(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2025008158
(43)【公開日】2025-01-20
(54)【発明の名称】距離計測装置及び距離計測方法
(51)【国際特許分類】
G01B 11/06 20060101AFI20250109BHJP
G01B 11/00 20060101ALI20250109BHJP
【FI】
G01B11/06 G
G01B11/00 G
【審査請求】未請求
【請求項の数】8
【出願形態】OL
(21)【出願番号】P 2023110091
(22)【出願日】2023-07-04
(71)【出願人】
【識別番号】304023318
【氏名又は名称】国立大学法人静岡大学
(74)【代理人】
【識別番号】100088155
【弁理士】
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100124800
【弁理士】
【氏名又は名称】諏澤 勇司
(74)【代理人】
【識別番号】100170818
【弁理士】
【氏名又は名称】小松 秀輝
(72)【発明者】
【氏名】水嶋 祐基
【テーマコード(参考)】
2F065
【Fターム(参考)】
2F065AA06
2F065AA30
2F065BB22
2F065CC19
2F065FF52
2F065GG04
2F065GG24
2F065HH13
2F065LL01
2F065LL67
(57)【要約】
【課題】所望の計測可能範囲を得る。
【解決手段】距離計測装置1は、計測光L1を発生する光源ユニット3と、計測光L1の一部である照射光L2を計測対象面9aに照射すると共に計測光L1の残りである端面反射光L3を反射する光ファイバ端面2aを含む1本の光ファイバ2と、照射光L2が計測対象面9aにおいて反射した後に再び光ファイバ2に入射した戻り光L4であって、戻り光L4と端面反射光L3とが干渉して生じる干渉光L5のスペクトルを得る分光器51と、干渉光L5のスペクトルを用いて、光ファイバ端面2aから計測対象面9aまでの距離9Hを得るコンピュータ6と、を備える。
【選択図】
図1
【特許請求の範囲】
【請求項1】
計測光を発生する光源と、
前記計測光の一部である照射光を計測対象面に照射すると共に前記計測光の残りである反射光を反射する光ファイバ端面を含む1本の光ファイバと、
前記照射光が前記計測対象面において反射した後に再び前記光ファイバに入射した戻り光であって、前記戻り光と前記反射光とが干渉して生じる干渉光のスペクトルを得る分光部と、
前記干渉光のスペクトルを用いて、前記光ファイバ端面から前記計測対象面までの距離を得る距離取得部と、を備える距離計測装置。
【請求項2】
前記干渉光の光強度を得る光強度取得部をさらに備え、
前記距離取得部は、
前記干渉光のスペクトルを用いて第1候補距離を得る第1候補距離取得部と、
前記干渉光の光強度を用いて第2候補距離を得る第2候補距離取得部と、
前記第1候補距離又は前記第2候補距離のいずれかを前記光ファイバ端面から前記計測対象面までの距離として出力する距離出力部と、を含む、請求項1に記載の距離計測装置。
【請求項3】
前記距離取得部は、
前記第1候補距離取得部によって前記第1候補距離を得る動作と、
前記第2候補距離取得部によって前記第2候補距離を得る動作と、
前記距離出力部が前記干渉光の光強度と閾値とを比較して、前記干渉光の光強度が閾値以上である場合に前記第1候補距離を前記光ファイバ端面から前記計測対象面までの距離として選択する動作と、前記干渉光の光強度が閾値未満である場合に、前記第2候補距離を前記光ファイバ端面から前記計測対象面までの距離として選択する動作と、を実行する、請求項2に記載の距離計測装置。
【請求項4】
前記距離取得部は、
前記距離出力部が前記干渉光の光強度と閾値とを比較する動作と、
前記干渉光の光強度が閾値以上である場合に、前記第1候補距離取得部によって前記第1候補距離を得て、前記第1候補距離を前記光ファイバ端面から前記計測対象面までの距離として出力する動作と、
前記干渉光の光強度が閾値未満である場合に、前記第2候補距離取得部によって前記第2候補距離を得て、前記第2候補距離を前記光ファイバ端面から前記計測対象面までの距離として出力する動作と、を実行する、請求項2に記載の距離計測装置。
【請求項5】
前記距離取得部は、
前記照射光を前記ファイバ端面から出射しないときに前記光強度取得部が出力するノイズ信号の強度に基づいて、前記ノイズ信号に由来して前記第2候補距離に重畳される不確かさを示す誤差距離を得る誤差距離取得部と、
前記第2候補距離に占める前記誤差距離の割合を得る誤差評価値を得る評価値取得部と、を含む、請求項2に記載の距離計測装置。
【請求項6】
前記距離取得部は、
前記第1候補距離取得部によって前記第1候補距離を得る動作と、
前記第2候補距離取得部によって前記第2候補距離を得る動作と、
前記距離出力部が前記誤差評価値と閾値とを比較して、前記誤差評価値が閾値以上である場合に前記第1候補距離を前記光ファイバ端面から前記計測対象面までの距離として選択する動作と、前記誤差評価値が閾値未満である場合に、前記第2候補距離を前記光ファイバ端面から前記計測対象面までの距離として選択する動作と、を実行する、請求項5に記載の距離計測装置。
【請求項7】
前記距離出力部は、
前記距離出力部が前記干渉光の光強度と閾値とを比較する動作と、
前記誤差評価値が閾値以上である場合に、前記第1候補距離取得部によって前記第1候補距離を得て、前記第1候補距離を前記光ファイバ端面から前記計測対象面までの距離として出力する動作と、
前記誤差評価値が閾値未満である場合に、前記第2候補距離取得部によって前記第2候補距離を得て、前記第2候補距離を前記光ファイバ端面から前記計測対象面までの距離として出力する動作と、を実行する、請求項5に記載の距離計測装置。
【請求項8】
光源が発生した計測光の一部である照射光を計測対象面に照射すると共に前記計測光の残りである反射光を反射する光ファイバ端面を含む1本の光ファイバから前記照射光を計測対象物に向けて出射するステップと、
前記照射光が前記計測対象面において反射した後に再び前記光ファイバに入射した戻り光であって、前記戻り光と前記反射光とが干渉して生じる干渉光のスペクトルを得るステップと、
前記干渉光のスペクトルを用いて、前記光ファイバ端面から前記計測対象面までの距離を得るステップと、を有する距離計測方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、距離計測装置及び距離計測方法に関する。
【背景技術】
【0002】
本願発明者らによる特許文献1は、光ファイバを用いて液膜の厚さを得る技術を開示する。この技術は、移動する液膜に向けて光ファイバから計測光を出射する。そして、液膜気液界面において反射して再び光ファイバに入射する光の光強度を得る。光ファイバに戻る光の光強度は、計測光を出射する光ファイバの端面から液膜気液界面までの距離に応じて減衰する。従って、どの程度の光強度の減衰を生じたかを知ることによって、光ファイバの端面から液膜気液界面までの距離を知ることができる。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
微小な膜厚や微小な距離を計測する技術分野において、計測対象とする範囲はさまざまである。しかし、光強度を利用する計測手法では、外乱の影響を受けやすいなどの理由より距離を得ることができる計測対象範囲が制限されることあった。
【0005】
そこで、本発明は、所望の計測対象範囲における距離を得ることができる距離計測装置及び距離計測方法を提供する。
【課題を解決するための手段】
【0006】
本発明の一形態である距離計測装置は、計測光を発生する光源と、計測光の一部である照射光を計測対象面に照射すると共に計測光の残りである反射光を反射する光ファイバ端面を含む1本の光ファイバと、照射光が計測対象面において反射した後に再び光ファイバに入射した戻り光であって、戻り光と反射光とが干渉して生じる干渉光のスペクトルを得る分光部と、干渉光のスペクトルを用いて、光ファイバ端面から計測対象面までの距離を得る距離取得部と、を備える。
【0007】
本発明の別の形態である距離計測方法は、光源が発生した計測光の一部である照射光を計測対象面に照射すると共に計測光の残りである反射光を反射する光ファイバ端面を含む1本の光ファイバから照射光を計測対象物に向けて出射するステップと、照射光が計測対象面において反射した後に再び光ファイバに入射した戻り光であって、戻り光と反射光とが干渉して生じる干渉光のスペクトルを得るステップと、干渉光のスペクトルを用いて、光ファイバ端面から計測対象面までの距離を得るステップと、を有する。
【0008】
距離計測装置及び距離計測方法は、光ファイバ端面で生じる反射光と、計測対象面で生じる照射光の反射に起因して再び光ファイバに入射する戻り光と、が干渉して生じる干渉光を得る。そして、距離計測部は、干渉光のスペクトルを用いて、光ファイバ端面から計測対象面までの距離を得る。干渉光のスペクトルは、干渉光の光強度に比べて外乱の影響を受けにくい。従って、干渉光の光強度を用いた距離計測に適さない計測対象範囲における距離を得ることができる。
【0009】
一形態の距離計測装置は、干渉光の光強度を得る光強度取得部をさらに備えてもよい。距離取得部は、干渉光のスペクトルを用いて第1候補距離を得る第1候補距離取得部と、干渉光の光強度を用いて第2候補距離を得る第2候補距離取得部と、第1候補距離又は第2候補距離のいずれかを光ファイバ端面から計測対象面までの距離として選択する距離出力部と、を含んでもよい。この構成によれば、干渉光のスペクトルを用いた距離計測が適切である計測対象範囲と、干渉光の光強度を用いた距離計測が適切である計測対象範囲と、を合算した広い計測対象範囲を得ることができる。
【0010】
一形態の距離計測装置における距離取得部は、第1候補距離取得部によって第1候補距離を得る動作と、第2候補距離取得部によって第2候補距離を得る動作と、距離出力部が干渉光の光強度と閾値とを比較して、干渉光の光強度が閾値以上である場合に第1候補距離を光ファイバ端面から計測対象面までの距離として選択する動作と、干渉光の光強度が閾値未満である場合に、第2候補距離を光ファイバ端面から計測対象面までの距離として選択する動作と、を実行してもよい。この動作によれば、光ファイバ端面から計測対象面までの距離として第1候補距離及び第2候補距離のいずれかを容易に選択することができる。
【0011】
一形態の距離計測装置における距離取得部は、距離出力部が干渉光の光強度と閾値とを比較する動作と、干渉光の光強度が閾値以上である場合に、第1候補距離取得部によって第1候補距離を得て、第1候補距離を光ファイバ端面から計測対象面までの距離として出力する動作と、干渉光の光強度が閾値未満である場合に、第2候補距離取得部によって第2候補距離を得て、第2候補距離を光ファイバ端面から計測対象面までの距離として出力する動作と、を実行してもよい。この動作によっても、光ファイバ端面から計測対象面までの距離として第1候補距離及び第2候補距離のいずれかを容易に出力することができる。
【0012】
一形態の距離計測装置における距離取得部は、照射光をファイバ端面から出射しないときに光強度取得部が出力するノイズ信号の強度に基づいて、ノイズ信号に由来して第2候補距離に重畳される不確かさを示す誤差距離を得る誤差距離取得部と、第2候補距離に占める誤差距離の割合を得る誤差評価値を得る評価値取得部と、を含んでもよい。この構成によれば、光強度とは異なる視点の閾値によって第1候補距離及び第2候補距離のいずれかを選択することができる。
【0013】
一形態の距離計測装置における距離取得部は、第1候補距離取得部によって第1候補距離を得る動作と、第2候補距離取得部によって第2候補距離を得る動作と、距離出力部が誤差評価値と閾値とを比較して、誤差評価値が閾値以上である場合に第1候補距離を光ファイバ端面から計測対象面までの距離として選択する動作と、誤差評価値が閾値未満である場合に、第2候補距離を光ファイバ端面から計測対象面までの距離として選択する動作と、を実行してもよい。この動作によっても、光ファイバ端面から計測対象面までの距離として第1候補距離及び第2候補距離のいずれかを容易に選択することができる。
【0014】
一形態の距離計測装置における距離出力部は、距離出力部が干渉光の光強度と閾値とを比較する動作と、誤差評価値が閾値以上である場合に、第1候補距離取得部によって第1候補距離を得て、第1候補距離を光ファイバ端面から計測対象面までの距離として出力する動作と、誤差評価値が閾値未満である場合に、第2候補距離取得部によって第2候補距離を得て、第2候補距離を光ファイバ端面から計測対象面までの距離として出力する動作と、を実行してもよい。この動作によっても、光ファイバ端面から計測対象面までの距離として第1候補距離及び第2候補距離のいずれかを容易に出力することができる。
【発明の効果】
【0015】
本発明によれば、所望の計測可能範囲を得ることができる距離計測装置及び距離計測方法が提供される。
【図面の簡単な説明】
【0016】
【
図1】
図1は、実施形態の距離計測装置の構成要素を示す図である。
【
図2】
図2(a)は、実施形態の距離計測装置を液膜の計測に適用した場合の構成を示す図である。
図2(b)は、実施形態の距離計測装置を計測対象物までの距離の計測に適用した場合の構成を示す図である。
【
図3】
図3は、
図1に示すコンピュータの構成要素を示す図である。
【
図4】
図4は、計測対象面までの距離と信号強度との関係を示すグラフである。
【
図5】
図5は、
図1に示すコンピュータが実行する距離計測方法を示すフロー図である。
【
図6】
図6(a)は、光検出器の出力信号に重畳するノイズを示すグラフである。
図6(b)は、
図6(a)に示すノイズが距離に及ぼす影響を説明するグラフである。
【
図7】
図7は、変形例の距離計測装置の構成要素を示す図である。
【
図8】
図8は、
図7に示すコンピュータが実行する距離計測方法を示すフロー図である。
【
図9】
図9は、さらに別の変形例である距離計測装置の構成要素を示す図である。
【
図10】
図10は、変形例の距離計測装置が実施する距離計測方法を示すフロー図である。
【発明を実施するための形態】
【0017】
以下、添付図面を参照しながら本発明を実施するための形態を詳細に説明する。図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
【0018】
図1は、距離計測装置1を模式的に示す図である。距離計測装置1は、1本の光ファイバ2から計測対象物9に向けて計測光を出射する。距離計測装置1は、計測対象物9で反射されて、光ファイバ2に戻る戻り光を得る。そして、距離計測装置1は、戻り光を用いて計測対象物9までの距離を得る。
【0019】
距離計測装置1の適用先として、例えば、半導体製造プロセスが挙げられる。半導体の製造プロセスでは、ウェハの回転を伴う処理が多い。ウェハを回転させるときには、ウェハの偏心や傾斜を抑制するためのウェハアライメントが重要である。さらに、今後の半導体チップにおける集積度の向上に伴い、ウェハ面内の不均一な汚染やレジスト材などのふちだれを防止することも重要になることが予想される。つまり、ウェハアライメントの重要性は、今後ますます高まることが予想されている。この場合において、ウェハアライメントを評価するためには、マイクロメートルレベルの測定精度が要求され、さらにはサブマイクロメートルレベルの測定精度が要求されることも予想される。さらに、ウェハの回転に伴う振動の計測のニーズも生じることが予想される。
【0020】
具体的には、半導体製造プロセスでは、レジスト膜の形成(塗膜)、ウェハの研磨、ウェハの洗浄などの工程において、ウェハの傾斜や平坦度をその場で計測することが望まれる。これらの工程において、距離計測装置1を用いてレジスト膜の膜厚や、ウェハまでの距離を計測した結果に基づいてウェハの傾斜や平坦度を得る。また、ウェハまでの距離を計測した結果を、ウェハの位置決め精度を確認するために用いることもあり得る。位置決め精度の確認という視点からすれば、計測対象は半導体ウェハに限定されず、磁気ディスク基板や精密機械加工などの分野にも適用してもよい。さらには、軸受の隙間をその場で観察するために距離計測装置1を用いることもできる。
【0021】
距離計測装置1及び距離計測方法は、これらのニーズに対応することが可能なものとして鋭意検討された結果、得たものである。
【0022】
まず、「計測対象物9までの距離」について、2つ例を提示する。本実施形態でいう「距離」は、
図2(a)に例示する計測対象物9の「厚さ」と、
図2(b)に例示する計測対象物9までの「距離」と、を含む。なお、
図2(a)及び
図2(b)の例示では、光ファイバ端面2aから出射される光及び反射される光は、光ファイバ2の光軸に対して傾けて図示されている。これは、説明の便宜上のものである。光ファイバ端面2aから出射される光及び反射される光は、光ファイバ2の光軸に対して平行であってもよいし、傾いていてもよい。例えば、光ファイバ端面2aから出射される光及び反射される光は、光ファイバ2の光軸に対して略平行であってもよい。換言すると、光ファイバ端面2aから出射される光及び反射される光は、光ファイバ端面2aに対して略垂直であってもよい。
【0023】
第1に、距離計測装置1は、
図2(a)に例示する液膜の厚さ(以下「膜厚」と称する)を得る。つまり、「計測対象物9」とは、液体91であり、「計測対象面までの距離」とは、光ファイバ2の光ファイバ端面2aから気液界面91a(計測対象面9a)までの距離である。液体91が流れる流路の底面101と光ファイバ端面2aとが相互に一致する場合には、光ファイバ端面2aから気液界面91aまでの距離は、液体91の気液界面91aから液固界面91bまでの距離9H、すなわち「膜厚」である。
【0024】
液膜の厚さを得るために距離計測装置1を適用する例示としては、例えば、ウェハ表面にレジスト液を塗布する工程があり得る。また、液膜の厚さを得るために距離計測装置1を適用する例示としては、火力発電等に用いるガスタービンにおいて、静翼に付着する液体(水)の観察もあり得る。例えば、発電機タービン内面の複数個所に本実施形態の距離計測装置1を配置する。この構成によると、複数点のリアルタイムでの連続計測による液膜面の傾斜移動計測及び/又は振幅計測等が可能となる。
【0025】
第2に、距離計測装置1は、
図2(b)に例示する物体92までの隔たり(以下「離間距離」と称する)を得る。つまり、「計測対象物9」とは、物体92であり、「計測対象面までの距離とは、光ファイバ端面2aから物体92の表面92aまでの距離9Hである。物体92の例示は、シリコンウェハである。
【0026】
距離計測装置1は、計測対象物9に対する設置態様によって、2つの距離測定の態様を任意に選択することができる。従って、
図2(a)に示す膜厚を計測する態様と、
図2(b)に示す離間距離を計測する態様と、において、距離計測装置1の構成上の相違はない。
【0027】
以下の説明において用いるいくつかの光について述べる。以下の説明では、「計測光L1」、「照射光L2」、「端面反射光L3」、「戻り光L4」、「干渉光L5」を例示する。計測光L1は、後述する光源ユニット3が発生する光である。計測光L1は、あらかじめ定めた特定の波長のみを含む特定波長成分と、複数の波長を含み実質的に波長ごとに強度の偏りがない白色光成分とを含む。計測光L1は、光ファイバ端面2aにおいて、その一部が外部に出射され、残りが反射する。外部に出射される光は、照射光L2である。反射される光は、端面反射光L3である。
【0028】
照射光L2は、計測対象物9に至り、計測対象物9の気液界面91a(
図2(a)参照)又は物体92の表面92a(
図2(b)参照)で反射される。反射された照射光L2の一部又は全部は、光ファイバ端面2aから再び光ファイバ2のコア21に入射する。光ファイバ端面2aから再び光ファイバ2のコア21に入射した光は、戻り光L4である。戻り光L4及び端面反射光L3は、コア21内において互いに干渉する。戻り光L4及び端面反射光L3が互いに干渉した光は、干渉光L5である。
【0029】
再び
図1を参照する。
図1に示すように、距離計測装置1は、光源ユニット3と、導光ユニット4と、光ファイバ2と、受光ユニット5と、コンピュータ6と、を有する。
【0030】
光源ユニット3は、コンピュータ6から受ける指令に応じて白色光L11及び特定波長光L12を発生すると共に、白色光L11及び特定波長光L12を導光ユニット4に渡す。導光ユニット4は、受けた白色光L11及び特定波長光L12を合波して計測光L1を生成し、計測光L1を光ファイバ2に渡す。光ファイバ2は、受光ユニット5から受けた計測光L1を計測対象物9に向けて出射する。光ファイバ2は、計測対象物9において反射した計測光L1を戻り光L4として受け入れる。そして、光ファイバ2は、戻り光L4及び端面反射光L3を含む干渉光L5を受光ユニット5に渡す。受光ユニット5は、干渉光L5に関する情報を取得し、当該情報をコンピュータ6に渡す。コンピュータ6は、干渉光L5に関する情報を利用して計測対象面9aまでの距離9Hを得る。
【0031】
光源ユニット3は、計測光L1を発生する。光源ユニット3は、コンピュータ6から渡される指令に基づいて、計測光L1の出射と停止とを切り替えてもよい。光源ユニット3には、導光ユニット4が光学的に接続されている。光源ユニット3は、白色光源31とレーザ光源32とを含む。白色光源31は、複数の波長を含み実質的に波長ごとに強度の偏りがない白色光L11を発生する。レーザ光源32は、あらかじめ定めた特定の波長のみを含む特定波長光L12を発生する。
【0032】
導光ユニット4は、第1カプラ41、第2カプラ42、第3カプラ43を有する。導光ユニット4は、光源ユニット3から光ファイバ2へ光を渡す機能と、光ファイバ2から受光ユニット5に光を渡す機能と、を有する。
【0033】
まず、光源ユニット3から光ファイバ2へ光を渡す機能について説明する。第1カプラ41は、白色光源31及び第3カプラ43に接続されている。第1カプラ41は、白色光源31から受けた白色光L11を第3カプラ43に渡す。第2カプラ42は、レーザ光源32及び第3カプラ43に接続されている。第2カプラ42は、レーザ光源32から受けた特定波長光L12を第3カプラ43に渡す。第3カプラ43は、第1カプラ41から受けた白色光L11と第2カプラ42から受けた特定波長光L12とを合波する。白色光L11と特定波長光L12とが合波された結果、計測光L1が生じる。第3カプラ43は、光ファイバ2に接続されている。第3カプラ43は、光ファイバ2に計測光L1を渡す。
【0034】
次に、光ファイバ2から光源ユニット3へ光を渡す機能について説明する。第3カプラ43は、光ファイバ2から干渉光L5を受ける。第3カプラ43は、第1カプラ41及び第2カプラ42のそれぞれに干渉光L5を渡す。第1カプラ41は、干渉光L5を分光器51に渡す。第2カプラ42は、光検出器52に干渉光L5を渡す。
【0035】
光ファイバ2は、導光ユニット4の第3カプラ43に接続された光ファイバ基端と、計測対象物9に向く光ファイバ出射端と、を有する。光ファイバ出射端は、光ファイバ端面2a(
図2(a)等参照)を含む。
【0036】
なお、
図2(a)等に示す光ファイバ端面2aは、光ファイバ2の光軸に対して直交する。光ファイバ端面2aは、光ファイバ2の光軸に対して傾く斜面であってもよい。
【0037】
受光ユニット5は、分光器51(分光部)と光検出器52(光強度取得部)とを有する。分光器51は、干渉光L5のスペクトルを得る。干渉光L5のスペクトルは、干渉光L5が含む波長ごとの光強度を示す。分光器51は、干渉光L5のスペクトルをコンピュータ6に渡す。以下の説明において、コンピュータ6が扱う干渉光L5のスペクトルを干渉光スペクトルデータD1と称する。光検出器52は、干渉光L5の光強度を得る。干渉光L5の光強度は、波長ごとの光強度の総和である。光検出器52は、干渉光L5の光強度をコンピュータに渡す。以下の説明において、コンピュータ6が扱う干渉光L5の光強度を干渉光強度データD2と称する。
【0038】
コンピュータ6は、光源ユニット3の動作を制御する指令を光源ユニット3に渡す。コンピュータ6は、受光ユニット5から受ける情報に基づいて計測対象面9aまでの距離9Hを得る。受光ユニット5から受ける情報とは、干渉光スペクトルデータD1及び干渉光強度データD2である。
【0039】
まず、
図3を参照して、コンピュータ6のハードウェア構成について説明する。コンピュータ6は、CPU(Central Processing Unit)であるプロセッサ61と、主記憶部62と、メモリ63と、外部通信部64と、操作部65と、出力部66とを有する。コンピュータ6は、これらのハードウェアと、プログラム等のソフトウェアとにより構成されている。
【0040】
プロセッサ61は、オペレーティングシステムやアプリケーション・プログラムなどを実行する。主記憶部62は、ROM(Read Only Memory)及びRAM(Random Access Memory)により構成される。メモリ63は、ハードディスク及びフラッシュメモリなどにより構成される記憶媒体である。メモリ63は、一般的に主記憶部62よりも大量のデータを記憶する。操作部65は、キーボード、マウス、タッチパネル、及び、音声入力用マイクなどにより構成される。出力部66は、ディスプレイ及びプリンタなどにより構成される。例えば、コンピュータ6は、計測対象面9aまでの距離9H等をディスプレイ等に表示してもよい。
【0041】
メモリ63は、あらかじめ、計測対象面9aまでの距離9Hを得るプログラムP1及び処理に必要なデータを格納している。計測対象面9aまでの距離9Hを得るプログラムP1は、計測対象面9aまでの距離9Hを得るためのいくつかの機能要素をコンピュータ6に実行させる。例えば、計測対象面9aまでの距離9Hを得るプログラムP1は、プロセッサ61又は主記憶部62によって読み込まれ、プロセッサ61、主記憶部62、メモリ63、外部通信部64、操作部65、及び出力部66の少なくとも1つを動作させる。
【0042】
図1に示すように、プロセッサ61は、メモリ63から読み込んだ計測対象面9aまでの距離9Hを得るプログラムP1を実行することによって、第1候補距離取得部6a、第2候補距離取得部6b及び距離出力部6cとして機能する。
【0043】
コンピュータ6は、干渉光スペクトルデータD1を用いて得た第1候補距離データD3と、干渉光強度データD2を用いて得た第2候補距離データD4と、をそれぞれ算出する。そして、コンピュータ6は、所定の判定条件を用いて、第1候補距離データD3及び第2候補距離データD4のいずれか一方を計測対象面9aまでの距離9Hとして選択する。第1候補距離データD3は、比較的短い計測対象面9aまでの距離9Hの計測に適する。第2候補距離データD4は、比較的長い計測対象面9aまでの距離9Hの計測に適する。つまり、互いに計測に適した距離の範囲が異なっている。そして、所定の判定条件に基づく判定によって、第1候補距離データD3又は第2候補距離データD4を選ぶので、結果としてコンピュータ6が出力する計測対象面9aまでの距離9Hの範囲は、第1候補距離データD3が対象とする距離計測の範囲と、第2候補距離データD4が対象とする距離計測の範囲と、を合わせたものとなる。
【0044】
第1候補距離取得部6aは、メモリ63から干渉光スペクトルデータD1を読み出す。第1候補距離取得部6aは、干渉光スペクトルデータD1を用いて第1候補距離データD3を得る。そして、第1候補距離取得部6aは、第1候補距離データD3をメモリ63に格納する。
【0045】
干渉光スペクトルデータD1を用いて距離を得る手法として、例えば、いわゆる干渉分光法を用いてよい。干渉光L5のスペクトルは、照射光L2が伝わる媒質の屈折率と距離とに依存する。照射光L2が伝わる媒質とは、
図2(a)の例示によれば液体であり、
図2(b)の例示によれば空気である。そして、計測対象面9aまでの距離9Hと干渉光L5のスペクトルとの関係は、下記式(1)により定義される。
d=Δm/2n×(λ1×λ2/(λ1-λ2))・・・(1)
d:第1候補距離データD3。
Δm:干渉光スペクトルのピーク数。
n:媒質の屈折率。
λ1、λ2:波長。
【0046】
第2候補距離取得部6bは、メモリ63から干渉光強度データD2を読み出す。第2候補距離取得部6bは、干渉光強度データD2を用いて第2候補距離データD4を得る。そして、第2候補距離取得部6bは、第2候補距離データD4をメモリ63に格納する。干渉光強度データD2を用いて第2候補距離データD4を得る手法としては、本願発明者らによる特開2022-77303号公報に記載された手法を適用してよい。
【0047】
距離出力部6cは、メモリ63から第1候補距離データD3、第2候補距離データD4及び干渉光強度データD2を得る。距離出力部6cは、所定の判定条件を用いて第1候補距離データD3又は第2候補距離データD4の一方を計測対象面9aまでの距離9Hとして選択する。距離出力部6cは、計測対象面9aまでの距離9Hをメモリに格納する。
【0048】
所定の判定条件として、「干渉光強度が強度閾値以上であるか?」を用いてよい。
図4は、計測対象面9aまでの距離9Hと光検出器52から出力される信号強度を示す。つまり、光検出器52から出力される信号強度とは、つまり干渉光強度である。
図4のグラフG4に示すように、計測対象面9aまでの距離9Hが大きくなるほど信号強度(干渉光強度)が弱まる。信号強度が大きいことは、S/N比などの観点からすれば有利である。しかし、信号強度が大きい範囲R1では、計測対象面9aまでの距離9Hの増加(又は減少)に対して、信号強度が大きく変化する。このような関係においては、信号強度に基づく計測対象面9aまでの距離9Hの算出は不利である。そこで、範囲R1のように信号強度の絶対値が大きく、計測対象面9aまでの距離9Hの増加(又は減少)に対して、信号強度が大きい範囲では、干渉光スペクトルデータD1に基づく第1候補距離データD3を計測対象面9aまでの距離9Hとして選択する。一方、範囲R2のように信号強度の絶対値が小さく、計測対象面9aまでの距離9Hの増加(又は減少)に対して、信号強度が小さい範囲では、干渉光強度データD2に基づく第2候補距離データD4を計測対象面9aまでの距離9Hとして選択する。
【0049】
つまり、信号強度(干渉光強度)に対して強度閾値VTHを設定する。信号強度が強度閾値VTHより大きい場合には、干渉光スペクトルデータD1に基づく第1候補距離データD3を計測対象面9aまでの距離9Hとして選択する。一方、信号強度が強度閾値VTHより小さい場合には、干渉光強度データD2に基づく第2候補距離データD4を計測対象面9aまでの距離9Hとして選択する。
【0050】
一例として、第1候補距離データD3が採用される距離の範囲は、1μm以上100μm未満としてよい。そして、第2候補距離データD4が採用される距離の範囲は、100μm以上としてよい。この場合には、第2候補距離データD4が100μmとなる信号強度(干渉光強度)が強度閾値VTHとして設定される。
【0051】
また、第1候補距離データD3が採用される距離の範囲の一部と第2候補距離データD4が採用される距離の範囲の一部とが重複してもよい。例えば、50μm以上100μm未満の範囲は、第1候補距離データD3及び第2候補距離データD4のいずれを用いてもよいとすることも可能である。この場合には、第2候補距離データD4が50μmとなる信号強度が第1強度閾値として採用され、第2候補距離データD4が100μmとなる信号強度が第2強度閾値として採用される。そして、計測によって得た第2候補距離データD4が第1強度閾値以上である場合に、第1候補距離データD3を採用する。計測によって得た第2候補距離データD4が第2強度閾値未満である場合に、第2候補距離データD4を採用する。計測によって得た第2候補距離データD4が第1強度閾値未満第2強度閾値以上である場合に、第1候補距離データD3又は第2候補距離データD4の何れか一方を選択する。例えば、第2候補距離データD4が第1強度閾値未満第2強度閾値以上である場合に、第1候補距離データD3又は第2候補距離データD4のいずれを選択するかは予め定めてもよい。
【0052】
<計測対象面9aまでの距離9Hを得る方法>
次に、
図5を参照しながら、コンピュータ6が実行する計測対象面9aまでの距離9Hを得る方法について説明する。
【0053】
まず、計測対象面9aに向けて照射光L2を出射する(S11)。このステップS11は、コンピュータ6、光源ユニット3、導光ユニット4及び光ファイバ2によって行われる。
【0054】
次に、干渉光スペクトルデータD1と干渉光強度データD2とを得る(S12)。このステップS12は、光ファイバ2、導光ユニット4、受光ユニット5及びコンピュータ6によって行われる。ステップS12の結果、干渉光スペクトルデータD1と干渉光強度データD2がメモリ63に格納される。
【0055】
次に、第1候補距離データD3を得る(S13)。このステップS13は、第1候補距離取得部6aを構成するプロセッサ61及び干渉光強度データD2を格納するメモリ63によって行われる。ステップS13の結果、第1候補距離取得部6aは、第1候補距離データD3をメモリ63に格納する。
【0056】
次に、第2候補距離データD4を得る(S14)。このステップS14は、第2候補距離取得部6bを構成するプロセッサ61及び干渉光スペクトルデータD1を格納するメモリ63によって行われる。ステップS14の結果、第2候補距離取得部6bは、第2候補距離データD4をメモリ63に格納する。
【0057】
次に、計測対象面9aまでの距離9Hとして第1候補距離データD3又は第2候補距離データD4のいずれかを選択する(S15)。このステップS15は、距離出力部6cを構成するプロセッサ61及び、第1候補距離データD3、第2候補距離データD4及び干渉光強度データD2を格納するメモリ63によって行われる。ステップS15の結果、距離出力部6cは、選択した候補距離を計測対象面9aまでの距離9Hとしてメモリ63に格納する。
【0058】
<作用効果>
従来、微小な距離を計測する方式は、いくつか存在する。例えば、微小な距離を計測する方式として、超音波エコー方式、飛行時間に基づく光学方式、共焦点に基づく光学方式、渦電流や静電容量に基づく電気方式などが例示できる。しかし、これらの方式には固有の特徴を有する。超音波エコー方式は、比較的長い距離(メートル単位)の計測は得意であるが、微小な距離(マイクロメートル単位)の計測や高速な計測が不得意である。飛行時間に基づく光学方式は、比較的長い距離(メートル単位)の計測には有利であるが、微小な距離(マイクロメートル単位)の計測には不利である。共焦点に基づく光学方式は、比較的短い距離(マイクロメートル単位)の計測に用いることができるが、ナノオーダー単位の分解能に関して課題がある。また、ゼロ点補正や高速計測が不利であるという課題もある。渦電流や静電容量に基づく電気方式は、比較的短い距離(マイクロメートル単位)の計測が可能であり実績も多い。しかし、測定空間の外乱を受けやすいという課題を有しており、測定結果に及ぼす外乱の影響を抑制するための校正作業が必須である。
【0059】
そこで、本実施形態の距離計測装置1は、上記の方式が不得意としている較的短い距離(マイクロメートル単位)の計測を計測範囲とする。実施形態の距離計測装置1の計測対象範囲は、一例として、10nm以上100μm未満である。さらに、実施形態の距離計測装置1の計測対象範囲は、一例として、10nm以上1mm未満とすることもできる。そのうえ、距離計測装置1は、ゼロ点補正や校正の必要もなく、且つ高速計測も可能である。例えば、実施形態の距離計測装置1のサンプリング周波数は、例えば100kHzとすることも可能である。要するに、本実施形態の距離計測装置1は、微小変位をその場でモニタリングすることが可能である。本実施形態の距離計測装置1は、ひとつの計測対象物9について複数の箇所において距離を計測することにより、計測対象物9の傾きを得ることが可能である。さらに、高速に距離の情報を得ることが可能であるので、計測対象物9の振動計測に用いることも可能である。
【0060】
つまり、距離計測装置1は、計測光L1を発生する光源ユニット3と、計測光L1の一部である照射光L2を計測対象面9aに照射すると共に計測光L1の残りである端面反射光L3を反射する光ファイバ端面2aを含む1本の光ファイバ2と、照射光L2が計測対象面9aにおいて反射した後に再び光ファイバ2に入射した戻り光L4であって、戻り光L4と端面反射光L3とが干渉して生じる干渉光L5のスペクトルを得る分光器51と、干渉光L5のスペクトルを用いて、光ファイバ端面2aから計測対象面9aまでの距離9Hを得るコンピュータ6と、を備える。
【0061】
距離計測方法は、光源ユニット3が発生した計測光L1の一部である照射光L2を計測対象面9aに照射すると共に計測光L1の残りである端面反射光L3を反射する光ファイバ端面2aを含む1本の光ファイバ2から照射光L2を計測対象物9に向けて出射するステップS11と、照射光L2が計測対象面9aにおいて反射した後に再び光ファイバ2に入射した戻り光L4であって、戻り光L4と端面反射光L3とが干渉して生じる干渉光L5のスペクトルを得るステップS12と、干渉光L5のスペクトルを用いて、光ファイバ端面2aから計測対象面9aまでの距離9Hを得るステップS13~S17と、を有する。
【0062】
距離計測装置1及び距離計測方法は、光ファイバ端面2aで生じる端面反射光L3と、計測対象面9aで生じる照射光L2の反射に起因して再び光ファイバ2に入射する戻り光L4と、が干渉して生じる干渉光L5を得る。そして、距離計測装置1及び距離計測方法は、干渉光L5のスペクトルを用いて、光ファイバ端面2aから計測対象面9aまでの距離9Hを得る。干渉光L5のスペクトルは、干渉光L5の光強度に比べて外乱の影響を受けにくい。従って、距離計測装置1及び距離計測方法は、干渉光L5の光強度を用いた距離計測に適さない計測対象範囲における距離を得ることができる。
【0063】
距離計測装置1は、干渉光L5の光強度を得る光検出器52をさらに備える。コンピュータ6は、干渉光L5のスペクトルを用いて第1候補距離を得る第1候補距離取得部6aと、干渉光L5の光強度を用いて第2候補距離を得る第2候補距離取得部6bと、第1候補距離又は第2候補距離のいずれかを光ファイバ端面2aから計測対象面9aまでの距離9Hとして選択する距離出力部6cと、を含む。この構成によれば、干渉光L5のスペクトルを用いた距離計測が適切である計測対象範囲と、干渉光L5の光強度を用いた距離計測が適切である計測対象範囲と、を合算した広い計測対象範囲を得ることができる。
【0064】
距離計測装置1の距離出力部6cは、干渉光L5の光強度が閾値以上である場合に、第1候補距離を光ファイバ端面2aから計測対象面9aまでの距離9Hとして選択し、干渉光L5の光強度が示す干渉光L5の光強度の光強度が閾値未満である場合に、第2候補距離を光ファイバ端面2aから計測対象面9aまでの距離9Hとして選択する。この構成によれば、光ファイバ端面2aから計測対象面9aまでの距離9Hとして第1候補距離及び第2候補距離のいずれかを容易に選択することができる。
【0065】
換言すると、コンピュータ6は、第1候補距離取得部6aによって第1候補距離データD3を得る動作と、第2候補距離取得部6bによって第2候補距離データD4を得る動作と、距離出力部6cが干渉光の光強度と閾値とを比較して、干渉光の光強度が閾値以上である場合に第1候補距離データD3を光ファイバ端面2aから計測対象物9までの距離として選択する動作と、干渉光の光強度が閾値未満である場合に、第2候補距離データD4を光ファイバ端面2aから計測対象物9までの距離として選択する動作と、を実行する。この動作によれば、光ファイバ端面2aから計測対象物9までの距離として第1候補距離及び第2候補距離のいずれかを容易に選択することができる。
【0066】
<変形例>
以上、本発明である距離計測装置及び距離計測方法の例示について説明した。距離計測装置及び距離計測方法は、上記の例示に限定されることなくさまざまな形態で実施してよい。
【0067】
上記の実施形態では、第1候補距離データD3及び第2候補距離データD4の選択に際し、干渉光強度データD2と強度閾値VTHとを用いた判定条件を設定した。判定条件は別の内容であってもよい。
【0068】
図6(a)に示すように、光検出器52から出力される信号には、所定のノイズが重畳する。このノイズとして、例えば、光検出器52が発生する暗電流に起因するノイズが例示できる。つまり、ノイズは、光検出器52に光が入射されていない状態であるときに、光検出器52から出力される信号であるといえる。このノイズは、干渉光強度にばらつきをもたらす。例えば、
図6(b)に示すように、光検出器52の出力信号にはノイズ振幅(±ΔV)が重畳する。ノイズ振幅(±ΔV)は、例えば光検出器52の出力信号の最大値(VMAX)に対するプラスマイナス5%と仮定してもよい。いま、光検出器52の出力信号の最大値(VMAX)が1Vであるとすると、ノイズ振幅(±ΔV)は、0.1Vである。このノイズ振幅(±ΔV)を距離に換算するとノイズ距離(±ΔL)となる。つまり、真の信号成分が示す距離がLであり、真の信号成分が示す距離Lにノイズ距離(±ΔL)が重畳すると、計測値は-ΔL<L<ΔLの範囲で揺らぐ。
【0069】
そこで、干渉光強度に占めるノイズ強度の割合を誤差評価値として用いる。干渉光強度に占めるノイズ強度の割合は、計測される距離が短くなるほど増加する。つまり、干渉光強度に占めるノイズ強度の割合が大きくなると、その光干渉強度に基づく距離も信頼性が低下する。そこで、干渉光強度に占めるノイズ強度の割合(誤差評価値)が閾値以上である場合には、第1候補距離データD3を計測対象面9aまでの距離9Hとして選択する。この誤差評価値が閾値未満である場合には、第2候補距離データD4を計測対象面9aまでの距離9Hとして選択する。
【0070】
一例として、ノイズ閾値NTHは、0.2(20%)としてもよい。このノイズ閾値NTHを距離に換算すると、100μmに相当する。
【0071】
図7は、上述した候補距離の選択を行う距離計測装置1Aの例示である。距離計測装置1Aは、光源ユニット3と、導光ユニット4と、光ファイバ2と、受光ユニット5と、コンピュータ6Aと、を有する。これらのうち、光源ユニット3、導光ユニット4、光ファイバ2及び受光ユニット5の詳細は、実施形態と同じである。つまり、変形例の距離計測装置1Aは、コンピュータ6Aが行う処理が実施形態の処理と相違する。
【0072】
コンピュータ6Aは、変形例の計測対象面9aまでの距離9Hを得るプログラムP1をプロセッサ61によって実行することにより、いくつかの機能構成要素を実現する。コンピュータ6Aは、第1候補距離取得部6aと、第2候補距離取得部6bと、ノイズ距離取得部6d(誤差距離取得部)と、ノイズ評価値取得部6eと、距離出力部6fと、を有する。このうち、第1候補距離取得部6a及び第2候補距離取得部6bの詳細は、実施形態と同じであるから、詳細な説明は省略する。
【0073】
ノイズ距離取得部6dは、メモリ63からノイズ強度データD6を得る。ノイズ距離取得部6dは、ノイズ強度をノイズ距離データD7に換算する。ノイズ距離取得部6dは、ノイズ距離データD7をメモリ63に格納する。
【0074】
ノイズ評価値取得部6eは、メモリ63から干渉光強度データD2及びノイズ強度データD6を得る。ノイズ評価値取得部6eは、干渉光強度データD2及びノイズ強度データD6を用いてノイズ評価値データD8を得る。ノイズ評価値は、例えば、ノイズ強度を干渉光強度で除算した値であってもよい。ノイズ評価値取得部6eは、ノイズ評価値データD8をメモリ63に格納する。
【0075】
距離出力部6fは、メモリ63からノイズ閾値NTHとノイズ評価値データD8と第1候補距離データD3と第2候補距離データD4とを得る。距離出力部6fは、ノイズ評価値データD8がノイズ閾値NTH以上であるか否かを判定する。距離出力部6fは、ノイズ評価値データD8がノイズ閾値NTH以上である場合に、第1候補距離データD3を計測対象面9aまでの距離9Hとして選択する。距離出力部6fは、ノイズ評価値データD8がノイズ閾値NTH未満である場合に、第2候補距離データD4を計測対象面9aまでの距離9Hとして選択する。
【0076】
<計測対象面9aまでの距離9Hを得る方法>
図8を参照しながら変形例である計測対象面9aまでの距離9Hを得る方法について説明する。変形例である計測対象面9aも、実施形態の計測対象面9aまでの距離9Hを得る方法と同様にコンピュータ6Aが実行する。
【0077】
まず、ノイズ強度データD6を得る(S20)。このステップS21は、受光ユニット5及びコンピュータ6によって行われる。コンピュータ6は、計測光L1の出射を停止させる旨の指令を光源ユニット3に与える。そして、コンピュータ6は、受光ユニット5から出力される信号をノイズ強度データD6としてメモリ63に格納する。
【0078】
次に、計測対象面9aに向けて照射光L2を出射する(S21)。そして、干渉光スペクトルデータD1と干渉光強度データD2とを得る(S22)。これらのステップS21,S22は、実施形態のステップS11,S12と同じであるから詳細な説明は省略する。
【0079】
次に、第1候補距離データD3を得る(S23)。そして、第2候補距離データD4を得る(S24)。これらのステップS23、S24も実施形態のステップS13、S14と同じであるから詳細な説明は省略する。
【0080】
次に、ノイズ距離データD7を得る(S25)。このステップS25は、ノイズ距離取得部6dを構成するプロセッサ61及びノイズ強度データD6を格納するメモリ63によって行われる。ステップS25の結果、ノイズ距離取得部6dは、ノイズ距離データD7をメモリ63に格納する。
【0081】
次に、ノイズ評価値データD8を得る(S26)。このステップS26は、ノイズ評価値取得部6eを構成するプロセッサ61及びノイズ距離データD7及び第1候補距離データD3を格納するメモリ63によって行われる。ステップS26の結果、ノイズ評価値取得部6eは、ノイズ評価値データD8をメモリ63に格納する。
【0082】
次に、計測対象面9aまでの距離9Hとして第1候補距離データD3又は第2候補距離データD4のいずれかを選択する(S27)。このステップS27は、距離出力部6cを構成するプロセッサ61及び、第1候補距離データD3、第2候補距離データD4及びノイズ評価値データD8を格納するメモリ63によって行われる。ステップS27の結果、距離出力部6cは、選択した候補距離を計測対象面9aまでの距離9Hとしてメモリ63に格納する。
【0083】
<作用効果>
【0084】
コンピュータ6は、照射光L2をファイバ端面から出射しないときに光検出器52が出力するノイズ信号の強度に基づいて、ノイズ信号に由来して第2候補距離に重畳される不確かさを示す誤差距離を得るノイズ距離取得部6dと、第2候補距離に占める誤差距離の割合を得る誤差評価値を得るノイズ評価値取得部6eと、を含み、距離出力部6cは、誤差評価値が閾値未満である場合に、第1候補距離を光ファイバ端面2aから計測対象面9aまでの距離9Hとして選択し、誤差評価値が閾値以上である場合に、第2候補距離を光ファイバ端面2aから計測対象面9aまでの距離9Hとして選択する。この構成によっても、光ファイバ端面2aから計測対象面9aまでの距離9Hとして第1候補距離及び第2候補距離のいずれかを容易に選択することができる。
【0085】
換言すると、変形例のコンピュータ6は、第1候補距離取得部6aによって第1候補距離データD3を得る動作と、第2候補距離取得部6bによって第2候補距離データD4を得る動作と、距離出力部6fがノイズ評価値データD8とノイズ閾値NTHとを比較して、ノイズ評価値データD8がノイズ閾値NTH以上である場合に第1候補距離データD3を光ファイバ端面2aから計測対象物9までの距離として選択する動作と、ノイズ評価値データD8がノイズ閾値NTH未満である場合に、第2候補距離データD4を光ファイバ端面2aから計測対象物9までの距離として選択する動作と、を実行する。この動作によっても、光ファイバ端面2aから計測対象物9までの距離として第1候補距離データD3及び第2候補距離データD4のいずれかを容易に選択することができる。
【0086】
その他の変形例として、
図9に示す距離計測装置1Bを例示する。
図9に示すように、光源ユニット3Bは、白色光源31のみによって構成され、レーザ光源32を備えない構成とすることも可能である。
【0087】
<距離出力部の変形例>
実施形態では、第1候補距離データD3及び第2候補距離データD4をそれぞれ算出し、光強度又はノイズ評価値のいずれかを用いた判定処理によって、第1候補距離データD3及び第2候補距離データD4のいずれかを距離として選択した。例えば、距離出力部6fは、これとは異なる処理によって距離を得てもよい。具体的には、
図10に示すように、まず、距離出力部6fは、光強度を用いた判定処理によって、干渉光スペクトルデータD1に基づく値がよいか、干渉光強度データD2に基づく値がよいかを判定する(S31)。このとき、第1候補距離取得部6a及び第2候補距離取得部6bは、それぞれ第1候補距離データD3及び第2候補距離データD4を算出していない。距離出力部6fの判定処理によって、干渉光スペクトルデータD1に基づく値がよいと判定された場合に(S31:YES)、第1候補距離取得部6aが第1候補距離データD3を算出し(S32)、第1候補距離データD3を計測対象面までの距離として出力する(S33)。また、距離出力部6fの判定処理によって、干渉光強度データD2に基づく値がよいと判定された場合に(S31:NO)、第2候補距離取得部6bが第2候補距離データD4を算出し(S34)、第2候補距離データD4を計測対象面までの距離として出力する(S35)。このような動作によっても、干渉光L5のスペクトルを用いた距離計測が適切である計測対象範囲と、干渉光L5の光強度を用いた距離計測が適切である計測対象範囲と、を合算した広い計測対象範囲を得ることができる。
【0088】
変形例では、コンピュータ6が干渉光の光強度と閾値とを比較する動作と、干渉光の光強度が閾値以上である場合に、第1候補距離取得部6aによって第1候補距離データD3を得て、第1候補距離データD3を光ファイバ端面2aから計測対象物9までの距離として出力する動作と、干渉光の光強度が閾値未満である場合に、第2候補距離取得部6bによって第2候補距離データD4を得て、第2候補距離データD4を光ファイバ端面2aから計測対象物9までの距離として出力する動作と、を実行する。この動作によっても、光ファイバ端面2aから計測対象物9までの距離として第1候補距離データD3及び第2候補距離データD4のいずれかを容易に選択することができる。
【0089】
<実施例>
実施例として、
図2(b)に例示する計測対象物9までの距離を測定した。計測対象物9は、ガラス板であり当該ガラス板をステッピングモータ駆動の電動ステージに配置した。そして、電動ステージに、所定距離だけ移動させる指令を与えると共に移動後のガラス板と光ファイバ端面2aとの間の距離を計測した。
図11は、計測結果を示すグラフである。横軸は電動ステージの移動量を示し、縦軸は距離計測装置1の出力を示す。この計測は、干渉光のスペクトルを用いて距離を得る手法を採用したものである。グラフG10に示すように、電動ステージの移動量と距離計測装置1の出力値とは、よく一致することを確かめることができた。
【符号の説明】
【0090】
1…距離計測装置、2…光ファイバ、2a…光ファイバ端面、6…コンピュータ(距離取得部)6a…第1候補距離取得部、6b…第2候補距離取得部、6c,6f…距離出力部、6e…評価値取得部、9…計測対象物、9a…計測対象面、91a…気液界面(計測対象面)、L1…計測光、L2…照射光、L3…端面反射光、L4…戻り光、L5…干渉光。