前記ガスボンベは、水素と酸素を含む混合ガスの燃焼熱によりドライアイスを気体として体積膨張させて前記圧縮気体を生成する圧縮気体生成器に接続されていることを特徴とする請求項1または請求項2に記載のエネルギー変換装置。
前記気体受け部は、開閉自在な可動羽を有して構成され、前記ノズルから噴出される圧縮気体を受けて浮力を生じるときは開いた状態となり、圧縮気体を受けることなく浮力を生じないときは閉じた状態となる、ことを特徴とする請求項1乃至請求項3のいずれか一項に記載のエネルギー変換装置。
前記ガスボンベは、開閉制御されるバルブを介在して前記ノズルから圧縮気体を噴出し、前記バルブは、前記気体受け部が所定の位置に来たときにだけ開くように制御されている、ことを特徴とする請求項1乃至請求項4のいずれか一項に記載のエネルギー変換装置。
前記出力手段は、前記気体受け部の複数がリング状に分散配置されたベルトと、前記ベルトが架けられ、前記ベルトの移動によって回転するギアとを備える動力機構を含むことを特徴とする請求項1乃至請求項5のいずれか一項に記載のエネルギー変換装置。
前記ガスボンベは、気体の配管を熱交換器に通して気体を加熱させることにより前記圧縮気体を生成する圧縮気体生成器、または、内圧を調整可能な浮輪状のOリングをシール材として有する加圧ピストンで気体を加圧することにより前記圧縮気体を生成する圧縮気体生成器、に接続されていることを特徴とする請求項1乃至請求項7のいずれか一項に記載のエネルギー変換装置。
前記液タンクは、前記ガスボンベに対して複数個が並列的または直列的に設けられていることを特徴とする請求項1乃至請求項8のいずれか一項に記載のエネルギー変換装置。
前記地下タンクは、複数個あって、地下の複数の深度に個々に埋設されており、これら複数個の地下タンクから得られる、互いに異なる温度の地下水を混合して季節に関わらずに所定の恒温の地下水を得るようにしたことを特徴とする請求項15に記載のエネルギー利用装置。
エネルギー変換装置として、例えば、水中に圧送したエアーの浮力を利用してリフトを駆動し、このリフトの駆動をもって発電する装置が知られている(特開昭56-113065号公報)。
(エネルギー変換装置)
以下、本発明の一実施形態に係るエネルギー変換装置について、図面を参照して説明する。
図1に示すように、エネルギー変換装置1は、液タンク11と、気体受け部12と、ノズル13と、ガスボンベ14と、出力手段3と、回収装置4とを備えている。このエネルギー変換装置1は、液体10が貯蔵された液タンク11内に一次エネルギー源としての圧縮気体を噴出し、生じる浮力による移動エネルギーを、液タンク11から出力可能な二次エネルギーに変換する装置である。
液タンク11は、密封可能なタンクであり、通常は密封状態で使用される。液タンク11には、液体10が貯蔵されている。液体10は、例えば、水が好適に用いられるが、水に限られず任意の液体を用いることができる。液タンク1の大きさは、例えば2~3mであるが、これに限定されるものではない。液タンク11の内部には、液体10による浮力を用いて回転運動を発生させる動力機構31が設置されている。動力機構31は、上下方向に長いリング状に配置されたベルト31aと、ベルト31aが架けられた上下2つのギア31bと、ベルト31aの移動によって回転するギア31bとを備えている。上側のギヤ31bは、
図1では液体10内に埋没しているが、その上部が液面から上に出ていてもよく、例えば、ギヤ31bの上半分近くまで液面から出ていてもよい。どれだけ出すかについては、気体受け部12における気体による浮力の有効性と、ギヤ31bの回転に対する抵抗、例えば液体10が気体受け部12に及ぼす抵抗などとの兼ね合いなどによって、適宜決めればよい。
気体受け部12は、ベルト31aにリング状に分散配置されることにより、液タンク11内において、縦方向に複数個設けられている。気体受け部12は、ベルト31aの移動に連動して上下移動自在であり、上下の位置では回転移動を行い、全体として上下間の周回運動を行う。
図1に示す本実施形態において、ベルト31aとギヤ31bは、右回りつまり時計回りに回転する。
ノズル13は、液タンク11内において、下部に位置する気体受け部12の下方から圧縮気体を噴出する。圧縮気体は、気体受け部12に捕獲されて気体受け部12に浮力を与える。気体受け部12は、液体10からの浮力を受けるが、上方に移動する際、ノズル13から噴出される圧縮気体を受けることにより、下方に移動する場合よりも、より大きな浮力を受けることになる。ノズル13は、
図1では1本だけ図示されているが、1本に限られず複数本としてもよい。例えば、上向きシャワーノズルのように、ノズル13の複数の開口を、気体受け部12の下向き開口の全面に分布させることにより、広い面積から気体を気体受け部12内に出してもよい。
気体受け部12は、
図2(a)(b)に示すように、開閉自在な可動羽12aを有して構成され、ノズル13から噴出される圧縮気体を受けて浮力を生じるときは開いた状態となり、圧縮気体を受けることなく気体からの浮力を生じないときは閉じた状態となる。この構造により、気体受け部12とベルト31aの周回運動が、より効率よく行われる。
ガスボンベ14は、一次エネルギー源としての圧縮気体を貯留し、その圧縮気体をノズル13に送出する。ガスボンベ14は、開閉制御されるバルブ14aを介在してノズル13から圧縮気体を噴出する。バルブ14aは、気体受け部12が所定の位置に来たときにだけ開くように制御される。これにより、圧縮気体が、効率よく気体受け部12に補足されるので圧縮気体の消費が抑制され、また液体10に気泡が混じるのを抑制して液体10の密度を高く維持できるので液体10本来の浮力を有効利用できる。
ガスボンベ14は、圧縮気体を生成する圧縮気体生成器5に接続されている。圧縮気体生成器5は、例えば、羽根車またはロータの回転運動又、またはピストンの往復運動によって気体を圧送して、機械エネルギーを流体である気体の持つエネルギーに変換する一般的なコンプレッサを用いればよい。圧縮気体生成器5は、動力源50からの動力によって動作する。動力源50は、自然エネルギー、例えば、風力、地熱、水力、潮汐力、波力などが、温暖化ガス発生抑制のため、好適に用いられる。
圧縮気体生成器5によって生成される圧縮気体は、タンク11内の液体10の水圧に抗して、ノズル13から気体受け部12に気体を供給できるように、圧力を高めた気体である。気体受け部12に供給される気体は、液体10による浮力を気体受け部12に与えるために供給される。
出力手段3は、気体受け部12に生じる、浮力による上方移動の運動エネルギーを液タンク11の外部に二次エネルギーとして出力する手段である。
図1の本実施形態において、出力手段3は、浮力による運動エネルギーをギヤ31bの回転軸31cの回転エネルギーに変換する動力機構31と、回転軸31cの回転エネルギーを、二次エネルギーとしての電気エネルギーに変換する発電装置32と、を備えている。
回収装置4は、液タンク11から気体をガスボンベ14に戻す装置である。液タンク11の上部の空間は、気体が滞留するガス室15となっている。回収装置4は、そのガス室15に滞留している気体を、圧縮気体生成器5を介してガスボンベ14に送り込む。ガス室15内の気体は、ノズル13から創出された気体と、液体10の蒸気などである。
回収装置4は、ガス室15から圧縮気体生成器5までの管路に沿って、三方弁41、サブポンベ40、およびバルブ42を備えている。三方弁41とバルブ42は、開閉制御される、流量調整および閉止用のバルブである。これrは、逆止弁の機能を有する複合機能弁とするのが望ましい。三方弁41は、ガス室15内の圧力を下げるために気体を逃がす弁の機能を有する。サブポンベ40は、ガス室15の容量を補助する、バッファとして機能する。
また、圧縮気体生成器5が、三方弁41、サブポンベ40、およびバルブ42の機能を有する場合、回収装置4は、ガス室15と圧縮気体生成器5とを接続する配管だけの構成であってもよい。
次に、エネルギー変換装置1の動作を説明する。本装置の動作ガスつまり圧縮気体は、空気であるとして説明するが、空気に限定されない。また、液体10が、水を想定して説明する。動力機構31が設置された液タンク11に水を注入し、ガスボンベ14などの配管を、ノズル13に接続し、回収装置4の配管をガス室15に接続して、圧縮気体生成器5を動作させて圧縮気体を準備する。三方弁41でガス室15のガス圧を調整しながら、さらに、バルブ14aを調整しながらノズル13に圧縮気体を送出する。
ノズル13の上向き開口から出てきた圧縮気体を構成する気体が、上向きに移動するベルト31aの最下部で開口した気体受け部12に捕獲されて気体受け部12の上部空間の水と置き換わる。すると、気体受け部12に気体に基づく浮力が加わるので、液体10の浮力に基づく左右のベルト31aに作用する力に差が生じ、ベルト31aが徐々に右回り回転を始める。ノズル13の上に次々と移動してくる気体受け部12に気体が受けとられると、ベルト31aの周回移動が定常状態となる。
ベルト31aの周回移動の定常状態において、上側のギヤ31bに接するベルト31aとともに回転運動する気体受け部12から、気体が情報に放出される。気体を放出した気体受け部12は、開閉自在の可動羽12aを閉じた状態で、下方に移動する。下側のギヤ31bに接するベルト31aとともに回転運動する気体受け部12は、ノズル13よりも上方に来ると、開閉自在の可動羽12aが開いて、ノズル13からの気体を受け取ることになる。
周回移動するベルト31aは、浮力を受けて上昇する気体受け部12からの運動エネルギーをギヤ31bの回転運動エネルギーに変換する。ギヤ31bの回転は回転軸31cを回転させ、その回転エネルギーは発電装置31が生成する電気エネルギーとなって、外部に取り出される。
ここで、三種の圧力P1,PW,P2の関係を説明する。圧力P1はガスボンベ14から送出される圧縮気体の圧力である。圧力PWは液体10の深さで決まる水圧である。圧力P2はガス室15における気体の圧力である。これらの圧力は、エネルギー変換装置1が定常状態で動作しているとき下式の関係にある。この式は、ガスボンベ14からの気体がノズル13から液体10の中に侵入可能な条件を示す。
P2+PW<P1
圧縮気体生成器5は、必要な圧力P1を得るために気体を圧縮して、少なくとも水圧PW以上の高圧にする。回収装置4は、三方弁41を開閉制御して、上式が満たされるようにガス室15における気体の圧力P2を調整する。
このエネルギー変換装置1においては、圧縮気体が作動気体として圧力変動を受けながら、装置内を循環する。エネルギー変換装置1は、定常状態において、動作ガスの閉循環回路を形成する。動作ガスの動作ガスの圧力を調整するため、各種の弁、圧力センサ、タンク、などの部品を、エネルギー変換装置1に適宜組み込んでもよい。
このようなエネルギー変換装置1によれば、液体10が貯蔵された液タンク11内に一次エネルギー源としての圧縮気体を噴出し、生じる浮力による移動エネルギーを二次エネルギーに変換し、液タンク11から気体をガスボンベ14に回収し再利用することができる。従って、エネルギーを効率良く生成し変換可能となる。気体の再利用は、空気などではなく特殊な気体を作動気体、すなわち圧縮気体として用いる場合、その特殊な気体を回収し再利用することができる。また、ガス室15における気体を、例えば大気中などに開放しないので、ガス室15の気体の圧力P2、すなわち気体の圧力エネルギーを再利用することができる。
次に、
図3を参照して、別の実施形態を説明する。この実施形態のエネルギー変換装置1は、
図1の実施形態における発電装置32に替えて、ギヤ31bの回転エネルギーを機械的に外部に取り出す伝達機構30を備えている。本例において、液タンク11は地下に設置されているが、地下に設置することに限られず、半地下や地上などに接地してもよい。
図1のエネルギー変換装置1についても同様である。
伝達機構30は、動力機構31の下側のギヤ31bに係合してその回転エネルギーを受け取るギヤなどの結合器3a、その結合器3aに順次結合する、シャフト3b、結合器3c、シャフト3d、結合器3e、さらにシャフト3fを備えている。
横向きのシャフト3bは、下側のギヤ31bの側方に位置する液タンク11の側壁に設けられた連通開口11wを通って液タンク11の外部に導出されている。また、液タンク11の側方外部には、結合器3cと縦方向のシャフト3dとを囲むように、水封タンク11Aが設けられている。水封タンク11Aは、液タンク11の内部と連通する連通開口11wと、上方に開口する上部開口11kとを有している。水封タンク11Aには、液体10が入っており、その液面は上部開口11kによって大気圧に開放されている。液タンク11内の液体10の液面と水封タンク11A内の液体10の液面の上下関係は、ガス室15の気体の圧力P2が大気圧ではない場合に、互いに異なる液面レベルとなる。
このエネルギー変換装置1における出力手段3の出力機構30は、水封構造を用いているので、厳密な封止構造を用いることなく、機械的エネルギーをエネルギー変換装置1の外部に取り出すことができる。水封構造は、上側のギヤ31bに対しても、同様に適用できる。
伝達装置30は、これらの結合器3a,3c,3e、およびシャフト3b、3d、3fを介して、液タンク11内で変換生成されるエネルギーを機械的なエネルギーとして、エネルギー変換装置1の外部に取り出し、外部の動作装置33に伝達する。
動作装置33は、揚水機であり、上下のスプロケット33a,33bにかけられたチェーン33cに、複数のバケツ33dを備えて構成されている。エネルギー変換装置1の外部に取り出された回転エネルギーは、シャフト3fを介して、上側のスプロケット33aに回転エネルギーとして伝達される。
このエネルギー変換装置1によれば、圧縮気体の圧力に基づくエネルギーを、機械的エネルギーに変換して出力できるので、その機械的エネルギーをそのまま、動作装置33の機械的動作のエネルギーとして用いることができる。
次に、
図4、
図5、
図6を参照して、液タンク11を複数用いる場合の組み合わせの例を説明する。液タンク11は、ガスボンベ14に対して複数個が並列的または直列的に設けられてもよい。
図4に示すエネルギー変換装置1は、ガスボンベ14に対して、互いに同構造の3つの液タンク11を並列的に設置した例を示す。各液タンク11のノズル13には、それぞれバルブ14を介して圧縮気体が送出される。また、各液タンク11のガス室15の気体は、それぞれ三方弁41を介して、サブボンベ40に回収される。並列配置される液タンク11は、互いの同構造のものに限られず、互いに異なる構造のものであってもよく、個数も3つに限られない。
図5に示すエネルギー変換装置1は、ガスボンベ14に対して、互いに同構造の3つの液タンク11を直列的に設置した例を示す。各液タンク11は、同じ水平レベルに配置されている。ガスボンベ14に近い側から、1番目の液タンク11にはバルブ14aを介して圧縮ガスがノズル13に送出されている。その1番目の液タンク11のガス室15から、三方弁41を介して、2番目の液タンク11のノズル13に気体が送出されている。その2番目の液タンク11のガス室15から、三方弁41を介して、3番目の液タンク11のノズル13に気体が送出されている。そして、3番目の液タンク11のガス室15から、気体が、サブボンベ40に回収されている。
バルブ14aと3つの三方弁41は、3つの液タンク11における、上述した圧力P1,PW,P2に相当する圧力を、互いに調整するために用いられる。直列配置される液タンク11は、互いの同構造のものに限られず、互いに異なる構造のものであってもよく、個数も3つに限られない。
図6に示すエネルギー変換装置1は、ガスボンベ14に対して、互いに同構造の2つの液タンク11を直列的に、上下に設置した例を示す。下側の液タンク11のガス室15からの気体は、三方弁41を介して、上側の液タンク11のノズル13に送出されている。その気体を導く配管は、上側の液タンク11の上部レベルまで配管された後、その液タンク11の下まで引き戻されて、ノズル13に接続されている。この配管構造は、上側の液タンクの液体10が、気体の配管を通って、下側の液タンク11に流入するのを防止するための構造である。
また、上下の液タンク11は、水封タンク11Aによって、互いに連通している。この実施形態では、上下の液タンク11からそれぞれ、互いに共通の水封タンク11Aと伝達機構30とを介して、機械的エネルギーを取り出す構成が、実現されている。また、上下の液タンク11は、水封タンク11Aによって互いに連通していることに限られず、上下の液タンク11が互いに独立していてもよい。例えば、
図3に示した液タンク11と水封タンク11Aと伝達機構30との組を、上下に直列した態様としてもよく、この場合、上下の液タンク11が、それぞれの水封タンク11Aと伝達機構30とを備える。
次に、
図7(a)(b)を参照して、圧縮気体生成器5の例を説明する。この圧縮気体生成器5は、シリンダ51内に備えた加圧ピストン52を用いて、気体を加圧することにより圧縮気体を生成するものである。加圧ピストン52は、ピストン本体52aと、内圧を調整可能な浮輪状のOリングからなるシール材52bとを備えている。
シリンダ51の下部側壁には、圧縮ガスを創出するための配管が開口接続されている。その配管は、三方弁51aを介して、ガスボンベ14に接続されている。また、シリンダ51の下部は、水封構造によってシリンダ51の側壁外部に設けられた水封タンク11Aに連通している。加圧ピストン52の下面には、チェーンが係止されており、そのチェーンは、水封構造を通って水封タンク11Aの上方に位置する巻上機53に、巻き上げ巻き戻し自在に固定されている。
加圧工程では、
図7(a)に示すように、浮輪状のシール材52bの内圧を高めて、加圧ピストン52とシリンダ51の内壁との間の摺動自在の封止構造とする。次に、巻揚機53によって加圧ピストン52を下方に移動させて、シリンダ51内部の気体を圧縮し、圧縮気体をガスボンベ14に送出する。
吸気工程では、
図7(b)に示すように、浮輪状のシール材52bの内圧を弱めて加圧ピストン52とシリンダ51の内壁との間に隙間を有する構造とする。次に、巻揚機53を緩めて、加圧ピストン52を上方に引き上げて、シリンダ51内部に気体を吸入する。
加圧ピストン52を下方に押し下げて気体を圧縮するための機構やエネルギーは、巻上機53を用いるものに限られず、種々の方法を用いることができる。例えば、水封構造と巻上機53に替えて、加圧ピストン52の上面に油圧や水圧をかける構成としてもよい。吸気工程は、内圧を調整可能な浮輪状のシール材52bの内圧を下げることにより、容易に行うことができる。
次に、
図8を参照して、圧縮気体生成器5の他の例を説明する。この圧縮気体生成器5は、水素と酸素を含む混合ガスの燃焼熱により個体のドライアイスを加熱して気体とすることにより、体積膨張させて前記圧縮気体を生成する。生成された圧縮ガスは、ガスボンベ14の送出される。一般に、動作ガスは、ノズル13から送出される際に、浮力を生じる気体であればよい。例えば、ガス室15からガスボンベ14に至る間に、気体ではなく、液体や固体の状態であってもよい。回収装置4以降において、ドライアイスや液化ガスにされて個体や液体に変換される動作ガスを用いることができる。例えば、圧縮されて液化ガスとなる物質などを、動作ガスとして用いてもよい。
次に、
図9を参照して、エネルギー変換装置1の他の例を説明する。このエネルギー変換装置1は、圧縮気体生成器5が、気体の配管を熱交換器54に通して気体を加熱させることにより圧縮気体を生成するものであり、他は、
図1、
図3のエネルギー変換装置1と同様である。熱交換器54の上流側、つまりサブボンベ40側には、逆止弁の機能を有するバルブ42がある。また、熱交換器54の下流側、つまりガスボンベ14側には、ガス圧調整などを行うための三方弁51aが、必要に応じて備えられる。
この圧縮気体生成器5は、熱交換器54の筐体の中に高温になる熱媒体54aが封入されている。エネルギー変換装置1内を循環してエネルギー変換装置1を動作させる動作ガス、つまり圧縮気体となる気体を導く配管は、熱交換器54内で熱媒体54aに囲まれている。配管内部の動作ガスは、熱媒体54aから熱を受け取ることにより、高圧気体化され、圧縮気体となる。動作ガスは、エネルギー変換装置1内を循環中に常に気体である必要はなく、液体や固体の状態になるものであってもよい。気体とは異なる状態の動作ガスを含めて総称する場合、動作ガス材料と呼ぶ。
熱交換器54は、例えば、太陽熱温水器の態様において、沸点の高い熱媒体54aとして金属ナトリウムを封入したものとしてもよい。熱交換器54は、自然エネルギーを用いて熱媒体54aを加熱してもよい。自然エネルギーは、例えば、太陽光エネルギー、地熱(マグマの熱など)、熱泉の熱などを用いてもよい。
また、動作ガスとなる物質は、液タンク11内の液体10との組み合わせに応じて、さらに、エネルギー変換装置1の動作条件、例えば各種圧力P1,PW,P2、液体10の温度条件や動作時の物性値、等に応じて、任意に選択して用いてもよい。例えば、動作ガスとして、フロンなどの冷媒を用いてもよい。また、液体10として、水の他に、アンモニア水などを用いてよい。
次に、
図10を参照して、エネルギー変換装置1の一実施形態における動作ガスの循環工程を模式的に説明する。本実施形態のエネルギー変換装置1において、動作ガスは、圧縮気体生成器5によって高圧気体とされ、ガスボンベ14を介して、エネルギー変換装置の装置本体11Rに送出され、装置本体11Rからサブボンベ40に回収されて、圧縮気体生成器5に戻る。装置本体11Rは、液タンク11とその内部の構造体の全体の総称であり、圧縮気体による一次エネルギーを運動エネルギーに変換した後、液タンク11の外部に二次エネルギーとして出力するための構成要素を含む。
本実施形態の圧縮気体生成器5は、コンプレッサ16と、熱交換器17と、気化器18とを備えている。ここでは、動作ガスとして、冷凍機などにおいて冷媒として用いられるフロンを想定して説明する。このような動作ガスは、高温化されると熱源として用いることができ、膨張して気化熱を出して低温化されると休熱材として用いることができ、高圧気体とされることで、エネルギー変換装置1において気体受け部12に浮力を与える気体としても用いることができる。
コンプレッサ16は、例えば、電気エネルギーなどを用いて、動作ガスを圧縮して高温高圧の状態にする。熱交換器17は、その内部で動作ガスの熱を放出して、水、空気、などの液体や気体を加熱する。加熱された液体や気体は、他の場所に導かれて空調などで暖房に用いられる。
気化器18は、膨張弁などを通して動作ガスを膨張させて、さらに低温化される。低温化された動作ガスは、周りの熱を奪うことができ、その熱吸収能が冷房システムの構築などに用いられる。熱交換器17と気化器18とを経た動作ガスは、適度に圧力調整された圧縮気体となり、ガスボンベ14を介して装置本体11Rに送出されてエネルギ変換がなされる。
このような循環工程によれば、コンプレッサ16において、予め余剰のエネルギーを動作ガスに投入し、後続の熱交換器17と気化器18とにおいて、その余剰エネルギーを用いて、それぞれ暖房や冷房を行ない、その後、浮力を用いたエネルギー変換を行うことができる。余剰エネルギーを投入できる環境において、全体として統一性のとれたシステムを構築できる。
次に、
図11を参照して、エネルギー変換装置1の他の実施形態を説明する。本実施形態のエネルギー変換装置1は、
図1のエネルギー変換装置1における動力機構31が、水車の態様を有する動力機構31Aに置き換えられたものである。動力機構31Aは、一軸周りで回転する回転体の外周に複数の気体受け部12を周設したものである。気体受け部12は、
図2(a)(b)に示した構造を有する。
本実施形態において、液タンク11の中に、右回り回転する動力機構31Aが2つ設置されている。また、各動力機構31Aに対し、それぞれ、バルブ14aとノズル13が設定されている。動力機構31Aの回転エネルギーは、発電装置32によって電気エネルギとされる。
(車体移動装置)
次に、図面を参照して、本発明の一実施形態に係る車体移動装置を説明する。
図12(a)(b)に示すように、車体移動装置2は、車体21と、車体21の下面の前後左右に設けられた氷上滑走用のそり22と、路面20に設けられ、そり22の氷上滑走を案内する、液体を凍結して氷面2aが形成された左右一対のレール23と、車体21を走行させる駆動装置と、を備えている。
レール23は、長手方向に溝が形成された凹状断面を有して路面20に対して固定された筐体23aと、その溝の内部に配置された冷媒を通す冷媒管23bと、備えている。筐体23aの溝には水が入れられて、冷媒管23bによって冷やされて氷2bが形成されている。その氷2bの表面が、そり22が氷上滑走する際の氷面2aとなる。レール23は、そり22が氷上滑走をしないときに内部に雨などが入らないように蓋をするカバーを備えてもよく、また、氷面2aに存在する水を排出するドレン孔を設けてもよい。このカバーとレール23の筐体23aは、地下タンク水をパイプ循環して冷却等する。
レール23の外側面に近接して、案内車輪21aが設けられている。案内車輪21aは、レール23に沿って走行するように、車体21を案内する。このような案内ようの装置は、そり22とレール23との間に設けてもよい。例えば、そり22がレール23から逸脱させないように、レール23における構造体で、そり22を包み込んで囲むように構成してもよい。
駆動装置は、車体21に搭載したエンジンまたはモータを動力とする車輪24である。車輪24は、車体21に対して昇降自在に構成されており、非駆動時には路面20から離れるように上方に移動され、車体21はそり22によって氷面2a上をそり走行する(
図12)。また、車輪24は、駆動時には路面20に接触して車体21を車輪走行させる(
図13)。
車輪24は、
図13(a)に示すように、前後のそり22の間に、前後方向に2つ並べてもよく、また、
図13(b)に示すように前後方向には1つとしてもよい。車輪24の配置と個数は、そり走行と車輪走行のそれぞれの役割に従って、任意に設定できる。例えば、そり22を氷面2aに接地させた状態で、車輪24によって走行させる場合、車体21の重量はそり22が支持するので、車輪24は走行駆動だけお行なえばよく、全体で1つの車輪があればよい。また、車輪24で車体21の重量を支持する場合、3点支持するために、少なくとも3つの車輪24が必要になる。
車体移動装置2は、車輪24を有しない駆動装置を用いて、車体21を走行移動させる実施形態としてもよい。例えば、駆動装置として、ジェット推進装置またはプロペラ推進装置を車体21に搭載して用いてもよい。またリニアモーターを、駆動装置として用いてもよい。この場合、リニアモーターの磁場を形成する線路は、その表面を覆うように、液体を凍結させて氷面を形成するようにしてもよい。また、リニアモーターと、車体21に搭載したエンジンまたはモータで駆動力を得る車輪24と、を組み合わせて駆動装置としてもよい。
図14(a)(b)を参照して、車体移動装置2の一実施形態に係る制動装置を説明する。そり22を用いてレール23上を氷上滑走している車体21は、その運動エネルギーを、制動装置によって吸収をして減速または停止される。車体移動装置2は、任意の制動装置を備えることができる。本実施形態の制動装置25は、流体の移動抵抗によって運動エネルギーを吸収するものである。制動装置25は、一般にショックアブソーバーやダンパと呼ばれる装置の応用である。
制動装置25は、レール23に沿って設けられ、例えば液体が封入されたシリンダ25aと、シリンダ25aに対して相対移動して内部の液体を移動させるピストン25bと、ピストン25bに設けられた係止部26cと、車体21の下部に設けられ、係止部26cに係合する係合部21bと、を備えている。シリンダ25aとピストン25bとは、ショックアブソーバーとしての構造と機能を有する。また、シリンダ25aとピストン25bの組は、レール23に沿って所定間隔ごとに配置されている。シリンダ25aとピストン25bの組は、レール23の全線に沿って所定の間隔で配置してもよく、所定範囲内に所定の間隔で配置してもよい。
係合部21bは、上下移動自在であり、制動時に、走行中の車体21から下方に降ろされて係止部26cに係止され、走行方向(図中左方)に係止部26cを押す。これにより、ピストン25bが左方に押されて移動し、油の粘性抵抗によって運動エネルギーが熱エネルギーに変換、吸収されて、車体21が減速される。
制動装置25は、破壊防止のためシリンダ25a内の圧力を逃がすための安全弁25dを複数備えている。それらの安全弁25dは、圧力段階に応じて、段階的に機能するように設定されている。ピストン25びの可動範囲内において車体21が停止できない場合は、係止部26cと係合部21bとの間の係止が自動的に解除され、走行方向における次段のシリンダ25aとピストン25bの組における係止部26cに対し、係合部21bが係止されて、その組による制動動作が行われる。走行速度と制動距離との所定の規則に従って、制動装置25の設定と配置が行われる。
(エネルギー利用装置)
次に、
図15を参照して、本発明の一実施形態に係るエネルギー利用装置6を説明する。エネルギー利用装置6は、恒温の地下水のエネルギーを利用する装置である。エネルギー利用装置6は、地下タンクTと、構造体60と、パイプ62および循環ポンプP3と、ファン63と、を備えている。
地下タンクTは、所定の恒温の地下水を取得可能な所定の地下に埋設されて恒温の地下水を貯留する。地下タンクTは、例えば、恒温の地下水を含む地下水層Lの近くに、汲み上げポンプP1とともに配置され、ポンプP1によって汲み上げられた地下水を貯留する。その地下水は、ポンプP2によって地下タンクTから地上に汲み上げられる。
構造体60は、光透過性材料で形成された複数の中空チューブ6aを連通させて連結することにより形成された空洞部61を内部に有している。空洞部61は、空調スペースまたはエネルギー交換機器設置スペースとして用いられる。構造体60は、例えば、太陽光の存在下で用いられる場合は地上に設置し、その他の場合は地中に設置してもよい。地中の場合、所定の恒温下での使用が容易になる。構造体60は、その両端を、中空チューブ6aを連結させて形成した壁によって封じて密閉空間として用いられる。構造体60は、その両端の一部を開放した開放空間として用いてもよい。
パイプ62および循環ポンプP3は、地下タンクTに貯蔵されポンプp2で汲み上げられた恒温の地下水を構造体60の中空チューブ6aに流通させるために用いられる。地下水は、必要な分だけ補助タンクT1に貯められて中空チューブ6aを循環した後、地下タンクTに戻される。この中空チューブ6a内の循環により、空洞部61の内部は一定の温度となる。ファン63は、構造体60により形成された密閉された空洞部61に、空気の流れを生じさせる。この送風により、空洞部61内の空気の淀みがなくなる。構造体60は、その一端側から他端側に外部の配管を備えて、閉じた風の通路を形成し、ファン63によって、構造体60内に一方向の風の流れを生じさせるようにしてもよい。
空洞部61は、
図16に示すように、ソーラーパネル64の設置空間として好適に用いられる。ソーラーパネル64は、太陽光のエネルギーを電気エネルギに変換するエネルギー交換機器である。ソーラーパネル64は、4面を地下水の温度に維持された空洞部61にあって、ファン63によって送風されているので、パネル面を低温に維持でき、発電効率を維持できる。なお、構造体60は、空洞部61の形状をそこに収める内容物に応じて、内容物の温度コントロールを最適化、効率化できる適切な形状とすることができる。例えば、
図16のソーラーパネル64の場合、そのパネルを最小空間に収められるように、パネルの表面と裏面を含む外周面に近接して、中空チューブ6aで形成した壁面で囲んで密閉した空洞部61としてもよく、一部が開いた非密閉の空洞部61としてもよい。
次に、
図17を参照して、エネルギー利用装置6の応用例を説明する。このエネルギー利用装置6は、複数個(図示例では3個)の地下タンクTと、各タンクからの地下水を混合する混合器6mxと、を有する。地下タンクTは、それぞれ、互いに異なる温度t1,t2,t3の地下水が得られるように、地下の複数の深度に個々に埋設されている。混合器6mxは、これら複数個の地下タンクTから得られる、互いに異なる温度t1,t2,t3の地下水を混合することにより、季節に関わらずに所定の温度t0に調整された恒温の地下水を送出する。各地下水の温度に季節変動があっても、各地下水間の温度差を考慮して混合比を変えることにより、所定の温度に維持できる。
次に、
図18を参照して、本発明の他の一実施形態に係るエネルギー利用装置6Aを説明する。エネルギー利用装置6Aは、恒温の地下のエネルギーを利用する装置であり、所定の恒温である所定の深度の地下と地表との間に往復して設けた中空パイプ65と、中空パイプ65に地表側の空気を送り込むファン66と、を備えている。ファン66により中空パイプ65に送り込まれて所定の深度の地下において、熱の放出または吸収による熱交換がなされて冷却または加熱された空気を、地表側で空調に利用することができる。地下において、熱交換を容易にするため、熱交換場所において、配管に多数のフィンを設けたり、多数の枝分かれした配管としたりして配管の表面積を増加させてよい。
次に、
図19を参照して、本発明のさらに他の一実施形態に係るエネルギー利用装置6Bを説明する。エネルギー利用装置6Bは、日光エネルギーを利用した装置であって、光透過性材料で形成された複数の中空チューブ6aを連通させて連結することにより内部に空洞部61を形成してなる構造体60と、構造体の中空チューブ6aに水または温水を流通させるパイプ62および循環ポンプP3と、構造体60により形成された空洞部61に、その一の開口から他の開口に向けて空気を送風するファン63と、を備えている。
構造体60は日光を受け得る場所に設置され、空洞部61の平面視底面側に海水9を通し、その海水9の上面にファン63による風を通す。これにより、海水9の蒸発が促進され、塩を得ることができる。
次に、
図20を参照して、本発明のさらに他の一実施形態に係るエネルギー利用装置6Cを説明する。エネルギー利用装置6Cは、圧縮空気を空調に利用するエネルギー利用装置6Cであって、自然エネルギーを動力とした空気圧縮コンプレッサ68と、空気圧縮コンプレッサ68により圧縮した空気を貯蔵する、地下に埋設したタンクTaと、を備えている。本例では、自然エネルギーとして太陽光を用いるため、ソーラーパネル64が備えられている。
タンクTaに貯蔵され、所定の温度に温度調節された圧縮空気を、パイプを通して空調スペース67に送出して利用することができる。
次に、
図21を参照して、本発明のさらに他の一実施形態に係るエネルギー利用装置7を説明する。エネルギー利用装置7は、自然エネルギーを利用して発電するエネルギー利用装置7であって、海岸に施設した、海の波の力で海水が海面より高い位置までせり上がるように作用するリアス式海岸に疑似した壁構造体71と、壁構造体71により、せり上がった海水70を導入して貯留するタンク72と、タンク72に貯留させた海水70の位置エネルギーを利用して発電する水力発電機74と、を備えている。
海岸に打ち寄せる海水の波は、漏斗のように形成された壁構造体71によって進路が狭められ、斜面を駆け上がり、海水70がタンク72に流入する。タンク72内の海水は、配管73a,73bとポンプ73によって、水力発電機74に向けて流れ始めると、ポンプなして下流への流れが持続される。
水力発電機74に替えて、空気圧縮コンプレッサを備えることにより、発電する代わりに、位置エネルギーを用いて圧縮空気を生成してタンクに保存することにより、位置エネルギーを、圧力のエネルギーとして保存できる。
なお、本発明は、上記構成に限られることなく種々の変形が可能である。例えば、上述した各実施形態の構成を互いに組み合わせた構成とすることができる。