IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ モメンティブ パフォーマンス マテリアルズ インコーポレイテッドの特許一覧

特許6993345ポリカーボネートジオールから誘導された湿気硬化性シリル化樹脂並びにそれを含むコーティング、シーラント及び接着性組成物
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2021-12-13
(45)【発行日】2022-01-13
(54)【発明の名称】ポリカーボネートジオールから誘導された湿気硬化性シリル化樹脂並びにそれを含むコーティング、シーラント及び接着性組成物
(51)【国際特許分類】
   C08G 18/44 20060101AFI20220105BHJP
   C08G 18/80 20060101ALI20220105BHJP
   C08L 75/00 20060101ALI20220105BHJP
   C09D 169/00 20060101ALI20220105BHJP
   C09J 169/00 20060101ALI20220105BHJP
   C09K 3/10 20060101ALI20220105BHJP
【FI】
C08G18/44
C08G18/80 090
C08L75/00
C09D169/00
C09J169/00
C09K3/10 Z
【請求項の数】 13
(21)【出願番号】P 2018547357
(86)(22)【出願日】2017-03-09
(65)【公表番号】
(43)【公表日】2019-05-30
(86)【国際出願番号】 US2017021568
(87)【国際公開番号】W WO2017156269
(87)【国際公開日】2017-09-14
【審査請求日】2020-01-14
(31)【優先権主張番号】62/306,243
(32)【優先日】2016-03-10
(33)【優先権主張国・地域又は機関】US
【前置審査】
(73)【特許権者】
【識別番号】508229301
【氏名又は名称】モメンティブ パフォーマンス マテリアルズ インコーポレイテッド
【氏名又は名称原語表記】Momentive Performance Materials Inc.
(74)【代理人】
【識別番号】100087642
【弁理士】
【氏名又は名称】古谷 聡
(74)【代理人】
【識別番号】100082946
【弁理士】
【氏名又は名称】大西 昭広
(72)【発明者】
【氏名】コンドス,コンスタンチン
(72)【発明者】
【氏名】ソード,ナイーム
(72)【発明者】
【氏名】ファン,ミスティ
(72)【発明者】
【氏名】ラクロワ,クリスティーヌ
(72)【発明者】
【氏名】クマール,ヴィクラム
【審査官】堀 洋樹
(56)【参考文献】
【文献】国際公開第2010/047195(WO,A1)
【文献】国際公開第2011/070865(WO,A1)
【文献】国際公開第2009/107404(WO,A1)
【文献】国際公開第2013/099829(WO,A1)
【文献】特開2010-043194(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08G 18/00-18/87
C08L 1/00-101/14
C09D 1/00-201/10
C09J 1/00-201/10
C09K 3/10
(57)【特許請求の範囲】
【請求項1】
一般式(I)の湿気硬化性シリル化樹脂:
【化1】

ここでGは一般構造(II)の部分であり、
【化2】

各Rは、独立して、1~6個の炭素原子のアルキル基であり;
各Rは、独立して、1~4個の炭素原子のアルキル基またはフェニル基であり;
各Rは、独立して、1~12個の炭素原子のアルキレン基であり;
各Rは、独立して、1~6個の炭素原子のアルキル基、フェニル基または-RSiR 3-a(OR基であり;
各Rは、独立して、1~16個の炭素原子のアルキレン基、5~16個の炭素原子のシクロアルキレン基および一般式(III)を有する基Xからなる群から選択される2価の有機基であり、
【化3】

ここで各Rは、独立して、1~12個の炭素原子のアルキレン基または5~16個の炭素原子のシクロアルキレン基であり;
各Rは2~12個の炭素原子のアルキレン基であり;
各Rは2~12個の炭素原子のアルキレン基であり;
各Rは、独立して、RおよびRからなる群から選択され;
各R10は、独立して、1~12個の炭素原子のアルキレン基、5~16個の炭素原子のシクロアルキレン基およびXからなる群から選択される2価の有機基であり、
そして、下付き文字a、b、c、mおよびnは整数であり、ここでaは1~3であり;bは1であり;cは0~5であり;mは1~100であり;そしてnは0~100であり、但しnが0である場合、Rは3~12個の炭素原子の分岐状アルキレン基であり;そしてnが1~100の場合、RおよびRは異なるアルキレン基であるという条件である。
【請求項2】
はメチルまたはエチルであり;Rは、メチレン、エチレン、プロピレン、2-メチルエチレンまたは2-メチルプロピレンであり;Rはメチル、エチルまたはブチルであり;Rは2価の1~6個の炭素原子のアルキレン基または6~10個の炭素原子のシクロアルキレン基であり;Rは1,4-ブチレン、1,6-ヘキシレンまたは1,8-オクチレンであり;Rは、1,5-ヘキシレン、1,7-ヘプチレンまたは1,9-ノニレンであり;R10は2価の1~6個の炭素原子のアルキレン基または6~10個の炭素原子のシクロアルキレン基であり;aは2または3であり、bは1であり、cは0、1または2であり;mは5~15であり;そしてnは5~15である、
請求項1に記載の湿気硬化性シリル化樹脂。
【請求項3】
請求項1に記載の湿気硬化性シリル化樹脂の混合物を含む組成物であって、ここで前記混合物は、少なくとも1つの式(I)の湿気硬化性シリル化樹脂、ここでR10は2価の1~6個の炭素原子のアルキレン基または6~10個の炭素原子のシクロアルキレン基である、を含む組成物。
【請求項4】
ASTM D5296-11、高性能サイズ排除クロマトグラフィーによるポリスチレンの分子量平均および分子量分布の標準試験方法の測定による800~20,000の数平均分子量、ASTM F2625-0、示差走査熱量測定法による超高分子量ポリエチレンの融解エンタルピー、結晶化度および融点の測定のための標準試験方法の測定による湿気硬化製シリル化樹脂(I)の総重量に基づいて10重量%以下の結晶化度の結晶含有量、またはASTM D1084-08、接着剤の粘度の標準試験方法の測定による100パスカル秒以下の粘度の少なくとも1つを有する、
請求項1に記載の湿気硬化性シリル化樹脂。
【請求項5】
1500~10,000の数平均分子量、示差走査熱量測定での測定による湿気硬化製シリル化樹脂(I)の総重量に基づいて1重量%以下の結晶化度の結晶含有量、または0.05~50パスカル秒の粘度の少なくとも1つを有する、請求項に記載の湿気硬化性シリル化樹脂。
【請求項6】
請求項1に記載の湿気硬化性シリル化樹脂およびオルガノアルコキシシラン、シリコーンハードコート、金属粒子、金属酸化物粒子、顔料、硬化触媒、レベリング剤、酸化防止剤、UV安定剤、染料、充填剤、接着促進剤および溶剤からなる群から選択される少なくとも1つの追加の成分を含む、実質的に水を含まない組成物。
【請求項7】
前記組成物が、シーラント、接着剤またはコーティングである、請求項に記載の実質的に水を含まない組成物。
【請求項8】
請求項1に記載の湿気硬化性シリル化樹脂をその上に有するセラミック、ポリマーまたは金属の基材。
【請求項9】
前記湿気硬化性シリル化樹脂が前記基材の表面と直接接触している、請求項に記載の基材。
【請求項10】
シリル化剤(X)
【化4】

ここで
各Rは、独立して、1~6個の炭素原子のアルキル基であり;
各Rは、独立して、1~4個の炭素原子のアルキル基またはフェニル基であり;
は、1~12個の炭素原子のアルキレン基であり;
は、1~6個の炭素原子のアルキル基、フェニル基または-RSiR 3-a(OR基であり;
aは1~3である;

カルボニル化剤とジオールとの反応から得られるポリカーボネートジオール(V)、その少なくとも80モル%は、各ジオールが20個までの炭素原子を有する少なくとも2つの異なる非環式直鎖脂肪族ジオールの混合物、20個までの炭素原子を有する少なくとも1つの非環式分岐鎖ジオール、20個までの炭素原子を有する少なくとも1つの非環式直鎖脂肪族ジオールおよび20個までの炭素原子を有する少なくとも1つの非環式分岐鎖脂肪族ジオールの混合物からなる群から選択されるジオールであり;
有機ポリイソシアネートとポリカーボネートジオール(V)との反応で得られたイソシアネート末端ポリウレタン(VII)、の少なくとも1つと反応させることを含む請求項1からの何れかに記載の湿気硬化性シリル化樹脂の製造方法。
【請求項11】
前記イソシアネート末端ポリウレタン(VII)は、ポリイソシアネートの混合物から得られ、該混合物中において、少なくとも1つのポリイソシアネートは、2つのイソシアネート基を含む有機ポリイソシアネートであり、そして少なくとも1つの他のポリイソシアネートは、3つのイソシアネート基を含む有機ポリイソシアネートである、請求項10に記載の製造方法。
【請求項12】
2個のイソシアネート基を含む有機ポリイソシアネートと3個のイソシアネート基を含む有機ポリイソシアネートとのモル比は10:1~1:10である、請求項10に記載の製造方法。
【請求項13】
前記有機ポリイソシアネートは、ポリイソシアネートと3~10個の炭素原子を有するトリヒドロキシアルカンとの反応で得られる、請求項10に記載の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は、その内容全体が参照により本明細書に組み込まれる、2016年3月10日に出願された米国仮特許出願第62/306,243号の優先権を主張する。
本発明は、シリル化樹脂に関し、より詳細には、ポリカーボネートジオールから誘導された湿気硬化性シリル化樹脂、ならびにこのような樹脂を含むコーティング、シーラントおよび接着性組成物に関する。
【背景技術】
【0002】
ポリカーボネートジオールおよびポリイソシアネートから誘導されたポリウレタンのシリル化から得られるものを含む湿気硬化性シリル化樹脂が知られており、それらがコーティング、シーラントおよびそれらを含む接着性組成物に与える機能的特性について評価されている。
【0003】
しかしながら、上述のシリル化ポリカーボネートジオール系ポリウレタンタイプのものを含む公知の湿気硬化性シリル化樹脂は、これらの製品の適用中および/または後硬化の特性のいずれかにおいて、所与のコーティング、シーラントまたは接着性組成物において許容される性能を発揮できないことがあり得る。例えば、ここで見出されたように、単一の非環式脂肪族ジオールから製造された代表的な市販のポリカーボネートジオールから誘導された湿気硬化性シリル化ポリウレタン樹脂は、高品質のコーティング、シーラントおよび接着剤が関する場合には、最高で最低限または平凡であり、最悪では不十分で許容できない性能特性を示すことが判明している。湿気硬化性樹脂の全体的な低い性能特性は、樹脂を製造するポリカーボネートジオールに起因すると考えられる。
【発明の概要】
【0004】
本発明の一態様によれば、一般式(I)の湿気硬化性シリル化樹脂が提供され、
【化1】

ここでGは一般構造(II)の部分であり:
【化2】

ここで
各Rは、独立して、1~6個の炭素原子のアルキル基であり;
各Rは、独立して、1~4個の炭素原子のアルキル基またはフェニル基であり;
各Rは、独立して、1~12個の炭素原子のアルキレン基であり;
各Rは、独立して、1~6個の炭素原子のアルキル基、フェニル基、水素または-RSiR 3-a(OR基であり;
各Rは、独立して、1~16個の炭素原子のアルキレン基、5~16個の炭素原子のシクロアルキレン基および一般式(III)を有する基Xからなる群から選択される2価の有機基であり、
【化3】

各Rは独立して1~12個の炭素原子のアルキレン基または5~16個の炭素原子のシクロアルキレン基であり;
各Rは2~12個の炭素原子のアルキレン基であり;
各Rは2~12個の炭素原子のアルキレン基であり;
各Rは、独立して、RまたはRであり;
各R10は、独立して、1~12個の炭素原子のアルキレン基、5~16個の炭素原子のシクロアルキレン基、Xおよび一般式(IV)を有する基Xからなる群から選択される2価の有機基であり、
【化4】

そして
下付き文字a、b、c、mおよびnは整数であり、ここでaは1~3であり;bは0または1であり;cは0~5であり;mは1~100であり;nは0~100であり、但しbが0である場合、Rは水素であり;nが0である場合、Rは3~12個の炭素原子の分岐状アルキレン基であり;そしてnが1~100である場合、RとRは異なるアルキレン基であるという条件である。
【0005】
本明細書の液体湿気硬化性樹脂は、それと共に配合される塗料、シーラントおよび接着剤などの組成物に特に望ましい特性を付与する。それらの結晶化度が低いため、これらの樹脂は周囲温度、すなわち18~25℃で液体であり、したがってコーティング、シーラントまたは接着剤として配合される前に加熱する必要はない。本明細書の湿気硬化性液状シリル化樹脂の他の有利な特性には、たとえ溶媒の不在下であっても優れた流動特性および平坦化特性、それらを含むコーティング、シーラントおよび接着剤において良好な効果を発揮する性質を含む。
【0006】
湿気硬化性コーティングの場合、特に、プライマーで最初にコーティングされている表面への適用とは対照的に、セラミック(ガラスを含む)、ポリマーまたは金属の表面への直接適用を意図したものの場合、本明細書の湿気硬化性樹脂は、急速な変形(衝撃)の影響に対して著しく高いレベルの耐性、ならびに保護コーティングに非常に望ましい格別に高い接着度を示す。本発明の樹脂が配合されたコーティングはまた、硬化において優れたレベルの可撓性および耐腐食性を示し、そしてポリエーテルジオールから全部または大部分が調製されたポリカーボネートジオールから誘導された湿気硬化性シリル化樹脂の同等の量を含むコーティングよりも、紫外線(UV)照射への曝露にてより大きな安定性および空気酸化に対するより大きな耐性を有する。
【0007】
本発明の液体シリル化樹脂を用いて配合された湿気硬化性シーラントは、高い引張強度、可撓性、接着性および耐候性も示す。
【0008】
湿気硬化性接着剤の場合、特に可撓性層または薄層を互いに接着させることを意図したそれらの場合には、溶媒などの粘度低下剤が存在しなくても、本明細書の樹脂の優れた流動特性は、これらの生成物への組み込みに特に望ましいものとする。
【発明を実施するための形態】
【0009】
本発明の湿気硬化性シリル化樹脂は、少なくとも1つのシリル化剤を、ポリカーボネートジオール(V);有機ポリイソシアネートと過剰のポリカーボネートジオール(V)との反応から誘導されたヒドロキシル末端ポリウレタン(VI);および過剰の有機ポリイソシアネートとポリカーボネートジオール(V)との反応から誘導されたイソシアネート末端ポリウレタン(VII)の少なくとも1つと反応させることにより得ることができる。
【0010】
ポリカーボネートジオール(V)、ヒドロキシル末端ポリウレタン(VI)およびイソシアネート末端ポリウレタン(VII)の調製の方法、およびジオール(V)およびポリウレタン(VI)および(VII)のシリル化のための方法を以下に記載する。
【0011】
A.ポリカーボネートジオール(V)
ポリカーボネートジオール(V)は、少なくとも1つのカルボニル化剤を、ジオールと反応させることによって得ることができ、ジオールの少なくとも80モル%、好ましくは少なくとも90モル%、より好ましくは少なくとも95モル%、さらにより好ましくは100モル%は、少なくとも2種の異なる非環式直鎖脂肪族ジオールの混合物であって、このようなジオールの各々は、12個までの炭素原子、好ましくは2~12個の炭素原子、より好ましくは2~10個の炭素原子を有し;12個までの炭素原子、好ましくは3~12個の炭素原子、より好ましくは3~10個の炭素原子を有する少なくとも1つの非環式分岐鎖脂肪族ジオール;および、12個までの炭素原子、好ましくは2~12個の炭素原子、より好ましくは2~10個の炭素原子を有する少なくとも1つの直鎖脂肪族ジオール、および12個までの炭素原子、好ましくは3~12個の炭素原子、より好ましくは3~10個の炭素原子を有する少なくとも1つの非環式分岐鎖脂肪族ジオールの混合物の少なくとも1つである。
【0012】
ポリカーボネートジオール(V)を生成するための上記ポリオールとの反応に適したカルボニル化剤としては、限定されるものではないが、ホスゲン、トリホスゲン、[1,3,5]トリオキサン-2,4,6-トリオン、脂肪族および芳香族カーボネート(カーボネートエステル)、例えばジアルキルカーボネート、ジアリールカーボネート、アルキレンカーボネート、アルキルアリールカーボネート、およびこれらの混合物が挙げられる。例えば、カーボネート化合物は、ジメチルカーボネート、ジエチルカーボネート、ジ-n-ブチルカーボネート、ジイソブチルカーボネート、ジフェニルカーボネート、メチルフェニルカーボネート、エチレンカーボネート、プロピレンカーボネート、およびこれらの混合物であり得る。これらのカルボニル化剤のうち、ホスゲン、ジメチルカーボネート、ジエチルカーボネートなどのジアルキルカーボネート、およびエチレンカーボネート、プロピレンカーボネートなどのアルキレンカーボネートが一般的に好ましく、ホスゲンがより好ましい。
【0013】
ポリカーボネートジオール(V)の一実施形態では、2~12個の炭素原子、好ましくは2~10個の炭素原子を各々が有する少なくとも2つの異なる非環式直鎖脂肪族ジオールは、選択されたカルボニル化剤と反応させてコポリカーボネートジオール(V)の混合物をもたらす。コポリカーボネートジオール(V)の混合物の調製に使用することができる適切な非環式直鎖脂肪族ジオールには、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオールなどがある。非環式直鎖脂肪族ジオールの互いに対する割合は、例えば20~80モル%、好ましくは40~60モル%の第1の非環式直鎖脂肪族ジオールと、第2、第3等の非環式直鎖脂肪族ジオールからなる残部とに広範囲に変化し得る。
【0014】
さらにポリカーボネートジオール(V)のこの実施形態に関して、少なくとも1つのそのようなジオールが偶数の炭素原子を有し、そして少なくとも1つの他のそのようなジオールが奇数の炭素原子を有する、2以上の異なる非環式直鎖脂肪族ジオールの混合物を使用することは特に有利である。偶数個の炭素原子を有するジオールは、ジオール混合物の20~80モル%、好ましくは40~60モル%とすることができ、奇数個の炭素原子を有するジオールは、ジオール混合物の残部となる。
【0015】
この特定の実施形態によれば、いくつかの適切なジオール混合物は、以下を含む:
【表1】
【0016】
一実施形態では、ポリカーボネートジオール(V)の調製における非環式直鎖脂肪族ジオールのこのような混合物の使用は、さらにもっと構成ジオールの全てまたは殆どが偶数個の炭素原子を有し、または逆に奇数個の炭素原子を有する非環式直鎖コポリカーボネートジオールの混合物の使用と比較して、生成物コポリカーボネートジオールの結晶化度を低下させることが判明している。
【0017】
ポリカーボネートジオール(V)の別の実施形態では、12個までの炭素原子、好ましくは3~10個の炭素原子を有する少なくとも1つの非環式分岐脂肪族ジオールをカルボニル化剤と反応させてポリカーボネートジオール(V)がもたらされる。適切な非環式分岐ジオールとしては、限定されるものではないが、2-メチル-1,3-プロパンジオール、2-メチル-1,4-ブタンジオール、2,3-ジメチル-1,4-ブタンジオール、2-メチル-1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2,2,4-トリメチル-1,6-ヘキサンジオール、3,3,5-トリメチル-1,6-ヘキサンジオール、2,3,5-トリメチル-1,6-ペンタンジオール、2-メチル-3-エチル-1,5-ペンタンジオール、2-エチル-3-プロピル-1,5-ペンタンジオール、2,4-ジメチル-3-エチル-1,5-ペンタンジオール、2-エチル-4-メチル-3-プロピル-1,5-ペンタンジオール、2,3-ジエチル-4-メチル-1,5-ペンタンジオール、3-エチル-2,2,4-トリメチル-1,5-ペンタンジオール、2,2-ジメチル-4-エチル-3-プロピル-1,5-ペンタンジオール、2-メチル-2-プロピル-1,5-ペンタンジオール、2,4-ジメチル-3-エチル-2-プロピル-1,5-ペンタンジオール、2-ブチル-2-エチル-1,5-ペンタンジオール、および3-ブチル-2-プロピル-1,5-ペンタンジオール、およびこれらの組合せが挙げられる。
【0018】
これらの非環式分岐脂肪族ジオールのうち、2-メチル-1,3-プロパンジオール、2-メチル-1,4-ブタンジオール、2,3-ジメチル-1,4-ブタンジオール、および2-メチル-1,5-ペンタンジオール、およびこれらの組合せは、ポリカーボネートジオール(V)の調製に使用するのに好ましい。非環式分岐鎖脂肪族ジオールの混合物が使用される場合、偶数個の炭素原子を有する少なくとも1つのこのようなジオールおよび奇数個の炭素原子を有する少なくとも1つのこのようなジオールを使用することが有利であり得る。
【0019】
さらに別の実施形態では、ポリカーボネートジオール(V)およびそのようなジオールの混合物は、選択されたカルボニル化剤と上記の種類の少なくとも1つの非環式直鎖ジオールおよび少なくとも1つの非環式分岐鎖脂肪族ジオールとを含む混合物との反応から得られる。非環式直鎖脂肪族ジオールおよび非環式分岐鎖ジオールの割合は、これらのジオール混合物において、例えば、前者が20~80モル%、好ましくは40~60重量%、後者がジオール混合物の残部となるように、幅広く変化し得る。この場合にも、ポリカーボネートジオール(V)の調製においてジオール混合物を使用することが有利であり得、その混合物において、少なくとも1つの構成ジオール、例えば、非環式直鎖脂肪族ジオールは、偶数個の炭素原子を有し、そして少なくとも1つの他の構成ジオール、例えば、非環式分岐鎖脂肪族ジオールは、奇数個の炭素原子を有し、またはその逆でもある。ポリカーボネートジオール(V)の調製のための非環式直鎖脂肪族ジオールと非環式分岐鎖脂肪族ジオールのいくつかの適切な混合物には、以下のものが含まれる:
【表2】
【0020】
ジオールとカルボニル化剤との反応は、公知の慣用の手順に従って実施してポリカーボネートジオール(V)を製造することができる。反応が進行すると、反応の副生成物、例えば、カルボニル化剤としてのホスゲンの場合にはHCl、カルボニル化剤としてのジアルキルカーボネートの場合にはアルカノールは、有利には連続的に反応領域から除去される。ジオールおよびカルボニル化剤の量は、コポリカーボネートジオール(V)が得られる限り、変えることができる。従って、例えば、全ジオール対全カルボニル化剤のモル比は、2.0:1.0~1.01:1.0、好ましくは1.3:1.0~1.1:1.0で変えることができる。一実施形態では、カルボニル化剤に対してモル過剰のジオールを使用することが一般に好ましい。
【0021】
いくつかの場合では、ポリカーボネートジオール(V)を製造するためのカルボニル化剤とジオールとの反応のための少なくとも1つの触媒、例えばエステル交換触媒を使用することが望ましい場合がある。適切なエステル交換触媒としては、これらに限定されないが、チタン化合物、例えば四塩化チタン、およびテトラアルコキシチタン、例えばテトラ-n-ブトキシ-チタン、およびテトライソプロポキシチタン;金属スズおよびスズ化合物、例えば水酸化スズ(II)、塩化スズ(II)、ジブチルスズラウレート、ジブチルスズオキサイド、およびブチルスズトリス(エチルヘキサノエート)が挙げられる。上述したエステル交換触媒のうち、テトラ-n-ブトキシチタン、テトライソプロポキシチタン、ジブチルスズラウレート、ジブチルスズオキサイド、ブチルスズトリス(エチルヘキサノエート)の1以上を用いることが好ましい。触媒は、エステル交換反応媒体において、少なくともエステル交換反応に有効な量で、例えば、ジオール反応物の重量を基準にして、1~5,000ppm、好ましくは10~1,000ppmの量で存在することになる。
【0022】
ポリカーボネートジオール(V)を製造するために使用される反応条件は、ポリカーボネート(V)が得られる限り、広範に変化させることができる。例えば、特定の反応条件は、反応混合物を110~200℃の温度で周囲大気圧下で1~24時間、次いで110~260℃、好ましくは140~240℃の温度で1~20時間、次いで140~240℃で0.1~20時間、20mmHg以下に徐々に減圧して加熱することを含む。反応器は、好ましくは、生成した反応の副産物を除去するための手段、例えば蒸留塔を備えている。
【0023】
ポリカーボネートジオール(V)は、有利にはASTM D5296-11、高性能サイズ排除クロマトグラフィーによるポリスチレンの分子量平均および分子量分布の標準試験方法により測定して400~5000、好ましくは500~4000、より好ましくは1500~3000の数平均分子量、およびASTM E222-10、酢酸無水物アセチル化を用いた水酸基の標準試験法により測定して、25~250、好ましくは50~125のヒドロキシル価(KOHmg/g)を有することができる。
【0024】
B.ヒドロキシル末端ポリウレタン(VI)およびイソシアネート末端ポリウレタン(VII)
ヒドロキシル末端ポリウレタン(VI)およびイソシアネート末端ポリウレタン(VII)は、当該分野で周知の任意の条件などのウレタン形成反応条件下でのウレタン形成反応のための触媒的に有効な量の触媒の非存在下または存在下で、上記の少なくとも1つのポリカーボネートジオール(V)を少なくとも1つの有機ポリイソシアネートと反応させることによって得ることができる。
【0025】
適切な有機ポリイソシアネートは、式(VIII)で表され得、
Q(NCO) (VIII)
ここでzは2または3、好ましくは2であり、より好ましくはzが2である構造(VIII)の少なくとも1つのジイソシアネートおよびzが3である構造(VIII)の少なくとも1つのトリイソシアネートを有するポリイソシアネートの配合物、そして、Qはz価の有機基であり、好ましくは2価または3価の炭化水素基、例えば1~30個の炭素原子、好ましくは6~24個の炭素原子を含む脂肪族または脂環式基であり、または少なくとも1つのイソシアヌレート環、少なくとも1つのウレタン基または少なくとも1つの酸素原子を含む炭化水素から誘導された2価または3価の有機基である。炭化水素および少なくとも1つのウレタン基を含むポリイソシアネートは、ジイソシアネートまたはトリイソシアネートと3~10個の炭素原子のトリヒドロキシアルカンとの反応から調製することができる。
【0026】
ヒドロキシル末端ポリウレタン(VI)およびイソシアネート末端ポリウレタン(VII)を調製する際に使用するのに適した有機ポリイソシアネートには、これらに限定されないが、ジイソシアネート、トリイソシアネート、ダイマー、トリマーおよびこれらの混合物が挙げられる。有用なポリイソシアネートの特定の例には、これらに限定されないが、水素化4,4’-ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、1,3,6-ヘキサメチレントリイソシアネート、1,6,11-ウンデカントリイソシアネート、イソホロンジイソシアネートダイマー、イソホロンジイソシアネートトリマー、イソホロンジイソシアネートとトリオールなどとの反応生成物、およびこれらの混合物が挙げられる。イソホロンジイソシアネート、そのダイマーおよびトリマーおよびそれらの混合物は、本明細書での使用に好ましい。
【0027】
一実施形態では、有機ポリイソシアネート(VIII)は、2個のイソシアネート基を含む有機ポリイソシアネートと、3個のイソシアネート基を含む有機ポリイソシアネートとを含む混合物である。2個のイソシアネート基を含有する有機ポリイソシアネート対3個のイソシアネート基を含有する有機ポリイソシアネートのモル比は、10:1~1:10、好ましくは2:1~1:2、より好ましくは1.5:1~1:1.5である。代表的で非限定的な2つのイソシアネート基を含む有機ポリイソシアネート。
【0028】
連鎖延長反応は、連鎖延長ポリカーボネートジオール(V)の所望の特性に応じて種々の方法で行うことができる。例えば、種々の適切な鎖延長剤が本明細書に記載されているが、ポリイソシアネート(VIII)は鎖延長剤としてよく適している。一実施形態では、少なくとも1つの鎖延長ポリカーボネートジオール(V)を有することが望ましい場合には、ヒドロキシル末端ポリウレタン(VI)を製造するよう、モル過剰のポリカーボネートジオール(V)をポリイソシアネート(VIII)と連続的に混合することによって、少なくとも1つの鎖延長ポリカーボネートジオール(V)を製造することができる。鎖延長反応におけるモル過剰のポリカーボネートジオール(V)は、1:1より大きいOH:NCOモル比を生成する。より特定の実施形態では、OH:NCOモル比は、ヒドロキシ末端ポリウレタン(VI)をもたらすために、1.1:1~10:1、さらにより具体的には1.5:1~3:1、さらにより具体的には1.8:1~2.2:1の範囲である。一実施形態では、反応性官能基が末端イソシアネート基である鎖延長ポリカーボネートジオール(V)を有することが望ましい場合、鎖延長ポリカーボネートジオール(V)は、イソシアネート末端ポリウレタン(VII)を製造するよう、モル過剰のポリイソシアネート(VIII)をポリカーボネートジオール(V)と連続的に混合することによって製造することができる。連鎖延長反応におけるモル過剰のポリイソシアネート(VIII)は、1:1未満のOH:NCOモル比を生成する。より特定の実施形態では、OH:NCOのモル比は、イソシアネート末端ポリウレタン(VII)をもたらすよう、0.1:1~0.9:1、さらにより具体的には0.3:1~0.7:1、さらにより具体的には0.45:1~0.55:1の範囲である。
【0029】
ポリウレタン形成反応の条件は、20~180℃、好ましくは60~130℃の反応温度、10~300キロパスカル、好ましくは50~150キロパスカル、より好ましくは100キロパスカルの圧力、0.50~24時間、好ましくは2~8時間の反応時間を含む。連鎖延長反応は、ウレタン形成反応のために使用される触媒の非存在下または存在下で行うことができる。ウレタン形成反応のための公知および従来の触媒が考えられる。好適な触媒には、金属および非金属触媒が含まれる。本発明に有用な金属縮合触媒の金属部分の例には、スズ、チタン、ジルコニウム、鉛、鉄、コバルト、アンチモン、マンガン、ビスマスおよび亜鉛化合物が含まれる。第1または第2の中間生成物を製造するために使用される触媒の他の適切な非限定的な例は、当該技術分野において周知であり、様々な金属のキレート、例えば、アセチルアセトン、ベンゾイルアセトン、トリフルオロアセチルアセトン、エチルアセトアセテート、サリチルアルデヒド、シクロペンタノン-2-カルボキシレート、アセチルアセトンイミン、ビス-アセチルアセトン-アルキレンジイミン、サリチルアルデヒドイミンなどと、様々な金属、例えばAl、Be、Mg、Zn、Cd、Pb、Ti、Zr、Sn、As、Bi、Cr、Mo、Mn、Fe、Co、Ni、および酸化金属、例えばMoO++、UO++などから得ることができるもの;様々な金属のアルコラートおよびフェノレート、例えばTi(OR)、Sn(OR)、Sn(OR)、Al(OR)、Bi(OR)など、ここでRは1~18個の炭素原子のアルキルまたはアリールであり、および様々な金属のアルコラートとカルボン酸、β-ジケトンおよび2-(N,N-ジアルキルアミノ)アルカノールとの反応生成物、例えば、この手順または同等の手順によって得られるチタンの公知のキレートが挙げられる。さらなる触媒としては、4価のスズ、3価および5価のAs、SbおよびBiの有機金属誘導体および鉄およびコバルトの金属カルボニル、ならびにそれらの組み合わせを含む。1つの特定の実施形態において、カルボン酸のジアルキルスズ塩である有機スズ化合物としては、非限定的な例として、ジブチルスズジアセテート、ジブチルスズジラウレート、ジブチルスズマレエート、ジラウリルスズジアセテート、ジオクチルスズジアセテート、ジブチルスズ-ビス(4-メチルアミノベンゾエート)、ジブチルスズジラウリルメルカプチド、ジブチルスズ-ビス(6-メチルアミノカプロエート)など、およびこれらの組合せを挙げることができる。同様に、別の特定の実施形態では、トリアルキルスズヒドロキシド、ジアルキルスズオキシド、ジアルキルスズジアルコキシド、またはジアルキルスズジクロライドおよびそれらの組み合わせを使用することができる。これらの化合物の非限定的な例としては、トリメチルスズヒドロキシド、トリブチルスズヒドロキシド、トリオクチルスズヒドロキシド、ジブチルスズオキサイド、ジオクチルスズオキサイド、ジラウリルスズオキサイド、ジブチルスズ-ビス(イソプロポキシド)、ジブチルスズ-ビス(2-ジメチルアミノペンチラート)、ジブチルスズジクロライド、ジオクチルスズジクロライドなど、およびこれらの組合せが挙げられる。これらの触媒は、ポリカーボネートジオール(V)の重量を基準にして、0.001~5重量%、より具体的には0.001~2重量%、さらにより具体的には0.005~1重量%、さらにより好ましくは0.005~0.1重量%で用いられる。一実施形態では、触媒は、ポリカーボネートジオール(V)に対して20ppmのSnまたは120ppmの触媒化合物、例えばジブチルスズジラウレート(DBTDL)である。
【0030】
C.湿気硬化性シリル基含有樹脂
上述したポリカーボネートジオール(V)、ヒドロキシル末端ポリウレタン(VI)およびイソシアネート末端ポリウレタン(VII)のシリル化は、好適なシリル化剤を使用して、好ましくは少なくとも90%の完了、より好ましくは少なくとも95%の完了で実施することができる。
【0031】
ポリカーボネートジオール(V)、ヒドロキシル末端ポリウレタン(VI)およびそれらの混合物のシリル化は、イソシアナトシランとの反応によって達成することができる。適切なイソシアナトシランは、一般式(IX)のものであり、
【化5】

ここで各Rは、独立して、1~6個の炭素原子、好ましくは1~3個の炭素原子のアルキル基であり、各Rは、独立して、1~4個の炭素原子、好ましくは1~3個の炭素原子のアルキル基またはフェニル基であり、Rは、1~12個の炭素原子、好ましくは1~3個の炭素原子、より好ましくは3個の炭素原子の2価のアルキレン基であり、そしてaは1~3の整数である。
【0032】
そのようなイソシアナトシランの例には、これらに限定されないが、1-イソシアナトメチルトリメトキシシラン、2-イソシアナトエチルトリメトキシシラン、3-イソシアナトプロピルトリメトキシシラン、1-イソシアナトメチルトリエトキシシラン、2-イソシアナトエチルトリエトキシシラン、3-イソシアナトプロピルトリエトキシシラン、1-イソシアナトメチルメチルジメトキシシラン、3-イソシアナトプロピルメチルジメトキシシラン、1-イソシアナトメチルメチルジエトキシシラン、3-イソシアナトプロピルメチルジエトキシシラン、およびそれらの混合物が挙げられる。
【0033】
イソシアネート末端ポリウレタン(VII)のシリル化は、イソシアネート末端ポリウレタン(VII)と、イソシアネートに対して反応性である少なくとも1つの官能基、例えば1級アミノ、2級アミノまたはメルカプト(スフヒドリル)を有する少なくとも1つのシランとの反応により達成することができる。有利には、シランは、一般式(X)の1級または2級アミノシランであり、
【化6】

ここで各Rは、独立して、1~6個の炭素原子、好ましくは1~3個の炭素原子のアルキル基であり、各Rは、独立して、1~4個の炭素原子、好ましくは1~3個の炭素原子のアルキル基またはフェニル基であり、Rは、1~12個の炭素原子、好ましくは1~3個の炭素原子、より好ましくは3個の炭素原子の2価のアルキレン基であり、Rは、1~12個の炭素原子のアルキル基、フェニル基、水素、または-RSiR 3-a(OR基であり、好ましくは1~4個の炭素原子のアルキルであり、そしてaは好ましくは1~3の整数である。
【0034】
1級および2級アミノシランの例には、これらに限定されないが、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、4-アミノ-3,3-ジメチルブチルトリメトキシシラン、4-アミノ-3,3-ジメチルブチルジメトキシメチルシラン、N-メチルアミノイソブチルトリメトキシシラン、N-エチルアミノイソブチルトリメトキシシラン、N-エチル-3-アミノ-2-メチルプロピルジエトキシメチルシラン、N-エチル-3-アミノ-2-メチルプロピルトリエトキシシラン、N-エチル-3-アミノ-2-メチルプロピルメチルジメトキシシラン、N-ブチル-3-アミノプロピルトリメトキシシラン、N-ブチル-3-アミノ-2-メチルプロピルトリメトキシシラン、N-エチル-4-アミノ-3,3-ジメチルブチルジメトキシメチルシラン、およびN-エチル-4-アミノ-3,3-ジメチルブチルトリメトキシシラン、N,N-ビス-(3-トリメトキシシリルプロピル)アミンなどが挙げられ、N-エチルアミノイソブチルトリメトキシシラン、N-エチル-4-アミノ-3,3-ジメチルブチルトリメトキシシラン、およびN-ブチル-3-アミノプロピルトリメトキシシランが好ましい。
【0035】
ポリカーボネートジオール(V)、ヒドロキシル末端ポリウレタン(VI)および/またはそれらのイソシアナトシラン(IX)との混合物のシリル化のための条件としては、20~180℃、好ましくは60~130℃の反応温度、10~300キロパスカル、好ましくは50~150キロパスカル、より好ましくは100キロパスカルの圧力、および0.50~24時間、好ましくは2~8時間の反応時間を含む。
【0036】
反応は、ウレタン形成反応を触媒するために使用される触媒の非存在下または存在下で行うことができる。ウレタン形成反応のための公知および従来の触媒が考えられる。適切な触媒には、ポリカーボネートジオール(V)、ヒドロキシル末端ポリウレタン(VI)および/またはそれらの混合物とポリイソシアネート(VIII)との反応について上記したような金属および非金属触媒が含まれる。これらの触媒は、ポリカーボネートジオール(V)の重量を基準にして、0.001~5重量%、より具体的には0.001~2重量%、さらにより具体的には0.005~1重量%、さらにより好ましくは0.005~0.1重量%で用いられる。一実施形態では、触媒は、ポリカーボネートジオール(V)に対して20ppmのSnまたはジブチルスズジラウレート、ジブチルスズジアセテートまたはジオクチルスズジアセテートのような120ppm、0.012重量%の触媒化合物である。ヒドロキシル末端ポリウレタン(VI)の形成に使用される触媒は、ヒドロキシル末端ポリウレタン(VI)とイソシアネートシラン(IX)との反応においても使用することができることが考えられる。
【0037】
ポリカーボネートジオール(V)、ヒドロキシル末端ポリウレタン(VI)および/またはそれらの混合物のヒドロキシル基対イソシアナトシラン(IX)のモル比は、0.75:1.0~1.5:1、好ましくは0.95:1~1.1である。一実施形態では、モル過剰のイソシアナトシラン(IX)が使用される。
【0038】
一実施形態では、シリル化反応の完了時またはその付近に存在する過剰のイソシアナトシラン(IX)を活性水素含有化合物と反応させて、反応混合物からイソシアネート基の存在を排除する。活性水素含有化合物には、アルコール、ジオール、アミン、メルカプタン、ラクタムおよびそれらの混合物が含まれる。活性水素含有化合物の代表的および非限定的な例には、メタノール、エタノール、イソプロピルアルコール、ジエチルアミン、ジプロピルアミン、ピロリドン、カプロラクタム、およびそれらの混合物が含まれる。活性水素含有化合物は、シリル化反応の終わりまたはその近くに存在するイソシアナトシラン(IX)の残りのイソシアネート基に対してモル過剰で使用される。一実施形態では、反応混合物中に存在するイソシアネートの量は、ASTM D2572-97(2010)、ウレタン材料またはプレポリマーにおけるイソシアネート基の標準試験方法に従って測定される。
【0039】
イソシアネート末端ポリウレタン(VII)とアミノシラン(X)とのシリル化の条件は、0~180℃、好ましくは60~130℃の反応温度、10~300キロパスカル、好ましくは50~150キロパスカル、より好ましくは100キロパスカルの圧力、および0.50~24時間、好ましくは2~8時間の反応時間を含む。
【0040】
反応は、ウレタン形成反応を触媒するために使用される少なくとも1つの触媒の非存在下または存在下で行うことができる。ウレタン形成反応のための公知および従来の触媒が考えられる。適切な触媒には、ポリカーボネートジオール(V)、ヒドロキシル末端ポリウレタン(VI)および/またはそれらの混合物とポリイソシアネート(VIII)との反応について上記したような金属および非金属触媒が含まれる。これらの触媒は、イソシアナト末端ポリウレタン(VII)の調製に使用されるポリカーボネートジオール(V)の重量を基準にして、0.001~5重量%、より具体的には0.001~2重量%、さらにより具体的には0.005~1重量%、さらにより好ましくは0.005~0.1重量%で使用される。一実施形態では、触媒は、ポリカーボネートジオール(V)に対して、20ppmのSnまたは120ppmのジブチルスズジラウレート、ジブチルスズジアセテートまたはジオクチルスズジアセテートなどの触媒化合物である。イソシアナト末端ポリウレタン(VII)の形成に使用される触媒は、イソシアナト末端ポリウレタン(VII)とアミノシラン(X)との反応にも使用することができることが考えられる。
【0041】
イソシアナト末端ポリウレタン(VII)のイソシアネート基対アミノシランのモル比は、0.75:1.0~1.5:1、好ましくは0.95:1~1.1である。一実施形態では、モル過剰のアミノシランが使用される。一実施形態では、イソシアネート末端ポリウレタン(VII)中に存在するイソシアネートの量は、ASTM D2572-97(2010)、ウレタン材料またはプレポリマーにおけるイソシアネート基の標準試験方法に従って測定される。
【0042】
一実施形態では、湿気硬化性シリル化樹脂(I)は、ASTM D5296-11、高性能サイズ排除クロマトグラフィーによるポリスチレンの分子量平均および分子量分布の標準試験方法に従って測定して、800~20,000、好ましくは1500~10,000、より好ましくは2,000~8,000の数平均分子量を有する。
【0043】
別の実施形態では、湿気硬化性シリル化樹脂(I)は、ASTM F2625-0、示差走査熱量測定法による超高分子量ポリエチレンの融解エンタルピー、結晶化度および融点の測定のための標準試験方法に記載されているように、示差走査熱量測定(DSC)によって測定される、湿気硬化性シリル化樹脂(I)の総重量に基づいて、10重量%以下、好ましくは1重量%以下の結晶化度の結晶含量を有する。
【0044】
さらに別の実施形態では、湿気硬化性シリル化樹脂(I)は、ASTM D1084-08、接着剤の粘度の標準試験方法で測定して、100パスカル秒以下、好ましくは0.05パスカル秒~50パスカル秒の粘度を有する。
【0045】
一実施形態では、湿気硬化性シリル化樹脂は、式(I)の構造を有し、ここでRはメチルまたはエチルであり;Rは、メチレン、エチレン、プロピレン、2-メチルエチレンまたは2-メチルプロピレンであり;Rはメチル、エチルまたはブチルであり;Rは2価の1~6個の炭素原子のアルキレン基または6~10個の炭素原子のシクロアルキレン基であり;Rは1,4-ブチレン、1,6-ヘキシレンまたは1,8-オクチレンであり;Rは、1,5-ヘキシレン、1,7-ヘプチレンまたは1,9-ノニレンであり;R10は2価の1~6個の炭素原子のアルキレン基または6~10個の炭素原子のシクロアルキレン基であり;aは2または3、好ましくは3であり、bは1であり、cは0、1または2であり、mは5~15であり;nは5~15である。
【0046】
別の実施形態において、湿気硬化性シリル化樹脂は、式(I)の構造を有し、ここでRはメチルまたはエチルであり;Rは、メチレン、エチレン、プロピレン、2-メチルエチレンまたは2-メチルプロピレンであり;Rはメチル、エチルまたはブチルであり;Rは2価の1~6個の炭素原子のアルキレン基または6~10個の炭素原子のシクロアルキレン基であり;Rは1,4-ブチレン、1,6-ヘキシレンまたは1,8-オクチレンであり;Rは、1,5-ヘキシレン、1,7-ヘプチレンまたは1,9-ノニレンであり;R10
【化7】

ここでGは上記定義通りであり;aは2または3、好ましくは3であり、bは1であり、cは0、1または2であり;mは5~15であり;nは5~15である。
【0047】
さらに別の実施形態において、組成物は、(i)少なくとも1つの式(I)の湿気硬化性シリル化樹脂、ここでR10
【化8】

および(ii)少なくとも1つの式(I)の湿気硬化性シリル化樹脂、ここでR10は2価の1~6個の炭素原子のアルキレン基または6~10個の炭素原子のシクロアルキレン基である、を含む。少なくとも1つの(i)および少なくとも1つの(ii)を含む組成物は、1つの実施態様において(i)対(ii)のモル比が0.3:1.5~1.5:0.3、別の実施態様において0.7:1.0~1.0:0.7で有する。
【0048】
一実施形態では、湿気硬化性シリル化樹脂は、式(I)の構造を有し、ここでRはメチルまたはエチルであり;Rは、メチレン、エチレン、プロピレン、2-メチルエチレンまたは2-メチルプロピレンであり;Rは水素であり;Rは2価の1~6個の炭素原子のアルキレン基または6~10個の炭素原子のシクロアルキレン基であり:Rは1,4-ブチレン、1,6-ヘキシレンまたは1,8-オクチレンであり;Rは、1,5-ヘキシレン、1,7-ヘプチレンまたは1,9-ノニレンであり;R10は2価の1~6個の炭素原子のアルキレン基または6~10個の炭素原子のシクロアルキレン基であり;aは2または3、好ましくは3であり、bは0であり、cは0、1または2であり;mは5~15であり;nは5~15である。
【0049】
一実施形態において、湿気硬化性シリル化樹脂は、式(I)の構造を有し、ここでRはメチルまたはエチルであり;Rは、メチレン、エチレン、プロピレン、2-メチルエチレンまたは2-メチルプロピレンであり;Rは水素であり;Rは2価の1~6個の炭素原子のアルキレン基または6~10個の炭素原子のシクロアルキレン基であり;Rは1,4-ブチレン、1,6-ヘキシレンまたは1,8-オクチレンであり;Rは、1,5-ヘキシレン、1,7-ヘプチレンまたは1,9-ノニレンであり;R10は、
【化9】

;aは2または3、好ましくは3であり、bは0であり、cは0、1または2であり;mは5~15であり;nは5~15である。
【0050】
さらなる実施形態では、組成物は、(iii)少なくとも1つの式(I)の湿分硬化性シリル化樹脂、ここでR10は、
【化10】

および(iv)少なくとも1つの式(I)の湿気硬化性シリル化樹脂、ここでR10は2価の1~6個の炭素原子のアルキレン基または6~10個の炭素原子のシクロアルキレン基である、を含む。少なくとも1つの(iii)および少なくとも1つの(iv)を含む組成物は、(iii)対(iv)のモル比が0.3:1.5~1.5:0.3で有する。
【0051】
D.コーティング組成物
本発明の別の態様によれば、湿気硬化性シリル化樹脂(I)およびそれに加えて、公知および従来のコーティング組成物に通常含まれる1以上の他の成分を含む湿気硬化性コーティング組成物が提供される。コーティング組成物は、一般に、コーティング組成物の総重量に基づいて、1~100重量%、好ましくは5~50重量%の湿気硬化性シリル化樹脂(I)を含有することができる。
【0052】
湿気硬化性コーティング組成物の配合に使用することができる追加の成分としては、硬度、耐引掻き性および耐候性を改善するためのオルガノアルコキシシランおよびシリコーンハードコート、熱的性質を改善し、コーティングを着色するための金属微粒子および金属酸化物微粒子、硬化触媒、レベリング剤、酸化防止剤、UV安定剤、染料、充填剤、反応性官能基を含有するシランのような接着促進剤、および溶媒がある。これらの追加の成分の組み合わせも使用することができる。
【0053】
適切なオルガノアルコキシシランには、部分縮合物を形成することができるメチルトリメトキシシラン、メチルトリエトキシシラン、テトラエトキシシラン、エチルトリエトキシシラン、ジエチルジエトキシシラン、テトラメトキシシラン、ジメチルジメトキシシランまたはそれらの混合物が含まれる。使用される場合、オルガノアルコキシシランおよび/またはその部分縮合物は、全ての湿気硬化性コーティング組成物の重量パーセントに基づいて、0.5~50重量%、好ましくは3~20重量%のレベルで存在することができる。
【0054】
湿気硬化性コーティング組成物に含まれ得る金属微粒子および金属酸化物微粒子には、亜鉛、チタン、鉄、アルミニウム、コバルト、鉄、銅、マグネシウム、マンガン、アンチモン、鉛、およびそれらの組合せの金属および金属酸化物が含まれる。金属微粒子および金属酸化物微粒子は、湿気硬化性シリル化樹脂(I)を含有する組成物の熱伝導率および/または導電性を改善するために、湿気硬化性シリル化樹脂(I)を含有する組成物と接触している金属基材の耐食性を改善するために、または前記組成物に色素形成を加えるために、使用することができる。例えば、粒状の鉄および酸化鉄は、湿気硬化性シリル化樹脂(I)を含む組成物を通る熱の移送を改善する。湿気硬化性シリル化樹脂(I)および粒状亜鉛(粉末)を含有する組成物は、鉄または鋼のような金属表面を腐食から保護する。湿気硬化性シリル化樹脂(I)を含有する組成物を着色するために、種々の金属酸化物を使用することができる。代表的および非限定的な顔料には、ベンガラ、イエローオーカー、白色鉛、アズライト、スマルト、ウルトラマリンが含まれ、この目的のために使用することができる。使用する場合、粒状金属および/または金属酸化物は、湿気硬化性コーティング組成物の総重量に基づいた重量%で、湿気硬化性コーティング組成粒中に0.1~80重量%、好ましくは5~40重量%のレベルで組み込むことができる。
【0055】
必要に応じて、本発明の湿気硬化性コーティング組成物は、硬化時間を短縮するために、公知または従来の量の縮合触媒を含むことができる。適切な硬化触媒には、金属触媒および非金属触媒が含まれる。硬化触媒には、湿気硬化性シリル化樹脂を調製するために使用された触媒が含まれる。本発明において有用な金属硬化触媒の金属部分の例には、これらに限定されないが、スズ、チタン、ジルコニウム、鉛、鉄、コバルト、アンチモン、マンガン、ビスマスおよび亜鉛化合物を含む。硬化触媒の他の適切な非限定的な例には、様々な金属のキレート、例えば、アセチルアセトン、ベンゾイルアセトン、トリフルオロアセチルアセトン、エチルアセトアセテート、サリチルアルデヒド、シクロペンタノン-2-カルボキシレート、アセチルアセトンイミン、ビス-アセチルアセトン-アルキレンジイミン、サリチルアルデヒドイミンなどと、様々な金属、例えばAl、Be、Mg、Zn、Cd、Pb、Ti、Zr、Sn、As、Bi、Cr、Mo、Mn、Fe、Co、Ni,および金属酸化物イオン、例えばMoO ++、UO ++とから得られるもの;様々な金属のアルコラートおよびフェノレート、例えば、Ti(OR)、Sn(OR)、Sn(OR)、Al(OR)、Bi(OR)など、ここでRは1~18個の炭素原子のアルキルまたはアリールであり、および種々の金属のアルコラートとカルボン酸、ベータ-ジケトンおよび2-(N,N-ジアルキルアミノ)アルカノールとの反応生成物、例えば、この手順または同等の手順によって得られるチタンの公知のキレートが含まれる。更なる硬化触媒には、4価のスズ、3価および5価のAs、SbおよびBiの有機金属誘導体、および鉄およびコバルトの金属カルボニル、およびそれらの組み合わせを含む。特定の一実施形態では、カルボン酸のジアルキルスズ塩である有機スズ化合物は、非限定的な例のジブチルスズジアセテート、ジブチルスズジラウレート、ジブチルスズマレエート、ジラウリルスズジアセテート、ジオクチルスズジアセテート、ジブチルスズ-ビス(4-メチルアミノベンゾエート)、ジブチルスズジラウリルメルカプチド、ジブチルスズ-ビス(6-メチルアミノカプロエート)など、およびこれらの組合せを含むことができる。同様に、別の特定の実施形態では、ジアルキルスズヒドロキシド、ジアルキルスズジアルコキシド、またはジアルキルスズジクロライドおよびそれらの組合せを使用することができる。これらの化合物の非限定的な例には、トリメチルスズヒドロキシド、トリブチルスズヒドロキシド、トリオクチルスズヒドロキシド、ジブチルスズオキシド、ジオクチルスズオキシド、ジラウリルスズオキシド、ジブチルスズ-ビス(イソプロポキシド)、ジブチルスズ-ビス(2-ジメチルアミノペンチラート)、ジブチルスズジクロライド、ジオクチルスズジクロライドなど、およびこれらの組合せが含まれる。
【0056】
これらの触媒は、ポリカーボネートジオール(V)の重量を基準にして、0.001~5重量%、より具体的には0.001~2重量%、さらにより具体的には0.005~1重量%、さらにより好ましくは0.005~0.1重量%で使用される。一実施形態では、触媒は、湿気硬化性シリル化樹脂(I)に対して、20ppmのSnまたは120ppmのジブチルスズジラウレート、ジブチルスズジアセテートまたはジオクチルスズジアセテートなどの触媒化合物である。
【0057】
本明細書の湿気硬化性コーティング組成物は、レベリング剤として1以上の界面活性剤を含むこともできる。適切なレベリング剤の例としては、フッ素化界面活性剤、例えばFLUORAD(商標)(3M Company)、シリコーンポリエーテル、例えばSilwet(登録商標)およびCoatOSil(登録商標)(Momentive Performance Materials, Inc.)、およびBYK(BYK Chemie)が含まれる。
【0058】
湿気硬化性コーティング組成物はまた、ベンゾトリアゾールのような公知のまたは従来の量で使用される1以上のUV吸収剤を含むことができる。好ましいUV吸収剤は、シランと共縮合できるものである。UV吸収剤の具体例としては、4-[ガンマ-(トリメトキシシリル)プロポキシ]-2-ヒドロキシベンゾフェノン、および4-[ガンマ-(トリエトキシシリル)プロポキシ]-2-ヒドロキシベンゾフェノン、および4,6-ジベンゾイル-2-(3-トリエトキシシリルプロピル)レゾルシノールが含まれる。シランと共縮合することができる好ましいUV吸収剤が使用される場合、UV吸収剤は、コーティング組成物を基材に適用する前に、コーティング組成物を完全に混合することによって、他の反応種と共縮合する。UV吸収剤を共縮合することにより、風化中に遊離UV吸収剤が環境に浸出することによって生じるコーティング性能の損失が防止される。
【0059】
本明細書の湿気硬化性コーティング組成物はまた、公知または従来の量の1以上の酸化防止剤、例えばヒンダードフェノール(例えばCiba Specialty Chemicals製のIRGANOX(登録商標))、染料(例えばメチレングリーン、メチレンブルーなど)、充填剤および通常の量の他の公知の慣用の添加剤を含むことができる。
【0060】
一実施形態では、本明細書の湿気硬化性コーティング組成物は、その成分を任意の順序で混合することによって調製することができる。
【0061】
コーティング組成物は、PHC587(Momentive Performance Materials, Inc.)などのシリコーン熱ハードコート組成物の後添加によって調製することができる。この調製方法を用いる場合、本明細書の湿気硬化性シリル化樹脂(I)のシラン部分がシリコーンハードコート組成物の部分的に縮合された混合物と共縮合するための時間を考慮に入れることが重要である。得られた混合物のpHをさらに調節することができる。
【0062】
湿気硬化型コーティング組成物は、固形分を所定のレベルに調整するための有機溶剤を1以上含有していてもよい。適切なそのような溶媒としては、メタノール、エタノール、プロパノール、イソプロパノール、およびブタノールなどのC1-C4アルカノール、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、ジエチレングリコール、およびジプロピレングリコールなどのグリコール、プロピレングリコールモノメチルエーテル、およびプロピレングリコールジメチルエーテルなどのグリコールエーテル、キシレンのような芳香族溶媒、ヘキサン、ヘプタンおよびシクロヘキサンのようなアルカンおよびシクロアルカン、および酢酸メチル、酢酸エチル、酢酸n-ブチル、2-アセチルオキシエタノール、2-アセチルオキシ-2-メチルエタノール、およびそれらの混合物などのエステルが含まれる。必要に応じて、ジメチルケトン、メチルエチルケトン、ジアセトンアルコール、ブチルセロソルブなどのような水混和性極性溶媒を溶媒系として、または溶媒系中に含めることができる。任意の溶媒で任意に調整した後、本明細書の湿気硬化性コーティング組成物は、有利には、組成物の総重量を基準にした溶媒の重量%で、1~99重量%の溶媒、好ましくは10~70重量%の溶媒、好ましくは20~40重量%の溶媒含む。
【0063】
本明細書の湿気硬化性コーティング組成物は、実質的に水を含まず、例えば、一実施形態では、0~200ppmの水を含み、別の実施態様では、0~50ppmの水を含むことが一般的に好ましい。必要に応じて、貯蔵中に湿気硬化性樹脂成分の望ましくない加水分解/縮合を防止または抑制するために、公知および従来の量で水分除去剤、例えばビニルトリメトキシシランを湿気硬化性組成物に添加することができる。
【0064】
必要に応じてプライマーを使用することができるが、有利には、本発明の湿気硬化性コーティング組成物は、プライマーの事前適用なしに、選択された基材の表面、例えばセラミック、ポリマーまたは金属の表面に直接適用される。
【0065】
セラミック基材の例には、花崗岩および大理石のような建築石、セラミックタイル、あらゆる種類のガラスおよびガラス質材料などが含まれる。ポリマー基材の例には、ポリカーボネート、アクリルポリマー、例えば、ポリ(メチルメタクリレート)など、ポリエステル、例えば、ポリ(エチレンテレフタレート)、ポリ(ブチレンテレフタレート)など、ポリアミド、ポリイミド、アクリロニトリル-スチレンコポリマー、スチレン-アクリロニトリル-ブタジエンターポリマー、ポリ塩化ビニル、ポリエチレンなどが含まれる。金属基材の例には、アルミニウム、銅、亜鉛、鉄、スズ、およびこれらの金属を含む合金、例えば、真鍮、すべてのタイプの鋼、例えば冷間圧延鋼、ステンレス鋼、亜鉛メッキ鋼などが含まれる。
【0066】
湿気硬化性コーティング組成物は、噴霧、浸漬、ロールコーティングなどのいくつかの公知のまたは従来のコーティング方法のいずれかを用いて選択された基材の表面に適用され、続いてコーティング層を湿潤硬化させることができる。
【実施例
【0067】
以下の実施例は、説明することを意図するものであって、決して本発明の範囲を限定するものではない。明示しない限り、すべてのパーセンテージは、示された組成物の総重量を基準にした重量によるものであり、そしてすべての温度は摂氏である。
【0068】
例1:1,6ヘキシルおよび1,5ペンチル基を含むポリカーボネートジオール、イソホロンジイソシアネート、イソホロンジイソシアネートトリマーおよびN-エチル-3-アミノ-2-メチルプロピルトリメトキシシランの反応から誘導される湿気硬化性シリル化樹脂の調製
メカニカルスターラー、滴下漏斗、還流冷却器および窒素ラインを備えた500mL丸底フラスコに、ポリカーボネートジオールA(45モル%の1,6-ヘキシル基および55モル%の1,5-ペンチル基を含有するヒドロキシル末端ポリカーボネート、56のヒドロキシル価、1001.5グラム/モルの当量、124.31グラム、0.0621モル)およびSolvesso 100芳香族溶媒(52グラム、ExxonMobilから入手)が充填された。混合物を窒素下で撹拌し、90℃に加熱した。イソホロンジイソシアネート(31.17グラム、0.1402モル)およびブチルアセテート中のイソホロンジイソシアネートトリマー(80.29グラム、0.084モル、商品名Tolonate(商標)IDT 70BでVencore X Chemicalから入手)の混合物を加えて90℃で2.5時間反応させた。反応混合物のFTIRスペクトルは、いかなる残留ヒドロキシル基も検出しなかった。中間体の粘度は10.2パスカル秒であった。N-エチル-3-アミノ-2-メチルプロピルトリメトキシシラン(89.31グラム、0.4モル、Momentive Performance Materialsから商品名A-Link*15シランで入手)を90℃で加えた。反応混合物を発熱反応させ、混合物を118℃に加熱した。混合物を90℃で1.15時間撹拌し、次いで46.5℃に冷却した。FTIR分析は、イソシアネート含量が検出できないことを示した。反応生成物の粘度は27.78パスカル秒であった。ビニルトリメトキシシラン(3.0グラム)を乾燥剤として加えた。最終粘度は23.65パスカル秒であった。
【0069】
例2-5.例1の湿気硬化性シリル化樹脂を含有するコーティング組成物、および比較例A、市販コーティングPSX-1001の冷延鋼パネルへの適用および硬化コーティングの試験
コーティング組成物は、表1に記載の成分を用いて調製した。
【0070】
【表3】
【0071】
例1の湿気硬化性シリル化樹脂を含有する粉砕ペーストの形態の濃縮物を調製した。Cowles粉砕ブレードを備えたミキサーに確実に固定された1リットルのプラスチックビーカーに、粉砕用のZrOビーズ300グラムを加えた。次いで、例1の湿気硬化性シリル化樹脂(125グラム)をビーカーに加え、続いてR103 TiO顔料(100グラム、DuPontから入手)を加えた。ミキサーは、樹脂および顔料がともに均一に混合されるまで、Cowles Mill粉砕を中高速に設定した。混合物が均一のようになると、Solvesso 100芳香族溶媒(100グラム)を混合物に添加し、ミキサーを約35分間高速に設定した。35分後、Hegmanグラインドが検査され、粉砕の品質が決定された。約5のHegmanグラインド評価が達成された。この時点で、粉砕ペーストを濾過して回収した。同様の手順を用いて、Solvesso芳香族溶媒の代わりにn-ブチルアセテートを使用してグラインドを調製した。
【0072】
表1に記載のコーティング組成物を、Konig硬度、QUV安定性、耐腐食性および耐溶剤性について評価した。比較例Aは、商品名PSX 1001で入手可能のPPG製の市販のコーティングであった。
【0073】
A.冷間圧延鋼パネルの調製と洗浄
例2~5および比較例Aの湿気硬化性コーティング組成物の試験に用いた金属基材は、ACT試験パネルから入手可能な冷間圧延鋼APR10184であった。
【0074】
冷間圧延鋼試験パネル用の洗浄溶液は、0.06重量%のTriton X-100、0.52重量%のメタケイ酸ナトリウム(無水)、0.49重量%の炭酸ナトリウム(無水)、0.35重量%の二塩基性リン酸ナトリウム(無水)、それぞれAldrichから入手可能、および98.57重量%の脱イオン水を含む。洗浄液を65~70℃に加熱した。冷間圧延鋼試験パネルを加熱された洗浄溶液中に撹拌下で2~3分間浸漬して、あらゆる油汚染物質を除去した。次いで、パネルを洗浄溶液から取り出し、直ちに脱イオン水ですすいだ。キムワイプ(Kimwipe) Kimtech Delicate Task Wipers(Kimberly Clark)は、洗浄されたパネルを拭くために使用された。次いで、パネルを水で軽く噴霧して、洗浄したパネルの水分を測定した。パネルに水のビーディングが示された場合、上述の洗浄手順を繰り返した。すすぎ水が連続した光沢を形成すると、洗浄したパネルをキムワイプワイパーで乾燥させた。
【0075】
洗浄し乾燥したパネルを、その後、スピードブラスター(Zendex Tool Corporation)を用いてサンドブラスト処理に供した。パネルをサンドブラストで粗面化した後、パネルを上記の手順を用いて再洗浄した。
【0076】
B.湿気硬化性コーティング組成物のスプレー適用
比較のために、PSX1001(アクリルポリシロキサン、PPG Industries)を一成分湿気硬化性コーティング組成物(対照コーティング組成物、比較例Aとする)に配合した。
【0077】
例2および3のコーティング組成物および上述の対照コーティング組成物、比較例Aを、10.16cm×15.24cm(4インチ×6インチ)の寸法を有するむき出しのサンドブラスト処理し清浄した冷間圧延鋼試験パネルに噴霧することによって個別に適用した。噴霧は、StartingLine HVLP重力供給サイフォンスプレーハンドスプレーガン(DeVilbiss)を用いて行った。2つの湿気硬化性コーティング組成物のそれぞれを1054.6g/cm(15ポンド/インチ)の壁圧で噴霧した。噴霧技術は、約5.0~7.0ミルの乾燥コーティング厚さが適用されるまで、噴霧技術は、約25.4m/分(1000インチ/分)の速度でパネル上にスプレーを端から端にスイープし、パネルをスイープごとに約5.08cm(2インチ)で上下させた。
【0078】
C.硬化時間とコンディショニング
試験パネルを湿気硬化性コーティング組成物でコーティングした後、コーティングを周囲条件下で少なくとも7日間湿気硬化させた。
【0079】
周囲湿気硬化の1週間後、例2および3の硬化したコーティング組成物のそれぞれでコーティングされた2枚のパネル、および比較例Aの硬化した対照コーティング組成物でコーティングされた2枚のパネルを、それらは、耐水性テープ(3Mから入手可能)で逆の(コーティングされていない)側部および縁部で覆った。鋭利なステンレス鋼切削工具を使用して、パネルの中央部に沿って10.16cm(4インチ)の長さの線でコーティングされた側面を刻んだ。試験パネルは、塩水噴霧試験(Neutral Salt Spray Testing)ブースに入れられた。次いで、試験パネルを、以下に記載する塩水噴霧試験条件下で3週間試験した。
【0080】
D.塩水噴霧試験
塩噴霧試験は、ASTM B117-90「塩噴霧(FOG)試験の標準試験方法」に従って実施した。
【0081】
試験ブースで3週間後、例2および3のコーティング組成物でコーティングされたパネルおよび比較例Aの対照コーティング組成物でコーティングされたパネルを取り出し、乾燥させた。
【0082】
完全に乾燥すると、試験パネルを高圧空気ブラストに供して、引っ掻いた領域から剥離した可能性のあるコーティングを緩めた。高圧空気ブラストはまた、コーティングとサンドブラストされた基材との間の塩溶液のアンダーカットによるコーティング表面の下で発生した可能性がある層間剥離の量を決定するためにも用いられた。
【0083】
引っ掻いた線の近くで発生した腐食の量は、最小長さ、最大長さおよび平均長さについて引っ掻いた線に垂直な腐食の長さをミリメートル単位で測定することによって決定した。平均長さは、13.97cm(5.5インチ)の間隔で腐食を測定し、5つのデータ点を合計し、次いで5で割ることによって決定した。腐食試験の結果を表2に示す。
【0084】
【表4】
【0085】
E.Konig振り子硬度試験
ASTM D-4366-95、振り子ダンピング試験による有機塗料の硬さの標準試験方法、試験方法A-Konig振り子硬度試験
Konig硬度は、コーティングの最初の適用から異なる時間で測定した。結果を表3に示す。
【0086】
【表5】
【0087】
F.耐薬品性試験
コーティングされた試験パネルの耐薬品性についても試験され、小さなバイアルに溶媒を入れ、バイアルの頂部に綿を詰め、バイアルをコーティング試験表面上に迅速に反転させ、それによって溶媒で飽和した綿球をパネルのコーティングされた表面と接触させることにより、試験された。次にバイアルをコーティング表面に24時間固定した。コーティングの薬剤および/または溶媒耐性を評価するために、24時間後に目視検査を行った。5つの溶媒、すなわちアセトン、エタノール、MEK、トルエンおよびキシレン、酸性溶液およびアルカリ性溶液を試験した。
【0088】
結果を表4に示す。数値は連続体を表し、1はパネルから非常にひどく剥離したコーティングを表し、2は、非常に損傷しているがパネルに結合したままのコーティングを表し、3は、損傷し、曇ってエッチングされているが、パネルに結合したままであるコーティングを示し、4は、化学的に露出された表面と化学的に露出されていない表面との間に弱い輪郭線を形成したコーティングを表し、そして5は、コーティングの外観の変化がないことを表している。
【0089】
【表6】
【0090】
24時間後に、対照コーティング、比較例Aは、は、アセトン、MEK、トルエンおよびキシレンに暴露された場合、ひどく損傷されており、そして値が1となり、エタノールおよび10%HClおよび10%NaOH水溶液については損傷されエッチングされており、そして値が2.7~3.5となった。対照的に、例2および3のコーティング組成物は、24時間コーティングと接触した、溶媒から非常に弱い円形しか示さず、そして値が4~4.8となり、酸性またはアルカリ性溶液に対する損傷はなく、そして値が5となった。
【0091】
G.UV照射に対する耐環境性
UV照射前後の試験片の色を測定した。紫外線照射への曝露は、ASTM D-4587-05、ペイントおよび関連するコーティングの蛍光UV濃縮暴露のための標準的技法に従って実施した。色はコニカミノルタ(Konica Minolta)CR-400装置を用いて測定し、L、aおよびb色をもたらした。結果を表5に示す。
【表7】

本発明のコーティング組成物、例2および3は、58日間の紫外線照射AおよびBへの暴露後のbコーディネートの変化が少なかった。
【0092】
コーティング試験片の光沢は、ASTM D323-89、紫外線照射への曝露58日前後の鏡面光沢の標準試験方法に従って測定した。光沢データを表6に示す。
【0093】
【表8】
【0094】
例6.1,6ヘキシルおよび1,5ペンチル基を含有するポリカーボネートジオール、イソホロンジイソシアネート、およびN-エチル-3-アミノ-2-メチルプロピルトリメトキシシランの反応から誘導される湿気硬化性シリル化樹脂の調製
メカニカルスターラー、滴下漏斗、還流冷却器および窒素ラインを備えた500mL丸底フラスコに、ポリカーボネートジオールA(45モル%の1,6-ヘキシル基および55モル%の1,5-ペンチル基を含有するヒドロキシル末端ポリカーボネート、56のヒドロキシル価、1001.5グラム/モルの当量、200グラム、0.1モル)およびSolvesso 100芳香族溶媒(113グラム、ExxonMobilから入手)が充填された。混合物を窒素下で撹拌し、加熱した。イソホロンジイソシアネート(36.2グラム、0.163モル)を加えて、反応混合物が残留ヒドロキシル基を検出しなくなるまで数時間反応させた。N-エチル-3-アミノ-2-メチルプロピルトリメトキシシラン(28.88g、0.13モル、商品名A-Link 15シランのMomentive Performance Materialsから入手)を加えた。イソシアネート含量が検出されなくなるまで混合物を撹拌した。
【0095】
例4の手順を使用して、表7の成分を有するコーティング組成物を調製した。
【0096】
【表9】
【0097】
コーティングの特性は以下の通りである。
【0098】
Konig硬度:56日後に5
【0099】
初期色:L=96.23; a=-1.41; b=0.12
【0100】
初期光沢:20°=66.8; 60°=80.6; 80°=93.3
【0101】
50℃のエージング後の粘度: 21日;1.59パスカル秒
【0102】
コーティング組成物は、21日間エージングさせた後、1.59パスカル秒の低粘度と、80°の角度で93.3の高い初期光沢を有していた。
【0103】
比較例B:1,6ヘキシル基を含むポリカーボネートジオール、イソホロンジイソシアネート、およびN-エチル-3-アミノ-2-メチルプロピルトリメトキシシランの反応から調製される湿気硬化性シリル化樹脂の調製
メカニカルスターラー、滴下漏斗、還流冷却器および窒素ラインを備えた500mL丸底フラスコに、ポリカーボネートジオールB(1,6-ヘキシル基を含有するヒドロキシル末端ポリカーボネート、56のヒドロキシル価、1001.5グラム/モルの当量、融点50℃、200グラム、0.1モル)およびキシレン芳香族溶媒(114グラム)が充填された。混合物を窒素下で撹拌し、加熱した。イソホロンジイソシアネート(36.8グラム、0.166モル)を添加し、反応混合物が残留ヒドロキシル基を全く検出しなくなるまで数時間反応させた。N-エチル-3-アミノ-2-メチルプロピルトリメトキシシラン(28.79グラム、0.13モル、商品名A-Link15シランでMomentive Performance Materialsから入手)を添加した。イソシアネート含量が検出されなくなるまで混合物を撹拌した。
【0104】
例4の手順を使用して、表8の成分を有するコーティング組成物を調製した。
【0105】
【表10】
【0106】
コーティングの特性は以下の通りである。
【0107】
Konig 硬度:3日後に23、43日後に39
【0108】
初期色:L=96.84; a=-0.76; b=0.07
【0109】
QUV-B(30日)後の色:L=96.30; a=0.2; b=-0.01; ΔE=1.2
【0110】
初期光沢:20°=4.9; 60°=24.6; 80°=40.5
【0111】
QUV-B(30日)後の光沢:20°=1.5; 60°=6.4; 80°=21.2
【0112】
50℃のエージング後の粘度
初期=1.55パスカル秒
3日=3.40パスカル秒
5日=8.02パスカル秒
【0113】
粘度は、50℃でわずか5日間エージングした後に1.55から8.02パスカル秒に増加する。コーティング組成物はまた、80°の角度でわずか21.2の低い光沢を有していた。
【0114】
例7.1,6ヘキシルおよび1,5ペンチル基を含むポリカーボネートジオール、イソホロンジイソシアネート、イソホロンジイソシアネートトリマーおよびN-エチル-3-アミノ-2-メチルプロピルトリメトキシシランの反応から誘導される湿気硬化性シリル化樹脂の調製
メカニカルスターラー、滴下漏斗、還流冷却器および窒素ラインを備えた500mL丸底フラスコに、ポリカーボネートジオールA(45モル%の1,6-ヘキシル基および55モル%の1,5-ペンチル基を含有するヒドロキシル末端ポリカーボネート、56のヒドロキシル価、1001.5グラム/モルの当量、106.8グラム、0.053モル)およびn-ブチルアセテート(55グラム)が充填された。混合物を窒素下で撹拌し、90℃に加熱した。イソホロンジイソシアネート(26.8グラム、0.12モル)およびブチルアセテート中のイソホロンジイソシアネートトリマー(69.0グラム、0.10モル、Vencore X ChemicalからTolonate(商標)IDT 70Bの商品名で入手)の混合物を添加して、90℃で2.5時間反応させた。中間体の粘度は5.2パスカル秒であった。ビス-(3-トリメトキシシリルプロピル)アミン(119.0グラム、0.35モル、Momentive Performance Materialsから商品名A-1170シランとして入手)を90℃で加えた。反応混合物を発熱反応させ、混合物を113℃に加熱した。混合物を90℃で1時間撹拌した。反応生成物の粘度は8.2パスカル秒であった。ビニルトリメトキシシラン(3.0グラム)を乾燥剤として加えた。最終粘度は7.8パスカル秒であった。
【0115】
例8.1,6ヘキシルおよび1,5ペンチル基を含むポリカーボネートジオール、イソホロンジイソシアネート、イソホロンジイソシアネートトリマー、トリメチロールプロパン、および3-イソシアネートプロピルトリメトキシシランの反応から誘導される湿気硬化性シリル化樹脂の調製
メカニカルスターラー、滴下漏斗、還流冷却器および窒素ラインを備えた500mLの丸底フラスコに、ポリカーボネートジオールA(45モル%の1,6-ヘキシル基および55モル%の1,5-ペンチル基を含有するヒドロキシル末端ポリカーボネート、56のヒドロキシル価、1001.5グラム/モルの当量、162グラム、0.0581モル)、トリメチロールプロパン(22.5グラム、0.16モル)、およびn-ブチルアセテート(75グラム)を充填させた。混合物を窒素下で撹拌し、90℃に加熱した。イソホロンジイソシアネート(30.5グラム、0.14モル)を加え、90℃で2.5時間反応させた。中間体の粘度は24.9パスカル秒であった。3-イソシアナトプロピルトリメトキシシラン(84.6グラム、0.41モル、Momentive Performance Materialsから商品名A-Link 35シランで入手)を90℃で添加した。混合物を90℃で1.5時間撹拌した。反応生成物の粘度は831.2パスカル秒であった。ビニルトリメトキシシラン(3.0グラム)を乾燥剤として加えた。最終粘度は34.2パスカル秒であった。
【0116】
本発明をその特定の実施形態を参照しながら上記にて説明してきたが、本明細書で開示される本発明のコンセプトから逸脱することなく、多くの変更、修正および変形が可能であることは明らかである。したがって、添付の特許請求の範囲の精神および広い範囲内に入るこのようなすべての変更、修正および変形を包含することが意図される。