreeStyle293細胞 (Invitrogen) もしくはExpi293細胞 (Life technologies)を用いた一過性発現により発現し、プロテインAを用いた当業者公知の方法により精製を行った。
【0297】
【0298】
13-2 多様なプロテアーゼ切断配列が導入されたIgG抗体様分子のプロテアーゼによる切断の評価
実施例13-1で調製したIgG抗体様分子がプロテアーゼにより切断されるどうかを検証した。プロテアーゼとしてリコンビナントヒトMMP-2( R&D Systems, 902-MP-010 )、リコンビナントヒトMMP-7( R&D Systems, 907-MP-010)、リコンビナントヒトMMP-9( R&D Systems, 911-MP-010 )、リコンビナントヒトMMP-13( R&D Systems, 511-MM-010)を用いた。なお、MMP-2、MMP-7、MMP-9とMMP-13は1 MMP-aminophenylmercuric acetate (APMA; abcam, ab112146 ) と混ぜ、37℃でそれぞれ1または24時間活性化させてから使用した。プロテアーゼ 50 nM、100 nM、または 500 nM、IgG抗体様分子50μg/mLまたは100μg/mL、PBSまたは 20 mM Tris-HCl, 150 mM NaCl, 5 mM CaCl2, pH 7.2 (以下、Tris)、37℃の条件下で20時間反応させた後に、プロテアーゼによる切断を還元SDS-PAGEによって評価した結果を
図30Aと
図30Bに示す。
図30Bではプロテアーゼによる切断をassay buffer(MMP Activity Assay Kit (Fluorometric - Green) (ab112146), Component C: Assay Buffer)で実施した。
その結果、MMP-2では6R90EIVHEMP2.1-6R90EICHEMP2.1G1m/VK1-39-k0MT, 6R90EIVHEMP2.2-6R90EICHEMP2.2G1m/VK1-39-k0MT, 6R90EIVHEMP2.3-6R90EICHEMP2.3G1m/VK1-39-k0MT, 6R90EIVHEMP2.4-6R90EICHEMP2.4G1m/VK1-39-k0MT,6R90EIVHEG4SMP2MP9G4S-6R90EICHEG4SMP2MP9G4SG1m/VK1-39-k0MT、6R90EIVHEG4SMP2.2G4S-6R90EICHEG4SMP2.2G4SG1m/VK1-39-k0MT が、MMP-7では6R90EIVHEMP7.1-6R90EICHEMP7.1G1m/VK1-39-k0MT、6R90EIVHEMP7.2-6R90EICHEMP7.2G1m/VK1-39-k0MT、MMP-9では6R90EIVHEG4SMP2MP9G4S-6R90EICHEG4SMP2MP9G4SG1m/VK1-39-k0MT、6R90EIVHEG4SMP9G4S-6R90EICHEG4SMP9G4SG1m/VK1-39-k0MT、MMP-13では6R90EIVHEMP13-6R90EICHEMP13G1m/VK1-39-k0MTが切断されることが確認された。
【0299】
実施例14 各種プロテアーゼ切断配列の評価
14-1 各種プロテアーゼ切断配列を導入した抗体改変体の作製
配列番号:831で示す重鎖と配列番号:832で示す軽鎖を有する抗体の軽鎖可変領域と定常領域の境界付近に表10中に示すプロテアーゼ切断配列を挿入し、異なるプロテーゼ切断配列を有する軽鎖改変体を作製した(表11)。
上記で作製したプロテアーゼ切断配列を有する軽鎖改変体と配列番号:831で示す重鎖を組み合わせて、表12に示す抗体改変体を当業者公知の方法でExpi293細胞 (Life technologies)を用いた一過性発現により発現し、プロテインAを用いた当業者公知の方法により精製を行った。
【0300】
【0301】
【0302】
【0303】
14-2 プロテアーゼ切断配列が導入された抗体改変体のプロテアーゼによる切断の評価
14-1で調製した抗体改変体がプロテアーゼ処理により切断されるかSDS-PAGEで検証した。プロテアーゼとしてリコンビナントヒトu-Plasminogen Activator/Urokinase(human uPA, huPA) ( R&D Systems, 1310-SE-010 ) を用い、プロテアーゼ 40 nM、抗体 100μg/mL、PBS、37℃の条件下で1時間反応させたのちに、還元SDS-PAGEに供した。その結果、プロテアーゼ切断配列が導入された各抗体改変体はいずれもプロテアーゼ処理で切断されることを確認した。即ち、表10中のプロテアーゼ切断配列がプロテアーゼにより切断可能であることが示された。また、G7L.106a.12aa以外の抗体改変体のいずれも、G7L.106a.12aaより効率よく切断された。
【0304】
実施例15 各種プロテアーゼ切断配列の評価
15-1 プロテアーゼ切断配列を導入した抗体改変体の作製
実施例14で見出したプロテアーゼ切断配列に加えて、切断効率の向上とプロテアーゼに対する選択性向上を目的に更なるプロテアーゼ切断配列の検討を実施した。配列番号:831で示す重鎖と配列番号:832で示す軽鎖を有する抗体の軽鎖可変領域と定常領域の境界付近に表13中に示すプロテアーゼ切断配列を挿入し、異なるプロテーゼ切断配列を有する軽鎖改変体を作製した(表14、15)。
【0305】
【0306】
【0307】
【0308】
15-2 プロテアーゼ切断配列が導入された抗体改変体のプロテアーゼによる切断の評価
15-1で調製した抗体改変体がプロテアーゼ処理により切断されるかどうかを検証した。プロテアーゼとしてリコンビナントヒトu-Plasminogen Activator/Urokinase(human uPA, huPA)(R&D Systems;1310-SE-010)もしくはリコンビナントヒトMatriptase/ST14 Catalytic Domain (human MT-SP1, hMT-SP1) (R&D Systems; 3946-SE-010)を用い、huPA 40 nMもしくはhMT-SP1 3 nM、抗体改変体 100μg/mL、PBS、37℃の条件下で1時間反応させたのちに、キャピラリー電気泳動イムノアッセイに供した。キャピラリー電気泳動イムノアッセイにはWes (Protein Simple) を使用し、切断前後の軽鎖の検出には抗ヒトlambda鎖HRP標識抗体 (abcam; ab9007) を使用した。その結果、プロテアーゼ処理前に確認された36kDa付近のピークが消失し、20kDa付近に新たにピークが出現した。即ち、36kDa付近のピークが抗体改変体の未切断軽鎖であり、20kDa付近のピークが切断軽鎖と考えられた。プロテアーゼ処理後に得られた各ピークの面積をWes専用のソフトウェア (Compass for SW; Protein Simple) を用いて出力し、抗体改変体の切断率 (%) は(切断軽鎖ピーク面積)*100/(切断軽鎖ピーク面積+未切断軽鎖ピーク面積)の式により算出した。huPA処理による抗体改変体の切断率 (%) を表16、hMT-SP1処理による抗体改変体の切断率 (%) を表17に示した。前記表16および表17に示した抗体改変体の中で、G7L.106a.12aa(重鎖:G7H-G1T4(配列番号:831)、軽鎖:G7L.106a.12aa-LT0(配列番号:952))と比較してhuPAによる切断率が高くhMT-SP1における切断率が低い、即ちhuPAへより選択性の高い抗体改変体を表18に示した。
【0309】
【0310】
【0311】
【0312】
実施例16 各種プロテアーゼ切断配列を導入した抗体改変体のin vivo切断評価
16-1 プロテアーゼ切断配列を導入した二重特異性抗体の作製
配列番号:1051で示す重鎖と配列番号:832で示す軽鎖を有する抗体(親抗体)の軽鎖可変領域と定常領域の境界付近に表19中に示すプロテアーゼ切断配列を挿入し、異なるプロテーゼ切断配列を有する軽鎖改変体を作製した(表20)。
配列番号:832で示す軽鎖や上記で作製したプロテアーゼ切断配列を有する軽鎖改変体と、配列番号:1051で示す重鎖を組み合わせて、表21に示す抗体改変体を当業者公知の方法でExpi293細胞 (Life technologies)を用いた一過性発現により発現し、プロテインAを用いた当業者公知の方法により精製を行った。
また、キーホールリンペットヘモシアニン (KLH) に対する抗体であるMabKLHn(重鎖:IC17HdK-F760mnN17(配列番号:1390)、軽鎖:IC17L-k0(配列番号:1391))も当業者公知の方法でExpi293細胞 (Life technologies)を用いた一過性発現により発現し、プロテインAを用いた当業者公知の方法により精製を行った。
配列番号:1051で示す重鎖と配列番号:832で示す軽鎖を有する親抗体及び表21で示す抗体改変体とMabKLHnを混合し、WO2015046467に記載の方法で表22に示す二重特異性抗体を作製した。
【0313】
【0314】
【0315】
【0316】
16-2 プロテアーゼ安定発現細胞株の作製
マウスに移植するプロテアーゼ安定発現細胞株としてB16F10/chGPC3/muPA細胞を用いた。この細胞株は、マウスメラノーマ株B16F10細胞に、改変したマウスの chimeric Glypican 3(chGPC3)遺伝子と、mouse uPA(muPA: NM_008873)遺伝子を導入し、安定発現株を樹立後にクローン化した細胞株である。B16F10/chGPC3/muPA細胞は10% FBS(SIGMA社製)、0.5 mg/mL Geneticin(gibco社製)、および1.5 μg/mL Puromycin(gibco社製)を含むRPMI1640培地(ナカライテスク社製)にて培養した。
【0317】
16-3 同系腫瘍株移植マウスモデルの作製
移植動物としてチャールズリバー社から購入したC57BL/6NCrlマウス(6週齢、♀)を用いた。C57BL/6NCrlマウスの皮下にB16F10/chGPC3/muPA細胞を移植(一匹あたり1E6細胞数)し、移植腫瘍体積の平均がおよそ200 mm3から300 mm3になったマウスを改変抗体投与モデルマウスとして用いた。
移植腫瘍体積は以下の式にて算出した。
腫瘍体積=長径×短径×短径/2
【0318】
16-4 投与薬剤の調整
B16F10/chGPC3/muPA細胞移植モデルマウスへの投与薬剤は、実施例16-1で作製された表22に示す各種プロテアーゼ切断配列を導入した抗体改変体を用いた。投与薬剤は 改変抗体濃度が0.1 mg/mLになるようにPBST-buffer(PBS+0.05% Tween20 buffer)を用いて調製した。
【0319】
16-5 プロテアーゼ切断評価を目的とした抗体改変体の投与試験
B16F10/chGPC3/muPA細胞移植マウスに、移植後11日目に各種プロテアーゼ切断配列を導入した抗体改変体5検体をそれぞれ投与量1 mg/kg(マウス体重1kgあたりの投与抗体量 mg)にて尾静脈より投与した。投与試験における抗体改変体名、投与量、また投与方法等の詳細を表23に示した。
【0320】
【0321】
16-6 B16F10/chGPC3/muPA細胞移植モデルマウスからの眼窩採血
抗体改変体投与後1日目および3日目に、B16F10/chGPC3/muPA細胞移植モデルマウスから眼窩採血により血液を採取した。採血はイソフルラン麻酔下で実施した。採取した血液を1,900×g、4℃で10分遠心した後、遠心後の上清を血漿成分として取得し、-30℃で保管した。
【0322】
16-7 マウスから回収した投与抗体の切断評価
実施例16-6で回収した血漿からDynabeads Protein A (Thermo; 10001D) を用いて当業者公知の方法で抗体を精製し、抗体改変体のプロテアーゼ切断効率を評価するためキャピラリー電気泳動イムノアッセイに供した。キャピラリー電気泳動イムノアッセイにはWes (Protein Simple) を使用し、抗体軽鎖の検出には抗ヒトlambda鎖HRP標識抗体 (abcam; ab9007)を使用し、抗体重鎖の検出には抗ヒト重鎖HRP標識抗体 (Protein Simple; 043-491)を使用した。その結果、抗ヒトlambda鎖抗体では36kDa付近に未切断の全長軽鎖のピークが検出され、抗ヒト重鎖抗体では56kDa付近に全長重鎖のピークが検出された。なお、MabKLHnの軽鎖はkappa鎖であるため抗ヒトlambda鎖抗体では検出されないため、抗ヒトlambda鎖抗体を用いることでプロテアーゼ切断配列を導入した軽鎖の切断効率の評価が可能である。キャピラリー電気泳動イムノアッセイにより得られた各ピークの面積をWes専用のソフトウェア (Compass for SW; Protein Simple) で出力し、軽鎖残存比として(軽鎖ピーク面積)/(重鎖ピーク面積)を計算することで、マウス体内で切断されずに残った全長軽鎖の割合を求めた。マウス投与後1日後および3日後に回収した抗体の軽鎖残存比を
図31に示した。その結果、腫瘍移植マウスの体内において、プロテアーゼ切断配列を導入した表21で示す抗体改変体は、配列番号:1051で示す重鎖と配列番号:832で示す軽鎖を有する親抗体よりも軽鎖残存比が低下していることが確認された。即ち、プロテアーゼ切断配列を導入した軽鎖が腫瘍移植マウス体内で効率良く切断されたことが示された。
【0323】
参考実施例1 ビオチン化プレキシンA1の調製
ビオチン化プレキシンA1(ビオチン標識されたヒトPlexinA1とも呼ぶ)は当業者公知の方法で調製した。具体的には、プレキシンA1の細胞外領域をコードする遺伝子断片の下流にビオチンリガーゼによってビオチンが付加される特異的な配列(AviTag配列、配列番号:36)をコードする遺伝子断片とFLAGタグ配列(配列番号:199、DYKDDDDK)をコードする遺伝子断片をグリシンとセリンで構成されるリンカーをコードする遺伝子断片を介して連結した。プレキシンA1とAviTag配列およびFLAGタグ配列が連結されたタンパク質(配列番号:200)をコードする遺伝子断片を動物細胞発現用ベクターに組み込み、構築されたプラスミドベクターを293フェクチン(Invitrogen)を用いてFreeStyle293細胞 (Invitrogen)に導入した。このときEBNA1(配列番号:57)を発現する遺伝子およびビオチンリガーゼ(BirA、配列番号:201)を発現する遺伝子を同時に導入し、さらにプレキシンA1をビオチン標識する目的でビオチンを添加した。前述の手順に従って遺伝子が導入された細胞を37℃、8% CO2で培養し、目的のタンパク質(ビオチン化プレキシンA1)を培養上清中に分泌させた。この細胞培養液を0.22μmボトルトップフィルターでろ過し、培養上清を得た。
Anti FLAG M2 agarose (Sigma-Aldrich, #A2220)をカラムに詰めて、FLAGカラムを作製した。FLAGカラムをあらかじめD-PBS(-)で平衡化し、培養上清をアプライして、ビオチン化プレキシンA1をカラムに結合させた。続いて、D-PBS(-)に溶解したFLAG ペプチドでビオチン化プレキシンA1を溶出した。この溶出液を、HiLoad 26/600 Superdex 200 pg, 320mL (GE healthcare, 28-9893-36)を用いたゲルろ過クロマトグラフィーによって、会合体を除去して、精製ビオチン化プレキシンA1を得た。
【0324】
前述の発明は、明確な理解を助ける目的のもと、実例および例示を用いて詳細に記載したが、本明細書における記載および例示は、本発明の範囲を限定するものと解釈されるべきではない。本明細書で引用したすべての特許文献および科学文献の開示は、その全体にわたって、参照により明示的に本明細書に組み入れられる。
本発明の抗原結合ドメインと抗原結合ドメインより長い血中半減期を有しかつ抗原結合ドメインの結合活性を抑制する抑制ドメインを有する運搬部分を含むポリペプチド、ならびにこれを含む医薬組成物は、抗原結合ドメインの抗原結合活性を抑制したまま、抗原結合ドメインを血中で運搬できる。また、本発明のポリペプチドを使用することで、抗原結合ドメインの抗原結合活性を疾患部位で特異的に発揮させることが出来る。さらに、抗原結合活性を発揮時は、運搬時より短い半減期を有するので、全身的に作用してしまう恐れが減少し、疾患の治療に極めて有用である。
また、抗原結合ドメインの一例である特定のVLもしくはVHもしくはVHHと会合することで抗原結合活性が抑制される単ドメイン抗体をスクリーニングまたは製造することで、本発明のポリペプチドを効率よく製造することが可能である。さらに、本発明のポリペプチドに使用できる抗原結合ドメインの一例である特定のVLもしくはVHもしくはVHHと会合することで抗原結合活性が抑制される単ドメイン抗体を含むライブラリを用いれば、前述のポリペプチドを作製するときに必要とする抗原結合ドメインを、効率よく取得することが可能である。
ポリペプチドであって、当該ポリペプチドは抗原結合ドメインと運搬部分とを含み、当該運搬部分は前記抗原結合ドメインの抗原結合活性を抑制する抑制ドメインを有し、当該ポリペプチドは配列番号:833~951、および1062~1081で示す配列から選ばれる配列を一つまたは複数含むプロテアーゼ切断配列を有する、ポリペプチド。
前記プロテアーゼ切断配列がプロテアーゼにより切断された状態における前記抑制ドメインの前記抗原結合ドメインの抗原結合活性に対する抑制は、前記プロテアーゼ切断配列が未切断の状態における前記抑制ドメインの前記抗原結合ドメインの抗原結合活性に対する抑制より弱い、請求項1または請求項2に記載のポリペプチド。
前記抗原結合ドメインは前記ポリペプチドから遊離可能であり、前記抗原結合ドメインは、前記ポリペプチドから遊離している状態下における抗原結合活性は、前記ポリペプチドから遊離していない状態下における抗原結合活性より高い、請求項1から請求項6のいずれか一項に記載のポリペプチド。
前記プロテアーゼ切断配列がプロテアーゼにより切断されることで、前記抗原結合ドメインが前記ポリペプチドから遊離可能になる、または/及び前記抗原結合ドメインと前記運搬部分の前記抑制ドメインの会合が解消される、請求項7または請求項8に記載のポリペプチド。
前記抗原結合ドメインは単ドメイン抗体を含み、もしくは単ドメイン抗体であり、前記運搬部分の前記抑制ドメインは当該単ドメイン抗体の抗原結合活性を抑制する、請求項1から請求項10のいずれか一項に記載のポリペプチド。
前記抗原結合ドメインは単ドメイン抗体を含み、前記運搬部分の前記抑制ドメインはVHH、または抗体VH、または抗体VLであり、前記単ドメイン抗体は当該VHH、または抗体VH、または抗体VLにより抗原結合活性が抑制される、請求項1から請求項11のいずれか一項に記載のポリペプチド。