IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 独立行政法人防災科学技術研究所の特許一覧 ▶ 株式会社中電シーティーアイの特許一覧

<>
  • 特許-雷危険度判定装置 図1
  • 特許-雷危険度判定装置 図2
  • 特許-雷危険度判定装置 図3
  • 特許-雷危険度判定装置 図4
  • 特許-雷危険度判定装置 図5
  • 特許-雷危険度判定装置 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2021-12-16
(45)【発行日】2022-01-14
(54)【発明の名称】雷危険度判定装置
(51)【国際特許分類】
   G01W 1/00 20060101AFI20220106BHJP
   G01S 13/95 20060101ALI20220106BHJP
   G01W 1/10 20060101ALI20220106BHJP
【FI】
G01W1/00 C
G01S13/95
G01W1/10 E
G01W1/10 D
【請求項の数】 5
(21)【出願番号】P 2018021260
(22)【出願日】2018-02-08
(65)【公開番号】P2019138736
(43)【公開日】2019-08-22
【審査請求日】2020-10-20
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成29年度、国立研究開発法人科学技術振興機構 イノベーションハブ構築支援事業、産業技術力強化法第19条の適用を受ける特許出願
(73)【特許権者】
【識別番号】501138231
【氏名又は名称】国立研究開発法人防災科学技術研究所
(73)【特許権者】
【識別番号】599105850
【氏名又は名称】株式会社中電シーティーアイ
(74)【代理人】
【識別番号】100139103
【弁理士】
【氏名又は名称】小山 卓志
(74)【代理人】
【識別番号】100139114
【弁理士】
【氏名又は名称】田中 貞嗣
(72)【発明者】
【氏名】櫻井 南海子
(72)【発明者】
【氏名】清水 慎吾
(72)【発明者】
【氏名】長谷川 晃一
(72)【発明者】
【氏名】内藤 大輔
(72)【発明者】
【氏名】早藤 真樹子
【審査官】佐野 浩樹
(56)【参考文献】
【文献】特開平09-329672(JP,A)
【文献】特開2014-048273(JP,A)
【文献】国際公開第2015/005020(WO,A1)
【文献】特開2009-192311(JP,A)
【文献】特開平10-268064(JP,A)
【文献】特開2017-125833(JP,A)
【文献】米国特許第05621410(US,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01S 7/00 - 7/42 、13/00 -13/95 、
G01W 1/00 - 1/18
(57)【特許請求の範囲】
【請求項1】
積乱雲を検出する二重偏波情報取得部と、
前記二重偏波情報取得部で取得された二重偏波データから三次元データを作成する三次元データ作成部と、
状態変化に関する予め定めた閾値を定義する状態閾値入力部と、
前記三次元データ作成部で作成した現況データ及び過去データから、状態変化が前記閾値以上となる積乱雲を特定して、その積乱雲内の状態変化を計算する状態変化計算部と、
前記状態変化計算部で計算された状態変化から雷発生の危険度を表す雷危険度データを計算する危険度計算部と、
前記危険度計算部が計算した雷危険度データから危険度の高い場所の位置情報を作成する雷情報作成部と、
を備え
前記状態変化計算部は、積乱雲内の霰の体積変化を計算し、
前記状態閾値入力部は、前記状態変化計算部で計算された値と比較する霰の体積の閾値を定義する
ことを特徴とする雷危険度判定装置。
【請求項2】
積乱雲を検出する二重偏波情報取得部と、
前記二重偏波情報取得部で取得された二重偏波データから三次元データを作成する三次元データ作成部と、
状態変化に関する予め定めた閾値を定義する状態閾値入力部と、
前記三次元データ作成部で作成した現況データ及び過去データから、状態変化が前記閾値以上となる積乱雲を特定して、その積乱雲内の状態変化を計算する状態変化計算部と、
前記状態変化計算部で計算された状態変化から雷発生の危険度を表す雷危険度データを計算する危険度計算部と、
前記危険度計算部が計算した雷危険度データから危険度の高い場所の位置情報を作成する雷情報作成部と、
を備え
前記状態変化計算部は、積乱雲内の上昇流の体積変化を計算し、
前記状態閾値入力部は、前記状態変化計算部で計算された値と比較する上昇流の体積の閾値を定義する
ことを特徴とする雷危険度判定装置。
【請求項3】
積乱雲を検出する二重偏波情報取得部と、
前記二重偏波情報取得部で取得された二重偏波データから三次元データを作成する三次元データ作成部と、
状態変化に関する予め定めた閾値を定義する状態閾値入力部と、
前記三次元データ作成部で作成した現況データ及び過去データから、状態変化が前記閾値以上となる積乱雲を特定して、その積乱雲内の状態変化を計算する状態変化計算部と、
前記状態変化計算部で計算された状態変化から雷発生の危険度を表す雷危険度データを計算する危険度計算部と、
前記危険度計算部が計算した雷危険度データから危険度の高い場所の位置情報を作成する雷情報作成部と、
を備え
前記状態変化計算部は、積乱雲内の霰及び上昇流の体積変化を計算し、
前記状態閾値入力部は、前記状態変化計算部で計算された値と比較する霰及び上昇流の体積の閾値を定義する
ことを特徴とする雷危険度判定装置。
【請求項4】
前記現況データ及び前記過去データから積乱雲の移動を予測し、未来の積乱雲の状況を表す未来予測データを作成する移動予測部を備え、
前記状態変化計算部は、前記現況データ、前記過去データ及び前記未来予測データから、状態変化が前記閾値以上となる積乱雲を特定して、その積乱雲内の未来の状態変化を計算し、
前記危険度計算部は、前記未来の積乱雲内の状態変化から未来の雷危険度データを計算し、
前記雷情報作成部は、前記未来の雷危険度データから未来の危険度の高い場所の位置情報、移動方向及び移動速度を作成する
ことを特徴とする請求項1乃至3のいずれか1つに記載の雷危険度判定装置。
【請求項5】
前記三次元データ、前記雷危険度データ及び観測データのうち少なくとも1つを用いて学習処理することで作成された統計情報を前記危険度計算部に入力する観測データ入力部を備える
ことを特徴とする請求項1乃至4のいずれか1つに記載の雷危険度判定装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、雷の危険度を判定する雷危険度判定装置に関する。
【背景技術】
【0002】
従来、雷の発生を気象レーダと外気温度を用いて判定している技術が開示されている(特許文献1参照)。特許文献1に記載された技術は、外気温に基づき凍結高度を決定し、凍結高度よりも上の高度に関する反射率が雷閾値よりも大きいとき雷アイコンを生成し、凍結高度と所定距離値との和における高度の反射率が雹閾値よりも大きいとき雹アイコンを生成する。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2011-128150号公報
【非特許文献】
【0004】
【文献】清水慎吾,前坂剛,「三次元風速場の推定のための変分法を用いた複数台ドップラーレーダデータの解析手法」,防災科学技術研究所研究報告第70号,2007年1月(http://dil-opac.bosai.go.jp/publication/nied_report/PDF/70/70shimizu.pdf)
【文献】TAKEHARU KOUKETSU, 外8名,「A Hydrometeor Classification Method for X-Band Polarimetric Rader: Construction and Validation Focusing on Solid Hydrometeors under Moist Environments」,American Meteorological Society,JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY,VOLUME 32,pp2052-2074,Nov 2015(https://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-14-00124.1)
【文献】HYPERLINK "https://journals.ametsoc.org/author/Hauser%2C+Dani%C3%A8le" Daniele Hauser HYPERLINK "https://journals.ametsoc.org/author/Amayenc%2C+Paul" Paul Amayenc,「Retrieval of Cloud Water and Water Vapor Contents from Doppler Radar Data in a Tropical Squall Line」,American Meteorological Society,JOURNAL OF ATMOSPHERIC SCIENCES,VOL 43,No.8,pp823-838,15 APRIL,1986(https://journals.ametsoc.org/doi/abs/10.1175/1520-0469%281986%29043%3C0823%3AROCWAW%3E2.0.CO%3B2)
【文献】Lawrence D. Carey and Steven A. Rutledge,「The Relationship between Precipitation and Lightning in Tropical Island Convection:A C-Band Polarimetric Radar Study」,American Meteorological Society,MONTHLY WEATHER REVIEW,VOL 128,pp2687-2710,AUGUST 2000(https://journals.ametsoc.org/doi/full/10.1175/1520-0493%282000%29128%3C2687%3ATRBPAL%3E2.0.CO%3B2)
【文献】Gregory N. Seroka, Richard E. Orville, Courtney Schumacher, 「Radar Nowcasting of Total Lightning over the Kennedy Space Center」,American Meteorological Society,WEATHER AND FORECASTING, VOL 27, pp189-204, FEBRUARY 2012(https://journals.ametsoc.org/doi/pdf/10.1175/WAF-D-11-00035.1)
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1に記載された技術は、霰と雷を関係づけて予測したものではないので、予測精度がよくなかった。
【0006】
本発明は、従来技術と比較して、雷の危険度を精度良く予測することが可能な雷危険度判定装置を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明に係る雷危険度判定装置は、
積乱雲を検出する二重偏波情報取得部と、
前記二重偏波情報取得部で取得された二重偏波データから三次元データを作成する三次元データ作成部と、
状態変化に関する予め定めた閾値を定義する状態閾値入力部と、
前記三次元データ作成部で作成した現況データ及び過去データから、状態変化が前記閾値以上となる積乱雲を特定して、その積乱雲内の状態変化を計算する状態変化計算部と、
前記状態変化計算部で計算された状態変化から雷発生の危険度を表す雷危険度データを計算する危険度計算部と、
前記危険度計算部が計算した雷危険度データから危険度の高い場所の位置情報を作成する雷情報作成部と、
を備え
前記状態変化計算部は、積乱雲内の霰の体積変化を計算し、
前記状態閾値入力部は、前記状態変化計算部で計算された値と比較する霰の体積の閾値を定義する
ことを特徴とする。
【0008】
本発明に係る雷危険度判定装置は、
積乱雲を検出する二重偏波情報取得部と、
前記二重偏波情報取得部で取得された二重偏波データから三次元データを作成する三次元データ作成部と、
状態変化に関する予め定めた閾値を定義する状態閾値入力部と、
前記三次元データ作成部で作成した現況データ及び過去データから、状態変化が前記閾値以上となる積乱雲を特定して、その積乱雲内の状態変化を計算する状態変化計算部と、
前記状態変化計算部で計算された状態変化から雷発生の危険度を表す雷危険度データを計算する危険度計算部と、
前記危険度計算部が計算した雷危険度データから危険度の高い場所の位置情報を作成する雷情報作成部と、
を備え
前記状態変化計算部は、積乱雲内の上昇流の体積変化を計算し、
前記状態閾値入力部は、前記状態変化計算部で計算された値と比較する上昇流の体積の閾値を定義する
ことを特徴とする。
【0009】
本発明に係る雷危険度判定装置は、
積乱雲を検出する二重偏波情報取得部と、
前記二重偏波情報取得部で取得された二重偏波データから三次元データを作成する三次元データ作成部と、
状態変化に関する予め定めた閾値を定義する状態閾値入力部と、
前記三次元データ作成部で作成した現況データ及び過去データから、状態変化が前記閾値以上となる積乱雲を特定して、その積乱雲内の状態変化を計算する状態変化計算部と、
前記状態変化計算部で計算された状態変化から雷発生の危険度を表す雷危険度データを計算する危険度計算部と、
前記危険度計算部が計算した雷危険度データから危険度の高い場所の位置情報を作成する雷情報作成部と、
を備え
前記状態変化計算部は、積乱雲内の霰及び上昇流の体積変化を計算し、
前記状態閾値入力部は、前記状態変化計算部で計算された値と比較する霰及び上昇流の体積の閾値を定義する
ことを特徴とする。
【0010】
本発明に係る雷危険度判定装置は、
前記現況データ及び前記過去データから積乱雲の移動を予測し、未来の積乱雲の状況を表す未来予測データを作成する移動予測部を備え、
前記状態変化計算部は、前記現況データ、前記過去データ及び前記未来予測データから、状態変化が前記閾値以上となる積乱雲を特定して、その積乱雲内の未来の状態変化を計算し、
前記危険度計算部は、前記未来の積乱雲内の状態変化から未来の雷危険度データを計算し、
前記雷情報作成部は、前記未来の雷危険度データから未来の危険度の高い場所の位置情報、移動方向及び移動速度を作成する
ことを特徴とする。
【0011】
本発明に係る雷危険度判定装置は、
前記三次元データ、前記雷危険度データ及び観測データのうち少なくとも1つを用いて学習処理することで作成された統計情報を前記危険度計算部に入力する観測データ入力部を備える
ことを特徴とする。
【発明の効果】
【0012】
このような雷危険度判定装置によれば、雷の危険度を精度良く予測することが可能となる。
【図面の簡単な説明】
【0013】
図1】積乱雲内の雷の仕組みを示す。
図2】本実施形態の雷危険度判定装置のシステムブロックを示す。
図3】本実施形態の積乱雲検出のイメージを示す。
図4】積乱雲が発生してから経過する時間に対する各高度での霰の体積を示す。
図5】本実施形態の積乱雲予測システムのシステムブロックを示す。
図6】本実施形態の積乱雲予測システムのフローチャートを示す。
【発明を実施するための形態】
【0014】
本発明にかかる実施の形態を図により説明する。
【0015】
図1は、積乱雲内の雷の仕組みを示す。
【0016】
雷は、積乱雲から発生する。積乱雲は、強い上昇気流によって下層の空気が持ち上げられ、上空で空気中の水蒸気が水滴となることで形成される。気温が氷点下の高度では、雨粒だけでなく霰や氷晶といった氷の粒も形成される。氷の粒は、上昇流の中で周囲の過冷却水滴と呼ばれる水滴と衝突することで成長する。やがて、氷の粒は、上昇気流で支えきれないほど大きくなると、落下し始める。
【0017】
この上昇中および落下時に、氷の粒同士は、ぶつかり合い、大きな粒と小さな粒の間で電荷の受け渡しが発生する。それぞれの氷の粒が帯電する電荷の符号は、雲水量と呼ばれる単位体積あたりの大気に含まれている水の質量と周囲の気温によって決まる。適度な雲水量がある場合は、気温が-10℃より低いところでは、大きな氷の粒はマイナス、小さな氷の粒はプラスの電荷が帯電する。このような氷の粒どうしの衝突が続くと、積乱雲内に多くの電荷が蓄えられる。
【0018】
空気は電気を通さない絶縁体だが、電位差が1メートルあたり300万Vを超えると、絶縁破壊という現象が発生し、空気中を電気が通る放電が始まり、雷が発生する。雷には、落雷と雲放電があり、落雷は積乱雲と地面の間で電気が流れる現象で、雲放電は積乱雲内や異なる積乱雲同士などで電気が流れる現象である。
【0019】
本実施形態の雷危険度判定装置10は、積乱雲内の霰や気流の体積変化を求め、急激な増加が認められた場合に危険であると判定する。
【0020】
図2は、本実施形態の雷危険度判定装置10のシステムブロックを示す。図3は、本実施形態の積乱雲検出のイメージを示す。
【0021】
雷危険度判定装置10は、積乱雲を検出する二重偏波情報取得部11と、三次元データを作成する三次元データ作成部12と、積乱雲の移動を予測する移動予測部13と、積乱雲内の状態変化を計算する状態変化計算部14と、状態変化計算部14で計算された値と比較する閾値を定義し入力する状態閾値入力部16と、状態変化計算部14で計算された状態変化から危険度を計算する危険度計算部17と、三次元データ等を学習処理することで作成された統計情報を入力する観測データ入力部18と、危険度計算部17が計算したデータから危険度の高い場所の位置情報、移動方向及び移動速度を作成する雷情報作成部19と、を備える。
【0022】
本実施形態の二重偏波情報取得部11は、マルチパラメータレーダによって二重偏波データを取得する。二重偏波データは、極座標系の仰角を表すデータでよい。マルチパラメータレーダは、2種類の電波(水平偏波と垂直偏波)を同時に送受信することで、雨粒や氷粒の形などに関わる情報を含む、通常の気象レーダより多くの観測パラメータを計測でき、雨量の正確な把握、雨雲の中の風の観測や、雨、雪、あられなど粒子の種類の判別が可能である。
【0023】
三次元データ作成部12は、二重偏波情報取得部11が取得した複数の極座標系の仰角データを、直交座標系における格子状の三次元データに変換する。例えば、作成される三次元格子データは、反射強度、反射因子差、偏波間位相差変化率、偏波間相関係数等について積乱雲を輪切りのように等高度面で切り出すCAPPI(Constant Altitude Plan Position Indicator)でよい。
【0024】
三次元データ作成部12は、現在の積乱雲の状況を示す現況データを作成すると共に、過去の積乱雲の状況を過去データとして保存しておく。
【0025】
また、2台以上のマルチパラメータレーダが使用可能な場合、デュアル解析によって気流を三次元データで作成してもよい。デュアル解析の入力値は、極座標形のPPI(Plan Position Indicator)形式のドップラー速度を利用すればよい。
【0026】
ドップラー速度は、各レーダにおける視線方向の速度成分である。1台のレーダだけでは、積乱雲がレーダに接近又は離間する方向の成分しか観測できないが、複数台のレーダと流体力学の連続式を解くことで、三次元成分(東西、南北、鉛直)の風の三次元分布が作成可能となる。
【0027】
移動予測部13は、三次元データ作成部12で作成された現況データ及び過去データを用いて積乱雲の移動を予測する。具体的には、過去データと現況データから相互相関数法等によるパターンマッチを行うことで、移動ベクトルを算出し、未来予測データとして出力すればよい。移動予測部13を用いることによって、精度良く未来の雷の予測をすることが可能となる。なお、予測を行わず、過去データと現況データのみ使用する場合には、移動予測部13を用いなくてもよい。
【0028】
図4は、積乱雲が発生してから経過する時間に対する各高度での霰の体積を示す。
【0029】
状態変化計算部14は、三次元データ作成部12で作成された現況データ及び過去データ並びに移動予測部13で作成された未来予測データから積乱雲の状態の変化を計算する。状態変化を評価する変数としては、上昇流の体積、霰と判別された領域の体積、霰の単位体積当たりの質量、鉛直積算した降水粒子の質量、エコー頂高度、又は、等温度面エコー強度のうち少なくとも1つでよい。
【0030】
例えば、計算される状態変化は、状態閾値入力部16から入力される予め定めた閾値以上とする。状態変化計算部14は、過去、現在、未来の三次元データにおいて、同一と思われる積乱雲を特定し、その状態変化を計算する。同一と思われる積乱雲の特定は、既存の積乱雲自動追跡技術を利用すればよい。
【0031】
ここで、状態変化を評価する変数について説明する。図4は、これらの状態変化のうち、一例として霰の体積を示している。
【0032】
上昇流の体積を求めるには、複数台のレーダで観測されたドップラー速度を合成し、風の三成分を推定する。三成分は東西風、南北風、鉛直風であって、鉛直上向きを正とする座標系において、正の鉛直風を上昇流と呼ぶ。閾値以上の上昇流が検出された格子グリッドの総体積を「上昇流の体積」とする。風の三成分を推定する手法は、非特許文献1を参照すればよい。
【0033】
霰と判別された領域の体積は、例えば、二重偏波レーダを用いた降水粒子の判別法を用いて霰と分類された格子グリッドの総体積を求めればよい。二重偏波レーダを用いた降水粒子の判別法は、非特許文献2を参照すればよい。
【0034】
霰の単位体積当たりの質量は、例えば、二重偏波レーダを用いた降水粒子の判別法を用いて霰と分類された格子グリッドにおいて、反射強度及び偏波パラメータ等の測定値から単位体積当たりの質量を推定する手法を用いて算出された各格子グリッドにおける単位体積当たりの質量である。霰の単位体積当たりの質量を推定する手法は、非特許文献3及び4を参照すればよい。
【0035】
鉛直積算した降水粒子の質量は、反射強度および偏波パラメータ等の測定値から単位体積当たりの降水粒子(雨、霰、雪)の質量を推定する手法を用いて、各格子グリッドにおける降水粒子の質量を算出し、各格子グリッドの質量を鉛直方向に積算したものである(非特許文献5参照)。
【0036】
エコー頂高度は、積乱雲内にあるレーダ反射強度の等値面の最高到達高度である。
【0037】
等温度面エコー強度は、気温の三次元分布から気温の等値面を作成し、ある温度の等値面における反射強度をいう。具体的には、-10度程度の霰が負に帯電する温度を選択し、-10度高度における反射強度を抽出すればよい。
【0038】
危険度計算部17は、状態変化計算部14が計算した上昇流の体積変化率、霰の体積変化率、霰の質量変化率、鉛直積算した降水粒子の質量の変化率、エコー頂高度変化率、又は、等温度面エコー強度変化率、並びに、観測データ入力部18から入力される統計情報を用いて、変化率が予め定めた所定値以上の積乱雲を雷の危険度が高いと判定する。危険度の判定は、統計情報によってモデル化される。
【0039】
観測データ入力部18は、三次元データ、雷危険度データ及びLMA(Lightning Mapping Array)センサ等の観測データを用いて学習処理することで作成された統計情報を危険度計算部17に入力する。学習処理をすることによって、より精度良く、雷の危険度を予測することが可能となる。なお、観測データ入力部18は、必ず用いる必要は無い。
【0040】
モデル化された雷危険度データは、水平分布図として出力される。水平分布図は、三次元データ作成部12で作成された現況のデータ及び過去データと移動予測部13で作成された未来予測データをそれぞれ用いて、現況水平分布図及び未来水平分布図として出力される。
【0041】
雷情報作成部19は、危険度計算部17で計算された時系列の雷危険度データと移動予測部13で計算された移動ベクトルを用いて、三次元分布の予測を行う。その後、現況の雷危険度の高い積乱雲の位置、並びに、積乱雲の未来の移動方向及び移動速度を計算する。
【0042】
このように、本実施形態の雷危険度判定装置1によれば、雷の危険度を精度良く予測することが可能となる。
【0043】
図5は、本実施形態の積乱雲予測システムのシステムブロックを示す。
【0044】
積乱雲予測システム1は、雷危険度判定装置10と、受信者の情報を入力する受信者情報入力部4と、積乱雲情報演算部3が演算した積乱雲の情報と受信者情報入力部4から受信者が入力した受信者の情報とからそれぞれの関係を演算する積乱雲・受信者関係演算部5と、積乱雲・受信者関係演算部5が演算した結果を出力する出力部6と、を備える。
【0045】
受信者情報入力部4は、受信者が予め自分の情報を入力するものである。例えば、受信者情報入力部4は、携帯端末等を使用してもよい。受信者が危険か否かを知りたい位置を知らせる受信者の位置情報4a、受信者が設定した危険度のレベル及び距離等を知らせる受信者の危険設定情報4b、受信者が設定した位置ズレの許容範囲を知らせる受信者の位置ズレ許容情報4cを入力する。
【0046】
受信者の位置情報4aは、受信者が現在存在する場所、受信者がこれから移動する場所又は受信者が知りたい場所等でよい。場所は、GPS等の緯度経度情報から特定すればよい。受信者はこれらの場所から少なくとも1つを選択する。
【0047】
受信者の危険設定情報4bは、受信者が設定する危険度の情報である。例えば、受信者は危惧している現象を雨、風、雷、雹の中から少なくとも1つ特定し、その現象の危険度をレベル毎に選択する。危険度は、雨の場合は時間雨量又は積算雨量等、風の場合は風速等、雷の場合は気象庁の定めた雷ナウキャストの活動度等、雹の場合は上空での存在又は落下確認等を参考にして少なくとも注意及び警戒等の2つのレベルを設定すればよい。受信者はこれらのレベルから少なくとも1つを選択する。
【0048】
受信者の位置ズレ許容情報4cは、受信者が設定する位置ズレを許容できる範囲である。例えば、受信者は位置ズレ無し~20kmまでを調整すればよい。位置ズレ距離は、連続的又は段階的に設定可能であればよい。積乱雲の大きさは約10kmなので、その2倍を最大値とすることが好ましい。
【0049】
積乱雲・受信者関係演算部5は、積乱雲の座標系を受信者の座標系に変換して、受信者が設定した位置の危険度レベルを現象毎に時系列で演算する。積乱雲は常に大きさを変え、移動する。また、受信者は、危険度を知りたい現象、位置等が時間毎にかわる場合がある。したがって、座標系をあわせて積乱雲と受信者の関係を演算する。
【0050】
出力部6は、積乱雲・受信者関係演算部5が演算した結果を出力する。出力部6は、受信者が受信者情報入力部4で設定した場所が危険な位置か否かを知らせる危険位置情報6a、受信者が受信者情報入力部4で設定した時刻が危険な時刻か否かを知らせる危険時刻情報6b、受信者が受信者情報入力部4で設定した雨、風、雷又は雹等の種別が危険か否かを知らせる危険種別情報6c、及び、受信者が受信者情報入力部4で設定した危険レベルのどのレベルなのかを知らせる危険レベル情報6d等のうち少なくとも1つを出力する。
【0051】
なお、受信者情報入力部4と出力部6は、パーソナルコンピュータ又は携帯端末等でよい。受信者は、パーソナルコンピュータ又は携帯端末等から受信者の情報及び知りたい情報を入力し、演算された後の積乱雲に関する情報を携帯端末等で見ることができる。
【0052】
図6は、本実施形態の積乱雲予測システムのフローチャートを示す。
【0053】
まず、ステップ1で、雷危険度判定装置10が危険な雷の情報を演算して出力する(ST1)。
【0054】
次に、ステップ2で、受信者情報入力部4が、受信者の情報を取得する(ST2)。取得される受信者の情報は、受信者の位置情報4a、受信者の危険設定情報4b、受信者の位置ズレ許容情報4c等でよい。
【0055】
次に、ステップ3で、積乱雲・受信者関係演算部5が、積乱雲と受信者の関係を演算する(ST3)。積乱雲と受信者の関係は、積乱雲の座標系を受信者の座標系に変換して、受信者が設定した位置の危険度レベルを現象毎に時系列で演算すればよい。
【0056】
次に、ステップ4で、出力部5が、積乱雲と受信者の関係を出力する(ST4)。出力部6は、危険位置情報6a、危険時刻情報6b、危険種別情報6c、及び、危険レベル情報6d等のうち少なくとも1つを出力すればよい。
【0057】
このように、積乱雲予測システム1によれば、雷危険度判定装置1によって雷の危険度を精度良く予測することができ、受信者に的確に積乱雲の情報を知らせることが可能となる。
【0058】
以上、本実施形態の雷危険度判定装置10は、積乱雲を検出する二重偏波情報取得部11と、二重偏波情報取得部11で取得された二重偏波データから三次元データを作成する三次元データ作成部12と、状態変化に関する予め定めた閾値を定義する状態閾値入力部と、三次元データ作成部12で作成した現況データ及び過去データから積乱雲内の状態変化を計算する状態変化計算部14と、状態変化計算部14で計算された状態変化から雷発生の危険度を表す雷危険度データを計算する危険度計算部17と、危険度計算部17が計算した雷危険度データから危険度の高い場所の位置情報を作成する雷情報作成部19と、を備える。したがって、雷の危険度を精度良く予測することが可能となる。
【0059】
また、本実施形態の雷危険度判定装置10は、現況データ及び過去データから積乱雲の移動を予測し、未来の積乱雲の状況を表す未来予測データを作成する移動予測部13を備え、状態変化計算部14は、現況データ、過去データ及び未来予測データから、状態変化が前記閾値以上となる積乱雲を特定して、その積乱雲内の未来の状態変化を計算し、危険度計算部17は、未来の積乱雲内の状態変化から未来の雷危険度データを計算し、雷情報作成部19は、未来の雷危険度データから未来の危険度の高い場所の位置情報、移動方向及び移動速度を作成する。したがって、精度良く未来の雷の予測をすることが可能となる。
【0060】
また、本実施形態の雷危険度判定装置10は、三次元データ、雷危険度データ及び観測データのうち少なくとも1つを用いて学習処理することで作成された統計情報を危険度計算部17に入力する観測データ入力部18を備える。したがって、より精度良く、雷の危険度を予測することが可能となる。
【0061】
また、本実施形態の雷危険度判定装置10では、状態変化計算部14は、積乱雲内の上昇流の体積変化を計算し、状態閾値入力部16は、状態変化計算部で計算された値と比較する上昇流の体積の閾値を定義する。したがって、より精度良く、雷の危険度を予測することが可能となる。
【0062】
また、本実施形態の雷危険度判定装置10では、状態変化計算部14は、積乱雲内の霰の体積変化を計算し、状態閾値入力部16は、状態変化計算部で計算された値と比較する霰の体積の閾値を定義する。したがって、より精度良く、雷の危険度を予測することが可能となる。
【0063】
なお、この実施形態によって本発明は限定されるものではない。すなわち、実施形態の説明に当たって、例示のために特定の詳細な内容が多く含まれるが、当業者であれば、これらの詳細な内容に色々なバリエーションや変更を加えてもよい。
【符号の説明】
【0064】
1…積乱雲予測システム
2…積乱雲検出部
3…積乱雲情報演算部
4…受信者情報入力部
5…積乱雲受信者関係演算部
6…出力部
10…雷危険度判定装置
11…二重偏波情報取得部
12…三次元データ作成部
13…移動予測部
14…状態変化計算部
16…状態閾値入力部
17…危険度計算部
18…観測データ入力部
19…雷情報作成部
図1
図2
図3
図4
図5
図6