IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ リオン株式会社の特許一覧

<>
  • 特許-電気機械変換器及び電気音響変換器 図1
  • 特許-電気機械変換器及び電気音響変換器 図2
  • 特許-電気機械変換器及び電気音響変換器 図3
  • 特許-電気機械変換器及び電気音響変換器 図4
  • 特許-電気機械変換器及び電気音響変換器 図5
  • 特許-電気機械変換器及び電気音響変換器 図6
  • 特許-電気機械変換器及び電気音響変換器 図7
  • 特許-電気機械変換器及び電気音響変換器 図8
  • 特許-電気機械変換器及び電気音響変換器 図9
  • 特許-電気機械変換器及び電気音響変換器 図10
  • 特許-電気機械変換器及び電気音響変換器 図11
  • 特許-電気機械変換器及び電気音響変換器 図12
  • 特許-電気機械変換器及び電気音響変換器 図13
  • 特許-電気機械変換器及び電気音響変換器 図14
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2021-12-15
(45)【発行日】2022-01-14
(54)【発明の名称】電気機械変換器及び電気音響変換器
(51)【国際特許分類】
   H04R 11/02 20060101AFI20220106BHJP
【FI】
H04R11/02
【請求項の数】 7
(21)【出願番号】P 2018087211
(22)【出願日】2018-04-27
(65)【公開番号】P2019193218
(43)【公開日】2019-10-31
【審査請求日】2021-03-18
(73)【特許権者】
【識別番号】000115636
【氏名又は名称】リオン株式会社
(74)【代理人】
【識別番号】100110881
【弁理士】
【氏名又は名称】首藤 宏平
(72)【発明者】
【氏名】岩倉 行志
【審査官】殿川 雅也
(56)【参考文献】
【文献】特許第5653543(JP,B1)
【文献】特開2017-152903(JP,A)
【文献】米国特許第06075870(US,A)
【文献】特開2007-074499(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04R 11/00-11/06
11/14-15/02
19/00-19/04
21/00-21/02
23/00-23/02
31/00
(57)【特許請求の範囲】
【請求項1】
電気信号を機械振動に変換する電気機械変換器において、
少なくとも1対の磁石と、前記磁石による磁束を導くヨークと、前記電気信号が供給されるコイルとを一体的に配置した構造部と、
第1の方向に延びる中心軸に沿って前記構造部の内部空間を貫く内側部と当該内側部の両側に突出した外側部とが形成され、前記内側部のうち互いに逆向きの前記磁束が導かれる2つの領域を介して前記構造部と磁気回路を構成し、前記磁気回路の磁気力により前記第1の方向と直交する第2の方向に変位するアーマチュアと、
両側の前記外側部の各々を前記第2の方向に挟んで対称配置され、前記磁気回路の磁気力による前記アーマチュアの変位に応じた復元力を前記外側部にそれぞれ付与する弾性部材と、
を備え、
各々の前記弾性部材には、前記構造部に係合する第1の係合部と、前記外側部に係合する第2の係合部とが形成され、
前記弾性部材、前記構造部及び前記外側部を含む領域を、前記第1及び第2の方向に平行かつ前記中心軸を含む平面により第1の領域と第2の領域とに区分し、前記第1の方向及び前記第2の方向に垂直な方向を第3の方向としたとき、
前記第1の係合部を介して各々の前記弾性部材と前記構造部との間において前記第2の方向に作用する力を、前記第1の領域の第1の作用点に作用する第1の合力と、前記第2の領域の第2の作用点に作用する第2の合力とで表し、
かつ、前記第2の係合部を介して各々の前記弾性部材と前記外側部との間において前記第2の方向に作用する力を、前記第1の領域の第3の作用点に作用する第3の合力と、前記第2の領域の第4の作用点に作用する第4の合力とで表すと、
前記第3の方向において、前記第1の作用点と前記第2の作用点との間の第1の距離に比べ、前記第3の作用点と前記第4の作用点との間の第2の距離が2倍以上に設定される、
ことを特徴とする電気機械変換器。
【請求項2】
前記ヨークには、前記第1の方向の両側の領域に、前記弾性部材がそれぞれ前記第1の係合部を介して係合するアンカー部材が取り付けられていることを特徴とする請求項に記載の電気機械変換器。
【請求項3】
各々の前記アンカー部材は、前記第1の距離と等しい幅を有する略矩形の断面形状に形成されることを特徴とする請求項に記載の電気機械変換器。
【請求項4】
前記アーマチュアの両側の前記外側部には、前記第2の係合部を介して前記弾性部材が係合する切欠部が形成されていることを特徴とする請求項2又は3に記載の電気機械変換器。
【請求項5】
各々の前記弾性部材には、前記アンカー部材に係合する1つの前記第1の係合部と、前記外側部の2つの前記切欠部に係合する前記第2の係合部とがそれぞれ形成されていることを特徴とする請求項に記載の電気機械変換器。
【請求項6】
前記弾性部材は、板状部材を折り曲げ加工して形成されたバネ部材であることを特徴とする請求項1からのいずれか1項に記載の電気機械変換器。
【請求項7】
請求項1からのいずれか1項に記載された電気機械変換器と、
前記電気機械変換器が発生した振動に応じて音圧を発生する振動板と、
を備えることを特徴とする電気音響変換器。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電気信号を機械振動に変換する電気機械変換器、及び、電気信号を音響に変換する電気音響変換器に関し、特にアーマチュア、ヨーク、コイル、磁石等からなる駆動部を備えた電気機械変換器及び電気音響変換器に関するものである。
【背景技術】
【0002】
バランスド・アーマチュア形の電気音響変換器は、アーマチュア、ヨーク、コイル、及び磁石などを備え、コイルに供給される電気信号に応じてアーマチュアを駆動し、アーマチュアと他の部材との間の相対振動を音響に変換するように構成される。例えば、アーマチュアがヨークに対してバネ部材を介して位置決めされる構造が提案されている(例えば、特許文献1参照)。特許文献1の図3及び図4に示すように、アーマチュアに係合する上下1対のバネ部材がヨークとの間に介在しているので、アーマチュアの設計の自由度を高めて小型高出力化できる構造となっている。上記の構造を採用する場合において十分な性能を確保するためには、ヨークの位置に対してアーマチュアの位置を適切に定めることが求められ、そのためにはアーマチュアとヨークの間に置かれるバネ部材の役割が重要である。
【先行技術文献】
【特許文献】
【0003】
【文献】特許第5653543号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1の構造を採用する場合のアーマチュアの位置は、上下に配置される磁石との間の空隙をできる限り等しくすることに加えて、アーマチュアがその長手方向となるX方向に延びる中心軸(以下、単に「中心軸」という)に対して回転して傾くことがないことが望ましい。前述の特許文献1の構造は、アーマチュアの上下方向の位置決めには有効であるが、アーマチュアの中心軸に対する傾きを抑制する効果は不十分である。具体的には、特許文献1の図4を参照すると、各々のバネ部材は、ヨーク及びアーマチュアに係合する上下の部分の寸法が互いにほぼ等しくなっている。通常、バネ部材は撓んだ状態で配設されるが、機械加工部品であることから、その形状はある程度のバラツキを有する。そのため、バネ部材が均一に撓まず、その結果としてアーマチュアがその中心軸に対し回転して傾き、エアギャップが平行な隙間にならないという問題がある。アーマチュアが傾いた状態では、電気機械変換器の所望の性能が得られないことや、性能のバラツキにつながり、歩留まりの低下が懸念される。特に、電気機械変換器を大型化してアーマチュアの幅を拡大した場合には、一層アーマチュアが傾きやすくなるため問題が大きくなる。
【0005】
本発明はこれらの問題を解決するためになされたものであり、アーマチュアがヨークに対してバネ部材を介して位置決めされる構造を採用する場合、アーマチュアの中心軸に対する傾きを抑制することで、良好な性能が確保でき構造上の自由度が高い電気機械変換器を提供するものである。
【課題を解決するための手段】
【0006】
本発明に係る実施形態の一例は、電気信号を機械振動に変換する電気機械変換器において、少なくとも1対の磁石(15)と、前記磁石による磁束を導くヨーク(10、11)と、前記電気信号が供給されるコイル(12)とを一体的に配置した構造部と、第1の方向(X方向)に延びる中心軸に沿って前記構造部の内部空間を貫く内側部(13a)と当該内側部の両側に突出した外側部(13b)とが形成され、前記内側部のうち互いに逆向きの前記磁束が導かれる2つの領域を介して前記構造部と磁気回路を構成し、前記磁気回路の磁気力により前記第1の方向と直交する第2の方向(Z方向)に変位するアーマチュア(13)と、両側の前記外側部の各々を前記第2の方向に挟んで対称配置され、前記磁気回路の磁気力による前記アーマチュアの変位に応じた復元力を前記外側部にそれぞれ付与する弾性部材(14a、14b、14c、14d)を備えて構成される。各々の前記弾性部材には、前記構造部に係合する第1の係合部(E1)、前記外側部に係合する第2の係合部(E2)が形成され、前記第1の方向及び前記第2の方向に垂直な方向を第3の方向(Y方向)としたとき、前記第1の係合部を介して各々の前記弾性部材と前記構造部との間において、前記第2の方向の力が作用する幅は前記第3の方向で第1の距離(2b)を有し、前記第2の係合部を介して各々の前記弾性部材と前記外側部との間において、前記第2の方向の力が作用する幅は前記第3の方向で第2の距離(2a)を有し、前記第1の距離に比べ、前記第2の距離を2倍以上とすることで、前記弾性部材と前記構造部材との間の力によって生じる前記アーマチュアの前記中心軸回りのモーメントを小さくし、かつ前記第2の距離を大きくすることによって前記アーマチュアが前記中心軸に対して回転し難くする。
【0007】
本発明の電気機械変換器によれば、弾性部材の各々は、第1の係合部を介して構造部に係合するとともに、第2の係合部を介してアーマチュアの外側部に係合しており、所定位置に位置決めされたアーマチュアがコイル電流による磁気力により相対的に変位したときにアーマチュアに復元力を付与する。各々の弾性部材においてアーマチュアの中心軸に対して対称的な力が作用するが、弾性部材と構造部との間の力が作用する幅である第1の距離(2b)と、弾性部材と外側部との間の力が作用する幅である第2の距離(2a)とに関して、2a>2×2bの関係を設定することにより、アーマチュアの中心軸に対する傾きを抑制することができる。これにより、アーマチュアの設計の自由度を高めつつ、電気機械変換器等においてアーマチュアが傾くことに起因する性能の劣化を確実に防止することができる。
【0008】
また、上記課題を解決するために、本発明は、電気信号を機械振動に変換する電気機械変換器において、前述と同様の構造部、アーマチュア、弾性部材を備えて構成され、前記弾性部材、前記構造部及び前記外側部を含む領域を、前記第1及び第2の方向に平行かつ前記中心軸を含む平面により第1の領域と第2の領域とに区分し、前記第1の方向及び前記第2の方向に垂直な方向を第3の方向としたとき、前記第1の係合部を介して各々の前記弾性部材と前記構造部との間において前記第2の方向に作用する力を、前記第1の領域の第1の作用点に作用する第1の合力と、前記第2の領域の第2の作用点に作用する第2の合力とで表し、かつ、前記第2の係合部を介して各々の前記弾性部材と前記外側部との間において前記第2の方向に作用する力を、前記第1の領域の第3の作用点に作用する第3の合力と、前記第2の領域の第4の作用点に作用する第4の合力とで表すと、前記第3の方向において、前記第1の作用点と前記第2の作用点との間の第1の距離に比べ、前記第3の作用点と前記第4の作用点との間の第2の距離が2倍以上に設定される。このような構造によっても、前述と同様、本発明の作用効果を実現することができる。
【0009】
本発明において、ヨークには、第1の方向の両側の領域に弾性部材がそれぞれ第1の係合部を介して係合するアンカー部材を取り付けることができる。これにより、第1の係合部の幅に合わせて、ヨークの弾性部材係合部の幅を小さくしなくてもよいので、ヨークを厚くすることなくアンカー部材を介して弾性部材を係合でき、加工容易性やサイズの小型化の面で有利となる。例えば、各々のアンカー部材を、第1の距離と等しい幅を有する略矩形の断面形状に形成すればよい。
【0010】
本発明において、アーマチュアの両側の外側部には、その中心軸と第2の方向を含む平面に対して対称的な位置に第2の係合部を介して弾性部材が係合する切欠部を形成することができる。このように、アーマチュア自体に切欠部を形成するので、専用の特別な部材を設ける必要がなくなる。また、アーマチュアと弾性部材との位置決めが容易であり、組み立て易い構造となる。
【0011】
本発明において、弾性部材として、板状部材を折り曲げ加工して形成された1対のバネ部材を用いることができる。バネ部材の各々の弾性力を適切に設定することにより、所望の復元力を与えることができる。
【0012】
また、上記課題を解決するために、本発明の電気音響変換器は、前述のいずれかの電気機械変換器と、前記電気機械変換器が発生した振動に応じて音圧を発生する振動板とを備えて構成される。本発明の電気音響変換器においても、上述の電気機械変換器と同様の作用、効果を得ることができる。
【発明の効果】
【0013】
本発明によれば、アーマチュアに対して変位に応じた復元力を与える弾性部材の各々は、構造部とアーマチュアの外側部とに係合しており、その寸法条件として中心軸に対称なそれぞれの2つの合力の作用点間の距離の関係を規定することにより、アーマチュアが中心軸に対して傾きにくい構造を実現することができる。よって、アーマチュアの傾きに起因する性能劣化を有効に防止でき、弾性部材の選別の許容範囲を広げ、歩留まりが高く、良好な性能が確保でき構造上の自由度が高い電気機械変換器等が実現可能となる。
【図面の簡単な説明】
【0014】
図1】本実施形態の電気機械変換器における駆動部をZ方向の一方から見たときの上面図である。
図2図1の電気機械変換器における駆動部をY方向の一方から見たときの正面図である。
図3図1の電気機械変換器における駆動部をX方向の一方から見たときの側面図である。
図4】本実施形態の電気機械変換器における磁気回路部及びバネ部材を含む範囲の分解斜視図である。
図5】磁気回路部を構成する構造部及びアーマチュアの断面を模式的に表した図である。
図6】バネ部材の全体構造を示す斜視図である。
図7】バネ部材の変形例の全体構造を示す斜視図である。
図8】ヨークに設けたアンカー部材の変形例を示す図である。
図9】バネ部材に対応するアーマチュアの構造の変形例を示す図である。
図10】アーマチュアの傾きに関する考察に使用した力学モデルを説明する図である。
図11】釣り合いの状態にあるアーマチュアに仮想的な微小回転を想定した場合の図である。
図12】本実施形態において、図10と同様のバネ部材が、アールを有する断面形状のアンカー部材に係合している部分の模式的な構造例を示す図である。
図13】本実施形態のスピーカユニットの全体構造を示す正面図である。
図14図13のスピーカユニットの分解斜視図である。
【発明を実施するための形態】
【0015】
本発明の好適な実施形態について、図面を参照しながら説明する。ただし、以下に述べる実施形態は本発明を適用した形態の一例であって、本発明が本実施形態の内容により限定されることはない。以下では、電気信号を機械振動に変換する電気機械変換器、及び、電気信号を音響に変換する電気音響変換器に対して本発明を適用した実施形態について説明する。
【0016】
以下、図1図4を参照して、本実施形態の電気機械変換器の基本構造について説明する。図1図4では、互いに直交するX方向(本発明の第1の方向)、Y方向(本発明の第3の方向)、Z方向(本発明の第2の方向)をそれぞれ矢印にて示している。本実施形態の電気機械変換器は、上、下、左、右の方向性を持たないが、以下では説明の便宜のため、各図面内(紙面)の方向(X、Y、Z)に応じて、上、下、左、右の方向を記載する場合がある。
【0017】
図1図4では、本実施形態の電気機械変換器における駆動部を構成する1対のヨーク10、11と、コイル12と、アーマチュア13と、4個のバネ部材14a、14b、14c、14d(以下、単にバネ部材14と総称する場合がある)と、2対(4個)の磁石15とを示している。この駆動部のうち、1対のヨーク10、11、コイル12、4個の磁石15は、一体的に配置された本発明の構造部として機能する。すなわち、構造部の内部空間を貫くアーマチュア13が両側の2対のバネ部材14を介して構造部に対し可動となるように配置されている。なお、本発明の駆動部自体が電気機械変換器であり、多くの応用が可能である。一例を挙げれば、本実施形態では示されないが、駆動部のアーマチュア13の両端でハウジングに固定することにより、その全体が一体的にハウジングに収容されて、補聴器や音響機器等に使用される振動子として構成することができる。
【0018】
1対のヨーク10、11は、上部のヨーク10と下部のヨーク11がZ方向に対向配置された状態で、例えば溶接により一体的に固定される。ヨーク10、11の材料としては、例えば、45%Niのパーマロイ等の軟磁性材料を用いることができる。また、上下のヨーク10、11の内面側の中央に挟まれるように空芯のコイル12が配置される。コイル12には、X方向に開口する貫通孔が形成されるとともに、Y方向の両端に設けられた1対の電極12a(図2参照)がコイル12と電気的に接続されている。コイル12は、ヨーク10、11の内面側と接着剤で固定されている。
【0019】
図4に示すように、ヨーク10、11の内面側のX方向の両端部には、4個の板状の磁石15が対称的に配置されている。すなわち、ヨーク10、11のX方向に関し、一端側で上下に対向する1対の磁石15と、他端側で上下に対向する1対の磁石15が、それぞれヨーク10、11の内面側に接着固定されている。また、それぞれ対向する1対の磁石15の間には空間が形成され、後述の磁気回路の一部をなす。
【0020】
ヨーク10、11の各々には、磁石15の位置からX方向の両側に突出した部分にアンカー部材20a、20b、20c、20d(以下、単にアンカー部材20と総称する場合がある)が固定されている。これらのアンカー部材20の各々は、例えば、SUS304等の材料からなる薄板状の部材を折り曲げ加工して形成され、Y方向の中央が凸状に突出する断面構造を有している。なお、アンカー部材20の役割は、バネ部材14a~14dとヨーク10、11とを係合することであるが、詳細については後述する。ここで、アンカー部材20を設ける代わりに、ヨーク10、11をバネ部材14a~14dと直接係合可能な形状とすることも可能である。ただし、このような構造を有するヨーク10、11は、それらがバネ部材14a~14dと係合する部分の幅を小さくする必要があるので、バネ部材14a~14dから受ける力による変形が起きないよう十分な厚さを確保する必要があるのに対し、アンカー部材20を設ければヨーク10、11を相対的に薄くでき、加工容易性やサイズの面で有利となる。
【0021】
アーマチュア13は、X方向に長尺の平板状部材であり、X方向の一端側の1対の磁石15の間の空間と、コイル12の貫通孔と、X方向の他端側の1対の磁石15の間の空間をそれぞれ貫くように配置されている。コイル12をアーマチュア13の中央に配置した状態で、アーマチュア13と2対(4個)の磁石15との間には平行な隙間が形成されており、それぞれの隙間がエアギャップG1~G4(図5参照)を構成する。4カ所のエアギャップG1~G4は互いにサイズ及び形状が等しく、アーマチュア13が通常動作の範囲内でZ方向に変位したとき、コイル12及び磁石15と接触しない程度の適当な隙間となるように形成される。なお、本実施形態においては、ヨーク10、11、コイル12、及び2対(4個)の磁石15を含む構造部と、アーマチュア13とが一体的に磁気回路を構成する。この磁気回路の構成と作用については後述する。
【0022】
アーマチュア13は、ヨーク10、11に対向する空間(構造部の内部空間)を貫く内側部13aと、内側部13aの両側に突出した外側部13bからなる。内側部13aは、Y方向で各々の磁石15と同程度の幅の矩形部分として形成され、外側部13bは、Y方向で内側部13aよりも細い幅で形成される。また、両方の外側部13bには、Y方向の両側のうち内側部13aの近傍側を部分的に切り欠いた計2対の切欠部C(計4個)が形成されている。なお、切欠部Cの役割は、バネ部材14a~14dとアーマチュア13とを係合することであるが、詳細については後述する。アーマチュア13の材料としては、ヨーク10、11と同様、例えば、45%Niのパーマロイ等の軟磁性材料を用いることができる。
【0023】
4個のバネ部材14(本発明の弾性部材)は、それぞれ板状部材を折り曲げ加工して形成された板バネからなる。X方向の一端側には1対のバネ部材14a、14bがアーマチュア13の一方の外側部13bを挟んでZ方向に対称的な配置で取り付けられ、X方向の他端側には1対のバネ部材14c、14dがアーマチュア13の他方の外側部13bを挟んでZ方向に対称的な配置で取り付けられる。バネ部材14の役割は、アーマチュア13が磁気回路内で構造部に対してZ方向に相対的に変位したとき、その変位の大きさに比例する復元力をアーマチュア13に与えることにある。バネ部材14の材質としては、例えば、SUS301等のステンレス鋼材を用いることができる。
【0024】
ここで、本実施形態の電気機械変換器における前述の磁気回路としての基本的な動作について説明する。図5は、図2の方向から見た電気機械変換器の磁気回路部を構成するヨーク10、11、コイル12、アーマチュア13、4個の磁石15を含む範囲の断面を模式的に表した図である。磁気回路部を構成しない他の部材については図示を省略する。図5の左側の1対の磁石15は上方向に磁化され、図5の右側の1対の磁石15は下方向に磁化されている。このように磁化された4個の磁石15により、ヨーク10、11及びアーマチュア13には、実線矢印にて示す磁束B1が発生する。アーマチュア13において、左側の2個の磁石15に挟まれた領域と、右側の2個の磁石15に挟まれた領域とは、内側部13aのうち互いに逆向きの磁束B1が導かれる2つの領域に相当する。
【0025】
磁束B1のうち前述のエアギャップG1~G4を通る磁束による磁気力がアーマチュア13に作用する。具体的には、アーマチュア13に対し、上側のギャップG1、G3の磁気力が強くなると上向きの力が作用し、下側のギャップG2、G4の磁気力が強くなると下向きの力が作用する。これら4つの力が釣り合っていない場合には、アーマチュア13は力の大きい方に変位する。アーマチュア13はコイル12に電流が流れていないときに上記4つの力が釣り合うように組み立てられる。このとき、ギャップG1を通る磁束とギャップG2を通る磁束がほぼ等しく、かつ、ギャップG3を通る磁束とギャップG4を通る磁束もほぼ等しくなり、アーマチュア13のうちコイル12に囲まれた部分には正味の磁束が流れない状態にある。
【0026】
この状態でコイル12に電流を流すと、アーマチュア13の内側部13aには、コイル電流の方向に応じて、例えば、図5の点線矢印で示す磁束B2が発生する。このとき、図5における各磁束B1、B2の方向性を考慮すると、磁束B2の発生により、上側のギャップG1、G3の磁束はそれぞれ減少し、下側のギャップG2、G4の磁束はそれぞれ増加するので、アーマチュア13が下向きの磁気力を受けて下向きに変位する。その結果、4個のバネ部材14により、下向きに変位したアーマチュア13を元の位置に戻そうとする復元力が作用し、静的には、この復元力と磁気力が釣り合う位置までアーマチュア13は変位する。なお、コイル電流が上記と逆向きである場合は、アーマチュア13が上向きの磁気力を受けて上向きに変位する状態を想定すればよい。
【0027】
ここで、ヨーク10、11、コイル12、4個の磁石15からなる構造部と、アーマチュア13との相対振動は、前述のコイル電流に応じて発生する駆動力により生じるものである。アーマチュア13の両端とハウジングとを十分な剛性をもって固定することで、アーマチュア13と構造部との間に発生した駆動力は、アーマチュア13を通してハウジングに伝達されて振動を生じさせる。以上のように、本実施形態の電気機械変換器は、外部から印加される電気信号に対応する機械振動を発生するように構成される。
【0028】
また、本実施形態のアーマチュア13と両側の2対のバネ部材14との関係については、例えば、特許文献1(図7図8及びその比較説明)に記載されており、駆動力と変位量の両方を大きくして小型高出力の電気機械変換器の実現が可能である。
【0029】
次に図6は、バネ部材14の構造例を示す斜視図である。なお、図6の構造は、配置の対称性に鑑み、4個のバネ部材14a、14b、14c、14dについて共通である。図6に示すように、バネ部材14は、Y方向の両側の2つの湾曲部C1、C2と、ヨーク10、11のアンカー部材20a~20dに係合する係合部E1と、アーマチュア13の外側部13bの切欠部Cに係合する1対の係合部E2とを含む。係合部E1は、1つの内向き凹部の構造を有するのに対し、1対の係合部E2は、板バネの1対の先端部が内側に折り曲げられL字形状を形成して対向する構造を有する。このようにバネ部材14は、本実施形態の電気機械変換器に組み込んだ状態で、係合部E1、E2を介してZ方向の上下のヨーク10、11の各々に設けたアンカー部材20とアーマチュア13との間に挟持される。この場合、バネ部材14はZ方向に若干潰れた状態で保持されるが、X方向及びY方向の動きは係合部E1、E2と切欠部C、アンカー部材20の形状により規制される。
【0030】
バネ部材14としては、図6の構造例に限られることなく多様な変形が可能であり、例えば、図7の変形例の構造を採用することができる。図7の変形例は、バネ部材14の1対の係合部E2に補強板22を取り付けた構造を有し、バネ部材14の全体がひとつながりのリング状になっている。本変形例においては、補強板22を設けたことでバネ部材14がY方向に変形し難くなるので、1対の係合部E2間のサイズを一定に保持することができる。補強板22は、バネ部材14と同程度の厚さの矩形の板状部材であって、例えば、両端部を1対の係合部E2の内側表面に溶接することでバネ部材14に取り付けられる。
【0031】
また、ヨーク10、11に設けたアンカー部材20についても、多様な変形が可能である。例えば、図8に示すアンカー部材23は、アンカー部材20(例えば、図4のアンカー部材20b参照)に対し、各々のX方向の両端に、Z方向に突出する1対の突出部P1を設けた構造を有する。このようなアンカー部材23を用いることにより、バネ部材14の係合部E1がX方向に動くことを規制することができる。
【0032】
さらに、図6の構造例のバネ部材14に対応するアーマチュア13の構造についても多様な変形が可能である。例えば、図9は、内側部13aの両側に突出する外側部13bに切欠部C(図4参照)を設けない構造のアーマチュア13に対しアンカー部材24を取り付けた構造を示している。アンカー部材24は、外側部13aのY方向の両側に固定され、中央の凸状に突出した部分の両端にバネ部材14の1対の係合部E2(図6参照)が係合する。また、アンカー部材24には1対の係合部E2がX方向に動くことを規制する4つの突出部P2が設けられている。なお、アンカー部材24に代え、同様の機能を有する補強板を設けてもよい。このようにアーマチュア13にアンカー部材24又は補強板を設けることにより、バネ部材14のL字形状の部分の高さを高くすることができるので、バネ部材14が外れ難い構造とすることができる。また、上下に対向する1対のバネ部材14(例えば、図10参照)の間の距離を大きくでき、バネ部材14同士の接触を確実に防止することができる。
【0033】
次に、本実施形態におけるアーマチュア13の傾きに対する対策に関し、バネ部材14等に必要な寸法条件について説明する。アーマチュア13は磁気回路の磁気力によりZ方向に変位するが、その際、アーマチュア13がXY平面に平行に配置されることが求められる。すなわち、アーマチュア13が中心軸13c(図10)に対して若干回転して傾くことになると所望の性能を得られなくなるので、アーマチュア13の傾きを抑制できるように、バネ部材14を組み込んだときの寸法条件を定めることが重要である。以下、図10を参照して、アーマチュア13の傾き対策として、バネ部材14とヨーク10、11の各々に設けたアンカー部材20及びアーマチュア13に関する寸法条件を導くための力学モデルを説明する。
【0034】
図10においては、図3と同様の方向から見たアーマチュア13、ヨーク10、11の各々に設けたアンカー部材20、1対のバネ部材14a、14bを含む範囲における模式的な構造を示している。ここで、図10の矢印にて示すように、上部のバネ部材14aに働く4つの力Fa1、Fa2、Fa3、Fa4と、下部のバネ部材14bに働く4つの力Fb1、Fb2、Fb3、Fb4によってそれぞれモデル化する。すなわち、力Fa1、Fa2、Fb1、Fb2は、アーマチュア13からバネ部材14a、14bに対して働く力であり、力Fa3、Fa4、Fb3、Fb4は、上下のヨーク10、11のアンカー部材20a、20bから対向するバネ部材14a、14bに働く力である。また、図10に示すように、上記の力Fa1~Fa4、Fb1~Fb4の各矢印の位置(Y座標)は、それぞれの作用点Pa1、Pa2、Pa3、Pa4、Pb1、Pb2、Pb3、Pb4に相当する。
【0035】
ここで、各々の力Fa1~Fa4、Fb1~Fb4は、実際にはある面積の範囲に分布する力であるが、それらの合力としてモデル化したものである。また、合力の作用点はアーマチュアの中心軸13cの回りの力のモーメントが同じになるように求められた点とする。これにより合力が作用する一点を作用点として定めることができる。例えば、上部のヨーク10のアンカー部材20aからバネ部材14aに働く力Fa3、Fa4を例にとると、バネ部材14aのZ方向の撓みを考慮すると、アンカー部材20aの凸部と係合部E1の凹部の外縁部に力が集中するので、外縁部の位置を作用点Pa3、Pa4として扱うことが適切である。下部のヨーク11のアンカー部材20bとバネ部材14bについても同様である(作用点Pb3、Pb4)。また例えば、アーマチュア13からバネ部材14a、14bに働く力Fa1、Fa2、Fb1、Fb2については、同様にバネ部材14a、14bのZ方向の撓みを考慮すると、切欠部Cと係合部E2が係合する範囲の外縁部に力が集中するので、外縁部の位置を作用点Pa1、Pa2、Pb1、Pb2として扱うことが適切である。
【0036】
図10に示すように、アーマチュア13からバネ部材14aに働く力Fa1、Fa2の作用点Pa1、Pa2は互いに距離2aだけ離れていると仮定する。また、ヨーク10のアンカー部材20aからバネ部材14aに働く力Fa3、Fa4の作用点Pa3、Pa4は互いに距離2bだけ離れていると仮定する。同様に、下部のバネ部材14bに関しても対称性から前述の距離2a、2bを仮定する。なお、以下に示す数式群は、基本的に上部のバネ部材14aに関してのものであるが、対称性から他のバネ部材14b、14c、14dに関しても同様に適用することができる。
【0037】
まず、図10の機械系が釣り合いの状態にあるとする。上部のバネ部材14aに対する力の釣り合い及びアーマチュア13の中心軸13cの回りの力のモーメントの釣り合いから、次の(1)式及び(2)式が成り立つ。
Fa1+Fa2-Fa3-Fa4=0 (1)
Fa1(a+y1)-Fa2(a-y1)-Fa3(b+y2)+Fa4(b-y2)=0 (2)
同様に、下部のバネ部材14bに関し、(1)、(2)式と同様の観点から、次の(3)、(4)式が成り立つ。
-Fb1-Fb2+Fb3+Fb4=0 (3)
-Fb1(a+y3)+Fb2(a-y3)+Fb3(b+y4)-Fb4(b-y4)=0
(4)
ただし、y1:中心軸13cからの作用点Pa1、Pa2の中心位置のY方向のずれ
y2:中心軸13cからの作用点Pa3、Pa4の中心位置のY方向のずれ
y3:中心軸13cからの作用点Pb1、Pb2の中心位置のY方向のずれ
y4:中心軸13cからの作用点Pb3、Pb4の中心位置のY方向のずれ
なお、図10では、y1~y4がいずれも0の場合を示している。y1~y4は製造上の精度から実際には極めて小さくなるが、アーマチュア13の傾きに対するこの影響を考慮するために導入した量である。
【0038】
さらに、アーマチュア13に対する力の釣り合い及び中心軸13cの回りの力のモーメントの釣り合いから、次の(5)式及び(6)式が成り立つ。
-Fa1-Fa2+Fb1+Fb2=0 (5)
-Fa1(a+y1)+Fa2(a-y1)+Fb1(a+y3)-Fb2(a-y3)=0 (6)
【0039】
(1)~(6)式のうち、アーマチュア13からの反作用力Fa1、Fa2、Fb1、Fb2を未知数とし、それぞれを求めると、次の(7)、(8)、(9)、(10)式が導かれる。
Fa1=Fa3{1-(y1-y2)/a}
+(Fa4-Fa3){1-b/a-(y1-y2)/a}/2 (7)
Fa2=Fa3{1+(y1-y2)/a}
+(Fa4-Fa3){1+b/a+(y1-y2)/a}/2 (8)
Fb1=Fb3{1-(y3-y4)/a}
+(Fb4-Fb3){1-b/a-(y3-y4)/a}/2 (9)
Fb2=Fb3{1+(y3-y4)/a}
+(Fb4-Fb3){1+b/a+(y3-y4)/a}/2 (10)
上記の(7)~(10)式を(5)、(6)式に代入することで、次の(11)、(12)式が導かれる。
Fa3+Fa4=Fb3+Fb4 (11)
(Fa4-Fa3+Fb3-Fb4)b-(Fa3+Fa4)y2+(Fb3+Fb4)y4=0 (12)
図10で表される機械系が釣り合いの状態にあるときは、力Fa3、Fa4、Fb3、Fb4の間には、(11)式及び(12)式が成り立つことになる。
【0040】
ここで、(12)式の左辺をNと置くと、(11)式から次の(13)式が導かれる。
N=(Fa4-Fa3+Fb3-Fb4)b-(Fa3+Fa4)(y2-y4) (13)
このNは、アーマチュア13に働く中心軸13cの回りの力のモーメントを表す。(13)式において、第1項は左右の力に差がある場合に働く力のモーメントであり、第2項は左右の力の作用点が中心軸13cに対してY方向で偏りがある場合に働く力のモーメントである。第2項の偏りはy2、y4で表され、通常はy2、y4がゼロになるように設計を行う。しかし、前述したように実際には組立に伴い若干のy2、y4が生じるので、第2項をできるだけ小さく抑えるように組立てを行うことが重要である。一方、第1項のbは設計条件に依存するので、(13)式のモーメントNを小さくしてアーマチュア13の傾きを抑制するには、できるだけ図10の距離2bを小さくする寸法条件で設計を行えばよいことがわかる。
【0041】
次に、釣り合いの状態にあるアーマチュア13が傾いた場合を想定する。図11は、このときの状態を模式的に示しており、中心軸13cを軸として、その回りにアーマチュア13が反時計回りに仮想的に微小な角度θだけ回転したとする。図11においては、上下のバネ部材14a、14bがアーマチュア13を押す力は-Fa1、-Fa2、+Fb1、+Fb2であり、その当初の作用点Pa1、Pa2、Pb1、Pb2が、角度θの微小回転後に作用点Pa1′、Pa2′、Pb1′、Pb2′に変化したとする。例えば、図11の右側に示すように、YZ平面内で、点P(y、z)が点P′(y′、z′)に変化すると、y′=y-zθ、z′=z+yθとなるので、各作用点の変化はYZ座標を含めて次の(14)、(15)、(16)、(17)式で表される。
Pa1(a+y1,c1)→Pa1’(a+y1-c1θ,c1+(a+y1)θ) (14)
Pa2(-(a-y1),c1)→Pa2’(-(a-y1)-c1θ,c1-(a-y1)θ)
(15)
Pb1(a+y3,-c3)→Pb1’(a+y3+c3θ,-c3+(a+y3)θ) (16)
Pb2(-(a-y3),-c3)→Pb2’(-(a-y3)+c3θ,-c3-(a-y3)θ) (17)
ただし、c1:作用点Pa1、Pa2のz座標
c3:作用点Pb1、Pb2のz座標
【0042】
上記の(14)~(17)式の結果から、釣り合いの状態にあるアーマチュア13が微小回転する場合、回転を元に戻そうとする力のモーメントがアーマチュア13に働くことが示される。これは、角度θの微小回転に対し、作用点Pa1、Pb2に働く回転を元に戻す方向への力は増加するのに対し、作用点Pa2、Pb1に働く逆方向への力は減少することから、明らかである。以下、この点について、より詳細に検討する。
【0043】
上部のバネ部材14aに関し、右側のたわみ量をua1及び左側のたわみ量をua2とし、下部のバネ部材14bに関し、右側のたわみ量をub1及び左側のたわみ量をub2とすると、角度θの微小回転による変化は、次の(18)、(19)、(20)、(21)式で表される。
ua1→ua1’=ua1+(a+y1)θ≒ua1+aθ (18)
ua2→ua2’=ua2-(a-y1)θ≒ua2-aθ (19)
ub1→ub1’=ub1-(a+y3)θ≒ub1-aθ (20)
ub2→ub2’=ub2+(a-y3)θ≒ub2+aθ (21)
【0044】
一方、バネ部材14a、14bに働く力Fa1、Fa2、Fb1、Fb2の作用点Pa1、Pa2、Pb1、Pb2から見たバネ部材14a、14bのスティフネスをそれぞれsa1、sa2、sb1、sb2としたとき、次の(22)、(23)、(24)、(25)式で表すことができる。
Fa1=sa1・ua1 (22)
Fa2=sa2・ua2 (23)
Fb1=sb1・ub1 (24)
Fb2=sb2・ub2 (25)
よって、角度θの微小回転により、(22)~(25)式及び(18)~(21)式から、それぞれ次の(26)、(27)、(28)、(29)式を導くことができる。
Fa1’=sa1・ua1’≒Fa1+sa1・aθ (26)
Fa2’=sa2・ua2’≒Fa2-sa2・aθ (27)
Fb1’=sb1・ub1’≒Fb1-sb1・aθ (28)
Fb2’=sb2・ub2’≒Fb2+sb2・aθ (29)
【0045】
すなわち、角度θの微小回転により、アーマチュア13に対してそれぞれ力-Fa1’、-Fa2’、+Fb1’、+Fb2’が働くから、この回転を元に戻そうとする力のモーメントN(θ)は、次の(30)式で表すことができる。
N(θ)=Fa1’(a+y1’)-Fa2’(a-y1’)
-Fb1’(a+y3’)+Fb2’(a-y3’) (30)
ここで、y1′、y3′は、(14)~(17)式から、次の(31)、(32)式で与えられる。
y1’=y1-c1θ (31)
y3’=y3+c3θ (32)
(30)式に(26)~(29)式及び(31)、(32)式を代入し、2次以上の微小量を無視して整理すると、次の(33)式が導かれる。
N(θ)≒Fa1(a+y1)-Fa2(a-y1)-Fb1(a+y3)+Fb2(a-y3)
-(Fa1+Fa2)c1θ-(Fb1+Fb2)c3θ+(sa1+sa2+sb1+sb2)aθ
(33)
【0046】
(33)式のうち最初の4項は、(6)式により0となる。また、(33)式の第5項と第6項に(5)式を適用すると、次の(34)式が導かれる。
N(θ)≒(sa1+sa2+sb1+sb2)aθ-(Fa1+Fa2)(c1+c3)θ (34)
ただし、次の(35)式の関係が成り立つ。
c1≒c3≒c (35)
また、次の(36)、(37)式のように置くことができる。
sa1≒sa2≒sb1≒sb2≒s (36)
ua1≒ua2≒ub1≒ub2≒u (37)
よって、(3)式は、次の(38)式で表すことができる。
N(θ)≒4s(a-uc)θ (38)
【0047】
(38)式においては、通常はa>c、a≫uとなるため、次の(39)式が成り立つ。
-uc≒a>0(39)
すなわち、角度θの微小回転に対して回転を元に戻す方向に力のモーメントN(θ)が働くことになる。よって、(38)式のモーメントN(θ)を大きくしてアーマチュア13が傾き難くするには、できるだけ図10の距離2aを大きくする寸法条件で設計を行えばよいことがわかる。
【0048】
以上説明したように、本実施形態の電気機械変換器においてアーマチュア13の傾きの対策としては、距離2bを小さくし、かつ距離2aを大きくする設計を行うことが求められる。図10において、少なくとも2a>2bの寸法条件を満たす必要があるが、発明者らの検討の結果、電気機械変換器に必要な性能を得るには、距離2aを距離2bに比べて2倍以上に設定することが有効であることがわかった。本実施形態では、このような寸法関係に設定することにより、アーマチュア13に印可される合力とそのモーメントが均衡して中心軸13aの回りの回転を抑制し、アーマチュア13が傾きにくくなるため、常に所望の性能を確保することができる。また、アーマチュア13のサイズを大きくする場合は、アーマチュア13の傾きによる性能劣化が大きな問題となるが、上記の寸法関係を設定することで、アーマチュア13のサイズに関わらず性能向上が可能となる。
【0049】
次に図10に示す構造を異なる観点から説明するために、図12においては、図10と同様のバネ部材14aが、アールを有する断面形状のアンカー部材20aに係合している部分の模式的な構造例を示している。図12の構造例では、アンカー部材20aを介してZ方向の下方に向かう力がバネ部材14aに作用している。この場合、アンカー部材20aの断面形状がアールを有するため、係合部E1のY方向の幅W1に対し、アンカー部材11の中央寄りの範囲で力が作用する範囲のY方向の幅W2は、W1>W2の関係がある。このような構造例を想定すると、前述の距離2bに相当する幅W2(第1の距離に対応)に対し、前述の距離2a(第2の距離)が2倍以上に設定されていれば、本発明の効果を実現することができる。
【0050】
次に、電気信号を音響に変換して外部出力する電気音響変換器の一例として、本発明を適用したスピーカユニットの実施形態について説明する。図13は、本実施形態のスピーカユニットの全体構造を示す正面図であり、図14は、図13のスピーカユニットの分解斜視図である。図13及び図14に示すスピーカユニットは、本発明に係る電気機械変換器を駆動ユニット30として搭載している。駆動ユニット30には、ヨーク10に結合部材31が溶接等により固定されるとともに、アーマチュア13の両端に連結リング32が接着等により固定される。
【0051】
また、フレーム33は、取付板34に溶接等により固定される。振動板35の外周部は、押えリング36で押さえつつ取付板34と接着等により固定される。駆動ユニット30に固定された結合部材31はフレーム33に溶接等により固定される。最後に、連結リング32と振動板35とは、接着等により固定される。また、フレーム33に固定された電気端子37には、駆動ユニット30の電気端子とリード線(不図示)を介して接続され、これによりスピーカユニットの全体が構成される。
【0052】
以上のように、本実施形態に基づいて、本発明に係る電気機械変換器及び電気音響変換器について説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の変更を施すことができる。例えば、本発明に係る電気機械変換器は、使用者の耳甲介腔に装用する補聴器に適用することができる。これにより、電気機械変換器の振動自体とそのハウジングの振動によって発生した音の両方を伝達手段として機能させ、使用者の耳に音を伝達することができる。
【符号の説明】
【0053】
10、11…ヨーク
12…コイル
13…アーマチュア
14…バネ部材
15…磁石
20、23、24…アンカー部材
22…補強板
30…駆動ユニット
31…結合部材
32…連結リング
33…フレーム
34…取付板
35…振動板
36…押えリング
37…電気端子
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14