IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 国立大学法人 千葉大学の特許一覧 ▶ テラル株式会社の特許一覧

<>
  • 特許-ロータ 図1
  • 特許-ロータ 図2
  • 特許-ロータ 図3
  • 特許-ロータ 図4
  • 特許-ロータ 図5
  • 特許-ロータ 図6
  • 特許-ロータ 図7
  • 特許-ロータ 図8
  • 特許-ロータ 図9
  • 特許-ロータ 図10
  • 特許-ロータ 図11
  • 特許-ロータ 図12
  • 特許-ロータ 図13
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2021-12-07
(45)【発行日】2022-01-12
(54)【発明の名称】ロータ
(51)【国際特許分類】
   F03D 1/06 20060101AFI20220104BHJP
   F03D 7/04 20060101ALI20220104BHJP
   F04D 29/36 20060101ALI20220104BHJP
   F04D 29/38 20060101ALI20220104BHJP
   F04D 29/18 20060101ALI20220104BHJP
   F03B 3/14 20060101ALI20220104BHJP
   B63B 35/00 20200101ALI20220104BHJP
【FI】
F03D1/06 A
F03D7/04 G
F04D29/36 A
F04D29/38 B
F04D29/18 101A
F03B3/14
B63B35/00 T
【請求項の数】 8
(21)【出願番号】P 2017238041
(22)【出願日】2017-12-12
(65)【公開番号】P2019105213
(43)【公開日】2019-06-27
【審査請求日】2020-10-27
(73)【特許権者】
【識別番号】304021831
【氏名又は名称】国立大学法人千葉大学
(73)【特許権者】
【識別番号】000133939
【氏名又は名称】テラル株式会社
(74)【代理人】
【識別番号】100147485
【弁理士】
【氏名又は名称】杉村 憲司
(74)【代理人】
【識別番号】230118913
【弁護士】
【氏名又は名称】杉村 光嗣
(74)【代理人】
【識別番号】100097238
【弁理士】
【氏名又は名称】鈴木 治
(74)【代理人】
【識別番号】100174023
【弁理士】
【氏名又は名称】伊藤 怜愛
(72)【発明者】
【氏名】劉 浩
(72)【発明者】
【氏名】中田 敏是
(72)【発明者】
【氏名】吉永 悠真
(72)【発明者】
【氏名】池田 旭彰
(72)【発明者】
【氏名】藤井 武夫
【審査官】大屋 静男
(56)【参考文献】
【文献】特開2004-308498(JP,A)
【文献】特開2003-293929(JP,A)
【文献】米国特許出願公開第2015/0167638(US,A1)
【文献】特開2007-030702(JP,A)
【文献】特開2017-072056(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F03B 3/14
F03D 1/06、7/04
F04D 29/18、29/36、29/38
B63B 35/00
(57)【特許請求の範囲】
【請求項1】
主軸に支持されるハブと、
該ハブに対して所定の翼軸線の周りで回転可能に連結された翼と、
前記翼を前記ハブに対して回転付勢する付勢部材と、
シャフトと、
連結部材と、
を備え、
前記翼は、
柔軟性を有する翼膜と、
前記翼膜よりも高い剛性を有するとともに、前記翼の前縁を構成する、高剛性前縁部と、
を有しており
前記ロータは、周速比が高くなるのに応じて、前記翼の全長にわたって、前記翼のねじれ角が減少するように構成されており、
前記翼は、前記シャフト及び前記連結部材を介して、前記ハブに対して回転可能に連結されており、
前記シャフトの一方の端部が前記ハブに固定されているとともに前記シャフトの他方の端部が前記連結部材の一端部を回転可能に軸支しているか、又は、前記シャフトの一方の端部が前記ハブに回転可能に軸支されているとともに前記シャフトの他方の端部が前記連結部材の一端部に固定されており、
前記連結部材の他端部は、前記翼の翼根のうち前縁側の端部に固定されており、
前記シャフトの中心軸線が、前記翼軸線であり、
前記翼の前縁は、前記翼軸線から、前記翼軸線に垂直な方向に離間されている、風水力機械用のロータ。
【請求項2】
主軸に支持されるハブと、
該ハブに対して所定の翼軸線の周りで回転可能に連結された翼と、
前記翼を前記ハブに対して回転付勢する付勢部材と、
を備え、
前記翼は、
柔軟性を有する翼膜と、
前記翼膜よりも高い剛性を有するとともに、前記翼の前縁を構成する、高剛性前縁部と、
を有しており、
前記ロータは、周速比が高くなるのに応じて、前記翼の全長にわたって、前記翼のねじれ角が減少するように構成されており、
前記翼の前縁は、前記翼軸線から、前記翼軸線に垂直な方向に離間されており、
前記翼の平面展開視において、前記翼軸線に垂直な方向に沿って測ったときの前記翼の翼根の長さBRLに対する、前記翼軸線に垂直な方向に沿って測ったときの前記翼根における前縁側の端部から前記翼軸線までの距離D1の割合(D1×100/BRL)(%)は、45~100%である、風水力機械用のロータ。
【請求項3】
主軸に支持されるハブと、
該ハブに対して所定の翼軸線の周りで回転可能に連結された翼と、
前記翼を前記ハブに対して回転付勢する付勢部材と、
を備え、
前記翼は、
柔軟性を有する翼膜と、
前記翼膜よりも高い剛性を有するとともに、前記翼の前縁を構成する、高剛性前縁部と、
を有しており、
前記ロータは、周速比が高くなるのに応じて、前記翼の全長にわたって、前記翼のねじれ角が減少するように構成されており、
前記翼は、前記翼膜よりも高く前記高剛性前縁部よりも低い剛性を有するとともに、前記翼の翼根を構成する、高剛性翼根部を、さらに有しており、
前記翼膜は、前記翼膜のうち最も後縁側かつ最も翼端側に位置するとともに、前記翼膜の全体の中で最も剛性が低い、第1翼膜部を有しており、
前記第1翼膜部は、前記翼の後縁の一部及び翼端の一部を構成している、風水力機械用のロータ。
【請求項4】
前記翼の前縁は、前記翼軸線から、前記翼軸線に垂直な方向に離間されている、請求項に記載のロータ。
【請求項5】
前記翼は、前記翼膜よりも高く前記高剛性前縁部よりも低い剛性を有するとともに、前記翼の翼根を構成する、高剛性翼根部を、さらに有している、請求項1又は2に記載のロータ。
【請求項6】
前記翼は、前記翼膜よりも高く前記高剛性前縁部よりも低い剛性を有するとともに、前記翼の平面展開視において前記翼軸線に交差する方向に延在する、骨部を、さらに有している、請求項1~のいずれか一項に記載のロータ。
【請求項7】
前記翼は、前記翼膜として、正圧面を構成する第1翼膜と、負圧面を構成する第2翼膜と、を有しており、
前記第1翼膜と前記第2翼膜とは、少なくとも一部分で、互いに固定されていない、請求項1~のいずれか一項に記載のロータ。
【請求項8】
前記翼膜は、
前記第1翼膜部に対して翼根側および前縁側に隣接するとともに、前記第1翼膜部よりも高い剛性を有する、第2翼膜部と、
前記第2翼膜部に対して翼根側に隣接するとともに、前記翼膜部よりも高い剛性を有する、第3翼膜部と、
をさらに有する、請求項3に記載のロータ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、風力発電機や送風機等の風水力機械に用いられるロータに関する。
【背景技術】
【0002】
一般的に、風力発電機や送風機等の風水力機械に用いられるロータにおいては、周速比に依って、良好な効率を得るのに最適な、翼の平面形状(翼を平面に展開したときの形状)や翼のねじれ角の翼長方向の分布が異なる。そのため、例えば流体の速度や向きが絶えず大きく変動するような場所にロータが設置される場合、周速比に応じて翼の平面形状やねじれ角を適切に変化させられれば、安定的に良好な発電効率を得られることが期待できる。しかし、翼の平面形状を変化させることは難しい。
一方、従来より、翼のねじれ角を電気的に制御する技術が知られている(例えば、特許文献1)。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2006-233912号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、上述した、ねじれ角を電気的に制御する技術を用いる場合、構造が複雑となり、コストも高くなる。
本発明の発明者は、鳥や昆虫の翼を規範とし、試行錯誤を重ねた結果、電気的な制御を用いずに、受動的に、ねじれ角を良好に変化させることができる技術を、新たに見出した。
【0005】
本発明は、受動的に、ねじれ角を良好に変化させることができる、ロータを提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明のロータは、風水力機械用のロータであり、
主軸に支持されるハブと、
該ハブに対して所定の翼軸線の周りで回転可能に連結された翼と、
前記翼を前記ハブに対して回転付勢する付勢部材と、
を備え、
前記翼は、
柔軟性を有する翼膜と、
前記翼膜よりも高い剛性を有するとともに、前記翼の前縁を構成する、高剛性前縁部と、
を有している。
【0007】
本発明のロータにおいては、
前記翼の前縁は、前記翼軸線から、前記翼軸線に垂直な方向に離間されていると、好適である。
【0008】
本発明のロータにおいては、
前記ロータは、周速比が高くなるのに応じて、前記翼の全長にわたって、前記翼のねじれ角が減少するように構成されていると、好適である。
【0009】
本発明のロータにおいては、
前記翼は、前記翼膜よりも高く前記高剛性前縁部よりも低い剛性を有するとともに、前記翼の翼根を構成する、高剛性翼根部を、さらに有していると、好適である。
【0010】
本発明のロータにおいては、
前記翼は、前記翼膜よりも高く前記高剛性前縁部よりも低い剛性を有するとともに、前記翼の平面展開視において前記翼軸線に交差する方向に延在する、骨部を、さらに有していると、好適である。
【0011】
本発明のロータにおいては、
前記翼は、前記翼膜として、正圧面を構成する第1翼膜と、負圧面を構成する第2翼膜と、を有しており、
前記第1翼膜と前記第2翼膜とは、少なくとも一部分で、互いに固定されていないと、好適である。
【発明の効果】
【0012】
本発明によれば、受動的に、ねじれ角を良好に変化させることができる、ロータを提供することができる。
【図面の簡単な説明】
【0013】
図1】本発明の一実施形態に係るロータを備えた風水力機械を示す斜視図である。
図2図1のロータの一部を拡大して示す拡大斜視図である。
図3図2に示すロータの部分を、別の角度から観たときの様子を示す、拡大斜視図である。
図4図1のロータの翼を、平面に展開したときの様子を、剛性分布の一例とともに示す、平面展開図である。
図5図1のロータの動作を説明するための斜視図である。
図6図5のロータを、翼軸線の一方側から観たときの様子を示す図であり、図1のロータの動作を説明するための図である。
図7】本発明のロータの第1変形例を説明するための図である。
図8】本発明のロータの第2変形例を説明するための図である。
図9】本発明のロータの第3変形例を説明するための図である。
図10】本発明のロータの第4変形例を説明するための図である。
図11】本発明のロータの比較例1~4、実施例1における、ロータの回転時での翼のねじれ角分布の解析結果を示す図である。
図12】本発明のロータの比較例1~4、実施例1における、周速比とパワー係数との関係についての解析結果を示す図である。
図13】本発明のロータの比較例1~4の翼を示す図である。
【発明を実施するための形態】
【0014】
以下、本発明の実施形態について、図面を参照して詳細に例示説明する。
本発明のロータは、風水力機械に用いられるものであり、特に水平軸型の風力発電機又は送風機に用いられると好適なものである。本発明でいう「風水力機械」とは、風力発電機(風車等)、送風機、水力発電機(水車等)、ポンプ、ヘリコプター、ドローン等の、風力又は水力により得られる動力を利用する機械を意味するものとする。
本発明のロータの直径は、任意の値でよいが、ロータが水平軸型の風力発電機に用いられる場合は例えば741~1111mmであると好適であり、ロータが送風機に用いられる場合は例えば700~1100mmであると好適である。
【0015】
本発明の一実施形態を、図1図6を参照して説明する。図1は、本実施形態に係るロータ1を備えた風水力機械を示す斜視図である。図2は、図1のロータ1の一部を拡大して示す拡大斜視図である。図3は、図2に示すロータ1の部分を、別の角度から観たときの様子を示す、拡大斜視図である。図4は、図1のロータ1の翼20の剛性分布の一例を示す、剛性分布図である。図5は、図1のロータ1の動作を説明するための図である。図6は、図5のロータ1を、翼軸線BAの一方側から観たときの様子を示すとともに、図1のロータ1の動作を説明するための図である。
本実施形態において、ロータ1を備えた風水力機械は、水平軸型の風力発電機として構成されている。ただし、ロータ1を備えた風水力機械は、水力発電機(水車等)として構成されてもよく、また、送風機として構成されてもよい。
【0016】
図1において、本実施形態のロータ1は、主軸(図示せず)に支持されるハブ10と、ハブ10に対してそれぞれ所定の翼軸線BAの周りで回転可能に連結された複数(本例では3つ)の翼20と、各翼20をそれぞれハブ10に対して回転付勢する付勢部材30と、を備えている。図示されない主軸は、図1で見たときに、ハブ10の背面から後方へ向かって、例えばほぼ水平に、延在する。主軸の中心軸線が、ロータ1の回転中心軸線Oとなる。
なお、翼20の数は、3つに限られず、任意の数とすることができる。
また、ロータ1の各翼20は、本例では互いに同一の構成を有しているが、一部の翼が他の翼とは異なる構成を有していてもよい。
【0017】
図1に示すように、本例では、翼20のねじれ角θ(図6参照。「ピッチ角」とも呼ばれる。)が、翼20の翼長方向に沿って一定ではなく、翼長方向に沿って翼根21(翼20におけるハブ10側(内周側)の端部。)から翼端22(翼20におけるハブ10とは反対側(外周側)の端部。)に向かうにつれて徐々に減少している。
翼20のねじれ角θの翼長方向での分布を、本例のようにすることによって、風力発電機の効率を向上できる。ただし、翼20のねじれ角の翼長方向での分布は、任意でよい。
ここで、「ねじれ角θ」とは、翼20上のあるロータ1の半径方向位置における、ロータ1の回転中心軸線Oに対して垂直な仮想平面P(図6参照)と、翼20の翼弦線(翼20の前縁23と後縁24とを結ぶ直線)との、鋭角側のなす角度である。
図6では、便宜のため、翼20の翼根21でのねじれ角θのみを示しており、翼20の他の半径方向位置でのねじれ角θの図示を省略している。
本明細書において、「ねじれ角θ」というときは、特に断りがない限り、翼20の各半径方向位置でのねじれ角(ひいては、ねじれ角の翼長方向での分布)を指すものとする。
【0018】
図2及び図3に示すように、翼20は、シャフト50によって、ハブ10に対して回転可能に連結されている。シャフト50は、例えば、ヒンジピンから構成される。より具体的に、翼20の翼根21には、剛体からなる連結部材40が固定されている。そして、シャフト50の一方の端部が、ハブ10に固定されており、シャフト50の他方の端部が、翼20の連結部材40を回転可能に軸支している。
ただし、本例に限らず、シャフト50の一方の端部が、ハブ10に回転可能に軸支されて、シャフト50の他方の端部が、翼20の連結部材40に固定されていてもよい。
シャフト50の中心軸線(ひいては付勢部材30の中心軸線)が、翼20の翼軸線BAである。
【0019】
図2及び図3に示すように、本例において、付勢部材30は、ねじりばねから構成されている。ただし、付勢部材30は、各翼20をそれぞれハブ10に対して回転付勢できるように構成されている限り、任意の構成を有していてよい。本例において、付勢部材30は、シャフト50の周りに設けられている。そして、付勢部材30は、ハブ10に固定されているとともに直線状に延在する第1端部31と、翼20の連結部材40に固定されているとともに直線状に延在する第2端部32と、第1端部31と第2端部32とを連結するとともに、シャフト50の周りに螺旋状に延在する、中間部33と、からなる。
ハブ10には、溝11が形成されており、この溝11には、付勢部材30の中間部33のうちの第1端部31側の一部分と、第1端部31とが、収容されている。これにより、第1端部31の位置がハブ10に対して固定されている。また、翼20の連結部材40には、溝41が形成されており、この溝41には、付勢部材30の中間部33のうちの第2端部32側の一部分と、第2端部32とが、収容されている。これにより、第2端部32の位置が連結部材40に対して固定されている。
【0020】
図4は、本実施形態のロータ1の翼20の好ましい剛性分布の一例を示している。図4では、翼20を、平面に展開した状態で示している。ここで、翼20を「平面に展開した状態」とは、すなわち、翼20のねじれ角θを翼20の全長にわたって一様(同一)にした状態を指す。
図4に例示するように、翼20は、その全部が剛体からなるものではなく、その大部分が柔軟性を有するような、柔軟翼である。より具体的に、翼20は、柔軟性を有する翼膜210と、翼膜210よりも高い剛性を有するとともに、翼20の前縁23を構成する、高剛性前縁部220と、翼膜210よりも高く高剛性前縁部220よりも低い剛性を有するとともに、翼20の翼根21を構成する、高剛性翼根部230と、を有している。
翼20の「前縁23」は、翼20の翼型(翼20の翼厚方向の断面)におけるロータ1の回転方向RDの前側の端であり、「後縁24」は、翼20の翼型におけるロータ1の回転方向RDの後側の端である。
図4では、便宜のため、翼20の各部分の剛性を、5種類のハッチによって5段階で示しているが、各種類のハッチは、剛性がそれぞれ所定の数値範囲内にあることを示しているにすぎず、剛性がそれぞれある1点の数値であることを示しているのではない。したがって、各種類のハッチによって示される部分の中で、剛性は、均一でもよいし非均一でもよい。
【0021】
本明細書において、翼20の「剛性」とは、曲げ剛性を指している。曲げ剛性は、つぎの式(1)で表される。
【数1】
式(1)において、Dは曲げ剛性(mNm)、Eはヤング率(GPa)、tは翼厚方向の厚み(mm)である。式(1)からわかるように、曲げ剛性Dは、ヤング率Eと厚みtとから決まるものである。すなわち、本明細書において説明する翼20の剛性(曲げ剛性D)は、例えば、図1の例のように翼20の厚みtを均一にするとともに、翼20の部分ごとに材料(ひいてはヤング率E)を調整することによって達成されてもよいし、あるいは、翼20の全体を同じ材料で構成するとともに、翼20の部分ごとに厚みtを調整することによって達成されてもよいし、あるいは、翼20の部分ごとに厚みtと材料(ひいてはヤング率E)との両方を調整することによって達成されてもよい。
翼膜20の各部分の曲げ剛性Dは、それぞれ、翼長方向と翼弦方向とで大きさが同じでもよいが、翼長方向と翼弦方向とで大きさが異なっていてもよい。本明細書において、「剛性」あるいは「曲げ剛性」というときは、特に断りがない限り、翼長方向の曲げ剛性と翼弦方向の曲げ剛性との両方を指すものとする。
なお、翼20の「翼長方向」とは、翼20の翼弦方向に垂直な方向であり、翼20の翼軸線BAに平行な方向でもある。
【0022】
翼20は、図4の例のように高剛性翼根部230を有する場合、ロータ1が回転する間に翼20の翼根21が大きく動くことによる流体抵抗の増大を抑制でき、ひいては、効率を向上できるので、好ましい。
ただし、翼20は、高剛性翼根部230を有しなくてもよく、すなわち、翼20のうち、高剛性前縁部220を除く部分の全てが、翼膜210から構成されてもよい。
【0023】
連結部材40は、例えば、金属(アルミニウム等)、合成樹脂などから構成される。
図4に示す例では、連結部材40が、翼20の翼根21のうちの前縁23側の端部に、固定されている。図4では図示を省略しているが、図1に示すように、連結部材40は、翼20の翼根21のうちの前縁23側の端部に固定された固定部43を一体に有している。このように、連結部材40を、翼20のうちの最も剛性の高い部分に固定することにより、連結部材40の翼軸線BA周りでの回転をダイレクトに翼20に伝えることができる。ただし、図4の例のように翼20が高剛性翼根部230を有する場合、連結部材40は、翼根21のうちの任意の部分に固定されていてよく、例えば、翼根21のうちの翼軸線BA(の延長線)上に位置する部分、あるいは、翼根21のうちの後縁24側の端部に、固定されていてもよい。
【0024】
つぎに、図5及び図6を参照しつつ、本実施形態のロータ1の動作を説明する。図5及び図6において、実線は、ロータ1が静止しているとき(すなわち、ロータ1に対して風が吹いていないとき)の状態を示しており、点線は、ロータ1が回転しているときの状態を示している。
ロータ1が静止しているとき、翼20の翼根21のねじれ角θは、所定の初期値をとる。ねじれ角θの初期値は、例えば、付勢部材30の構成や、付勢部材30の第1端部31及び第2端部32を収容するハブ10及び連結部材40側の溝11、41の構成などが予め調整されることによって、所定の値に設定されている。また、図6の例においては、ロータ1が静止しているとき、翼20は、ロータ1の各半径位置において、前縁23が後縁24よりもロータ1の正面側(図6の左側)に位置している。そして、翼20の正圧面が、ロータ1の正面側を向いている。また、ロータ1が静止しているとき、付勢部材30の第2端部32が、翼軸線BAよりもロータ1の正面側に位置し、付勢部材30の第1端部31が、翼軸線BAよりもロータ1の背面側に位置している。
風がロータ1の正面側から吹くと、ロータ1は、ロータ1の回転中心軸線Oの周りで所定の回転方向RDに回転されるとともに、図5及び図6に破線で示すように、翼20に当たる風の作用によって、連結部材40が、付勢部材30の付勢力に対抗しながら、翼軸線BAの周りで、付勢部材30の第2端部32が第1端部31に近づく方向に、回転される。これに連動して、連結部材40と固定された翼20の翼根21のねじれ角θが、減少するとともに、翼20の残りの部分もそれに追従するように、ねじれ角θが減少する方向に回転される。このとき、さらに、翼20の翼膜210のもつ柔軟性によって、翼膜210が変形する。
このように、ロータ1に当たる風の速度が増して、周速比が増大すると、翼20の全長にわたって、ねじれ角θが減少する方向に、翼20が回転および変形する。これにより、翼20が、ロータ1の回転中心軸線Oに垂直な仮想平面P(図6)、すなわち、ロータ1の回転面に、より沿うようになるので、翼20が受ける流体抵抗を低減できる。
一方、ロータ1に当たる風の速度が低下し、周速比が低下すると、翼20に当たる風の作用が弱まるのに応じて、連結部材40が、付勢部材30の復元力(付勢力)によって、翼軸線BAの周りで、付勢部材30の第2端部32が第1端部31から離れる方向に、回転される。これ連動して、連結部材40と固定された翼20の翼根21のねじれ角θが、増大するとともに、翼20の残りの部分もそれに追従するように、ねじれ角θが増大する方向に回転される。このとき、さらに、翼20の翼膜210のもつ柔軟性によって、翼膜210が変形する。
そして、風が止むと、再びもとの状態(図5及び図6に実線で示す状態)に戻り、ねじれ角θが所定の初期値に戻る。
【0025】
なお、「周速比λ」は、風速に対する翼端速度(翼の翼端の回転方向の速度)の比である。風速をU(m/s)、ロータの回転速度をω(rad/s)、ロータの半径をR(m)とすると、周速比λは、つぎの式(2)で表すことができる。
【数2】
【0026】
つぎに、本実施形態のロータ1の作用効果を説明する。
一般的に、周速比に依って、良好な効率を得るのに最適な翼のねじれ角分布(以下、単に「ねじれ角」ともいう。)が異なる。より具体的に、周速比が低いときは、翼のねじれ角が大きいほうが、高い効率が得られる。一方、周速比が高いときは、翼のねじれ角が小さいほうが、流体抵抗を効果的に抑制でき、高い効率が得られる。したがって、仮にロータ1の翼20が回転や変形ができないように構成されている場合、良好な効率が得られる周速比の範囲が狭くなる。
一方、本実施形態のロータ1は、周速比に応じて、ロータ1に当たる風のみに応じて、受動的に、翼20のねじれ角(ねじれ角分布)を良好に変化させることができる。より具体的に、ロータ1は、周速比が高くなるのに応じて、翼20の全長にわたって、翼20のねじれ角θが減少し、一方、周速比が低くなるのに応じて、翼20の全長にわたって、翼20のねじれ角θが増大するように、構成されている。したがって、周速比が低いときも高いときも、高い効率を得ることができ、ひいては、広い周速比範囲において、安定して良好な効率を得ることが可能となる。このことは、ロータ1が、例えば、流体の速度や向きが絶えず大きく変動するような場所に設置されることの多い、小型の水平軸型の風力発電機などの風水力機械に用いられる場合、安定的に良好な効率を得ることができるので、特に好適である。
そして、本実施形態のロータ1は、翼20のねじれ角の変化が、受動的に生じるように構成されているので、例えば特許文献1のように翼のねじれ角を電気的に制御する技術を用いる場合に比べ、構造の簡単化、低コスト化が可能となる。このことは、ロータ1が、例えば小型の水平軸型の風力発電機などの風水力機械に用いられる場合、低コストが求められるので、特に有利である。
また、本実施形態のロータ1は、翼20が、柔軟性を有する翼膜210と、翼膜210よりも高い剛性を有するとともに、翼20の前縁23を構成する、高剛性前縁部220と、を有している。これにより、仮に翼20の全体が剛体からなる場合に比べて、より良好に、翼20のねじれ角分布を周速比に応じて変化させることができ、ひいては、効率を向上できる。仮に、特許文献1のように翼20の全体が剛体からなる場合、翼の回転に伴い、翼の全長にわたって、ねじれ角が一様に変化してしまう。しかし、周速比に応じて良好な効率を得るのに最適なねじれ角分布は異なるものである。本実施形態では、柔軟性を有する翼膜210が、高剛性前縁部220よりも後縁側に位置し、そこで変形可能にされているので、周速比に応じて翼の全長にわたってねじれ角が一様に変化するのを抑制でき、より良好に、翼20のねじれ角分布を周速比に応じて変化させることが可能になるのである。
また、本実施形態のロータ1は、付勢部材30によって翼20をハブ10に対して回転付勢しており、付勢部材30の付勢力と翼20に当たる風の作用とのバランスによって、周速比に応じて翼根21が翼軸線BAの周りで回転し、翼根21のねじれ角θが変化するようにされている。これにより、周速比に応じて、より良好に、翼根21のねじれ角θを変化させることが可能になる。仮に、付勢部材30によって翼20がハブ10に対して回転付勢されておらず、翼20の翼根21がハブ10に対して固定されている場合、翼20が柔軟な翼膜210を有するとはいえ、翼根21のねじれ角θを良好に変化させることは出来ないため、ねじれ角分布を十分良好に変化させることができない。すなわち、付勢部材30は、翼20の翼根21側で比較的大きな回転に主に寄与するものであり、柔軟性を有する翼膜210は、翼端22側での比較的な小さなねじれ変形に主に寄与するものである。
【0027】
図4に戻り、翼20の好ましい構成について、さらに詳しく説明する。
翼20の高剛性前縁部220は、図4の例のように、翼20の全体の中で、最も剛性が高いことが好ましい。また、高剛性前縁部220は、高剛性前縁部220上の各点において、翼長方向の曲げ剛性が翼弦方向の曲げ剛性よりも高いと、好適である。また、高剛性前縁部220は、翼長方向の曲げ剛性が、翼根21側の端部で最も高いと、好適であり、特には、翼根21側から翼端22側に向かって徐々に減少すると、より好適である。
効率向上の観点からは、高剛性前縁部220は、翼長方向の曲げ剛性が、高いほど好適であり、例えば、1.0×10mNm以上、1.0×10mNm以上、5.0×10mNm以上、1.0×10mNm以上、5.0×10mNm以上、1.0×10mNm以上、5.0×10mNm以上、1.0×10mNm以上、5.0×10mNm以上、1.0×10mNm以上、5.0×10mNm以上であると、好適である。一方、製造しやすさの観点からは、高剛性前縁部220は、翼長方向の曲げ剛性が、1.0×1011mNm以下、特には8.0×1010mNm以下、さらに特には6.0×1010mNm以下が、好適である。
効率向上の観点からは、高剛性前縁部220は、翼弦方向の曲げ剛性が、高いほど好適であり、例えば、1.0×10mNm以上、1.0×10mNm以上、3.0×10mNm以上であると、好適である。一方、製造しやすさの観点からは、高剛性前縁部220は、翼弦方向の曲げ剛性が、1.0×10mNm以下、特には5.0×10mNm以下、さらに特には3.0×10mNm以下が、好適である。
高剛性前縁部220は、例えば、カーボンロッド、バネ剛棒、合成樹脂、軽金属、複合材、木材等から構成されると好適である。
【0028】
翼20の翼膜210は、図4の例のように、翼20の全体の中で、最も剛性が低いことが好ましい。また、翼膜210のうち、最も後縁24側かつ翼端22側の部分は、翼膜210の全体の中で最も剛性が低いことが好ましい。図4の例では、翼20の最も後縁24側かつ翼端22側の部分が、翼20の全体の中で最も剛性が低い第1翼膜部210aによって構成されている。第1翼膜部210aは、翼20の後縁24の一部及び翼端22の一部を構成している。また、翼膜210は、翼膜210上の各点において、翼弦方向の曲げ剛性が翼長方向の曲げ剛性よりも高いと、好適である。
また、図4の例では、翼膜210は、第1翼膜部210aに対して翼根21側及び前縁23側に位置する部分が、第1翼膜部210aよりも剛性が高い。具体的に、翼膜210は、第1翼膜部210aに加えて、第1翼膜部210aに対して翼根21側および前縁23側に隣接するとともに、第1翼膜部210aよりも高い剛性を有する、第2翼膜部210bと、第2翼膜部210bに対して翼根21側に隣接するとともに、第2翼膜部210bよりも高い剛性を有する、第3翼膜部210cと、をさらに有している。
ただし、翼膜210の剛性分布は、図4の例とは異なるものでもよい。例えば、翼膜210の全体にわたって剛性が均一でもよい。
効率向上の観点からは、翼膜210は、翼長方向の曲げ剛性が、低いほど好適であり、例えば、1.0×10mNm以下、5.0×10mNm以下、1.0×10mNm以下、5.0×10mNm以下、1.0×10mNm以下、5.0×10mNm以下、1.0×10mNm以下、5.0×10mNm以下、1.0×10mNm以下、5.0mNm以下、1.0mNm以下、5.0×10-1mNm以下、1.0×10-1mNm以下、5.0×10-2mNm以下であると、好適である。一方、製造しやすさの観点からは、翼膜210は、翼長方向の曲げ剛性が、1.0×10-3mNm以上、特には5.0×10-3mNm以上、さらに特には1.0×10-2mNm以上が、好適である。
効率向上の観点からは、翼膜210は、翼弦方向の曲げ剛性が、低いほど好適であり、例えば、1.0×10mNm以下、5.0×10mNm以下、1.0×10mNm以下、5.0×10mNm以下、1.0×10mNm以下、5.0×10mNm以下、1.0×10mNm以下、5.0×10mNm以下、1.0×10mNm以下、5.0mNm以下、1.0mNm以下、5.0×10-1mNm以下、1.0×10-1mNm以下であると、好適である。一方、製造しやすさの観点からは、翼膜210は、翼弦方向の曲げ剛性が、1.0×10-3mNm以上、特には5.0×10-3mNm以上、さらに特には1.0×10-2mNm以上、またさらに特には5.0×10-2mNm以上が、好適である。
翼膜210は、図4に示す例のように、翼20の後縁24の一部分を構成していることが好ましく、例えば、後縁24のうち、後縁24の翼長方向の全長の60%以上、特には80%以上、さらに特には90%の長さを有する、翼端22側の部分を、構成していると、好ましい。
また、翼膜210は、図4に示す例のように、翼20の翼端22の一部分を構成していることが好ましく、例えば、翼端22のうち、翼端22の翼弦方向の全長の60%以上、特には80%以上、さらに特には90%の長さを有する、後縁24側の部分を、構成していると、好ましい。
翼膜210は、例えば、布、紙、ゴム、複合材、合成樹脂、軽金属等から構成されると好適である。翼膜210が布又は紙から構成される場合、翼膜210が自由に変形できるようになるので、良好にねじれ角を変化させることが可能になる。また、効率および耐久性の観点から、翼膜210は、紙よりも布から構成されると、好適である。布の材料としては、例えば、ポリエステル、ナイロン等が挙げられる。紙としては、例えば、カードボード紙等が挙げられる。
【0029】
翼20の高剛性翼根部230は、図4の例のように、翼20の高剛性前縁部220と翼膜210との間の剛性を有することが好ましい。高剛性翼根部230は、翼膜210よりも高い剛性を有するのが好ましいものの、柔軟性を有していることが好ましい。
また、高剛性翼根部230は、高剛性翼根部230上の各点において、翼弦方向の曲げ剛性が翼長方向の曲げ剛性よりも高いと、好適である。また、高剛性翼根部230は、曲げ剛性が、後縁24側の端部で最も低いと、好適であり、特には、前縁23側から後縁24側に向かって徐々に減少すると、より好適である。
過度の変形を抑える観点からは、高剛性翼根部230は、翼長方向の曲げ剛性が、高いほうがよく、例えば、1.0×10-2mNm以上、5.0×10-2mNm以上、1.0×10-1mNm以上、5.0×10-1mNm以上が、好適である。一方、十分な変形し易さの確保の観点からは、高剛性翼根部230は、翼長方向の曲げ剛性が、低いほうがよく、例えば、1.0×10mNm以下、5.0×10mNm以下、1×10mNm以下、5.0×10mNm以下、1.0×10mNm以下、5.0×10mNm以下、1.0×10mNm以下、5.0×10mNm以下、1.0×10mNm以下、5.0mNm以下であると、好適である。
過度の変形を抑える観点からは、高剛性翼根部230は、翼弦方向の曲げ剛性が、高いほうがよく、例えば、1.0×10-2mNm以上、5.0×10-2mNm以上、1.0×10-1mNm以上、5.0×10-1mNm以上、1.0mNm以上が、好適である。一方、十分な変形し易さの確保の観点からは、高剛性翼根部230は、翼弦方向の曲げ剛性が、低いほうがよく、例えば、1.0×10mNm以下、5.0×10mNm以下、1×10mNm以下、5.0×10mNm以下、1.0×10mNm以下、5.0×10mNm以下、1.0×10mNm以下、5.0×10mNm以下、1.0×10mNm以下であると、好適である。
高剛性翼根部230は、例えば、カーボンロッド、バネ剛棒、合成樹脂、軽金属、複合材、木材等から構成されると好適である。
【0030】
図4及び図6に示すように、翼20の前縁23は、翼軸線BAから、翼軸線BAに垂直な方向に離間されていると、好適である。これにより、例えば前縁23が翼軸線BA(の延長線)上に位置している場合に比べて、同じ風の作用によって、翼20が翼軸線BAの周りでより大きく回転でき、ひいては、ねじれ角θをより大きく変化させることができる。
より具体的に、翼20の平面展開視(図4)において、翼軸線BAに垂直な方向に沿って測ったときの翼20の翼根21の長さBRLに対する、翼軸線BAに垂直な方向に沿って測ったときの翼根21における前縁23側の端部から翼軸線BAまでの距離D1の割合(すなわち、(D1×100/BRL)(%))は、45~100%が好適であり、55~95%がより好適であり、65~85%がさらに好適であり、70~80%がよりさらに好適である。図4の例では、当該割合(D1×100/BRL)(%)が、75%である。
また、同様の観点から、翼20の高剛性翼根部230は、翼軸線BAから、翼軸線に垂直な方向に離間されていると、好適である。
【0031】
以下、図7図10を参照しながら、本発明のロータ1の翼20の変形例を説明する。なお、図7図10の各例においても、図4を参照して上述したような剛性分布や上記割合(D1×100/BRL)(%)を満たすと、好適である。また、図7図10の各例において、翼20以外の部分のロータ1の構成は、図1図6の例について上述したものと同様でよい。
【0032】
図7は、ロータ1の第1変形例における翼20を平面展開視により示す図である。
図7の例では、翼膜210の剛性が、翼膜210の全体にわたってほぼ均一である。翼膜210は、柔軟性のある材料から構成されている。より具体的に、図7の例では、翼膜210は、紙から構成されている。ただし、翼膜210は、例えば、図4の例において述べた翼膜210の好適な材料のうち任意のものから構成されてもよい。
また、図7の例では、高剛性前縁部220と高剛性翼根部230とが、それぞれ、翼膜210よりも剛性の高い、棒状体により構成されている。より具体的に、図7の例では、高剛性前縁部220と高剛性翼根部230とが、いずれもカーボンロッドから構成されている。ただし、高剛性前縁部220と高剛性翼根部230とは、例えば、図4の例において述べた高剛性前縁部220および高剛性翼根部230のそれぞれの好適な材料のうち任意のものから構成されてもよい。
図7の例では、高剛性前縁部220は、高剛性翼根部230よりも、径(ひいては厚み)が大きい。これにより、高剛性前縁部220の剛性が、高剛性翼根部230の剛性よりも高くされている。ただし、高剛性前縁部220と高剛性翼根部230とをそれぞれ同径にしつつ、高剛性前縁部220を構成する材料のヤング率を、高剛性翼根部230を構成する材料のヤング率よりも高くすることにより、高剛性前縁部220の剛性を、高剛性翼根部230の剛性よりも高くしてもよい。
図7の例において、高剛性前縁部220と高剛性翼根部230とは、それぞれ、翼膜210の正圧面側に、接着等により固定されている。ただし、高剛性前縁部220と高剛性翼根部230とは、翼膜210の負圧面側に固定されてもよい。これらを翼膜210の負圧面側に配置する場合、翼20の正圧面形状を滑らかにできるので、ロータ1の回転時における流体抵抗を低減でき、ひいては、効率を向上できる。
図7に示す例では、翼20の平面展開視において、翼20の前縁23が非直線状である。ただし、翼20の平面展開視において、例えば後述の図8の例のように、前縁23を、直線状にしてもよい。その場合、翼20の製造時において、高剛性前縁部220を、翼膜210の前縁23側の端部に沿って固定しやすくなる。
このような構成によっても、図4の例と同様に、周速比に応じて、ロータ1に当たる風のみに応じて、受動的に、翼20のねじれ角(ねじれ角分布)を良好に変化させることができる。ひいては、広い周速比範囲において、安定して良好な効率を得ることが可能となる。
【0033】
図8は、ロータ1の第2変形例における翼20を示しており、図8(a)は翼20の正圧面側を平面に展開したときの状態で示す図であり、図8(b)は翼20の負圧面側を平面に展開したときの状態で示す図であり、図8(c)は翼20の図8(b)のA-A線に沿う断面図である。図8(b)のA-A線は、翼20の翼弦方向に沿っている。
図8の例は、翼膜210の正圧面側ではなく負圧面側に、高剛性前縁部220および高剛性翼根部230が、接着等により固定されているとともに、さらに、負圧面側に、複数の骨部240も、接着等により固定されている点で、図7の例とは主に異なる。図7と同様の構成については、説明を省略する。
骨部240は、翼膜210よりも高く高剛性前縁部220よりも低い剛性を有するとともに、翼20の平面展開視において翼軸線BAに交差する方向に延在している。各骨部240は、それぞれ、ロータ1の径方向において互いに異なる位置に配置されているとともに、骨部240は、翼20の平面展開視において翼軸線BAに垂直な方向、また、翼20の翼弦方向に平行な方向に、延在している。また、骨部240は、それぞれ、高剛性前縁部220の後縁24側の端部から、後縁24まで、延在している。
骨部240は、柔軟性を有することが好ましく、特には、高剛性翼根部230と等しい又はそれよりも低い剛性を有することが好ましく、より特には、高剛性翼根部230よりも低い剛性を有することが好ましい。図8の例において、骨部240は、カーボンロッドから構成されている。ただし、骨部240は、バネ剛棒、合成樹脂、軽金属、複合材、木材等から構成されてもよい。
また、図8の例において、翼膜210は、布から構成されている。ただし、翼膜210は、例えば、図4の例において述べた翼膜210の好適な材料のうち任意のものから構成されてもよい。
また、図8の例において、高剛性前縁部220は、硬質の合成樹脂からなる棒状体から構成されており、高剛性翼根部230は、柔軟性のあるカーボンロッドから構成されている。高剛性前縁部220の翼厚方向の断面積は、高剛性翼根部230の翼厚方向の断面積よりも大きくされている。これにより、高剛性前縁部220の剛性が、高剛性翼根部230の剛性よりも高くされている。
また、図8の例において、高剛性翼根部230の翼厚方向の断面積は、骨部240の翼厚方向の断面積よりも大きくされている。これにより、高剛性翼根部230の剛性が、骨部240の剛性よりも高くされている。
本変形例では、翼膜210に、翼膜210よりも高い剛性を有する骨部240を、翼20の平面展開視において翼軸線BAに交差する方向に延在させているので、例えば図7の例のように翼膜210に骨部240が設けられていない場合に比べて、翼根21が翼軸線BAの周りで回転される際に、翼20の残りの部分が、それに良好に追従できるようになる。ひいては、効率を向上できる。なお、仮に、骨部240が、翼20の平面展開視において翼軸線BAに平行な方向に延在している場合は、翼根21が翼軸線BAの周りで回転される際に、翼20の残りの部分を良好に追従させることができない。
また、本例では、高剛性前縁部220、高剛性翼根部230、骨部240を、翼膜210の負圧面側に配置しているので、仮にこれらを翼膜210の正圧面側に配置した場合に比べて、翼20の正圧面形状を滑らかにできるので、ロータ1の回転時における流体抵抗を低減でき、ひいては、効率を向上できる。
【0034】
図9は、ロータ1の第3変形例における翼20を示しており、図9(a)は翼20の正圧面側を平面に展開したときの状態で示す図であり、図9(b)は翼20の負圧面側を平面に展開したときの状態で示す図であり、図9(c)は図9(b)のB-B線に沿う翼20の断面図である。図9(b)のB-B線は、翼20の翼弦方向に沿っている。
図9の例は、高剛性前縁部220の形状が流線型をなしている点と、翼20が翼膜210を2つ有している点で、図8の例とは主に異なる。
前述した図8の例では、図8(c)に示すように、高剛性前縁部220が、翼厚方向の断面において矩形状に構成されている。一方、図9に示す第3変形例では、高剛性前縁部220が、図9(c)に示すように、翼厚方向の断面において、前縁23に向かうにつれて徐々に翼厚方向の厚みが小さくなるような先細り形状を有するとともに、その前縁23側の端部において、後縁24とは反対側に向かって(回転方向RDの前側に向かって)凸に突出した湾曲した形状(例えば、NACA0012翼型、楕円の半分に相当する形状、半円形状など)をなしている。これにより高剛性前縁部220が、流線型をなすため、図8の例に比べて、ロータ1の回転時の流体抵抗を低減でき、ひいては、効率を向上できる。
また、図9の例では、翼20が翼膜210を2つ有している。具体的に、翼20は、翼膜210として、正圧面を構成する第1翼膜211と、負圧面を構成する第2翼膜212と、を有している。第1翼膜211と第2翼膜212とは、翼20の翼厚方向に互いに対向している。第1翼膜211には、図8の例の翼膜210と同様に、第1翼膜211の負圧面側に、高剛性前縁部220、高剛性翼根部230、及び複数の骨部240が、接着等により固定されている。第2翼膜212は、第1翼膜211の負圧面側を覆うように設けられる。このとき、第2翼膜212は、翼20の外縁部(前縁23、翼根21、後縁24、翼端22、及びこれらの近傍部分)のうち少なくとも一部分(好ましくは全部)では、他の部材(高剛性前縁部220、高剛性翼根部230、翼膜210、骨部240)に対して、接着等により固定されるものの、翼20の外縁部より内側に位置する第1翼膜211や骨部240には、固定されていない。このように、第1翼膜211と第2翼膜212とは、少なくとも一部分で、互いに固定されておらず、翼20の外縁部よりも内側においては、第1翼膜211と第2翼膜212との間に、空間が区画される。これにより、本例の翼20は、負圧面側を第2翼膜212によって覆っていない図8の例に比べて、第2翼膜212によって、翼20の負圧面側で高剛性前縁部220や骨部240によって形成されている段差を覆って、翼20の負圧面形状を滑らかにすることができる。これにより、図8の例に比べて、ロータ1の回転時の流体抵抗を低減でき、ひいては、効率を向上できる。
なお、第1翼膜211と第2翼膜212とは、それぞれ、図1図8を参照しながら上述した翼膜210の構成を満たすのがよく、すなわち、柔軟性を有し、高剛性前縁部220、高剛性翼根部230、及び骨部240よりも剛性が低いのがよい。また、第1翼膜211と第2翼膜212とは、互いに剛性や材料が異なるものでもよい。図9の例では、第1翼膜211が布により構成され、第2翼膜212が紙により構成されている。第2翼膜212を紙により構成することで、仮に第2翼膜212を布により構成する場合に比べて、第2翼膜212の滑らかな形状をより効果的に維持できる。
【0035】
図10は、ロータ1の第4変形例における翼20を示しており、図10(a)は翼20の正圧面側を平面に展開したときの状態で示す図であり、図10(b)は翼20の負圧面側を平面に展開したときの状態で示す図である。図10の例は、骨部240の延在方向のみが、図8の例とは異なる。具体的に、図10の例では、骨部240が、それぞれ、翼軸線BAに平行な方向及びこれに垂直な方向の両方に交差する方向に延在しており、より具体的には、翼20の前縁23側かつ翼根21側から、後縁24側かつ翼端22側に向かって、徐々に互いから離間されながら、放射状に延在している。
このような構成においても、仮に、翼20の平面展開視において骨部240が翼軸線BAに平行な方向に延在している場合に比べて、翼根21が翼軸線BAの周りで回転される際に、翼20のねじれ角を、より良好に変化させることができる。
【0036】
以上、本実施形態のロータ1について、ロータ1が水平軸型の風力発電機に用いられる場合の説明をした。
ただし、ロータ1は、水力発電機(水車等)に用いられてもよく、また、送風機、ポンプ、ヘリコプター、ドローン等に用いられてもよい。ただし、この場合、上述した各例における翼20の正圧面が、ロータ1の背面側を向き、翼20の負圧面が、ロータ1の正面側を向くようにされるとよい。ロータ1が図示しないモータによって回転されると、風は、ロータ1の背面側から正面側へ向かって流れる。このような場合においても、周速比に応じて、受動的に、ねじれ角を良好に変化させることができ、ひいては、広い周速比範囲において、安定して良好な効率を得ることが可能となる。
【実施例
【0037】
本発明の比較例1~4及び実施例1のロータの性能を、解析により評価したので、図11図13を参照しながら説明する。
図13は、比較例1~4のロータの翼20’をそれぞれ示している。比較例1~4の翼20’は、いずれも、その全体が剛体からなる剛体翼であり、また、ハブ10に対して回転可能ではなく、ハブ10に対して位置が固定されていた。図13に示すように、比較例1~4は、翼20’の平面形状とねじれ角分布が互いに異なるものであった。より具体的には、比較例1から比較例4に向かう順番で、翼弦長が短くなり、また、ねじれ角θが小さくなるものだった。なお、比較例1~4の翼20’は、翼素運動量理論(BEM)により、それぞれ周速比λ=2、3、4、5に対して最適な効率を得るための平面形状及びねじれ角分布を計算により求めることにより得たものである。
実施例1は図1図6に示す例のロータの構成を有しており、すなわち、翼20が、図2及び図3に示すように、ねじりばねからなる付勢部材30によってハブ10に対して回転付勢されているとともに、図4の例の剛性分布を有するものであった。また、実施例1の翼20は、ロータ1の静止時における平面形状及びねじれ角分布を、比較例2と同じものとした。
比較例1~4及び実施例1のロータの直径は、いずれも946mmとし、翼の翼長は、互いに同じとした。
そして、比較例1~4及び実施例1のロータを用いて、流体-構造連成解析を行うことにより、風速を5m/sにて一定とし、周速比λをλ=2、3、4、5のそれぞれにしたときの、翼のねじれ角分布とパワー係数Cを求めた。その結果をそれぞれ図11及び図12に示す。
図11は、比較例1~4及び実施例1における、ロータが回転しているときの翼のねじれ角分布の解析結果を示している。図11において、横軸はロータの半径方向位置であり、右側に向かうにつれて外周側(翼端側)に向かう。縦軸はねじれ角(°)である。図11から判るように、比較例1~4は、翼がハブに固定されているとともに、翼が剛体からなるため、ロータが回転しても、ねじれ角分布は変化しなかった。一方、実施例1は、周速比λが高くなるにつれて、翼の全長にわたってねじれ角が減少する方向に、ねじれ角分布が変化した。
図12は、比較例1~4及び実施例1における、周速比λとパワー係数Cとの関係についての解析結果を示している。図12において、横軸は周速比λであり、縦軸はパワー係数Cである。パワー係数Cの値が大きいほど、効率が高いことを意味する。
なお、周速比λは、上述の式(2)により定義されるものである。
また、「パワー係数C」は、ロータ受風面積を単位時間に通過する自由空気流の運動エネルギーに対する風力発電機の正味出力の比である。空気の密度をρ(kg/m)、回転トルクをT(Nm)とすると、パワー係数Cは、つぎの式(3)で表すことができる。
【数3】
図12から判るように、実施例1のロータは、比較例1~4のロータに比べて、より広い周速比の範囲で安定して良好なパワー係数Cひいては効率が得られた。
【産業上の利用可能性】
【0038】
本発明のロータは、風水力機械に用いられるものであり、特に水平軸型の風力発電機又は送風機に用いられると好適なものである。
【符号の説明】
【0039】
1 ロータ
10 ハブ
11 溝
20、20’ 翼
21、21’ 翼根
22、22’ 翼端
23、23’ 前縁
24、24’ 後縁
210 翼膜
211 第1翼膜
212 第2翼膜
210a 第1翼膜部
210b 第2翼膜部
210c 第3翼膜部
220 高剛性前縁部
230 高剛性翼根部
240 骨部
30 付勢部材
31 付勢部材の第1端部
32 付勢部材の第2端部
33 付勢部材の中間部
40 連結部材
41 溝
43 固定部
50 翼軸
BA 翼軸線
BRL 翼根長
D1 翼根における前縁側の端部から翼軸線までの距離
O ロータの回転中心軸線
P ロータの回転中心軸線に対して垂直な仮想平面
RD 回転方向
θ ねじれ角
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13