IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ネオザイム インターナショナル,インコーポレイテッドの特許一覧

<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2021-12-13
(45)【発行日】2022-01-13
(54)【発明の名称】有機材料を処理するためのプロセス
(51)【国際特許分類】
   C02F 3/00 20060101AFI20220105BHJP
   C02F 3/12 20060101ALI20220105BHJP
   C02F 11/02 20060101ALI20220105BHJP
   C12P 3/00 20060101ALI20220105BHJP
   C12N 1/16 20060101ALI20220105BHJP
   B09B 5/00 20060101ALI20220105BHJP
【FI】
C02F3/00 D
C02F3/12 D
C02F11/02
C12P3/00 Z
C12N1/16 J
B09B5/00 Z
【請求項の数】 21
(21)【出願番号】P 2020005148
(22)【出願日】2020-01-16
(62)【分割の表示】P 2017195508の分割
【原出願日】2013-05-24
(65)【公開番号】P2020089881
(43)【公開日】2020-06-11
【審査請求日】2020-02-07
(31)【優先権主張番号】61/689,077
(32)【優先日】2012-05-29
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】514301521
【氏名又は名称】ネオザイム インターナショナル,インコーポレイテッド
(74)【代理人】
【識別番号】100114775
【弁理士】
【氏名又は名称】高岡 亮一
(74)【代理人】
【識別番号】100121511
【弁理士】
【氏名又は名称】小田 直
(74)【代理人】
【識別番号】100191086
【弁理士】
【氏名又は名称】高橋 香元
(72)【発明者】
【氏名】デール,パーカー
(72)【発明者】
【氏名】デール,パーカー,デービッド
【審査官】▲高▼ 美葉子
(56)【参考文献】
【文献】特表2015-525120(JP,A)
【文献】米国特許出願公開第2004/0180411(US,A1)
【文献】米国特許出願公開第2010/0078307(US,A1)
【文献】米国特許出願公開第2007/0224249(US,A1)
【文献】米国特許第5849566(US,A)
【文献】米国特許第5879928(US,A)
(58)【調査した分野】(Int.Cl.,DB名)
C02F 3/00
C02F 11/00
C12N 1/00
B09B 5/00
C02F 1/50
C12P 3/00
(57)【特許請求の範囲】
【請求項1】
汚染水の処置方法であって、
前記汚染水に対し組成物を添加する工程aであって、
前記組成物は:
活性酵素を含まないサッカロマイセス・セレビシエ培養物に由来する5.0質量%~35質量%の発酵上清;および
1.0質量%~15質量%の1種以上の非イオン性界面活性剤であって、1種以上のエトキシル化脂肪族アルコールおよび/または1種以上のエトキシル化アルキルフェノールを含有し、前記1種以上のエトキシル化脂肪族アルコールは以下の一般式で示されることを特徴とし、
H(OCH CH OR
式中、R は長鎖脂肪族基であり、かつ
前記1種以上のエトキシル化アルキルフェノールは、以下の一般式で示されることを特徴とし、
H(OCH CH OC
式中、Rは長鎖アルキル基であることを特徴とする、1種以上の非イオン性界面活性剤、
を含み、
前記組成物は活性酸素と生きている細菌を含有せず、かつ
前記組成物は3.5~4.0のpHを有する、組成物を添加する工程aを包含し、
前記工程aによって、非イオン性界面活性剤の複数の微小気泡を形成し、前記複数の微小気泡は酸素の移動を増強するように機能し、前記非イオン性界面活性剤の複数の微小気泡は前記非イオン性界面活性剤の複数の微小気泡の各々の界面において非イオン性界面活性剤を有することを特徴とする、
汚染水の処置方法。
【請求項2】
前記微小気泡はインサイチューで加速される生物学的反応および化学的反応の広域促進剤として作用する、請求項1に記載の処置方法。
【請求項3】
前記工程aの前記微小気泡が酸素の移動を増強することによって、前記汚染水の有機材料中に存在するエステル結合が加水分解するように作用する、請求項1または請求項2に記載の処置方法。
【請求項4】
前記非イオン性界面活性剤の微小気泡によって、溶存酸素のリザーバが増加することを特徴とする、請求項1~3のいずれか一項に記載の処置方法。
【請求項5】
前記汚染水は閉ループ水系中に存在することを特徴とする、請求項1~4のいずれか一項に記載の処置方法。
【請求項6】
前記汚染水の処置によって、バイオフィルム形成が抑制され、かつ生成されたバイオフィルム構造を生物学的に分解される、請求項5に記載の処置方法。
【請求項7】
前記汚染水はパルプおよび紙の加工場に存在する、請求項1~4のいずれか一項に記載の処置方法。
【請求項8】
前記汚染水の処置によって、細菌および病原体のコロニー数が減少し、バイオフィルムの成長が阻害され、ローラ上のデンプンの蓄積が低減され、かつ/または紙製品上のムラが軽減される、請求項7に記載の処置方法。
【請求項9】
前記汚染水は廃水処置プラントに存在する、請求項1~4のいずれか一項に記載の処置方法。
【請求項10】
前記汚染水の処置によって、有機汚染物質の改善が促進され、揮発性有機化合物および有害ガスの生成が低減され、かつ/または溶存酸素レベルを増加することを特徴とする、請求項9に記載の処置方法。
【請求項11】
前記汚染水はスイミングプール中に存在する、請求項1~4のいずれか一項に記載の処置方法。
【請求項12】
前記汚染水の処置によって、塩素の消費が低減され、ミネラル化スケーリングが低減され、かつ/または沈降した酸化残留物の逆洗が低減される、請求項11に記載の処置方法。
【請求項13】
前記1種以上の非イオン性界面活性剤はポリヒドロキシル非イオン性界面活性剤を含有する、請求項1に記載の処置方法。
【請求項14】
前記ポリヒドロキシル非イオン性界面活性剤はスクロースエステル、エトキシル化スクロースエステル、ソルビタールエステル、エトキシル化ソルビタールエステル、アルキルグルコシド、エトキシル化アルキルグルコシド、ポリグリセロールエステル、またはエトキシル化ポリグリセロールエステルを含む、請求項13に記載の処理方法。
【請求項15】
前記1種以上の非イオン性界面活性剤はアミンオキシド、エトキシル化アルコール、アルキルアミン、エトキシル化アルキルアミン、アルキル多糖、エトキシル化アルキル多糖、エトキシル化脂肪酸、エトキシル化脂肪アルコール、またはエトキシル化脂肪アミンを更に含み、あるいは非イオン性界面活性剤はH(OCHCHOCR、(OCHCHOR、またはH(OCHCHOC(O)Rの一般式を有し、
式中、xはアルキルフェノールおよび/または脂肪アルコールまたは脂肪酸に添加されるエチレンオキシドのモル数を表し、Rは、長鎖アルキル基を表し、Rは、長鎖脂肪族基を表す、請求項1に記載の処置方法。
【請求項16】
前記長鎖アルキル基はC-C10ノルマル-アルキル基であり、および/または、前記長鎖脂肪族基はC12-C20脂肪族基である、請求項15に記載の処置方法。
【請求項17】
前記1種以上のエトキシル化脂肪族アルコールはエトキシル化ceto-オレイルアルコール、エトキシル化ceto-ステアリルアルコール、エトキシル化デシルアルコール、エトキシル化ドデシルアルコール、エトキシル化トリデシルアルコール、またはエトキシル化ヒマシ油である、請求項1に記載の処置方法。
【請求項18】
液体組成物であって:
活性酵素を含まないサッカロマイセス・セレビシエ培養物に由来する5.0質量%~35質量%の発酵上清;および
1.0質量%~15質量%の非イオン性界面活性剤であって、1種以上のエトキシル化脂肪族アルコールおよび/または1種以上のエトキシル化アルキルフェノールを含有し、前記1種以上のエトキシル化脂肪族アルコールは以下の一般式で示されることを特徴とし、
H(OCH CH OR
式中、R は長鎖脂肪族基であり、かつ
前記1種以上のエトキシル化アルキルフェノールは、以下の一般式で示されることを特徴とし、
H(OCH CH OC
式中、Rは長鎖アルキル基であることを特徴とする、非イオン性界面活性剤、
を含み、
前記液体組成物は活性酸素と生きている細菌を含有せず、かつ前記液体組成物は3.5~4.0のpHを有し、
前記液体組成物を汚染水に添加した場合に、非イオン性界面活性剤の複数の微小気泡を形成し、前記複数の微小気泡が酸素の移動を増強して、前記非イオン性界面活性剤の複数の微小気泡が前記非イオン性界面活性剤の複数の微小気泡の各々の界面において非イオン性界面活性剤を有するように構成される、
液体組成物。
【請求項19】
前記長鎖アルキル基はC-C10ノルマル-アルキル基であり、または、前記長鎖脂肪族基はC12-C20脂肪族基である、請求項18に記載の液体組成物。
【請求項20】
前記1種以上のエトキシル化脂肪族アルコールはエトキシル化ceto-オレイルアルコール、エトキシル化ceto-ステアリルアルコール、エトキシル化デシルアルコール、エトキシル化ドデシルアルコール、エトキシル化トリデシルアルコール、またはエトキシル化ヒマシ油を含有する、請求項18または請求項19のいずれか一項に記載の液体組成物。
【請求項21】
前記1種以上のエトキシル化アルキルフェノールはエトキシル化ノニルフェノールまたはエトキシル化オクチルフェノールを含有する、請求項1820のいずれか一項に記載の液体組成物。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は有機材料を生物学的に処理するためのプロセスに関する。特に、この発明は、自治体廃水などの処理により生じる下水スラッジを処理し、揮発性固体および他の汚染物質を除去し、バイオガスを発生させるためのプロセスを提供する。
【背景技術】
【0002】
水質汚染防止法の通過以降、多くの産業が、これらが生成させた廃水のための処理プログラムを、これらの水が公共下水管および水路に排出される前に、設けることを要求された。これらのプログラムはしばしば、現地廃水処理プロセス、公共処理工場への排出または両方を含む。
【0003】
廃水は、家庭、商業および工業利用後に変化した水、特に汚染され、および排水溝に流れ込み、通過する水のために使用される用語である。
【0004】
廃水は典型的に多種多様の汚染物質を含み、これらは公共水路に排出される前に除去されなければならず、そのような汚染物質としては、下記が挙げられる:有機物質、例えばタンパク質、炭水化物および脂質;化学薬品、例えば駆除剤、殺虫剤、重金属および肥料;ならびに下水。廃水は典型的には、その生物化学的酸素要求量(BOD)、総懸濁固体(TSS)および溶存酸素(DO)の観点から評価される。廃水から除去されなければならない別の重要なクラスの構成物は、廃水の匂いを引き起こす、またはこの一因となる揮発性有機化合物(VOC)である。
【0005】
廃水中で見られる特定の汚染物質に向けられる多くのプロセスが開発されており、例えば:フェノールオキシダーゼおよび過酸化水素は、パルプおよび製紙工場廃水を脱色するために使用されており(米国特許第5,407,577号);バチルス・ステアロサーモフィルス(Bacillus stearothermophilus)の非定型株由来の酵素が藻類細胞壁を分解するために使用されており(米国特許第5,139,945号);細菌と酵素の組み合わせが、淀んだ水の塊の水質を改善するために使用されており(米国特許第5,227,067号);セルラーゼが、木材/紙組成物を消化するために使用されており(米国特許第5,326,477号);キサントモナス・マルトフィリア(Xanthomonas maltophilia)およびバチルス・チューリンゲンシス(Bacillus thuringiensis)が、極性有機溶媒を分解するために使用されており(米国特許第5,369,031号);酵母が炭水化物を含む廃水を消化するために使用されており(米国特許第5,075,008号);β-グルカナーゼ、α-アミラーゼおよびプロテアーゼの組み合わせが、微生物スライムを消化するために使用されており(米国特許第5,071,765号);ならびに、アミラーゼ、リパーゼおよび/またはプロテアーゼの組み合わせが、コロイド材料、例えばデンプン、グリース、脂肪およびタンパク質を消化するために使用されている(米国特許第5,882,059号)。しかしながら、これらの組成物の各々は特定の汚染物質にのみに向けられ、これらは、廃水および他の汚染水中で通常見られる様々な汚染物質に対処しない。米国特許第3,635,797号で記載される組成物は、下水池を脱臭し、有機廃棄物を分解するために酵母発酵組成物を使用した。しかしながら、この組成物は不安定であることが見出され、バッチによって様々な結果が得られた。
【0006】
上記プロセスは一般に好気性条件下で実施され、すなわち、処理プロセスは酸素の存在(通常空気由来)を要求する。
【0007】
本発明者らは酵母、例えばサッカロマイセス・セレビシエ(Saccharomyces cerevisiae)培養物由来の発酵上清および非イオン性界面活性剤(好ましくはエトキシル化アルキルフェノールおよび/または長鎖脂肪族アルコールからなる群より選択される)を含む液体組成物を発明した。サッカロマイセス・セレビシエの発酵から得られた、活性酵素と組み合わされたこの液体組成物は、好気性条件下、ならびに嫌気性条件で、数ある廃水の中でも特に、自治体下水を処理するために使用されてきた(米国特許第5,820,758号;5,849,566号;5,879,928号;5,885,590号および公開米国特許出願第12/586,126号を参照されたい)。今や、驚いたことに、サッカロマイセス・セレビシエ培養物由来の発酵上清(活性酵素を含まない)および非イオン性界面活性剤の組み合わせを含む生成物は、下水スラッジ、例えば自治体または工業廃水の処理から得られる下水スラッジを処理するのに有効であることが見出されている。この発見は、以下でより詳細に記載する。
【0008】
微生物活性により、例えば嫌気性分解により、有機汚染物質(これらの汚染物質は液体中に、溶解、コロイドまたは微細分散形態で含まれる)を除去するための有機材料で汚染された液体の生物学的処理または廃水の精製では、バイオガスとして知られている可燃性ガスが発生する。
【0009】
一般に、廃水は廃棄物処理プラントで、流水中で廃水が生物学的に自浄する時に起こる同じまたは同様の手順を使用して、すなわち好気性条件下で、しかしながら、技術的にはより集中的な様式で生物学的に精製される。本質的には、生物学的精製の嫌気性プロセスは、例えば平らな、静水の底で同様に起こる。
【0010】
本発明を説明する目的で、「処理する」は、有機材料、すなわち汚染物質の、微生物、例えば細菌による、酸素あり、またはなしでの変換を意味することが理解される。有機材料の嫌気性分解のプロセス中に、バイオガス、すなわち、主にメタン、および二酸化炭素および微量の他の成分から構成されるガス混合物が生成される。発明のプロセスはまた、好気性条件下で実施することができ、セルロース供給材料由来の発酵生成物、などが提供される
【0011】
高い量の有機材料を汚染物質として含む液体を、嫌気性条件下で生物学的に処理するための方法は、食品業界、農業、鉱物油業界由来ならびにパルプ製造由来の廃水の処理で知られている。言い換えれば、多くの液体を処理することが可能であるが、一般に、そのような公知の生物学的方法は、そのような有機汚染物質の十分な精製または完全な変換を提供することができない。
【0012】
本発明の1つの目的は、有機廃棄材料を、細菌プロセスにおいて、前記廃棄物を高温で消化することにより処理し、バイオガスを生成することであり、このバイオガスは発電のための発電機および/または加熱目的のためのボイラーにおいて使用することができる。
【0013】
本発明の別の目的は、下水スラッジを細菌プロセスにおいて、前記スラッジを高温で発酵させることにより処理し、バイオガスを生成することであり、これは、その後、発電のための発電機および/または加熱目的のためのボイラーにおいて使用することができ、特に前記バイオガスは、前記下水スラッジを処理するための熱を提供するために使用され得る。
【0014】
本発明の別の目的は、下水スラッジを細菌プロセスにおいて処理することであり、これは、前記スラッジを高温で発酵させることにより実施され、揮発性有機固体(VOS)が低減される。
【0015】
本発明の別の目的は、下水スラッジを細菌プロセスにおいて処理することであり、これは、前記スラッジを高温で発酵させることにより実施され、プロセスから出て行く処理された、固体スラッジ生成物の重量および/または体積が低減される。
【0016】
この発明の他の目的は、本明細書を読むことにより明らかになるであろう。
【発明の概要】
【0017】
本発明は、有機材料、すなわち有機廃棄材料の処理のためのプロセスを提供し、このプロセスは、(a)生体利用可能なミネラルおよびビタミンを含む微量栄養素を含む酵母配合物の発酵上清を含む、生体触媒組成物の使用を含む。上清は低温殺菌され、変性され、よって、活性酵素または細菌培養物を含まない。上清は、(b)1つ以上の非イオン性界面活性剤とブレンドされる。この発明の生体触媒組成物は、有機材料を含む廃水ストリームに添加されると、下記を増加させることができる:i)前記細菌の呼吸および複製に必要とされる溶存酸素を増加させることにより、廃水中に存在する細菌培養物の酵素活性;およびii)前記有機材料中に存在する結合を切断して、有機材料を前記細菌による消費のためのより消化可能な形態として放出する際の前記細菌の触媒作用。前記生体触媒組成物は、前記廃水中で、高度に構造化された、超微細、微小気泡の形態で、機能化界面活性剤を形成し、この微小気泡は、酸素をその中に封入することにより廃水中の容易に利用できる酸素の蓄積を提供し、微小気泡の膜障壁および細菌により消費される有機材料の気泡構造(セル構造:cellular structure)を横切る酸素の移動が増加する。
【0018】
この発明のプロセスでは、有機廃棄物は好ましくは、酵母培養物、例えばサッカロマイセス・セレビシエ培養物由来の発酵上清;および非イオン性界面活性剤を含む組成物で処理される。
【0019】
この発明のプロセスの1つの好ましい実施形態では、有機廃棄物は下水スラッジを含み、これは、好熱性消化(スラッジが約55-60℃の温度のタンク内で発酵される)、または中温性消化(前記プロセスが約35-40℃の温度で実施される)のいずれかを含むプロセスで処理される。バイオガス中のメタンは燃焼させることができ、通常往復機関またはタービンを用いて、熱および電気の両方が生成され、あるいはしばしばコジェネレーション配列の燃料電池に送ることができ、ここでは、生成される電気および廃熱は、消化装置を温めるため、または建造物を加熱するために使用される。過剰な電気は供給者に販売することができ、またはローカルグリッドに入れることができる。嫌気性消化装置により生成された電気は、再生可能エネルギーであると考えられ、助成金を得ることができる。バイオガスは、大気二酸化炭素濃度を増加させる原因とはならない。というのも、ガスは、直接大気中に放出されず、二酸化炭素は短い炭素循環を有する有機源に由来するからである。
【0020】
発明のプロセスのこの好ましい実施形態では、可燃性バイオガスが生成され、これはメタンを含み、発電のための発電機および/または加熱目的のためのボイラーにおいて使用することができる。
【0021】
この発明のプロセスの別の好ましい実施形態では、前記非イオン性界面活性剤はアルキル多糖類、アルキルアミンエトキシレート、アミンオキシド、ブロックコポリマ、ヒマシ油エトキシレート、Ceto-オレイルアルコールエトキシレート、Ceto-ステアリルアルコールエトキシレート、デシルアルコールエトキシレート、エトキシル化ドデシルデカノールおよびエトキシル化トリデシルデカノール、および他のC12-C14第2級脂肪族アルコールエトキシレートからなる群より選択され、あるいは非イオン性界面活性剤は、20~40モルのエチレンオキシド、例えば約30モルのエチレンオキシドを含むノニルまたはオクチルフェノール付加物であってもよい。
【発明を実施するための形態】
【0022】
水性環境における酸化的生物学的および化学的プロセスは水中での酸素の低い溶解度により制限される。この物理的制限はヘンリーの法則により規定される。これは、温度が一定に保たれる場合、液体に溶解する気体の量は液体への気体により与えられる圧力に比例すると言っている。
【0023】
純水中での酸素の溶解度は周囲温度および1大気圧で約10百万分率(ppm)にすぎない。本発明の組成物は水中の酸素を、ヘンリーの法則により予測されるレベルを超えて増加させることが観察された。
【0024】
ほとんどの好気性バイオプロセスでは、廃水処理システムかバイオテクノロジー発酵であるかに関係なく、溶存酸素は直ちに消費され、よって、これを補充することはプロセスの速度を制限する因子となる。よって、バイオプロセス設計の最も重要な構成要素は、酸素のプロセスの液相中への物質移動のための手段である。約10-9気泡(セル:cell)/mlの気泡(セル:cell)密度の細菌の活発に呼吸している培養物では、液体培地中の酸素は、細菌の酸素要求量に対応するために、約12回/分、置換しなければならない。
【0025】
水は典型的には気相と液相の間の接触面を増加させることにより通気される。これは、酸素源をバルク液相に導入すること、または分散水をバルク気(空気)相を通して流すことのいずれかにより実施することができる。気または液相のいずれが酸素化プロセスを支配するかに関係なく、酸素、または他のガスの物質移動は、気泡を液相中に導入することにより達成される。ガス-液体物質移動の効率はかなりの程度まで泡の特性に依存する。泡挙動は下記物質移動パラメータに強く影響する:泡の内側からガス-液体界面への酸素の移動;酸素のガス-液体界面を横切る移動;ならびに酸素の泡を取り囲むかなりよどんだ液膜を介した拡散。
【0026】
泡の研究において、泡内の自由状態と泡の外の溶存状態の間の界面を横切るガスの交換を理解することが根本的に重要である。バイオプロセスにおける気泡の最も重要な特性はそれらのサイズであることが、一般に承認されている。ある体積のガスでは、ガスが少しの大きな泡ではなく多くの小さな泡内に分散された場合に、気相と液相の間のより多くの界面面積(a)が提供される。小さな泡、1-3mmは、より大きな泡により共有されない下記有益な特性を有することが示されている:
【0027】
小さな気泡は大きな泡よりもゆっくり上昇し、ガスが水相に溶解するのにより多くの時間が得られる。この特性はガスホールドアップと呼ばれ、水中の酸素の濃度はヘンリーの法則溶解度限界の倍以上となり得る。例えば、10ppm酸素の飽和限界に到達した後;小さな泡内の少なくともさらに10ppmの酸素が使用可能となり、酸素が補充される。
【0028】
泡が形成された時点で、液相への酸素移動に対する主障壁は泡を取り囲む液膜となる。生物化学工学研究は、この膜を介する輸送は全プロセスにおける律速工程となり、全体の物質移動速度を制御すると結論付けた。しかしながら、泡が小さくなるにつれ、この液膜は減少し、よって、ガスのバルク液相中への移動はもはや妨げられない。
【0029】
水中の界面活性剤は、非常に小さな、直径1mm未満の泡の形成に至らしめることができる。これらの小さな泡は、微小気泡と呼ばれ、界面活性剤により引き起こされる、ガス-液体界面間の界面での表面張力の低減による結果である。
【0030】
大きな濃度のガスが、溶液中に、例えば化学反応または他のメカニズムにより導入されるにつれ、泡の形成のための核形成中心が存在しない場合、液相は過飽和される可能性がある。この時点で、微小気泡はその後自然に形成することができ、大きな泡形成の核となり、溶存ガスを溶液から、過飽和が再び起こるまで一掃する。界面活性剤の存在下では、ガスのより大きな部分が溶液中で安定な泡として残る可能性がある。
【0031】
液体中のガスの分散物に曝露された微小気泡はコロイド特性を示し、コロイド状ガスアフロン(CGA)と呼ばれる。CGAは、これらが低濃度の界面活性剤から構成される特有のシェル層を含むという点で、通常の気泡とは異なる。
【0032】
本発明の組成物は界面活性剤微小気泡と関連する望ましい特性を示す。しかしながら、本発明の組成物で形成された微小気泡は、液体中の酸素の物質移動を増加させると考えられる。科学的理論に縛られないが、この違いにはいくつかの可能な説明が存在する:
【0033】
先に記載された界面活性剤微小気泡は、アニオン性またはカチオン性である純粋合成界面活性剤の使用を含んだ。本発明の組成物に配合される界面活性剤は非イオン性であり、泡挙動の特性を著しく変化させる生物系界面活性剤とブレンドされる。
【0034】
本発明の組成物は微小気泡形成のためにずっと低い濃度の界面活性剤を要求する。界面活性剤濃度は界面活性剤系の臨界ミセル濃度(CMS)に到達しなければならないことが示唆されている。本発明の組成物では、微小気泡は使用される界面活性剤のための推定CMC未満で形成される。これにより、本発明の組成物では、微小気泡は、ガス物質移動特性により有利な緩い分子充填を有する、界面活性剤分子の凝集物の結果であることが示唆される。より少ない分子で構成される表面は、ガスを含むうまく組織化されたミセルよりも、ガス透過性である。
【0035】
界面活性剤に加えて、本発明の組成物は生物学的に誘導された触媒を含む。これらの成分のどちらも両親媒性である傾向があり、すなわち、それらは、顕著な疎水性および親水性特性を有する。両親媒性分子は、水中でクラスター化し、分子量凝集物を形成する、与える傾向があり、これらは(界面活性剤濃度が増加するにつれ)、10-2~1014Mの範囲の濃度でミセル形成する。これらの両親媒性分子の凝集物は微小気泡形成のための核となる。
【0036】
本発明の組成物は流体中の酸素レベルを増加させると考えられる。科学的理論に縛られないが、この効果は、2つのメカニズムのいずれかまたは両方により説明することができると考えられる:非イオン性界面活性剤と本発明の組成物の他の成分の相互作用から得られるガスの物質移動の増加;ならびに微小気泡からのガスの遅延放出(よって、酸素は、導入点だけでなく、液体全体に分散され得る)。
【0037】
いずれのメカニズムを用いても、組織化してクラスター、凝集物、ガスが充填された泡となる本発明の組成物の傾向は、反応物の局所濃度を増加させること、触媒反応が起こるのに必要とされるエネルギーの移行を低下させること、または、まだ説明されていないいくつかの他のメカニズムにより、反応が起こるためのプラットフォームを提供する可能性がある。本発明の組成物で使用される非イオン性界面活性剤は、酵素反応と適合し、これを増強させることが立証されている。本発明の組成物は触媒活性を有し、これは、従来の酵素系よりも機能化界面活性剤の触媒活性により近い。
【0038】
本発明の組成物は、酵母発酵上清および活性酵素がない場合、非イオン性界面活性剤、およびアニオン性またはカチオン性界面活性剤を含む。
【0039】
本発明において使用するのに好適な非イオン性界面活性剤としては下記が挙げられるが、それらに限定されない:脂肪アルコール、アルキルフェノール、脂肪酸および脂肪アミンを含むポリエーテル非イオン性界面活性剤(エトキシル化されている);典型的にスクロースエステル、ソルビタール(sorbital)エステル、アルキルグルコシドおよびポリグリセロールエステルを含むポリヒドロキシル非イオン性(ポリオール)(エトキシル化されても、されていなくてもよい)。本発明の1つの実施形態では一般式:
の界面活性剤および特にエトキシル化オクチルフェノール(商標名IGEPAL CA-630で販売されている)が使用される。非イオン性界面活性剤は相乗的に作用し酵母発酵上清の作用を増強させる。
【0040】
これらの微小気泡およびそれらの高い反応性酸素移動能力は、よって、水、廃水、および有機固体内で、インサイチューで、著しく加速される生物学的、および化学的反応の広域促進剤として作用し、速度および大きさにおいて、活性酵素、培養された細菌培養物、または既存の界面活性剤製品のいずれかを介して利用される細菌酵素型反応を大きく上回る。
【0041】
新しい「機能化界面活性剤」組成物は微小気泡を生成し、これは、通気システムにより機械的に生成される気泡よりもずっと小さい。廃水システムにおいて有機汚染物を生物学的に分解する、または水を精製するのに最も重要な要素は、生物学的プロセス、または精製化学薬品の酸化反応をサポートする水柱に存在する酸素の供給である。
【0042】
作用メカニズムは2要素からなる:
1つ、「機能化界面活性剤」のその高い反応性の泡シェルを有する微小気泡の形成により、機械通気システムにより得られる溶存酸素のヘンリーの法則による正常レベルを大きく上回る、水柱における溶存酸素のリザーバの構築が可能になる。
2つ、「機能化界面活性剤」微小気泡の高い反応性の膜泡シェルにより、組成物のブレンドされた界面活性剤により形成される微小気泡を大きく上回る、非常に増強された酸素移動能力が得られる。
【0043】
よって、この発明の組成物の使用から得られる微小気泡は、生物学的、および化学的反応を改善するための基盤を提供する:
【0044】
水中の溶存酸素アベイラビリティは、生物学的酸化-還元による有機汚染物の消費における微生物により必要とされる呼吸において重要な制限因子となる。生物学的還元の速度は、設計、水圧荷重(hydraulic loading)、排出物の品質、および任意の廃水処理システムの動作効率の重要な部分である。
【0045】
発明の微小気泡の対の局面;溶存酸素リザーバの増加、および膜障壁を横切る酸素移動の増強は、相乗的に作用し、有機汚染物の微生物の消費におけるそれらに対する溶存酸素のアベイラビリティの実質的な正の拡大を可能にする。結果として、廃水生物学的処理プロセスの効率、または様々な化学酸化剤、例えば塩素、次亜塩素酸ナトリウム、塩化第二鉄、過酸化物、などの酸化能力がずっと大きくなる。
【0046】
酸化的化学薬品は、水内のそのような有機物に由来する生物増殖を防止するために、有機汚染物質の汚染水を衛生化するために広く使用されている。水柱内の酸素移動および溶存酸素を増強させると、水を衛生化する際に必要とされる化学的プロセスのずっと大きな効率が得られ、酸化化学薬品のプロセスにおける消費が低減する。
【0047】
水精製および廃水処理において使用される生物学的および化学的プロセスを増強することに加えて、同じ作用メカニズムは有機廃棄物固体の堆肥化における生物学的還元の速度および石油炭化水素汚染物のレメディエーション(remediation)の速度を増加させる能力を示している。
【0048】
堆肥化およびレメディエーション速度の加速は、有機固体の気泡膜(セル膜:cellular membrane)を横切る酸素移動の増強による。新しい組成物の効力は、しばしば有毒な匂いプロファイルにより特徴付けられる揮発性有機化合物(VOC)の即時中和と組み合わされると増強される。
【0049】
増強された酸素移動の結果として生じる特質は、不溶性有機廃棄物成分、例えば脂肪、油、およびグリースの効率的な可溶化である。
【0050】
本発明の組成物の脂肪、油、およびグリースのエステル結合を切断する能力は、分子構造の膜障壁を横切るガス移動を可能にする能力にあり、よって、グリセロールおよび脂肪酸を連結するエステル結合の分解が実施される。これは、非常に高いpH、または非常に低いpH剤、またはリパーゼ酵素によるよりもむしろ、pH中性である加水分解の形態である。
【0051】
リパーゼは一般にエステル結合の切断による酵素の特定の群であり、しかしながら、本発明の組成物は、酸素移動メカニズムにより、エステル結合を分解する同じ切断メカニズムを開始する、すなわち;β-酸化。
【0052】
これらの不溶性有機分子の可溶化を実施する、よって有機成分を微生物によるそれらの消費のためにより容易に消化可能な形態に放出するこの能力は再び相乗的に、増加した酸素アベイラビリティにより与えられた利点と共に作用し、これは、好気性生物学的プロセスにおいて必要とされる生物学的呼吸低減を助ける。
【0053】
脂肪、油、およびグリースの表面の浄化では、エステル結合の切断は、廃棄ストリームを受理する表面および排水管ライン上に残った残留廃棄物成分の実質的な低減のためにずっと改善された表面浄化とする。
【0054】
本発明の組成物は、下記プロセスにおいて有用であることが見出されている:
【0055】
水精製:
スイミングプールで使用される場合、塩素消費速度は使用によって70%まで低減され、ミネラル化スケーリングが実質的に低減され、フィルタは浄化され、沈降した酸化残留物の逆洗は実質的に低減される。
【0056】
廃水処理:
廃水処理システムで使用される場合、通気エネルギー使用は50%まで低減させることができ、より高い有機物負荷が、以前は、生物学的還元排出要求に対する十分な溶存酸素レベルを提供できなかった水圧体積(hydraulic volume)下で処理され得る。スラッジ/固体は、廃棄ストリームの有機分子構造のより大きな溶解度のために、35%まで低減させることができる。
【0057】
下水管路&ポンプ場における匂い制御:
下水管路およびポンプ場で使用される場合、HSガスレベルは、新しい防止モデルにより実質的に低減させることができ、この場合、生物膜成長物(スライム層)が溶解され、よって、HSガスとして放出される重要な溶解硫化物源が排除される。超微細微小気泡の形成はまた、バルク下水中でより高いレベルの溶存酸素を提供し、よって、HSガス放出が防止される。というのも、HSは、1.1ppmを超える溶存酸素レベルを有する水では、溶解硫化物から放出される傾向はないからである。
【0058】
匂い制御:
水噴霧中高い希釈で使用される場合、本発明の組成物は匂いのする廃棄材料、表面、および腐敗水塊の即時匂い中和を提供する。加えて、非常に高い希釈(1500×1)以上でミスト化されると、これは気柱内の有毒ガスを中和するであろう。
【0059】
石油炭化水素レメディエーション:
石油炭化水素レメディエーションプロトコルで使用される場合、全石油炭化水素(TPH)低減は、炭化水素の分子構造の著しく増強された溶解度のために、実質的にレメディエーションのベースライン速度を超えて加速される。表面の浄化もまた、新しい組成物の溶解度増強能力のために著しく増強される。
【0060】
河川および水塊の生態回復:
希釈に基づき、水の表面上への噴霧により適用される場合、より高い溶存酸素の上部表面ゾーンが生成され、これは河川または水塊の底のスラッジから発生する嫌気性ガスを酸化するように作用する。加えて、組成物の微小気泡を含む溶存酸素のこの上部ゾーンは、川岸の両側に沿って形成する生物膜成長物(スライム層)上で浄化メカニズムとして作用する。
【0061】
堆肥化:
堆肥パイルで使用される場合、組成物は、高い希釈でパイル上に噴霧させると、堆肥化される有機材料中に好気性上部ゾーンを形成し、即効匂い除去を提供する。加えて、堆肥化の速度(生物学的消費)は加速され、VOCガス(温室)の生成が低減される。
【0062】
FOG浄化:
高レベルの脂肪、油、およびグリースを含む廃棄物の浄化、例えば肉部屋、屠殺場、フードプロセッサで使用される場合、組成物の改善された溶解度能力は廃棄脂質分子構造を分解し、よって、これらの廃棄物は下水管の下流で構造的に再形成せず、表面の深部表面下浄化が得られる。
【0063】
動物廃棄物の浄化:
動物封じ込め業務、例えば家畜小屋、動物飼養業、および酪農場の浄化で使用される場合、組成物は尿(アンモニア)および廃棄物にすぐに作用し、それらを無臭とし、動物へのVOC化合物からのストレスを防止する。加えて、動物廃棄物は、廃棄ストリームの分子構造への組成物の触媒効果による即時分解を受け始める。
【0064】
水産養殖:
水産養殖業務で使用される場合、組成物は、開発された機械通気システムにより得られるレベルを超えて、溶存酸素レベルを上昇させる。アンモニアは、魚廃棄物の毒性の高い副産物であり、酸化中和をより受けやすく、魚廃棄物の分子構造は構成物に分解され、水柱中での蓄積がより少なくなる。
【0065】
パルプ&紙:
紙の製造で使用される場合、殺生物剤型化学殺菌剤の置換が、パルプ化タンクで可能であり、これらは伝統的に、製紙における生物膜成長および汚れを防止するために使用されている。細菌および病原体コロニー数は低減し、生物膜成長物は排除され、および汚れは排除される。加えて、ローラー上のデンプンの蓄積が、デンプンの分子構造が組成物により可溶化されるにつれ、実質的に低減される。
【0066】
嫌気性消化:
嫌気性消化システムで使用される場合、この組成物は廃棄ストリーム分子構造、とりわけ、脂質成分(最も高いバイオメタン廃棄物成分である)を可溶化し、それらを、メタン生成における変換のためにより容易に利用できるものとする。これはpH中性形態の加水分解である。加えて、組成物の高い濃度の生体利用可能なミネラルおよびビタミンは、ある一定の代謝反応、または廃棄ストリームの生物学的消費に必須の栄養分の重要なアベイラビリティを提供する。
【0067】
土壌改良:
非常に高い希釈で、植物の水やりで使用される場合、組成物は、土壌内の有機成分の溶解度の増加を提供し、植物の根による微量栄養素の取り込み能力を増強し、土壌の水に対する透過性を増加させ、嫌気性スライム増殖物を溶解し、および土壌内の好気性状態を促進する。
【0068】
本発明において使用するのに好適な非イオン性界面活性剤としては下記が挙げられるが、それらに限定されない:脂肪アルコール、アルキルフェノール、脂肪酸および脂肪アミンを含むポリエーテル非イオン性界面活性剤(エトキシル化されている);典型的にスクロースエステル、ソルビタールエステル、アルキルグルコシドおよびポリグリセロールエステルを含むポリヒドロキシル非イオン性(ポリオール)(エトキシル化されても、されていなくてもよい)。本発明の1つの実施形態では、非イオン性界面活性剤は下記、一般式の1つにより表され:
(化1)
H(OCHCHOC
H(OCHCHOR
H(OCHCHOC(O)R
式中、xはアルキルフェノールおよび/または脂肪アルコールまたは脂肪酸に添加されるエチレンオキシドのモル数を表し、Rは、長鎖アルキル基、例えばC-C10ノルマル-アルキル基を表し、ならびにRは、長鎖脂肪族基、例えばC12-C20脂肪族基を表し、特に、非イオン性界面活性剤はエトキシル化オクチルフェノールまたはドデシルアルコールまたはトリデシルアルコールエトキシレートである。非イオン性界面活性剤は相乗的に作用し酵母発酵上清の作用を増強させる。
【0069】
本発明のプロセスで使用される発酵上清生成物はBattistoniらの米国特許第3,635,797号(その全体が本明細書で参照により組み込まれる)で記載されるものと同様に調製され得る。簡単に言うと、酵母、例えばサッカロマイセス・セレビシエが下記を含む培地で培養される:糖源、例えば糖蜜、粗糖、大豆またはそれらの混合物由来のスクロース。約10~約30重量%の糖濃度;約7~約12重量%の濃度の麦芽、例えば糖化性麦芽;約1~約3重量%の濃度の塩、例えばマグネシウム塩、および、特に、硫酸マグネシウムおよび酵母が培地に添加され、最終培養混合物中約1~約5重量%の最終濃度の酵母が得られる。混合物は約26℃~約42℃で発酵が完了するまで、すなわち混合物の泡立ちが終わるまで、通常、発酵温度によって約2~約5日インキュベートされる。発酵の終わりに、酵母発酵組成物は遠心分離され、発酵中に形成された「スラッジ」が除去される。上清(約98.59重量%)は、保存剤または安定化系、例えば安息香酸ナトリウム(約1重量%)、イミダゾリジニル尿素(約0.01重量%)、ジアゾリジニル尿素(約0.15重量%)、塩化カルシウム(約0.25重量%)と混合してもよく、発酵中間体が形成される。pHが、リン酸を用いて約3.7~約4.2に調整される。発酵中間体の組成は、表Iで開示される。(酵母上清は、発明のプロセスで使用する前に、全ての細菌および/または活性酵素を排除するように処理されることに注意されたい



【表1】
【0070】
発酵中間体はジャケット付き混合ケトルを所望の量の発酵上清で充填することにより調製され得る。穏やかに撹拌しながら、pHを、リン酸を用いて約3.7~約4.2に調整する。連続撹拌しながら、安息香酸ナトリウム、イミダゾリジニル尿素、ジアゾリジニル尿素および塩化カルシウムを添加する。混合物の温度をその後、徐々に約40℃まで上昇させ、混合物を連続して撹拌する。温度を約40℃で約1時間維持し、確実に、混合物の成分全てを溶解させる。その後、混合物を約20℃~約25℃まで冷却する。
【0071】
発酵中間体はその後、当技術分野で知られている方法により噴霧乾燥され、発酵上清生成物が、サッカロマイセス・セレビシエ培養物由来の乾燥粉末として提供される。重要なことには、前記乾燥粉末は、米国特許3,635,797号で開示される方法により調製された液体発酵上清生成物とは異なり、米国特許3,635,797号の液体生成物中で見られる細菌および活性酵素を含まない。
【0072】
発酵中間体(液体発酵上清生成物)は、噴霧乾燥された発酵中間体(最終組成物の約20.24重量%)を、保存剤、例えば安息香酸ナトリウム、イミダゾリジニル尿素、ジアゾリジニル尿素、イミダゾリジニル尿素、ジアゾリジニル尿素およびそれらの混合物(最終組成物の約0.16重量%)、非イオン性界面活性剤、例えばエトキシル化オクチルフェノールまたはドデシルもしくはトリデシルアルコールエトキシレート(最終組成物の約9重量%)と混合することにより配合され、本発明の組成物(最終組成物)にされてもよく、組成物は水の添加により100%とされる。本発明の好ましい実施形態では、組成物は約20.24重量%の発酵中間体、約0.1重量%の安息香酸ナトリウム、約0.01重量%のイミダゾリジニル尿素、約0.15重量%のジアゾリジニル尿素、約9重量%のエトキシル化オクチルフェノールもしくはトリデシルアルコールエトキシレートを含む(表IIを参照されたい)。
【表2】
【0073】
最終組成物を調製するための方法は下記の通りである:混合ケトルに所望の体積の水を約20℃~約25℃で入れる。安息香酸ナトリウム、イミダゾリジニル尿素およびジアゾリジニル尿素を、溶液を撹拌しながら添加する。混合物を、固体が分散されるまで撹拌する。エトキシル化オクチルフェノールまたはドデシルもしくはトリデシルアルコールをその後、添加し、撹拌を続ける。発酵中間体をその後、穏やかに撹拌しながら添加する。pHはリン酸を用いて、約3.5~約4.0に調整する。
【0074】
混合およびpH調整後、最終組成物中の成分の最終濃度は表IIIにまとめて示される。
【表3】
【0075】
最終組成物は、以下で記載されるように、廃水中の有機材料を処理するためのゾーンで使用するために希釈される。
【0076】
あるいは、酵母粉末は商業的供給源から入手可能であり、前記酵母粉末は、非イオン性界面活性剤と組み合わされてもよく、この発明のプロセスを実施するのに好適な組成物が提供される。例えば、TASTONE 154 (TT154-50)は、非イオン性界面活性剤と配合され、表IIIの組成物と同様の組成物が提供され得る。
【0077】
この組成物を調製するための方法は下記の通りである:混合ケトルに所望の体積の水を約20℃~約25℃で入れる。Tastone 154を、溶液を撹拌しながら添加する。ブレンドが均一になるまで混合物を撹拌する。連続工程で、Tergitol 15-S-7、Tergitol 15-S-5、Dowfax 2A1、Triton H66およびIntegra 44を、各添加後、均一となるまで得られたブレンドを撹拌しながら添加する。pHをその後、リン酸を用いて6+/-0.5に調整する。(Tergitol 15-S-7およびTergitol 15-S-5は非イオン性界面活性剤である。Dowfax 2A1およびTriton H66はアニオン性界面活性剤である。Integra 44は殺生物剤である)。
【0078】
混合およびpH調整後、最終組成物の成分の最終濃度は、表IVにまとめて示される。
【表4】
【0079】
廃水を処理する際に使用するために、最終組成物、すなわち表IIIまたはIVの組成物は百万分率もの高さまで希釈される。他の使用のためには、最終組成物を10に1の小ささだけに希釈することが望ましい場合がある。当業者は、そのような組成物の希釈物を使用することができること、特定の目的のための過剰希釈により、消化速度が減少する可能性があること、ならびに特定の目的のための過小希釈により、分解速度を増加させずにコストが増加することに気付く。理想的には、最終組成物は、特定の廃棄物の分解速度を最適化し、コストを最小に抑えるように希釈される。
【0080】
使用中、本発明の組成物は、廃水処理プラントで通常見出される細菌の活性を増強させることにより、汚染物を分解し、予想外に、発生するバイオガスの量を増加させ、一方、揮発性の匂いのする化合物(VOC)および処理ゾーンからの排出物の体積および重量を減少させる。
【0081】
好気性プロセスでは、上記界面活性剤および酵母発酵上清組成物が使用されて、細菌の存在下、汚染物が分解され、細菌が利用できる酸素を代謝するにつれ、DOが減少する。非イオン性界面活性剤および酵母発酵上清生成物は相乗的に作用し、分解速度を増強させ、DOを増加させる。そのような好気性プロセスでは、界面活性剤は単独では、または酵母発酵上清は単独では、それらが組み合わされた特に観察される増強された活性は得られない。
【0082】
驚いたことに、本発明の組成物は、活性酵素または細菌が欠如した場合であっても、溶存酸素レベルおよび酸素移動を増加させることが見出されている。本発明の組成物は、通気装置および空気拡散システムを用いて得られる機械的手段により得られるレベルを超え、それ以上に、増加した水塊中の溶存酸素レベルを提供し、よって、前記水塊中の有機汚染物が低減する。
【0083】
その上、以下で記載されるように、本発明の組成物の高度に濃縮されたバイオ栄養分濃度は、前記水塊中に存在する微生物の刺激を提供する。
【0084】
本発明の組成物における非イオン性界面活性剤およびバイオ栄養分の組み合わせにより、本発明の組成物で処理される水塊からの有機汚染物質の除去速度の相乗的低減が得られる。
【0085】
よって、本発明の組成物は、汚染された水塊および閉ループ水系を処理する、匂いを除去する、脂肪、油およびグリース(石油炭化水素を含む)を浄化する、ならびに生物学的に生成された構造バイオフィルムを分解するのに有用である。
【0086】
本発明の組成物の作用メカニズムは、機能性の2つの相乗的および優遇(complimentary)局面に向けられる;有機廃棄物、特により難分解性の脂質の分子構造の生体触媒作用の加速および水中への酸素移動の増強。
【0087】
これらのツインメカニズムは、通気による酸素が、有機汚染物を低減させる生物学的プロセスにより必要とされるエネルギーとして使用される全ての廃水および水処理用途において出くわす制限因子を克服する際に共に働く。これらのツインメカニズムはまた、閉ループ水熱伝達システム、パルプおよび紙加工処理、下水収集システム、排水管路、および生物学的汚損および汚染の形成を抑止するために殺生物剤を使用する任意の水処理システムにおける生物学的汚損およびバイオフィルム成長に対する別のモデルを効果的に提供することに関する。
【0088】
嫌気性プロセスでは、有機廃棄材料を上記界面活性剤および酵母発酵上清組成物の組み合わせを用いて処理することにより、同様の利点が得られる。その上、好気性プロセスのように、嫌気性プロセスにおいて最終組成物の使用中に観察される分解の増強は、最終組成物が処理される廃水と接触する時間に比例する。よって、最終組成物はできるだけ早い機会に廃水に添加されることが望ましい。好ましくは、最終組成物は、廃水処理プラントの嫌気性または好気性ゾーンの上流で添加される。最終組成物は、最終組成物を廃水中に連続してポンピングすることにより廃水に添加してもよく、または、嫌気性または好気性ゾーンにおいて最終組成物の所望の希釈に到達するように、要望通りバッチで添加してもよい。
【0089】
理論に縛られることは望まないが、処理される廃水ストリームは、廃水中にすでに存在する細菌を養い、よって、前記細菌の濃度を増加させる、および/または別様に、すでに存在する細菌により生成される酵素の量を増加させることにより、前記細菌の活性を増強させることにより、酵母発酵上清中に存在するバイオ栄養分から恩恵を受けると考えられる。よって、酵母発酵上清は本発明プロセスを実施するために活性酵素の存在を必要とせず、むしろ、対象となる活性酵素はインサイチューで生成される。
【0090】
発酵上清は下記バイオ栄養分を下記量で含み得る:
ビタミンmg/100g 推奨 範囲
ビオチン 0.1 0.01-1
葉酸 5.6 1.0-10.0
ナイアシン 54.1 10.0-90.0
インソチル 130 10.0-250
パントテン酸 7.3 1.0-10.0
ピロドキシンHCl 5.6 1.0-10.0
リボフラビン 12 1.0-20.0
チアミン 8.3 1.0-20.0

ミネラルmg/100g
Ca 141
Cr 0.4
Cu 0.2
Fe 8.5
Mg 208
P 1770
K 3790
Na 2660
Zn 1380

アミノ酸mg/100g
アラニン 3980
アルギニン 2640
アスパラギン酸 5800
シスチン 568
グルタミン酸 7520
グリシン 2800
リジン 4570
メチオニン 964
フェニルアラニン 2450
プロリン 2180
セリン 2840
スレオニン 2730
【0091】
よって、この発明のプロセスで使用される組成物は酵母培養物、例えばサッカロマイセス・セレビシエ培養物由来の酵素を含まない発酵上清生成物を、非イオン性界面活性剤と共に含むことができ、前記上清生成物は、廃水ストリームをインサイチューで処理するのに必要な細菌を生成させるのに十分な型および量のバイオ栄養分を含む。例えば、前記組成物は下記を含み得る:
【表5】
【表6】
または
【表7】
【0092】
上記発酵上清生成物、すなわち、表IIIのサッカロマイセス・セレビシエ培養物由来の噴霧乾燥された粉末またはTastone 154は、下記の通り、ビタミン、ミネラルおよびアミノ酸を含み得る:
【表8】
【0093】
発明はさらに下記実施例により説明され、これらは、発明を実施する特定の様式を説明するものであり、特許請求の範囲を制限するものとして意図されない。
【0094】
実施例1
本発明のプロセスは食品製造プラントからの排出物の処理により例示され得る。2つの連続する嫌気性バイオリアクターは流入ウェットウェル(複数可)(そこでは食品製造からの排出物が収集される)の後のラインに存在する。
【0095】
流速は75万ガロン/日である。嫌気性バイオリアクターでは、ウェットウェルからの流れは、上記表IIIで記載される組成物と接触させられる。廃水の流れおよび表IIIの組成物の比は0.0000667%~0.0002667%まで変動する。嫌気性ゾーンでの処理後、バイオリアクターからの液体排出物は、1つ以上の通気ラグーンに導かれ、さらに処理される。バイオリアクターからのガス状排出物は収集され、燃やされるかリサイクルされ(リサイクル前に、例えば、そのBTU値を増加させるように処理されてもよい)、バイオリアクターまたは製造プロセスのための熱蒸気を発生させるために使用される食品加工ボイラーに熱を提供するのに使用される。
【0096】
バイオリアクターへの流入物の表IIIの組成物による処理は、生成されるバイオガス、すなわちバイオメタンの量を増加させることが見出された。これは驚くべき結果である。というのも、表IIIの組成物は活性酵素を欠いているからである。加えて、排出物のスラッジ体積が低減される。
【0097】
実施例2
この発明のプロセスの別の実施例では、大型チーズ製造プラントからの廃水が嫌気性消化ゾーンにおいて、上記表IIIの組成物を用いて、0.0220~0.1484表IIIの組成物流入物の比で処理される。嫌気性ゾーン中の平均滞留時間は流入流量によって2.72~4.28日である。前記処理中の温度は約94~約102°Fである。この試験では、TCODの除去速度は増加する。この増加は驚くべきである。というのも、表IIIの組成物は活性酵素を欠いているからである。
【0098】
実施例3
本発明のプロセスはまた、自治体源からの下水スラッジの処理において使用される。この試験では、自治体下水処理プラントの嫌気性ゾーンへの流入物は、上記表IIIの組成物と、.0271~.122のESP Gal/100gal一次供給スラッジの比および92~102°Fの温度で接触される。嫌気性ゾーン中の下水スラッジおよび最終組成物の混合物のこの滞留時間は、嫌気性消化装置への流入一次供給負荷によって15~18日である。典型的な自治体廃水処理施設は各人に対し1000ガロン/日の廃水を処理する。
【0099】
およそ1.0立方フィート(ft)の消化ガスが嫌気性消化装置により一人/日あたり生成される。
【0100】
嫌気性消化装置により生成されるバイオガスの発熱量は、およそ600イギリス熱単位/立方フィート(Btu/ft)である。
【0101】
この実施例では、下記結果が得られる:
T.S.除去速度が増加する。
T.V.S.除去速度が増加する。
スラッジ体積が低減される。
バイオガスの実際の生成が増加する。
【0102】
これらの結果は驚くべきである。というのも、表IIIの組成物は活性酵素を欠いているからである。上記実施例1~3で記載されるプロセスは、表IVの組成物を用いて繰り返すことができ、同様の結果が得られる。
【0103】
本発明は、例示される実施形態により、範囲が制限されるものではなく、例示される実施形態は、発明の特定の態様の説明として意図されるにすぎない。本明細書で開示されるものに加えて、最初に出願された特許請求の範囲を含む明細書を注意深く読むことにより、発明の様々な改変が当業者には明らかになるであろう。例えば、特定的に本明細書で記載されていないが、この発明のプロセスから発生するバイオガスは燃料電池用途で使用され得る。
【0104】
加えて、サッカロマイセス・セレビシエ培養物由来の発酵上清生成物および非イオン性界面活性剤の組み合わせを含む上記生成物は、本発明者らの一人により前に開示されたプロセスのいずれかで使用され得る。米国特許第5,820,758号(水の塊の脱臭);5,849,566号(炭化水素の分解);5,879,928号(自治体および工業廃水の処理)および5,885,950号(グリーストラップの浄化)を参照されたい。
【0105】
北東地域バイオマスプログラム(Northeast Regional Biomass Program)はXENERGY, Inc.と共に、バイオ燃料を定置型燃料電池技術と共に使用する可能性を検査する包括的な研究を完了した。所見により、バイオマス系燃料電池システムは、技術的な観点から、長期にわたり、清浄で、再生可能な電気の源を提供することができることが示される。加えて、燃料電池は、世界中いくつかの埋立地および廃水処理プラント(ならびに醸造所および農場)での稼働で、それらが生成させるメタンガスから電力を発生させ、プロセスにおける有害な放出物を低減させるこの適用で、成功していることが判明している。
【0106】
燃料電池は米国全土およびアジアにおける埋立地および廃水処理施設で動作されている。例えば、コネティカット州グロトン埋立地は1年につき600,000kWhの電気を、140kWの連続正味燃料電池出力で、生成しており、UTC Powerの(以前はIFC/ONSI)燃料電池システムはニューヨーク州内のヨンカーズ廃水処理プラントで、160万kWh超の電気/年を生成させ、一方、72ポンドの放出物しか環境中に放出していない。オレゴン州ポートランドでは、燃料電池は廃水施設からの嫌気性消化ガスを使用して電力を生成し、これは、150万kWhの電気/年を発生させ、実質的に処理プラントの電気料金が低減される。
【0107】
Fuel Cell Energy, Inc.(FCE)は世界中の廃水処理計画でそのDirectFuelCell(登録商標)(DFC)発電所を導入している。
【0108】
FCEおよびUTCはどちらも、いくつかの醸造所で燃料電池を導入しており-Sierra Nevada、Kirin、AsahiおよびSapporo-醸造プロセスからの排出物から生成されるメタン様消化ガスを使用して、燃料電池に電力を供給している。
【0109】
本発明のプロセスはバイオガスを発生させるために使用することができ、これは、廃棄物から電力を発生させる上記商業プロセスのいずれかで使用され得る。
【0110】
そのような改変は全て添付の特許請求の範囲内含まれることが意図される。