IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ヒューレット−パッカード デベロップメント カンパニー エル.ピー.の特許一覧

<>
  • 特許-粒子分離 図1
  • 特許-粒子分離 図2
  • 特許-粒子分離 図3
  • 特許-粒子分離 図4
  • 特許-粒子分離 図5
  • 特許-粒子分離 図6
  • 特許-粒子分離 図7
  • 特許-粒子分離 図8
  • 特許-粒子分離 図9
  • 特許-粒子分離 図10
  • 特許-粒子分離 図11
  • 特許-粒子分離 図12
  • 特許-粒子分離 図13
  • 特許-粒子分離 図14
  • 特許-粒子分離 図15
  • 特許-粒子分離 図16
  • 特許-粒子分離 図17
  • 特許-粒子分離 図18
  • 特許-粒子分離 図19
  • 特許-粒子分離 図20
  • 特許-粒子分離 図21
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2021-12-10
(45)【発行日】2022-01-13
(54)【発明の名称】粒子分離
(51)【国際特許分類】
   B03C 5/00 20060101AFI20220105BHJP
   B03C 5/02 20060101ALI20220105BHJP
   B01D 57/02 20060101ALI20220105BHJP
【FI】
B03C5/00 Z
B03C5/02
B01D57/02
【請求項の数】 15
(21)【出願番号】P 2019544877
(86)(22)【出願日】2017-04-23
(65)【公表番号】
(43)【公表日】2020-03-12
(86)【国際出願番号】 US2017029028
(87)【国際公開番号】W WO2018199874
(87)【国際公開日】2018-11-01
【審査請求日】2019-08-19
【前置審査】
(73)【特許権者】
【識別番号】511076424
【氏名又は名称】ヒューレット-パッカード デベロップメント カンパニー エル.ピー.
【氏名又は名称原語表記】Hewlett‐Packard Development Company, L.P.
(74)【代理人】
【識別番号】100087642
【弁理士】
【氏名又は名称】古谷 聡
(74)【代理人】
【識別番号】100082946
【弁理士】
【氏名又は名称】大西 昭広
(74)【代理人】
【識別番号】100195693
【弁理士】
【氏名又は名称】細井 玲
(72)【発明者】
【氏名】シュコルニコフ,ヴィクトル
(72)【発明者】
【氏名】チェン,チエン-フア
【審査官】目代 博茂
(56)【参考文献】
【文献】国際公開第2011/067961(WO,A1)
【文献】国際公開第2011/105507(WO,A1)
【文献】米国特許出願公開第2007/0125941(US,A1)
【文献】特開2014-178119(JP,A)
【文献】特開2004-113223(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B03C3/00-11/00
B01D57/00-57/02
B01D35/06
C12M1/00-3/10
G01N1/00-1/44
G01N15/00-15/14
B01J19/00-19/32
(57)【特許請求の範囲】
【請求項1】
流体内に同伴された粒子を方向づける入口通路;
前記入口通路から分岐する第1の分離通路;
前記入口通路から分岐する第2の分離通路;
前記粒子に誘電泳動力を及ぼす電界を生成して、前記粒子を前記第1の分離通路または前記第2の分離通路に方向づける電極、ここで前記入口通路、前記第1の分離通路、前記第2の分離通路、前記電界および前記誘電泳動力は同じ単一の平面に延びている、
を備え、
前記入口通路、前記第1の分離通路および前記第2の分離通路はそれぞれ、対向する側壁を含み、ここで前記電極は前記対向する側壁上に形成されると共に、前記対向する側壁に平行かつそれに沿った面を有し、対向する前記電極は関連する通路を横切って、分離される標的粒子の直径の少なくとも10倍の距離だけ分離されている、流体同伴粒子分離器。
【請求項2】
前記粒子を前記入口通路内の層流に集めさせる粒子フォーカサをさらに備える、請求項1に記載の流体同伴粒子分離器。
【請求項3】
前記粒子フォーカサが流体力学的フォーカサを含む、請求項2に記載の流体同伴粒子分離器。
【請求項4】
前記流体力学的粒子フォーカサが、前記入口通路につながる第1のシース流路と、前記入口通路につながる第2のシース流路と、前記入口通路につながる粒子流路とを備え、前記粒子流路が、前記第1のシース流路および前記第2のシース流路からのシース流体の間に粒子を供給する、請求項3に記載の流体同伴粒子分離装置。
【請求項5】
前記粒子フォーカサが、自由流動負誘電泳動粒子フォーカサおよび自由流動等速電気泳動粒子フォーカサからなる粒子フォーカサの群から選択される、請求項2に記載の流体同伴粒子分離器。
【請求項6】
前記第1の分離通路から分岐する第3の分離通路;および
前記第1の分離通路から分岐する第4の分離通路、ここで前記電界が前記粒子に誘電泳動力を及ぼして、前記第1の分離通路内の前記粒子を前記第3の分離通路または前記第4の分離通路に方向づけ、ここで前記第3の分離通路および前記第4の分離通路は前記同じ単一の平面に延びている、
をさらに備える、請求項1から5の何れか1に記載の流体同伴粒子分離器。
【請求項7】
前記入口通路から分岐して前記同じ単一の平面に延びている第3の分離通路をさらに備え、ここで前記電界が前記粒子に誘電泳動力を及ぼして前記入口通路内の前記粒子を前記第1の分離通路、前記第2の分離通路または第3の分離通路に方向づける、請求項1から5の何れか1に記載の流体同伴粒子分離器。
【請求項8】
前記第1の分離通路および前記第2の分離通路のそれぞれが、少なくとも10,000オームセンチメートルのインピーダンスを有する材料から形成された床面を含む、請求項1から7の何れか1に記載の流体同伴粒子分離器。
【請求項9】
少なくとも10,000オームセンチメートルのインピーダンスを有する基材;
前記電極を形成する前記基材上の第1の層、ここで前記入口通路、前記第1の分離通路、および前記第2の分離通路は、前記第1の層に形成され;ならびに
前記第1の層上の第2の層、ここで前記基材および前記第2の層は、前記入口通路、前記第1の分離通路および前記第2の分離通路のそれぞれの床および天井をそれぞれ形成する、
をさらに備える、請求項1から8の何れか1に記載の流体同伴粒子分離器。
【請求項10】
少なくとも10,000オームセンチメートルのインピーダンスを有する層、前記層は前記入口通路、前記第1の分離通路および前記第2の分離通路を形成するチャネルを形成し、
前記電極を形成する前記チャネルの対向する側壁上の電極材料の層、
を備える、請求項1から8の何れか1に記載の流体同伴粒子分離器。
【請求項11】
流体内に同伴された粒子を分離する方法であって、
入口通路を通じてストリームに同伴された粒子を方向づけること;
単一の平面内の電界を前記ストリームに印加して、前記粒子に前記同じ単一の平面内の誘電泳動力を及ぼして、前記ストリーム内の前記粒子の第1のサブセットを前記同じ単一の平面内に延びている第1の分離通路に迂回させ、そして前記ストリーム内の前記粒子の第2のサブセットを前記同じ単一の平面内に延びている第2の分離通路に迂回させること、を含み、
前記電界は、前記ストリームを横切って分離された電極であって、分離される標的粒子の直径の少なくとも10倍の距離だけ互いに分離された電極から印加される、方法。
【請求項12】
前記ストリーム内の前記粒子を集めることをさらに含む、請求項11に記載の方法。
【請求項13】
前記入口通路、前記第1の分離通路、および前記第2の分離通路はそれぞれ床および側壁を有し、ここで前記側壁は、前記電界を印加する電極を形成する導電性材料の層を有し、そしてここで前記床は、前記ストリームのインピーダンスより高いインピーダンスを有する、請求項11または12に記載の方法。
【請求項14】
前記入口通路、前記第1の分離通路、および前記第2の分離通路は、少なくとも10,000オームセンチメートルのインピーダンスを有する基材上の第1の層に形成され、前記第1の層は前記電極を形成し、第2の層が前記第1の層上に形成され、
ここで前記基材および前記第2の層は、前記入口通路、前記第1の分離通路および前記第2の分離通路のそれぞれの床および天井をそれぞれ形成する、請求項11または12に記載の方法。
【請求項15】
流体同伴粒子分離器を形成する方法であって、
入口通路、前記入口通路から分岐する第1の分離通路、および前記入口通路から分岐する第2の分離通路を形成し、これらの通路が同じ単一の平面に延びること;
前記入口通路、前記第1の分離通路および前記第2の分離通路の側面に沿って電極を形成すること;および
対向する側面上の前記電極を互いに電気的に絶縁すること、を含み、ここで対向する前記電極は関連する通路を横切って、分離される標的粒子の直径の少なくとも10倍の距離だけ分離されており、同じ単一の平面内に誘電泳動力を及ぼす電界を印加する、方法。
【発明の詳細な説明】
【背景技術】
【0001】
粒子の分離はさまざまな産業で行われている。たとえば、生物学や医学では、希少細胞が診断のために患者の血液から分離されることがよくある。希少な血球などの粒子の分離には、多くの課題がある。
【図面の簡単な説明】
【0002】
図1図1は、流体同伴粒子分離器の例の一部の概略図である。
【0003】
図2図2は、流体同伴粒子を分離する例示的な方法のフロー図である。
【0004】
図3図3は、流体同伴粒子分離器の別の例の一部の概略図である。
【0005】
図4図4は、流体同伴粒子分離器の別の例の一部の概略図である。
【0006】
図5図5は、流体同伴粒子分離器の別の例の一部の概略図である。
【0007】
図6図6は、図5のライン6-6に沿った流体同伴粒子分離器の断面図である。
【0008】
図7図7は、図5のライン7-7に沿った流体同伴粒子分離器の断面図である。
【0009】
図8図8は、流体同伴粒子分離器の別の例の一部の概略図である。
【0010】
図9図9は、図8のライン9-9に沿った流体同伴粒子分離器の断面図である。
【0011】
図10図10は、図8のライン10-10に沿った流体同伴粒子分離器の断面図である。
【0012】
図11図11は、図8のライン11-11に沿った液体同伴粒子分離器の別の例の断面図である。
【0013】
図12図12は、図8のライン12-12に沿った図11の流体同伴粒子分離器の断面図である。
【0014】
図13図13は、流体同伴粒子分離器の別の例の一部の概略図である。
【0015】
図14図14は、図13のライン14-14に沿った流体同伴粒子分離器の断面図である。
【0016】
図15図15は、図13のライン15-15に沿った流体同伴粒子分離器の断面図である。
【0017】
図16図16は、流体同伴粒子分離器を形成するための例示的な方法のフロー図である。
【0018】
図17図17は、流体同伴粒子分離器の別の例の一部の上面斜視図である。
【0019】
図18図18は、図17の流体同伴粒子分離器の上面図である。
【0020】
図19図19は、図18の流体同伴粒子分離器の部分で発生した誘電泳動力を示すグラフである。
【0021】
図20図20は、流体同伴粒子分離器の別の例を概略的に示す上面図である。
【0022】
図21図21は、流体同伴粒子分離器の別の例を概略的に示す上面図である。
【0023】
図面全体を通して、同一の参照番号は、類似しているが必ずしも同一ではない要素を示している。図は必ずしも縮尺どおりではなく、一部の部分のサイズは、示されている例をより明確に示すために誇張されていることがある。さらに、図面は、説明と一致する例および/または実装を提供するが、説明は、図面で提供される例および/または実装に限定されない。
【発明を実施するための形態】
【0024】
本明細書に開示されるのは、その他および/または周囲の媒体に対する粒子のサイズおよび電気分極率に基づいて、生体細胞などの粒子を分離する粒子分離器の例である。粒子の分極特性は、課された電界周波数に応じている。フィールド周波数は簡単に変更できるため、このような粒子分離器は非常に適応性が高く、粒子やアプリケーションの範囲に適用できる。
【0025】
本明細書では、幾何学形状および均一な力場を促進する構造を有する粒子分離器の例が開示される。その結果、粒子分離の再現性と信頼性が向上される。開示された粒子分離器はさらに、生成された流体力学的力場内の予測可能な位置でストリーム(流れ)内の粒子を配置し得る。その結果、粒子は再現性よく確実に分離され、一貫した結果のため、2つの異なる領域または2つの異なる分離通路に方向づけられる。
【0026】
本明細書には、誘電泳動力を使用して異なる粒子の分離を促進する流体同伴粒子分離器の例が開示されている。分離される流体粒子は、入口通路を通って方向づけられる流体に同伴される。電極は、誘電泳動力を粒子に作用させて粒子を入口通路から異なる分離通路に方向づける電界を生成する。
【0027】
いくつかの実装形態では、粒子フォーカサを利用して、流体に同伴された粒子を、分離の前に入口通路内の層流に集めさせる。一実装形態では、粒子フォーカサは、粒子を含む溶液を挟む緩衝液の第1および第2のシース流を利用してそのような層流を提供する流体力学的フォーカサを備えてもよい。他の実装形態では、自由流動負誘電泳動粒子フォーカサおよび自由流動等速電気泳動粒子フォーカサなどの他の粒子フォーカサを使用することができる。
【0028】
一実装形態において、分離通路および電極は、電極によって生成される電界および結果として生じる誘電泳動力が分離通路とともに単一の平面内に広がるように配置および向き合わせされる。分離通路、電界、および誘電泳動力が単一の平面内に広がるため、粒子の分離がより予測可能になり、混乱が少なくなり、より信頼性の高い結果をもたらす。
【0029】
本明細書では、流体に同伴された粒子を方向付ける入口通路、入口通路から分岐する第1の分離通路、入口通路から分岐する第2の分離通路、および粒子に誘電泳動力を及ぼす電界を生成する電極を含み得る、流体同伴粒子分離器の例が開示されている。誘電泳動力は、粒子を第1の分離通路または第2の分離通路に方向付ける。第1の分離通路、第2の分離通路、電界および誘電泳動力は、1つの平面に延びている。
【0030】
本明細書では、流体に同伴される粒子を分離するための例示的な方法が開示される。この方法は、入口通路を通してストリームに同伴された粒子を方向づけることを含むことができる。この方法は、平面内の電界をストリームに印加して粒子に平面内の誘電泳動力を及ぼして、ストリーム内の粒子の第1のサブセットを平面に延びる第1の分離通路に迂回させ、そしてストリーム内の粒子の第2のサブセットを平面内に延びる第2の分離通路に迂回させることができる。
【0031】
本明細書では、流体同伴粒子分離器を形成するための例示的な方法が開示される。この方法は、入口通路、入口通路から分岐する第1の分離通路、および入口通路から分岐する第2の分離通路を形成することを含むことができる。第1の分離通路および第2の分離通路の側面に電極が形成されている。電極は、互いに対向する面にて電気的に絶縁されている。
【0032】
図1は、流体同伴粒子分離器20の例のいくつかの部分を示す概略図である。分離器20は、入口通路24、分離通路26、分離通路36、および電極40A、40Bおよび40C(まとめて電極40と称する)を含む。入口通路24は、分離される粒子を含む溶液を案内するマイクロ流体チャネルなどのチャネルを含む。
【0033】
分離通路26および36は、入口通路24から延びてそして分岐するマイクロ流体チャネルなどのチャネルを含む。分離通路26、36は、分離された粒子または細胞が収集および分析され得る別個の行先につながる。いくつかの実装形態では、分離通路26に方向づけられたまたは分離通路36に方向づけられた粒子は、下流でさらに分離され得る。図示の例では、分離通路26、36は、単一の水平面などの単一の平面に延びている。いくつかの実装形態では、分離通路26、36は、入口通路24と同じ平面に延びている。通路26、36は、135°の角度で入口通路24から分岐するように示されているが、通路26および36は、入口通路24から他の角度で延びることができることが理解されよう。
【0034】
電極40は、通路24、26、および36にわたって電界を生成するために提供される。電極40は、通路24、26、および36と同じ平面内に延びる電界を生成するように単一の平面内に延びる。分離通路、電界、および誘電泳動力が単一の平面内に広がるため、粒子の分離がより予測可能になり、混乱が少なくなり、より信頼性の高い結果をもたらす。
【0035】
図示の例では、電極40Aは通路24および26に沿って延びている。電極40Bは通路24および36に沿って延びている。電極40Cは、通路26および36に沿って延びている。理解されるように、電極40の各々は、連続電極であってもよく、または接地または交流周波数電流源などの電流源に接続された複数の別個の要素によって形成されてもよい。
【0036】
一実装形態では、電極40Aおよび40Bは、分離される標的粒子の直径の少なくとも10倍の距離による入口通路24を横切る距離により分離される。同様に、電極40Aおよび40Cならびに電極40Bおよび40Cも、分離される標的粒子の直径の少なくとも10倍の距離による各々の分離通路26および36を横切る距離により分離される。この分離は、粒子の存在によってグローバル電界が大きく歪まない可能性を低減し、そして流れの内のすべての粒子で同様の分離が実行される。
【0037】
図2は、流体同伴粒子を分離するための例示的な方法100のフロー図である。方法100は、より予測可能で、混乱の少ない粒子分離を提供し、より信頼性の高い結果をもたらす。方法100は分離器20で実行されるものとして記載されているが、方法100は、以下に記載する分離器または他の同様の粒子分離器のいずれかを用いて実施できることが理解されよう。
【0038】
ブロック106で示されるように、分離される粒子はストリームに同伴され、そして入口通路24を通って方向づけられる。粒子は他の粒子と混ざっていてもよい。例えば、希少な生物細胞などの分離される特定の標的粒子は、他の生物細胞または他の粒子と混ざり合っていてもよい。以下に説明するように、いくつかの実装形態では、粒子は、分離される前に入口通路24の前または内部にて集められてもよい。一実装形態において、粒子は、入口通路24を通る層流を有するように集められてもよい。一実装形態では、粒子は、少なくとも1つの緩衝液のシート流の間に流体同伴粒子を挟む流体力学的フォーカサで集められてもよい。さらに他の実装形態では、流体同伴粒子は他の方法で集められてもよい。
【0039】
ブロック108によって示されるように、電極40は、平面内の電界を流体同伴粒子のストリームに印加する。一実装形態では、所定の周波数の交流電流が電極40に印加される。一実装形態では、電極40に印加される交流電流は、20kHzと200kHzの間、公称60kHzの周波数を有する。電界は、平面内の誘電泳動力を粒子に及ぼし、同じ平面に入口通路24および分離通路26、36が延び、そして同じ平面に電界が延びる。粒子は、異なるサイズと電気分極率の結果として、誘電泳動力に対する異なる応答に基づいて分離される。誘電泳動力は、ストリーム内の粒子の第1のサブセットを平面内に延びる第1の分離通路26に迂回させ、そしてストリーム内の粒子の第2のサブセットを平面内に延びる第2の分離通路36に迂回させる。
【0040】
図3は、流体同伴粒子分離器220の別の例の概略図である。分離器220は、分離器220が粒子フォーカサ222をさらに含むことを除いて、上述の分離器20と同様である。分離器20の構成要素に対応する分離器220の残りの構成要素には、同様の番号が付けられている。
【0041】
粒子フォーカサ222は、分離される前に入口通路24の前または内部で流体同伴粒子を集める。一実装形態では、フォーカサ222は、粒子を、入口通路24を通る層流に集める。一実装形態では、フォーカサ222は、少なくとも1つの緩衝液のシース流の間に流体同伴粒子を挟む流体力学的フォーカサを含む。他の実装形態では、フォーカサ222は、自由流動負誘電泳動粒子フォーカサまたは自由流動等速電気泳動粒子フォーカサなどの他の粒子フォーカサを含んでもよい。さらに他の実装形態では、流体同伴粒子は他の方法で集められてもよい。分離される粒子を含む流体を集めることは、分離器220の分離性能を向上させる。しかし、いくつかの実装形態では、そのような粒子を集めることは省略されてもよい。
【0042】
図4は、流体同伴粒子フォーカサ320の別の例の概略図である。粒子フォーカサ320は、分離通路26、36が、第1の分離通路を備え、そして粒子フォーカサ320が、第2の分離通路328、329、338、339および電極340A、340B(まとめて電極340と称する)をさらに備えることを除き、フォーカサ220に類似している。フォーカサ220の構成要素に対応するフォーカサ320の残りの構成要素には、同様の番号が付けられている。
【0043】
第2の分離通路328、329は、第1の分離通路26から延び、そして分岐するマイクロ流体チャネルなどのチャネルを含む。分離通路328、329は、分離された粒子または細胞が収集および分析され得る別個の行先につながる。図示の例では、分離通路328、329は、単一の水平面などの単一の平面に延びている。いくつかの実装形態では、分離通路328、329は、分離通路26と同じ平面内に延びる。通路328、329は、135°の角度で分離通路26から分岐するように示されているが、通路328、329は、分離通路26から他の角度で延びることができることが理解されよう。
【0044】
第2の分離通路338、339は、第1の分離通路28から延び、そして分岐するマイクロ流体チャネルなどのチャネルを含む。分離通路338、339は、分離された粒子が収集および分析され得る別個の行先につながる。図示の例では、分離通路338、339は、単一の水平面などの単一の平面内に延びている。いくつかの実装形態では、分離通路338、339は、分離通路28と同じ平面に延びている。通路338、339は、135°の角度で分離通路28から分岐するように示されているが、通路338、339は、分離通路28から他の角度で延びることができることが理解されよう。
【0045】
電極340は、第2の分離通路328、329、338、339にわたって電界を生成するために提供される。通路24、26、および36ならびに通路328、329、338、339と同じ平面内に延びる電界を生成するように、電極340は単一の平面内に延びる。分離通路、電界、および誘電泳動力が単一の平面内に延びるため、粒子の分離がより予測可能になり、混乱が少なくなり、より信頼性の高い結果をもたらす。
【0046】
図示の例では、電極340Aは通路328、329に沿って延びている。電極340Bは、通路338、339に沿って延びている。電極340Aは、電極40Aと協働して、第2の分離通路328にわたる電界を確立する。電極340Aは、電極40Cと協働して、第2の分離通路329にわたる電界を確立する。電極340Bは、電極40Cと協働して、第2の分離通路338にわたる電界を確立する。電極340Bは、電極40Bとともに、第2の分離通路339にわたる電界を確立する。理解されるように、電極40Bおよび40Cのそれぞれは、連続電極であってもよく、または接地または交流周波数電流源などの電流源に接続された複数の別個の要素によって形成されてもよい。
【0047】
一実装形態では、電極340Aおよび40Aは、分離される標的粒子の直径の少なくとも10倍の距離による第2の分離通路328を横切る距離により分離される。同様に、電極340Aおよび40C、電極340Bおよび40C、ならびに電極340Bおよび40Bもまた、分離される標的粒子の直径の少なくとも10倍の距離による各々の分離通路329、338および339を横切る距離により分離される。この分離は、粒子の存在によってグローバル電界が大きく歪まない可能性を低減し、流れ内のすべての粒子で同様の分離が実行される。
【0048】
粒子フォーカサ320は、多段階粒子分離を実行する。図示された例では、分離される粒子を含む流体の層流は、入口通路24に沿って方向づけられる。通路24ならびに通路26および28にわたって延びる電界は、粒子サイズおよび電気的極性の違いに基づいて異なる粒子を異なる方向に向ける誘電泳動力を生成する。誘電泳動力に対する異なる粒子の異なる応答により、流体の層流が分裂し、粒子の第1の部分が分離通路26に沿って迂回され、粒子の第2の部分が分離通路28に沿って迂回される。その後、通路328および329にわたって生成される電界は、粒子サイズおよび電気極性の違いに基づいて分離通路26内の異なる粒子と異なって相互作用する誘電泳動力を生成し、第1の部分は分離通路328に沿ってさらに迂回され、第2の部分は分離通路329に沿ってさらに迂回されるように分離通路26内の粒子のストリームをさらに分割する。
【0049】
同様に、通路338および339にわたって生成された電界は、粒子サイズと電気極性の違いに基づいて分離通路28内の異なる粒子に異なって方向づける誘電泳動力を生じさせ、第1の部分は分離通路338に沿ってさらに迂回され、第2の部分は分離通路339に沿ってさらに迂回されるように分離通路28内の粒子のストリームをさらに分割する。結果として、流体同伴粒子の元のストリームは、粒子の4つの異なる組または粒子の群に分離される。粒子の各群は、同様の粒子のサイズおよび/または電気極性を有する。粒子の各群は、他の群の粒子とは、サイズが異なるか、電気的極性が異なる。
【0050】
図5から図7は、流体同伴粒子分離器420の別の例を示している。図6は、図5のライン6-6に沿った分離器420の断面図である。図7は、図5のライン7-7に沿った断面図である。粒子分離器420は、基材422、誘電体層423、入口通路424、第1の分離通路426、428、電極440A、440Bおよび440C、粒子222(上記)ならびにカバー層450を含む。
【0051】
基材422は、通路424、426および428を部分的に形成する内部に形成された一連の接続された分岐溝452を有する材料の少なくとも1つの層を含む。一実装形態では、溝452は、基材422を形成する層材料のインプリントまたは成形によって形成される。別の実装形態では、溝452は、基材422を形成する材料の層(単数または複数)上で実行される切断、アブレーション、エッチング、または他の材料除去プロセスによって形成される。別の実装形態では、溝452は、下にあるベース層またはプラットフォーム上で実行されるプリントまたは付加製造プロセスなどの選択的堆積によって形成される。
【0052】
図示された例では、基材422は、そのような通路424、426、428を通じて方向づけられる流体粒子のストリームのインピーダンスよりも小さいか、または不十分に大きいインピーダンスを有する材料を含む。一実装形態では、基材422は、10,000オームセンチメートル未満のインピーダンスを有する材料を含む。一実装形態では、基材822は、10,000オームセンチメートル未満のインピーダンスを有するシリコン材料を含む。
【0053】
誘電体層423は、溝452の床および対向する側壁上に形成または被覆する材料の層を含む。誘電体層423は、材料から形成され、電界が基材422を通過するというより、通路424、426、428内の流体を通りそしてわたって通過するような十分な厚さを有する。一実装形態では、誘電体層423は、十分な誘電特性を有する材料から形成され、層423を通る経路のインピーダンスが、通路424、426および428をわたる流体の経路のインピーダンスの少なくとも5倍のレベルになるように寸法決めされる。一実装形態では、層423は、十分な誘電特性を有する材料から形成され、層423を通る経路のインピーダンスが、通路424、426および428をわたる流体の経路のインピーダンスの少なくとも10倍のレベルになるように寸法決めされる。一実装形態では、層423は、少なくとも10,000オームセンチメートルのインピーダンスを有する材料から形成される。一実装形態では、層423は、窒化ケイ素または二酸化ケイ素などの材料から形成される。さらに他の実装形態では、層423は、十分なインピーダンスを有する他の材料から形成されてもよい。
【0054】
電極440は、通路424、426、および428にわたって電界を生成するために提供される。電極440は、通路424、426、および428と同じ平面内に延びる電界を生成するように単一の平面内に延びる。分離通路、電界、および誘電泳動力が単一の平面内に延びるため、粒子の分離がより予測可能になり、混乱が少なくなり、より信頼性の高い結果をもたらす。
【0055】
図示の例では、電極440Aは通路424および428に沿って延びている。電極440Bは、通路424および428に沿って延びている。電極440Cは、通路426および428に沿って延びている。電極440のそれぞれは、分離される粒子の分極特性に基づく所定の周波数を有する交流電流源などの電荷源に接続される。
【0056】
一実装形態では、電極440Aおよび440Bは、分離される標的粒子の直径の少なくとも10倍の距離による入口通路424を横切る距離により分離される。同様に、電極440Aおよび440Cならびに電極440Bおよび440Cも、分離される標的粒子の直径の少なくとも10倍の距離による各々の分離通路428および426を横切る距離により分離される。この分離は、粒子の存在によってグローバル電界が大きく歪まない可能性を低減し、流れ内のすべての粒子で同様の分離が実行される。
【0057】
一実装形態において、電極440は、溝452の床にわたって延びることなく、溝452の側面上の誘電体層423上に形成される。一実装形態では、電極440は、指向性スパッタリングまたは角度付きスパッタリングを使用して形成され、それは、溝452の床に堆積することなく、または最小限の堆積にて溝452の側面上の層423上に導電性材料を堆積する。さらに他の実装形態では、電極440を形成する導電性材料は、溝452の床上の層423上に堆積されてもよく、ここで溝452の床上の層423上に堆積された導電性材料は、電極440を形成するよう側面上の導電性材料を残しながら、その後除去される。
【0058】
通路424、426、および428は、カバー層またはカバーパネル450の形成または提供によって完了する。そのような実装形態では、カバーパネル450はまた、そのような通路424、426、428を通って方向づけられる流体粒子のストリームのインピーダンスよりも大きいインピーダンスを有しており、電極440により生成される電界は、カバーパネル450により提供される天井を通過するというよりも、流体粒子のストリームを通過することになる。一実装形態では、カバーパネル450は、少なくとも10,000オームセンチメートルのインピーダンスを有する材料から形成される。一実装形態では、カバーパネル450は、ガラス、窒化ケイ素または二酸化ケイ素などの材料から形成される。さらに他の実装形態では、カバーパネル450は、十分なインピーダンスを有する他の材料から形成されてもよい。
【0059】
図8から図10は、異なる例の方法に従って形成された分離器420の別の例である分離器520を示す。図8は、分離器520の上面図である。図9は、ライン9-9に沿った分離器520の断面図である。分離器520は、分離器520が基材422の代わりに基材522を含み、誘電体層523を省略していることを除いて、分離器420と同様である。粒子分離器420の構成要素に対応する粒子分離器520の残りの構成要素は、同様の番号が付けられている。
【0060】
基材522は、基材522が通路424、426、および428を画定する溝452が内部に形成されているという点で、基材422と同様である。しかしながら、基材422とは異なり、基材522は、十分な誘電特性を有する材料から形成され、基材522を通る経路のインピーダンスが通路424、426および428にわたる流体の経路のインピーダンスの少なくとも5倍のレベルになるように寸法決めされる。一実装形態では、基材522は、十分な誘電特性を有する材料から形成され、基材522を通る経路のインピーダンスが、通路424、426および428にわたる流体の経路のインピーダンスの少なくとも10倍のレベルになるように寸法決めされる。一実装形態では、基材522は、少なくとも10,000オームセンチメートルのインピーダンスを有する材料から形成される。一実装形態では、基材522は、窒化ケイ素、二酸化ケイ素またはガラスなどの材料から形成される。さらに他の実装形態では、基材522は、十分なインピーダンスを有する他の材料から形成されてもよい。基材522によって提供される高インピーダンスのために、誘電体層423は省略され、ここで電極440は、溝452の側面に沿った材料基材522上に直接形成される。一実装形態では、電極440は、通路の床に堆積させることなく、または最小限の堆積にて、通路424、426および428の側面に導電性材料を堆積する指向性スパッタリングまたは角度付きスパッタリングを使用して形成される。さらに他の実装形態では、電極440を形成する導電性材料は、通路424、426、および428の床に堆積されてもよく、ここで通路の床の材料はその後除去される。通路424、426、および428は、上述のカバー層またはカバーパネル450の形成または提供により完成する。
【0061】
図8、11、および12は、流体同伴粒子分離器620の別の例を示す。図11は、ライン11-11に沿った分離器620の断面図である。図12は、ライン12-12に沿った断面図である。分離器620は、分離器620が基材622を含み、さらに床層650を含むことを除いて、上述の分離器520と同様である。分離器520の構成要素に対応する分離器620の残りの構成要素には、同様の番号が付けられている。
【0062】
基材622は、基材622内に延びて、通路424、426、および428を少なくとも部分的に画定する溝452を有する代わりを除いて、基材522と同様であり、基材622は、基材622を完全に通って延びるスロット623を通じる一連の接続および分岐を有する。一実装形態において、スロット623は、基材622上で実行されるエッチング、アブレーション、または切断などの材料除去プロセスによって基材622を通して形成される。他の実装形態では、基材622の成形または付加製造/プリント中にスロット623を形成することができる。基材622は、通路424、426、および428の床を形成しないため、基材622は、基材522のインピーダンスよりも小さいインピーダンスを有する、より幅広い種類または範囲の材料から形成される。
【0063】
床層650は、カバー層450の反対側の基材622に接合された層またはパネルを含む。カバー層450と同様に、床層650は、そのような通路424、426、428に通じて方向づけられる流体粒子のストリームのインピーダンスよりも大きいインピーダンスを有し、電極440によって生成された電界は、床層650によりもたらされた床を通じるというよりは、流体粒子のストリームを通じて通過することになる。一実装形態では、床層650は、少なくとも10,000オームセンチメートルのインピーダンスを有する材料から形成される。一実装形態では、床層650は、ガラス、窒化ケイ素または二酸化ケイ素などの材料から形成される。さらに他の実装形態では、床層650は、十分なインピーダンスを有する他の材料から形成されてもよい。
【0064】
一実装形態では、チャネル424、426、および428が基材622を通して形成された後、および電極440がスロット623の側面に沿って形成された後に、床層650は、基材622に積層または結合される。さらに他の実装形態では、基材622は、基材622内にスロット623を形成する前に床層650上に形成される。通路424、426、および428は、上述のカバー層またはカバーパネル450の形成または提供により完成する。
【0065】
図13から図15は、流体同伴粒子分離器720の別の例を示している。分離器720は、分離器720が電極440も形成する基材722を含むことを除いて、分離器620と同様である。図13は、分離器720の上面図である。図14は、図13のライン14-14に沿った分離器720の一例の断面図である。図15は、図13のライン15-15に沿った断面図である。図13から図15に示される例では、通路424、426、および428は、基材722を完全に通じるように延びるチャネルによって形成されており、ここで基材722は、電極440も形成する導電性材料のフィルムまたは層を含む。図13に示すように、異なる電極440は、窒化ケイ素などの非導電性または絶縁材料727で満たされた基材722のギャップまたは開口部725によって互いに分離されている。他の実装形態では、異なる電極440は、材料のないギャップまたは開口部725によって互いに分離されてもよい。カバー層450および床層650(上述)は、それらの間に基材722を挟み、通路424、426および428を形成する。
【0066】
図16は、流体同伴粒子分離器を形成するための例示的な方法800のフロー図である。ブロック802で示されるように、入口通路、入口通路から分岐する第1の分離通路、および入口通路から分岐する第2の分離通路が形成される。ブロック804で示されるように、電極が、第1の分離通路および第2の分離通路の側面に沿って形成される。ブロック806で示されるように、第1の分離通路および第2の分離通路の対向する側面の電極は、互いに電気的に絶縁されている。方法800は、上述の粒子分離器420、520、620および720のいずれかを形成するために利用され得る。
【0067】
図17および図18は、流体同伴粒子分離器820の別の例を示している。図17は、粒子分離器820の上面斜視図である。図18は、粒子分離器820の上面図である。粒子分離器820は、基材822、誘電体層823、床に関する入口通路、第1の分離通路826、828、第2の分離通路836、838、電極840A、840Bおよび840C、粒子フォーカサ844、およびカバー層850を含む。基材822は、通路824、826、828、836および838を部分的に形成する、そこに形成された一連の接続された分岐溝852を有する材料の少なくとも1つの層を含む。一実装形態において、溝852は、基材822を形成する層材料のインプリントまたは成形によって形成される。別の実装形態では、溝852は、基材822を形成する材料の層(単数または複数)上で実行される切断、アブレーション、エッチングまたは他の材料除去プロセスによって形成される。別の実装形態では、溝852は、下にあるベース層またはプラットフォーム上で実行されるプリントまたは付加製造プロセスなどの選択的堆積によって形成される。
【0068】
図示の例では、基材822は、そのような通路24、26、28を通るよう方向づけられた流体粒子のストリームのインピーダンスよりも小さいか、または不十分に大きいインピーダンスを有する材料を含む。一実装形態では、基材822は、10,000オームセンチメートル未満のインピーダンスを有する材料を含む。一実装形態では、基材822は、10,000オームセンチメートル未満のインピーダンスを有するシリケン材料を含む。
【0069】
誘電体層823は、溝852の床および対向する側壁上に形成または被覆する材料の層を含む。誘電体層823は、材料から形成され、電界が基材822を通過するというよりも、通路824、826、828、836、838内の流体を通りわたって通過するような十分な厚さを有する。一実装形態では、誘電体層823は、十分な誘電特性を有する材料から形成され、層523を通る経路のインピーダンスが、通路824、826、828、836および838にわたる流体の経路のインピーダンスの少なくとも5倍のレベルになるように寸法決めされる。一実装形態では、層523は、十分な誘電特性を有する材料から形成され、層823を通る経路のインピーダンスが、通路824、826、828、836および838にわたる流体の経路のインピーダンスの少なくとも10倍のレベルになるように寸法決めされる。一実装形態では、層823は、少なくとも10,000オームセンチメートルのインピーダンスを有する材料から形成される。一実装形態では、層823は、窒化ケイ素または二酸化ケイ素などの材料から形成される。さらに他の実装形態では、層823は、十分なインピーダンスを有する他の材料から形成されてもよい。
【0070】
電極840は、通路824、826、828、836および838にわたって電界を生成するために提供される。電極840は、通路824、826、828、836、および838と同じ平面内に延びる電界を生成するように単一の平面内に延びる。分離通路、電界および誘電泳動力が単一の平面に延びるため、粒子の分離はより予測可能であり、混乱が少なく、より信頼性の高い結果をもたらす。
【0071】
図示の例では、電極840Aは通路824および828に沿って延びている。電極840Bは、通路824および828に沿って延びている。電極840Cは、通路826および828に沿って延びている。理解されるように、電極840のそれぞれは、連続電極であってもよく、または接地または交流周波数電流源などの電流源に接続された複数の別個の要素によって形成されてもよい。
【0072】
一実装形態では、電極840Aおよび840Bは、分離される標的粒子の直径の少なくとも10倍の距離による入口通路824を横切る距離により分離される。同様に、電極840Aおよび840Cならびに電極840Bおよび840Cも、分離される標的粒子の直径の少なくとも10倍の距離による各々の分離通路828および826を横切る距離により分離される。この分離は、粒子の存在によってグローバル電界が大きく歪まない可能性を低減し、流れ内のすべての粒子で同様の分離が実行される。
【0073】
一実装形態では、電極840は、そのような溝852の床にわたって延びることなく、溝852の側面上の誘電体層823上に形成される。一実装形態では、電極840は、指向性スパッタリングまたは角度付きスパッタリングを使用して形成され、これは、そのような溝852の床に堆積することなく、または最小限の堆積にて、溝852の側面の層823上に導電性材料を堆積する。さらに他の実装形態では、電極840を形成する導電性材料は、溝852の床上の層823上に堆積されてもよく、ここで溝852の床上の層823上に堆積された導電性材料は、その後、電極840を形成するために側面に導電性材料を残しながら除去される。
【0074】
他の実装形態では、電極440により生成される電界が、基材822を通過するというよりも、流体粒子のストリームを通って通過することになるように、基材822は、そのような通路24、26、28を通るよう方向づけられた流体粒子のストリームのインピーダンスより大きいインピーダンスを有する材料から形成されてもよい。一実装形態では、基材822は、少なくとも10,000オームセンチメートルのインピーダンスを有する材料から形成されてもよい。一実装形態では、基材822は、ガラス、窒化ケイ素または二酸化ケイ素などの材料から形成される。さらに他の実装形態では、基材822は、十分なインピーダンスを有する他の材料から形成されてもよい。そのような実装形態では、誘電体層823は省略されてもよく、ここで基材822は、通路824、86、828、836、838の床を形成し、そしてここで電極840は、溝852の側面上に直接、基材822上に直接形成される。
【0075】
さらに他の実装形態では、粒子分離器820は構造を有してもよく、また粒子分離器620または720に関して上述したものと同様の方法で形成されてもよい。そのような実装形態では、通路824、86、828、836、838は、溝ではなく、基材内の貫通スロットによって画定または形成され、ここで床層は基材の下にあり、通路の床を形成する。
【0076】
粒子フォーカサ844は、粒子フォーカサ844が流体力学的フォーカサとして具体的に示されていることを除いて、上述の粒子フォーカサ222と同様である。粒子フォーカサ844は、シース流路870、シース流路872、および粒子流路874を含む。シース流通路870、872は、粒子流通路874の両側に延び、血液流などの流体同伴粒子の供給を間に挟む緩衝液の直接層流またはストリームは、流体同伴粒子のストリームを層流へと集める。流体同伴粒子のストリームの層流は、ストリームからの異なる粒子のその後の分離に対するより優れた制御を促進する。通路870、872および874のそれぞれは、入口通路824で収束する。
【0077】
他の実装形態では、粒子フォーカサ844は、他の種類の粒子フォーカサを備えてもよい。例えば、粒子フォーカサ844は、自由流動負誘電泳動粒子フォーカサまたは自由流動等速電気泳動粒子フォーカサを備えてもよい。いくつかの実装形態では、粒子フォーカサ844は省略されてもよい。
【0078】
作動中、分離される粒子を含む流体のストリームは、入口875を介して通路874に供給される。同様に、緩衝液のストリームは、それぞれインプット871および873を介して通路87872に供給される。緩衝溶液のストリームは、分離される部分を含む流体のストリームを挟むシート流を形成し、入口通路824を通る層流を形成する。一実装形態では、シース通路870、872のそれぞれの緩衝液は、分離される細胞パーサーを含む溶液が供給される速度よりも大きい速度で供給される。一実装形態では、緩衝溶液は毎分0.2mLの速度で供給され、一方で分離される部分を含む溶液ストリームは毎分0.2mLの速度で供給される。
【0079】
電極840Aおよび840Bは、入口通路824にわたって電界を形成する異なる電位である。一実装形態では、電極840Aは接地にあり、一方で電極840Bは正電荷である。電界は誘電泳動力を生成する。図19は、生成された誘電泳動力を示す図である。サイズと電気分極率の違いにより、入口通路824内で第1のサイズおよび/または電気分極率を有する粒子の第1の画分または部分は、分離通路828に向かうようにされ、一方で第1の画分の粒子とは異なる第2のサイズおよび/または第2の電気分極率を有する粒子の第2の画分または部分は、分離通路826に向かうようにされる。分離通路828に向かわされた分離された粒子は、出口880に方向づけられる。
【0080】
分離通路826に方向づけられた分離された粒子は、電極840Bおよび840Cによって生成された電界によって生成された誘電泳動力によってさらに分離される。一実装形態では、電極840Bに正電荷が加えられると、電極840Cは負電荷になる。サイズと電気分極率の違いにより、分離通路826内の第1のサイズおよび/または電気分極率を有する粒子の第1の画分または部分は、分離通路836に向かうようにされ、一方で第1の画分の粒子とは異なる第2のサイズおよび/または第2の電気分極率を有する粒子の第2の画分または部分は、分離通路838に向かうようにされる。分離通路836に向かわされた分離された粒子は、出口882に方向づけられる。分離通路838にバイアスされた分離された粒子は、出口884に方向づけられる。
【0081】
図20は、流体同伴粒子分離器920の別の例の上面図である。分離器920が、入口通路824から延びる3つの分離通路、通路926、928および930を含み、さらに異なる電荷を読む4つの電極、電極940A、940B、940Cおよび940C(まとめて電極940と称する)をさらに含むことを除き、分離器920は分離器820と同様である。通路824、926、928および930は、通路824、826および828と同様の構造を有する。1つの制限では、そのような通路824、926、928および930は、基材に形成された溝によって形成され、ここで溝の床および側面は、上述の誘電体層423と同様の誘電体層で被覆されるか、さもなければ覆われ、そしてここで電極940は、通路の床にわたって延びることなく通路の側壁に形成される。基材が十分なインピーダンスを有する他の実装形態では、上述の基材522のインピーダンスと同様に、基材と電極との間の誘電体層は省略されてもよい。
【0082】
動作中、分離される粒子を含む溶液のストリームは、粒子フォーカサ844によって集められ、入口通路824に方向づけられる。電極940Aおよび940Bによって通路824にわたり生成される電界は、異なるサイズの粒子または異なる電気分極率を有する粒子と異なるように相互作用して、そのような粒子を分離通路926、分離通路928または分離通路930のいずれかに方向づける誘電泳動力を形成する。いくつかの実装形態では、そのような分離通路は、上記の追加の第2の分離通路および電極を含み得る。
【0083】
図21は、流体同伴粒子分離器1020の別の例の上面図である。分離器1020は、分離器1020がカラムまたはピラー1087をさらに含むことを除いて、分離器920と同様である。分離器920の構成要素に対応する分離器1020の残りの構成要素には、同様の番号が付けられている。
【0084】
ピラー1087は、通路824、96、928および930の接合部で延びている。ピラー1087は、入口通路824から分離通路930までの、接合部を直接横切る溶液または粒子の流れを妨げる。ピラー1087は、粒子のサイズまたは電気分極率ではなく、入口通路824を通って流れる溶液の運動量により、粒子が分離通路930に入る可能性を低減する。
【0085】
本開示は、実装例を参照して説明されたが、当業者であれば、請求される主題の精神および範囲から逸脱することなく、形態および詳細に変更を加えることができることを認識するであろう。例えば、1つ以上の利点を提供する1つ以上の特徴を含むものとして異なる実装例が説明されていることがあるが、記載された特徴は、記載された実装例または他の代替実装例において、互いに交換され得るか、または代替的に互いに組み合わされ得ることが企図される。本開示の技術は比較的複雑であるため、技術のすべての変更が予見できるわけではない。例示的な実装を参照して説明され、添付の特許請求の範囲に記載される本開示は、可能な限り広くなることを明白に意図している。例えば、特に明記しない限り、単一の特定の要素を引用する請求項は、複数のそのような特定の要素も包含する。特許請求の範囲における用語「第1」、「第2」、「第3」などは、異なる要素を単に区別するものであり、特に明記しない限り、本開示における特定の順序または要素の特定の番号に特に関連付けられるべきではない。

図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21