(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2025100910
(43)【公開日】2025-07-03
(54)【発明の名称】ひずみゲージ
(51)【国際特許分類】
G01B 7/16 20060101AFI20250626BHJP
【FI】
G01B7/16 R
【審査請求】有
【請求項の数】3
【出願形態】OL
(21)【出願番号】P 2025072560
(22)【出願日】2025-04-24
(62)【分割の表示】P 2023090066の分割
【原出願日】2017-09-29
(71)【出願人】
【識別番号】000114215
【氏名又は名称】ミネベアミツミ株式会社
(74)【代理人】
【識別番号】110004381
【氏名又は名称】弁理士法人ITOH
(72)【発明者】
【氏名】浅川 寿昭
(72)【発明者】
【氏名】湯口 昭代
(72)【発明者】
【氏名】相澤 祐汰
(72)【発明者】
【氏名】種田 翔太
(57)【要約】
【課題】可撓性を有する基材上に形成された抵抗体を有するひずみゲージにおいて、ピンホール数を低減する。
【解決手段】本ひずみゲージは、可撓性を有する樹脂製の基材と、前記基材の一方の面に直接、金属、合金、又は、金属の化合物から形成された機能層と、前記機能層の一方の面に直接、Cr、CrN、及びCr
2Nを含む膜から形成された、α-Crを主成分とする抵抗体と、を有し、前記機能層は、前記α-Crの結晶成長を促進させ、前記α-Crを主成分とする膜を成膜する機能を有し、前記抵抗体の厚さは、0.05μm以上2μm以下であり、前記機能層の厚さは、1nm以上100nm以下であり、前記基材の一方の面の表面凹凸が15nm以下である。
【選択図】
図3
【特許請求の範囲】
【請求項1】
可撓性を有する樹脂製の基材と、
前記基材の一方の面に直接、金属、合金、又は、金属の化合物から形成された機能層と、
前記機能層の一方の面に直接、Cr、CrN、及びCr2Nを含む膜から形成された、α-Crを主成分とする抵抗体と、を有し、
前記機能層は、前記α-Crの結晶成長を促進させ、前記α-Crを主成分とする膜を成膜する機能を有し、
前記抵抗体の厚さは、0.05μm以上2μm以下であり、
前記機能層の厚さは、1nm以上100nm以下であり、
前記基材の一方の面の表面凹凸が15nm以下であるひずみゲージ。
【請求項2】
前記基材は、フィラーを含有している請求項1に記載のひずみゲージ。
【請求項3】
前記基材は、ポリイミド樹脂から形成されている請求項1又は2に記載のひずみゲージ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ひずみゲージに関する。
【背景技術】
【0002】
測定対象物に貼り付けて、測定対象物のひずみを検出するひずみゲージが知られている。ひずみゲージは、ひずみを検出する抵抗体を備えており、抵抗体の材料としては、例えば、Cr(クロム)やNi(ニッケル)を含む材料が用いられている。又、抵抗体は、例えば、絶縁樹脂からなる基材上に形成されている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、可撓性を有する基材上に抵抗体を形成すると、抵抗体にピンホールが発生する場合がある。抵抗体に発生するピンホール数が所定値を超えると、ゲージ特性が悪化したり、ひずみゲージとして機能しなくなったりするおそれがある。
【0005】
本発明は、上記の点に鑑みてなされたもので、可撓性を有する基材上に形成された抵抗体を有するひずみゲージにおいて、ピンホール数を低減することを目的とする。
【課題を解決するための手段】
【0006】
本ひずみゲージは、可撓性を有する樹脂製の基材と、前記基材の一方の面に直接、金属、合金、又は、金属の化合物から形成された機能層と、前記機能層の一方の面に直接、Cr、CrN、及びCr2Nを含む膜から形成された、α-Crを主成分とする抵抗体と、を有し、前記機能層は、前記α-Crの結晶成長を促進させ、前記α-Crを主成分とする膜を成膜する機能を有し、前記抵抗体の厚さは、0.05μm以上2μm以下であり、前記機能層の厚さは、1nm以上100nm以下であり、前記基材の一方の面の表面凹凸が15nm以下である。
【発明の効果】
【0007】
開示の技術によれば、可撓性を有する基材上に形成された抵抗体を有するひずみゲージにおいて、ピンホール数を低減することができる。
【図面の簡単な説明】
【0008】
【
図1】第1の実施の形態に係るひずみゲージを例示する平面図である。
【
図2】第1の実施の形態に係るひずみゲージを例示する断面図である。
【
図3】基材の表面凹凸と抵抗体のピンホール数との関係を示す図である。
【発明を実施するための形態】
【0009】
以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。
【0010】
〈第1の実施の形態〉
図1は、第1の実施の形態に係るひずみゲージを例示する平面図である。
図2は、第1の実施の形態に係るひずみゲージを例示する断面図であり、
図1のA-A線に沿う断面を示している。
図1及び
図2を参照するに、ひずみゲージ1は、基材10と、抵抗体30と、端子部41とを有している。
【0011】
なお、本実施の形態では、便宜上、ひずみゲージ1において、基材10の抵抗体30が設けられている側を上側又は一方の側、抵抗体30が設けられていない側を下側又は他方の側とする。又、各部位の抵抗体30が設けられている側の面を一方の面又は上面、抵抗体30が設けられていない側の面を他方の面又は下面とする。但し、ひずみゲージ1は天地逆の状態で用いることができ、又は任意の角度で配置することができる。又、平面視とは対象物を基材10の上面10aの法線方向から視ることを指し、平面形状とは対象物を基材10の上面10aの法線方向から視た形状を指すものとする。
【0012】
基材10は、抵抗体30等を形成するためのベース層となる部材であり、可撓性を有する。基材10の厚さは、特に制限はなく、目的に応じて適宜選択できるが、例えば、5μm~500μm程度とすることができる。特に、基材10の厚さが5μm~200μmであると、接着層等を介して基材10の下面に接合される起歪体表面からの歪の伝達性、環境に対する寸法安定性の点で好ましく、10μm以上であると絶縁性の点で更に好ましい。
【0013】
基材10は、例えば、PI(ポリイミド)樹脂、エポキシ樹脂、PEEK(ポリエーテルエーテルケトン)樹脂、PEN(ポリエチレンナフタレート)樹脂、PET(ポリエチレンテレフタレート)樹脂、PPS(ポリフェニレンサルファイド)樹脂、ポリオレフィン樹脂等の絶縁樹脂フィルムから形成することができる。なお、フィルムとは、厚さが500μm以下程度であり、可撓性を有する部材を指す。
【0014】
ここで、『絶縁樹脂フィルムから形成する』とは、基材10が絶縁樹脂フィルム中にフィラーや不純物等を含有することを妨げるものではない。基材10は、例えば、シリカやアルミナ等のフィラーを含有する絶縁樹脂フィルムから形成しても構わない。
【0015】
抵抗体30は、基材10上に所定のパターンで形成された薄膜であり、ひずみを受けて抵抗変化を生じる受感部である。抵抗体30は、基材10の上面10aに直接形成されてもよいし、基材10の上面10aに他の層を介して形成されてもよい。なお、
図1では、便宜上、抵抗体30を梨地模様で示している。
【0016】
抵抗体30は、例えば、Cr(クロム)を含む材料、Ni(ニッケル)を含む材料、又はCrとNiの両方を含む材料から形成することができる。すなわち、抵抗体30は、CrとNiの少なくとも一方を含む材料から形成することができる。Crを含む材料としては、例えば、Cr混相膜が挙げられる。Niを含む材料としては、例えば、Ni-Cu(ニッケル銅)が挙げられる。CrとNiの両方を含む材料としては、例えば、Ni-Cr(ニッケルクロム)が挙げられる。
【0017】
ここで、Cr混相膜とは、Cr、CrN、Cr2N等が混相した膜である。Cr混相膜は、酸化クロム等の不可避不純物を含んでもよい。
【0018】
抵抗体30の厚さは、特に制限はなく、目的に応じて適宜選択できるが、例えば、0.05μm~2μm程度とすることができる。特に、抵抗体30の厚さが0.1μm以上であると抵抗体30を構成する結晶の結晶性(例えば、α-Crの結晶性)が向上する点で好ましく、1μm以下であると抵抗体30を構成する膜の内部応力に起因する膜のクラックや基材10からの反りを低減できる点で更に好ましい。
【0019】
例えば、抵抗体30がCr混相膜である場合、安定な結晶相であるα-Cr(アルファクロム)を主成分とすることで、ゲージ特性の安定性を向上することができる。又、抵抗体30がα-Crを主成分とすることで、ひずみゲージ1のゲージ率を10以上、かつゲージ率温度係数TCS及び抵抗温度係数TCRを-1000ppm/℃~+1000ppm/℃の範囲内とすることができる。ここで、主成分とは、対象物質が抵抗体を構成する全物質の50質量%以上を占めることを意味するが、ゲージ特性を向上する観点から、抵抗体30はα-Crを80重量%以上含むことが好ましい。なお、α-Crは、bcc構造(体心立方格子構造)のCrである。
【0020】
ところで、基材10上に抵抗体30を形成すると、抵抗体30にピンホールが発生する場合があり、抵抗体30に発生するピンホール数が所定値を超えると、ゲージ特性が悪化したり、ひずみゲージとして機能しなくなったりするおそれがある。発明者らは、抵抗体30にピンホールが発生する原因の1つが、基材10の上面10aから突出するフィラーであることを突き止めた。
【0021】
すなわち、基材10がフィラーを含有すると、フィラーの一部が基材10の上面10aから突出し、基材10の上面10aの表面凹凸を増大させる。その結果、基材10の上面10aに形成される抵抗体30に生じるピンホール数が増加し、ゲージ特性の悪化等の要因となる。
【0022】
発明者らは、抵抗体30の厚さが0.05μm以上である場合に、基材10の上面10aの表面凹凸が15nm以下であれば、抵抗体30に生じるピンホール数を抑制してゲージ特性を維持できることを見出した。
【0023】
すなわち、抵抗体30の厚さが0.05μm以上である場合に、基材10の上面10aに形成される抵抗体30に生じるピンホール数を低減してゲージ特性を維持する観点から、基材10の上面10aの表面凹凸は15nm以下であることが好ましく、表面凹凸が15nm以下であれば基材10がフィラーを含有してもゲージ特性の悪化にはつながらない。なお、基材10の上面10aの表面凹凸は0nmであってもよい。
【0024】
基材10の上面10aの表面凹凸は、例えば、基材10を加熱することにより低減することができる。或いは、基材10の加熱に代えて、基材10の上面10aに略垂直にレーザ光を照射して凸部を削る方法、基材10の上面10aと平行にウォーターカッター等を可動させて凸部を削り取る方法、基材10の上面10aを砥石を用いて研磨する方法、又は基材10を加熱しながら加圧する方法(ヒートプレス)等を用いてもよい。
【0025】
なお、表面凹凸とは、算術平均粗さのことであり、一般的にRaと表記する。表面凹凸は、例えば、三次元光学干渉法により測定することができる。
【0026】
端子部41は、抵抗体30の両端部から延在しており、平面視において、抵抗体30よりも拡幅して略矩形状に形成されている。端子部41は、ひずみにより生じる抵抗体30の抵抗値の変化を外部に出力するための一対の電極であり、例えば、外部接続用のリード線等が接合される。抵抗体30は、例えば、端子部41の一方からジグザグに折り返しながら延在して他方の端子部41に接続されている。端子部41の上面を、端子部41よりもはんだ付け性が良好な金属で被覆してもよい。なお、抵抗体30と端子部41とは便宜上別符号としているが、両者は同一工程において同一材料により一体に形成することができる。
【0027】
抵抗体30を被覆し端子部41を露出するように基材10の上面10aにカバー層60(絶縁樹脂層)を設けても構わない。カバー層60を設けることで、抵抗体30に機械的な損傷等が生じることを防止できる。又、カバー層60を設けることで、抵抗体30を湿気等から保護することができる。なお、カバー層60は、端子部41を除く部分の全体を覆うように設けてもよい。
【0028】
カバー層60は、例えば、PI樹脂、エポキシ樹脂、PEEK樹脂、PEN樹脂、PET樹脂、PPS樹脂、複合樹脂(例えば、シリコーン樹脂、ポリオレフィン樹脂)等の絶縁樹脂から形成することができる。カバー層60は、フィラーや顔料を含有しても構わない。カバー層60の厚さは、特に制限はなく、目的に応じて適宜選択できるが、例えば、2μm~30μm程度とすることができる。
【0029】
ひずみゲージ1を製造するためには、まず、基材10を準備し、基材10の上面10aに
図1に示す平面形状の抵抗体30及び端子部41を形成する。抵抗体30及び端子部41の材料や厚さは、前述の通りである。抵抗体30と端子部41とは、同一材料により一体に形成することができる。
【0030】
抵抗体30及び端子部41は、例えば、抵抗体30及び端子部41を形成可能な原料をターゲットとしたマグネトロンスパッタ法により成膜し、フォトリソグラフィによってパターニングすることで形成できる。抵抗体30及び端子部41は、マグネトロンスパッタ法に代えて、反応性スパッタ法や蒸着法、アークイオンプレーティング法、パルスレーザー堆積法等を用いて成膜してもよい。
【0031】
ゲージ特性を安定化する観点から、抵抗体30及び端子部41を成膜する前に、下地層として、基材10の上面10aに、例えば、コンベンショナルスパッタ法により膜厚が1nm~100nm程度の機能層を真空成膜することが好ましい。なお、機能層は、機能層の上面全体に抵抗体30及び端子部41を形成後、フォトリソグラフィによって抵抗体30及び端子部41と共に
図1に示す平面形状にパターニングされる。
【0032】
本願において、機能層とは、少なくとも上層である抵抗体30の結晶成長を促進する機能を有する層を指す。機能層は、更に、基材10に含まれる酸素や水分による抵抗体30の酸化を防止する機能や、基材10と抵抗体30との密着性を向上する機能を備えていることが好ましい。機能層は、更に、他の機能を備えていてもよい。
【0033】
基材10を構成する絶縁樹脂フィルムは酸素や水分を含むため、特に抵抗体30がCrを含む場合、Crは自己酸化膜を形成するため、機能層が抵抗体30の酸化を防止する機能を備えることは有効である。
【0034】
機能層の材料は、少なくとも上層である抵抗体30の結晶成長を促進する機能を有する材料であれば、特に制限はなく、目的に応じて適宜選択できるが、例えば、Cr(クロム)、Ti(チタン)、V(バナジウム)、Nb(ニオブ)、Ta(タンタル)、Ni(ニッケル)、Y(イットリウム)、Zr(ジルコニウム)、Hf(ハフニウム)、Si(シリコン)、C(炭素)、Zn(亜鉛)、Cu(銅)、Bi(ビスマス)、Fe(鉄)、Mo(モリブデン)、W(タングステン)、Ru(ルテニウム)、Rh(ロジウム)、Re(レニウム)、Os(オスミウム)、Ir(イリジウム)、Pt(白金)、Pd(パラジウム)、Ag(銀)、Au(金)、Co(コバルト)、Mn(マンガン)、Al(アルミニウム)からなる群から選択される1種又は複数種の金属、この群の何れかの金属の合金、又は、この群の何れかの金属の化合物が挙げられる。
【0035】
上記の合金としては、例えば、FeCr、TiAl、FeNi、NiCr、CrCu等が挙げられる。又、上記の化合物としては、例えば、TiN、TaN、Si3N4、TiO2、Ta2O5、SiO2等が挙げられる。
【0036】
機能層は、例えば、機能層を形成可能な原料をターゲットとし、チャンバ内にAr(アルゴン)ガスを導入したコンベンショナルスパッタ法により真空成膜することができる。コンベンショナルスパッタ法を用いることにより、基材10の上面10aをArでエッチングしながら機能層が成膜されるため、機能層の成膜量を最小限にして密着性改善効果を得ることができる。
【0037】
但し、これは、機能層の成膜方法の一例であり、他の方法により機能層を成膜してもよい。例えば、機能層の成膜の前にAr等を用いたプラズマ処理等により基材10の上面10aを活性化することで密着性改善効果を獲得し、その後マグネトロンスパッタ法により機能層を真空成膜する方法を用いてもよい。
【0038】
機能層の材料と抵抗体30及び端子部41の材料との組み合わせは、特に制限はなく、目的に応じて適宜選択できるが、例えば、機能層としてTiを用い、抵抗体30及び端子部41としてα-Cr(アルファクロム)を主成分とするCr混相膜を成膜することが可能である。
【0039】
この場合、例えば、Cr混相膜を形成可能な原料をターゲットとし、チャンバ内にArガスを導入したマグネトロンスパッタ法により、抵抗体30及び端子部41を成膜することができる。或いは、純Crをターゲットとし、チャンバ内にArガスと共に適量の窒素ガスを導入し、反応性スパッタ法により、抵抗体30及び端子部41を成膜してもよい。
【0040】
これらの方法では、Tiからなる機能層がきっかけでCr混相膜の成長面が規定され、安定な結晶構造であるα-Crを主成分とするCr混相膜を成膜できる。又、機能層を構成するTiがCr混相膜中に拡散することにより、ゲージ特性が向上する。例えば、ひずみゲージ1のゲージ率を10以上、かつゲージ率温度係数TCS及び抵抗温度係数TCRを-1000ppm/℃~+1000ppm/℃の範囲内とすることができる。なお、機能層がTiから形成されている場合、Cr混相膜にTiやTiN(窒化チタン)が含まれる場合がある。
【0041】
なお、抵抗体30がCr混相膜である場合、Tiからなる機能層は、抵抗体30の結晶成長を促進する機能、基材10に含まれる酸素や水分による抵抗体30の酸化を防止する機能、及び基材10と抵抗体30との密着性を向上する機能の全てを備えている。機能層として、Tiに代えてTa、Si、Al、Feを用いた場合も同様である。
【0042】
このように、抵抗体30の下層に機能層を設けることにより、抵抗体30の結晶成長を促進することが可能となり、安定な結晶相からなる抵抗体30を作製できる。その結果、ひずみゲージ1において、ゲージ特性の安定性を向上することができる。又、機能層を構成する材料が抵抗体30に拡散することにより、ひずみゲージ1において、ゲージ特性を向上することができる。
【0043】
抵抗体30及び端子部41を形成後、必要に応じ、基材10の上面10aに、抵抗体30を被覆し端子部41を露出するカバー層60を設けることで、ひずみゲージ1が完成する。カバー層60は、例えば、基材10の上面10aに、抵抗体30を被覆し端子部41を露出するように半硬化状態の熱硬化性の絶縁樹脂フィルムをラミネートし、加熱して硬化させて作製することができる。カバー層60は、基材10の上面10aに、抵抗体30を被覆し端子部41を露出するように液状又はペースト状の熱硬化性の絶縁樹脂を塗布し、加熱して硬化させて作製してもよい。
【0044】
[実施例1]
実施例1では、フィラーを含有する厚さ25μmのポリイミド樹脂からなる基材10を複数枚用意した。そして、加熱処理を施さないサンプル、100℃の加熱処理を施したサンプル、200℃の加熱処理を施したサンプル、300℃の加熱処理を施したサンプルを3個ずつ作製し、常温に戻った後、各々の基材10の上面10aの表面凹凸を三次元光学干渉法により測定した。
【0045】
次に、各々の基材10の上面10aに、マグネトロンスパッタ法により、膜厚が0.05μmの抵抗体30を成膜し、フォトリソグラフィによって
図1のようにパターニングした後、抵抗体30に生じるピンホール数をサンプル裏面より光を透過した光学透過法により測定した。
【0046】
次に、測定結果に基づいて、基材10の上面10aの表面凹凸と抵抗体30に生じるピンホール数との関係について、
図3にまとめた。なお、
図3に示す棒グラフが表面凹凸を示し、折れ線グラフがピンホール数を示す。又、横軸の100℃、200℃、及び300℃は基材10を加熱処理した際の温度を示し、未処理は加熱処理されていないことを示す。
【0047】
図3は、基材10を100℃以上300℃以下で加熱処理することで、基材10の上面10aの表面凹凸が未処理時の半分程度である15nm以下となり、その結果、抵抗体30に生じるピンホール数が1/7程度に激減することを示している。但し、ポリイミド樹脂の耐熱温度を考慮すると、250℃を超える温度で加熱処理を施すと変質や劣化が起こるおそれがある。従って、加熱処理は、100℃以上250℃以下の温度で行うことが好ましい。なお、加熱処理により表面凹凸が低減するのは、加熱処理による熱収縮の際に、基材10を構成するポリイミド樹脂が内部にフィラーを巻き込むためと考えられる。
【0048】
発明者らの検討によれば、
図3に示す未処理のピンホール数(約140)はゲージ特性を悪化させるレベルであるが、加熱処理後のピンホール数(約20)はゲージ特性に悪影響を与えないレベルである。すなわち、膜厚が0.05μmの抵抗体30を用いる場合、基材10の上面10aの表面凹凸を15nm以下とすることで、抵抗体30に生じるピンホール数をゲージ特性に悪影響を与えないレベルまで低減できることが確認された。
【0049】
なお、膜厚が0.05μmよりも厚い抵抗体30を用いた場合にも、基材10の上面10aの表面凹凸を15nm以下とすることで、抵抗体30に生じるピンホール数をゲージ特性に悪影響を与えないレベルまで低減できることは言うまでもない。すなわち、基材10の上面10aの表面凹凸を15nm以下とすることで、膜厚が0.05μm以上の抵抗体30を用いた場合に、抵抗体30に生じるピンホール数をゲージ特性に悪影響を与えないレベルまで低減することができる。
【0050】
このように、基材10に加熱処理を施すことにより、基材10の上面10aの表面凹凸を15nm以下にすることが可能であり、結果として膜厚が0.05μm以上の抵抗体30に生じるピンホール数を大幅に低減することができる。その結果、良好なゲージ特性を維持した状態で、ひずみゲージ1を安定的に機能させることができる。
【0051】
なお、抵抗体30に生じるピンホール数を低減するためには基材10の上面10aの表面凹凸を低減することが重要であり、表面凹凸を低減する方法は重要ではない。上記では加熱処理を施すことで表面凹凸を低減する方法を示したが、これには限定されず、基材10の上面10aの表面凹凸を低減できれば、如何なる方法を用いてもよい。
【0052】
基材10の上面10aの表面凹凸は、例えば、基材10の上面10aに略垂直にレーザ光を照射して凸部を削る方法、基材10の上面10aと平行にウォーターカッター等を可動させて凸部を削り取る方法、基材10の上面10aを砥石を用いて研磨する方法、又は基材10を加熱しながら加圧する方法(ヒートプレス)等を用いて低減することができる。
【0053】
又、抵抗体30に生じるピンホール数を低減するためには基材10の上面10aの表面凹凸を低減することが重要であり、必ずしもフィラーの存在に起因する表面凹凸には限定されず、フィラーの存在に起因しない表面凹凸についても、上記の様々な方法により低減することは有効である。例えば、フィラーを含有しない基材10の表面凹凸が15nmよりも大きい場合、上記の様々な方法により、基材10の上面10aの表面凹凸を15nm以下にすることで、膜厚が0.05μm以上の抵抗体30に生じるピンホール数をゲージ特性に悪影響を与えないレベルまで低減できる。
【0054】
[実施例2]
実施例2では、200℃の加熱処理が施された基材10を用いて複数のひずみゲージ1を作製した。
【0055】
まず、厚さ25μmのポリイミド樹脂からなる基材10に200℃の加熱処理を施した。その後、基材10の上面10aに、コンベンショナルスパッタ法により機能層として膜厚が3nmのTiを真空成膜した。
【0056】
続いて、機能層の上面全体にマグネトロンスパッタ法により抵抗体30及び端子部41として膜厚が0.05μmのCr混相膜を成膜後、機能層並びに抵抗体30及び端子部41をフォトリソグラフィによって
図1のようにパターニングした。
【0057】
次に、実施例2の各サンプルのゲージ特性を測定した。その結果、実施例2の各サンプルのゲージ率は14~16であった。又、実施例2の各サンプルのゲージ率温度係数TCS及び抵抗温度係数TCRが-1000ppm/℃~+1000ppm/℃の範囲内であった。
【0058】
このように、200℃の加熱処理を施した基材10を用いることで、良好なゲージ特性を有するひずみゲージ1を作製できることが確認された。抵抗体30に生じるピンホール数が大幅に低減したことが、良好なゲージ特性が得られた一因であると考えられる。なお、機能層が存在することは、抵抗体30に生じるピンホール数の増加要因にはならないと考えられる。
【0059】
以上、好ましい実施の形態等について詳説したが、上述した実施の形態等に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施の形態等に種々の変形及び置換を加えることができる。
【符号の説明】
【0060】
1 ひずみゲージ、10 基材、10a 上面、30 抵抗体、41 端子部、60 カバー層