(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2021-12-17
(45)【発行日】2022-01-17
(54)【発明の名称】リチウムイオン二次電池用正極およびリチウムイオン二次電池
(51)【国際特許分類】
H01M 4/131 20100101AFI20220107BHJP
H01M 4/62 20060101ALI20220107BHJP
H01M 4/525 20100101ALI20220107BHJP
H01M 4/505 20100101ALI20220107BHJP
H01M 10/0566 20100101ALI20220107BHJP
H01M 10/052 20100101ALI20220107BHJP
【FI】
H01M4/131
H01M4/62 Z
H01M4/525
H01M4/505
H01M10/0566
H01M10/052
(21)【出願番号】P 2018502549
(86)(22)【出願日】2017-01-06
(86)【国際出願番号】 JP2017000201
(87)【国際公開番号】W WO2017149927
(87)【国際公開日】2017-09-08
【審査請求日】2019-10-15
(31)【優先権主張番号】P 2016040757
(32)【優先日】2016-03-03
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】507357232
【氏名又は名称】株式会社エンビジョンAESCジャパン
(74)【代理人】
【識別番号】100110928
【氏名又は名称】速水 進治
(74)【代理人】
【識別番号】100127236
【氏名又は名称】天城 聡
(72)【発明者】
【氏名】藤澤 愛
【審査官】宮田 透
(56)【参考文献】
【文献】特開2014-182873(JP,A)
【文献】特開2008-016267(JP,A)
【文献】特開2012-146590(JP,A)
【文献】特開2012-243645(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 4/13- 4/1399
H01M 4/36- 4/62
H01M 10/05-10/0587
(57)【特許請求の範囲】
【請求項1】
正極用集電体と、前記正極用集電体上に設けられた正極活物質層と、を備えるリチウムイオン二次電池用正極であって、
前記正極活物質層は、正極活物質と、導電助剤と、バインダーとを含み、
前記導電助剤は平均厚さが、0.05μm以上、0.5μm以下である薄片状黒鉛を含み、
前記正極活物質層中の前記導電助剤の含有量は、前記正極活物質層の全体を100質量%としたとき、0.5質量%以上10質量%以下であり、
前記導電助剤中の前記薄片状黒鉛の含有量は、前記導電助剤の全体を100質量部としたとき、1質量部以上95質量部以下であり、
前記正極活物質の平均粒径を活材D
50としたとき、前記薄片状黒鉛の平均粒径が(3×活材D
50/5)以上(9×活材D
50/10)以下であるリチウムイオン二次電池用正極。
【請求項2】
請求項1に記載のリチウムイオン二次電池用正極において、
前記導電助剤が1次粒子の平均粒径が5nm以上500nm以下であるカーボンブラックをさらに含むリチウムイオン二次電池用正極。
【請求項3】
請求項1または2に記載のリチウムイオン二次電池用正極において、
正極活物質がリチウム複合酸化物を含むリチウムイオン二次電池用正極。
【請求項4】
請求項3に記載のリチウムイオン二次電池用正極において、
前記リチウム複合酸化物が、層状結晶構造を有するリチウムニッケル複合酸化物を含むリチウムイオン二次電池用正極。
【請求項5】
請求項3または4に記載のリチウムイオン二次電池用正極において、
前記リチウム複合酸化物が、下記式(1)で表される化合物を含むリチウムイオン二次電池用正極。
Li
aNi
1-xM
xO
2 (1)
(式中、Mは、Li、Co、Mn、Mg、およびAlから選ばれる少なくとも一種であり、0<a≦1、0<x<0.7である)
【請求項6】
請求項1乃至5いずれか一項に記載のリチウムイオン二次電池用正極において、
正極活物質層の密度が3.30g/cm
3以上であるリチウムイオン二次電池用正極。
【請求項7】
請求項1乃至6いずれか一項に記載のリチウムイオン二次電池用正極において、
前記正極活物質の平均粒径(D
50)が0.5μm以上20μm以下であるリチウムイオン二次電池用正極。
【請求項8】
請求項1乃至7いずれか一項に記載のリチウムイオン二次電池用正極において、
前記導電助剤中の前記薄片
状黒鉛の含有量は、前記導電助剤の全体を100質量部としたとき、5質量部以上75質量部以下であるリチウムイオン二次電池用正極。
【請求項9】
請求項1乃至8いずれか一項に記載のリチウムイオン二次電池用正極において、
前記導電助剤中の前記薄片状黒鉛の含有量は、前記導電助剤の全体を100質量部としたとき、10質量部以上50質量部以下であるリチウムイオン二次電池用正極。
【請求項10】
請求項1乃至9いずれか一項に記載のリチウムイオン二次電池用正極と、負極と、非水系電解液とを備えるリチウムイオン二次電池。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、リチウムイオン二次電池用正極およびリチウムイオン二次電池に関する。
【背景技術】
【0002】
リチウムイオン二次電池は、エネルギー密度が高く、充放電サイクル特性に優れるため、携帯電話やノート型パソコン等の小型のモバイル機器用の電源として広く用いられている。また、近年では、環境問題に対する配慮と省エネルギー化に対する意識の高まりから、電気自動車やハイブリッド電気自動車、電力貯蔵といった分野でも需要が高まり、大容量で長寿命を併せ持つリチウムイオン二次電池が望まれている。
【0003】
一般的に、リチウムイオン二次電池は、リチウムイオンを吸蔵放出し得る炭素材料を負極活物質として含む負極と、リチウムイオンを吸蔵放出し得るリチウム複合酸化物を正極活物質として含む正極と、負極と正極とを隔てるセパレータと、非水溶媒にリチウム塩を溶解させた非水系電解液とで主に構成されている。
【0004】
例えば、特許文献1には、正極活物質と導電性物質とを含有する正極合剤を備えた非水電解液二次電池において、平均粒径1~50μmおよび比表面積5~50m2/gの黒鉛粉末を厚さ1μm以下の薄片状に形成した薄片状黒鉛粉末を上記導電性物質として上記正極合剤に対して0.5~9.5質量%の範囲内で添加したことを特徴とする非水電解液二次電池が開示されている。
【0005】
また、特許文献2には、正極活物質と導電性物質とを含有する正極合剤を備えている一次電池であって、上記導電性物質として、厚さ1μm以下、平均粒径1~50μmおよび比表面積5~50m2/gの薄片状黒鉛粉末を含有していることを特徴とする一次電池が開示されている。
【先行技術文献】
【特許文献】
【0006】
【文献】特開平10-233205号公報
【文献】特開平7-147159号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明者の検討によれば、特許文献1等に記載されている正極を用いたリチウムイオン二次電池はサイクル特性に劣る傾向にあることが明らかになった。
【0008】
本発明は上記事情に鑑みてなされたものであり、サイクル特性に優れるリチウムイオン二次電池を実現できるリチウムイオン二次電池用正極、およびサイクル特性に優れるリチウムイオン二次電池を提供するものである。
【課題を解決するための手段】
【0009】
本発明者は鋭意検討した結果、正極活物質に対し、特定の条件を揃えた導電助剤を用いることで、サイクル特性に優れるリチウムイオン二次電池を実現できるリチウムイオン二次電池用正極が得られることを見出した。
【0010】
すなわち、本発明によれば、
正極用集電体と、前記正極用集電体上に設けられた正極活物質層と、を備えるリチウムイオン二次電池用正極であって、
前記正極活物質層は、正極活物質と、導電助剤と、バインダーとを含み、
前記導電助剤は平均厚さが、0.05μm以上、0.5μm以下である薄片状黒鉛を含み、
前記正極活物質層中の前記導電助剤の含有量は、前記正極活物質層の全体を100質量%としたとき、0.5質量%以上10質量%以下であり、
前記導電助剤中の前記薄片状黒鉛の含有量は、前記導電助剤の全体を100質量部としたとき、1質量部以上95質量部以下であり、
前記正極活物質の平均粒径を活材D50としたとき、前記薄片状黒鉛の平均粒径が(3×活材D50/5)以上(9×活材D50/10)以下であるリチウムイオン二次電池用正極が提供される。
【0011】
また、本発明によれば、
上記リチウムイオン二次電池用正極と、負極と、非水系電解液とを備えるリチウムイオン二次電池が提供される。
【発明の効果】
【0012】
本発明によれば、サイクル特性に優れるリチウムイオン二次電池およびこれに好適な正極を提供することができる。
【図面の簡単な説明】
【0013】
上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
【0014】
【
図1】本発明に係る実施形態のリチウムイオン二次電池の構造の一例を示す断面図である。
【発明を実施するための形態】
【0015】
以下に、本発明の実施形態について、図面を用いて説明する。なお、図において各構成要素は本発明が理解できる程度の形状、大きさおよび配置関係を概略的に示したものであり、実寸とは異なっている。また、数値範囲の「~」は特に断りがなければ、以上から以下を表す。
【0016】
<リチウムイオン二次電池用正極>
本実施形態に係るリチウムイオン二次電池用正極は、正極用集電体と、上記正極用集電体上に設けられた正極活物質層と、を備える。
そして、本実施形態に係る正極活物質層は、正極活物質と、導電助剤と、バインダーとを含み、上記導電助剤は平均厚さが0.5μm以下である薄片状黒鉛を含み、上記正極活物質の平均粒径をD50としたとき、上記薄片状黒鉛の平均粒径が(3×活材D50/5)以上(9×活材D50/10)以下である。
ここで、上記正極活物質の平均粒径(活材D50)は、レーザ回折散乱法による粒度分布(体積基準)における積算値50%での粒径(メジアン径)を意味する。
【0017】
また、薄片状黒鉛は平板状の黒鉛である。薄片状黒鉛を平面視したときの形状は、円を含む楕円形、多角形、異形のいずれでもよい。
薄片状黒鉛の平均厚さは、50個以上の薄片状黒鉛の厚さの平均値であり、電子顕微鏡(SEM)で撮影した写真から求めることができる。
具体的には、SEMにより、50個以上の薄片状黒鉛を撮影する。得られたSEM写真から、50個以上の薄片状黒鉛の厚さをそれぞれ測定し、その平均値を薄片状黒鉛の平均厚さとする。
薄片状黒鉛の平均粒径は、レーザ回折散乱法による粒度分布(体積基準)における積算値50%での粒径を意味する。
【0018】
本実施形態に係るリチウムイオン二次電池用正極を用いることにより、サイクル特性に優れたリチウムイオン二次電池を実現できる。
このようなリチウムイオン二次電池を実現できる理由は必ずしも明らかではないが、以下の理由が考えられる。
【0019】
まず、薄片状黒鉛の平均厚さを0.5μm以下とすることにより、薄片状黒鉛の変形性が良好となり、正極活物質の形状に応じて薄片状黒鉛が変形できるため正極活物質層の密度を向上させることができる。
また、上記薄片状黒鉛の平均粒径を(3×活材D50/5)以上(9×活材D50/10)以下の範囲とすることにより、薄片状黒鉛が正極活物質表面に沿って変形でき、電荷移動抵抗の上昇を低減させることができる。
これらの相乗効果によりサイクル特性に優れたリチウムイオン二次電池を実現できると考えられる。
【0020】
薄片状黒鉛の平均厚さの下限値は特に限定されないが、例えば、0.01μm以上であり、ハンドリング性の観点から0.05μm以上が好ましい。
【0021】
正極活物質は、得られるリチウムイオン二次電池の高エネルギー密度化の点から、リチウム複合酸化物を含むことが好ましい。正極活物質は、ニッケルを含有するリチウム複合酸化物(リチウムニッケル複合酸化物)を含むことがより好ましく、層状結晶構造を有するリチウムニッケル複合酸化物を含むことが特に好ましい。
【0022】
本実施形態に係る正極活物質層は、リチウム複合酸化物以外の他の活物質を含んでいてもよいが、得られるリチウムイオン二次電池のエネルギー密度をより高める観点から、正極活物質層に含まれる正極活物質の含有量を100質量%としたとき、正極活物質層中のリチウム複合酸化物の含有量は、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましい。
また、得られるリチウムイオン二次電池のエネルギー密度をより高める観点から、正極活物質層の全体を100質量%としたとき、正極活物質層中の正極活物質の含有量は、80質量%以上が好ましく、85質量%以上がより好ましく、90質量%以上がさらに好ましい。
【0023】
また、リチウムニッケル複合酸化物は、得られるリチウムイオン二次電池のエネルギー密度をより高める観点から、下記式(1)で表される化合物を含むことがより好ましい。
LiaNi1-xMxO2 (1)
(式中、Mは、Li、Co、Mn、Mg、Alから選ばれる少なくとも一種であり、0<a≦1、0<x<0.7である)
【0024】
正極活物質はリチウムニッケル複合酸化物を含む場合、他のリチウム複合酸化物として、スピネル構造を有するリチウムマンガン複合酸化物を含んでいてもよい。
層状結晶構造を有するリチウムニッケル複合酸化物(A)とスピネル構造を有するリチウムマンガン複合酸化物の混合比(B)(質量比A:B)は、十分な混合効果を得ながらより高いエネルギー密度を得る点から、80:20~95:5が好ましく、90:10~95:5がより好ましい。
【0025】
正極活物質の平均粒径(活材D50)は、得られるリチウムイオン二次電池のエネルギー密度と出力特性(高放電レートでの使用時における放電容量)との性能バランスを向上させる観点から、0.5μm以上20μm以下であることが好ましく、1μm以上15μm以下であることがより好ましく、2μm以上12μm以下であることがさらに好ましい。
ここで、正極活物質の平均粒径(活材D50)は、レーザ回折散乱法による粒度分布(体積基準)における積算値50%での粒径(メジアン径:D50)を意味する。
【0026】
正極活物質層は、上記薄片状黒鉛以外の導電助剤を含有してもよい。上記薄片状黒鉛以外の導電助剤としては特に限定されないが、例えば、カーボンブラック、球状黒鉛、炭素繊維等の通常用いられるものを用いることができる。
上記薄片状黒鉛以外の導電助剤は、球状非晶質カーボン粒子で構成された導電助剤を含むことが好ましく、球状非晶質カーボン粒子(1次粒子)の凝集体(2次粒子=1次凝集体)を含むことがより好ましい。このような導電助剤としては、アセチレンブラックやケッチェンブラック等のカーボンブラックが好ましい。
【0027】
上記カーボンブラックの平均粒径は、十分な正極活物質層の密度を有しながら、接触抵抗と電荷移動抵抗が抑えられた正極を得る観点から、2次粒子(1次凝集体)の平均粒径として、3.5μm以下が好ましく、3μm以下がより好ましく、2μm以下がさらに好ましく、また、50nm以上が好ましく、100nm以上がより好ましい。1次粒子の平均粒径は5nm以上500nm以下の範囲にあることが好ましく、10nm以上300nm以下の範囲にあることがより好ましく、50nm以上250nm以下の範囲にあることがさらに好ましい。
ここで、平均粒径は、レーザ回折散乱法による粒度分布(体積基準)における積算値50%での粒径(メジアン径:D50)を意味する。導電助剤の平均粒径が上記の範囲にあることにより、導電助剤と正極活物質の接点がより十分に形成され、また得られるリチウムイオン二次電池の充放電サイクルにおいて、正極活物質の膨張収縮に導電助剤が追従できて導電パスが確保できるため、接触抵抗と電荷移動抵抗の上昇をより抑えることができ、その結果、より一層良好なサイクル特性を有するリチウムイオン二次電池を得ることができる。
【0028】
正極活物質層中の正極活物質の割合が多い方が質量当たりの容量が大きくなるため好ましいが、電極の低抵抗化の点からは導電助剤を添加することが好ましい。
正極活物質層中の導電助剤の含有量は、正極活物質層の全体を100質量%としたとき、好ましくは0.5質量%以上10質量%以下であり、より好ましくは1.0質量%以上8.0質量%以下であり、さらに好ましくは2.0質量%以上6.0質量%以下である。
導電助剤の含有量が上記上限値以下であると、得られるリチウムイオン二次電池中の正極活物質の割合が大きくなり、質量当たりの容量が大きくなったり、電極剥離が抑制されたりするため好ましい。導電助剤の含有量が上記下限値以上であると、導電性がより良好になるため好ましい。
【0029】
導電助剤がカーボンブラックをさらに含む場合、上記薄片状黒鉛とカーボンブラックとの合計を100質量部としたとき、上記薄片状黒鉛の配合量が1質量部以上95質量部以下であることが好ましく、5質量部以上75質量部以下であることが好ましく、10質量部以上50質量部以下であることがさらに好ましい。
【0030】
正極活物質層は、次のようにして形成することができる。まず、正極活物質、導電助剤、バインダーおよびスラリー溶媒を含むスラリーを調製し、これを正極用集電体上に塗布し、乾燥し、プレスすることにより形成することができる。
正極作製時に用いるスラリー溶媒としては、例えば、N-メチル-2-ピロリドン(NMP)を用いることができる。
【0031】
バインダーとしては特に限定されないが、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等の通常正極用バインダーとして用いられるものを用いることができる。
【0032】
正極活物質層中の正極活物質の割合が多い方が質量当たりの容量が大きくなるため好ましいが、電極強度の点からバインダーを添加することが好ましい。
正極活物質層中のバインダーの含有量は、得られるリチウムイオン二次電池のエネルギー密度とバインダーの結着力を両立させる観点から、正極活物質層の全体を100質量%としたとき、1質量%以上15質量%以下が好ましく、1質量%以上10質量%以下がより好ましい。
【0033】
バインダーの含有量が上記上限値以下であると、得られるリチウムイオン二次電池中の正極活物質の割合が大きくなるため質量当たりの容量が大きくなったり、抵抗成分が小さくなったりするため好ましい。バインダーの含有量が上記下限値以上であると、電極剥離が抑制されるため好ましい。
【0034】
正極活物質層の厚みは特に限定されるものではなく、所望の特性に応じて適宜設定することができる。例えば、エネルギー密度の観点からは厚く設定することができ、また出力特性の観点からは薄く設定することができる。正極活物質層の厚みは、例えば、10μm以上250μm以下の範囲で適宜設定でき、20μm以上200μm以下が好ましく、40μm以上180μm以下がより好ましい。
【0035】
また、正極活物質層の密度は、3.30g/cm3以上であることが好ましく、3.45g/cm3以上4.00g/cm3以下であることがより好ましい。正極活物質層の密度を上記範囲内とすると、得られるリチウムイオン二次電池のエネルギー密度と出力特性との性能バランスに優れるため好ましい。
【0036】
正極用集電体としては、アルミニウム、ステンレス鋼、ニッケル、チタンまたはこれらの合金等を用いることができる。その形状としては、箔、平板状、メッシュ状等が挙げられる。特にアルミニウム箔を好適に用いることができる。
【0037】
<リチウムイオン二次電池>
つづいて、本実施形態に係るリチウムイオン二次電池10について説明する。
図1は、本発明に係る実施形態のリチウムイオン二次電池10の構造の一例(ラミネート型)を示す断面図である。
図1に示すように、本実施形態に係るリチウムイオン二次電池10は、本実施形態に係る正極と、リチウムを挿入・脱離可能な負極と、非水系電解液と、を少なくとも備える。また、正極と負極との間にセパレータ5を設けることができる。正極と負極の電極対は複数設けることができる。
【0038】
リチウムイオン二次電池10は、例えば、アルミニウム箔等の金属からなる正極用集電体3と、その上に設けられた正極活物質を含有する正極活物質層1とからなる正極、および銅箔等の金属からなる負極用集電体4と、その上に設けられた負極活物質を含有する負極活物質層2とからなる負極を有する。
正極および負極は、例えば、正極活物質層1と負極活物質層2とが対向するように、不織布やポリプロピレン微多孔膜等からなるセパレータ5を介して積層されている。この電極対は、例えば、アルミニウムラミネートフィルムからなる外装体6、7で形成された容器内に収容されている。正極集電体3には正極タブ9が接続され、負極用集電体4には負極タブ8が接続され、これらのタブは容器の外に引き出されている。
容器内には非水系電解液が注入され封止される。複数の電極対が積層された電極群が容器内に収容された構造とすることもできる。なお、本実施形態においては、説明の都合上、図面を誇張して表現しており、本発明の技術的範囲は、図面に示す形態に限定されない。
【0039】
本実施形態に係るリチウムイオン二次電池10は公知の方法に準じて作製することができる。
電極は、例えば、積層体や捲回体が使用できる。外装体としては、金属外装体やアルミラミネート外装体が適宜使用できる。電池の形状は、コイン型、ボタン型、シート型、円筒型、角型、扁平型等いずれの形状であってもよい。
【0040】
本実施形態に係る負極は、負極活物質と、必要に応じて、バインダーと、導電助剤とを含む負極活物質層を備える。
また、本実施形態に係る負極は、例えば、集電体と、この集電体上に設けられた負極活物質層とを備える。
【0041】
本実施形態に係る負極活物質としては、リチウム金属、炭素材料、Si系材料等のリチウムを吸蔵、放出できる材料を用いることができる。炭素材料としては、リチウムを吸蔵する黒鉛、非晶質炭素、ダイヤモンド状炭素、フラーレン、カーボンナノチューブ、カーボンナノホーン等が挙げられる。Si系材料としては、Si、SiO2、SiOx(0<x≦2)、Si含有複合材料等を用いることができる。また、これらの材料を2種類以上含む複合物を用いても構わない。
【0042】
負極活物質としてリチウム金属を用いる場合は、融液冷却方式、液体急冷方式、アトマイズ方式、真空蒸着方式、スパッタリング方式、プラズマCVD方式、光CVD方式、熱CVD方式、ゾル-ゲル方式等の適宜な方式により負極を形成することができる。
また、負極活物質として炭素質材料やSi系材料を用いる場合は、炭素質材料またはSi系材料とバインダーを混合し、スラリー溶媒中に分散混錬し、得られたスラリーを負極用集電体上に塗布し、乾燥し、必要に応じてプレスすることで負極を得ることができる。また、予め負極活物質層を形成した後に、蒸着法、CVD法、スパッタリング法等の方法により負極用集電体となる薄膜を形成して負極を得ることができる。このようにして作製される負極は、負極用集電体と、この集電体上に形成された負極活物質層を有する。
【0043】
負極活物質の平均粒径は、充放電時の副反応を抑えて充放電効率の低下を抑える点から、1μm以上が好ましく、2μm以上がより好ましく、5μm以上がさらに好ましく、入出力特性の観点や電極作製上の観点(電極表面の平滑性等)から、80μm以下が好ましく、40μm以下がより好ましい。ここで平均粒径は、レーザ回折散乱法による粒度分布(体積基準)における積算値50%での粒子径(メジアン径:D50)を意味する。
【0044】
負極活物質層は、必要に応じて導電助剤やバインダーを含有してもよい。
負極用の導電助剤としては、カーボンブラック、ケッチェンブラック、アセチレンブラック等の炭素質材料等の一般に負極の導電助剤として使用されている導電性材料を用いることができる。
負極用のバインダーとしては、特に制限されるものではないが、ポリフッ化ビニリデン(PVdF)、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合体ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート、ポリブチル(メタ)アクリレート、ポリ(メタ)アクリロニトリル、イソプレンゴム、ブタジエンゴム、フッ素ゴム等が挙げられる。
スラリー溶媒としては、N-メチル-2-ピロリドン(NMP)や水を用いることができる。水を溶媒として用いる場合、さらに増粘剤として、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール等を用いることができる。
【0045】
この負極用のバインダーの含有量は、トレードオフの関係にある結着力とエネルギー密度の観点から、負極活物質層の全体を100質量%としたとき、0.5質量%以上30質量%以下の範囲にあることが好ましく、0.5質量%以上25質量%以下の範囲がより好ましく、1質量%以上20質量%以下の範囲がさらに好ましい。
【0046】
負極用集電体としては、銅、ステンレス鋼、ニッケル、チタンまたはこれらの合金を用いることができる。
【0047】
非水系電解液としては、1種又は2種以上の非水溶媒にリチウム塩を溶解させた電解液を用いることができる。
【0048】
非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ビニレンカーボネート(VC)、ブチレンカーボネート(BC)等の環状カーボネート類;エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;γ-ブチロラクトン等のγ-ラクトン類;1,2-エトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類;テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル類が挙げられる。これらの非水溶媒のうちの1種を単独で、または2種以上の混合物を使用することができる。
【0049】
非水溶媒に溶解させるリチウム塩としては、特に制限されるものではないが、例えばLiPF6、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSbF6、LiCF3SO3、LiCF3CO2、Li(CF3SO2)2、LiN(CF3SO2)2、リチウムビスオキサラトボレートが挙げられる。
これらのリチウム塩は、一種を単独で、または二種以上を組み合わせて使用することができる。また、非水系電解質としてポリマー成分を含んでもよい。リチウム塩の濃度は、例えば0.8~1.2mol/Lの範囲に設定することができ、0.9~1.1mol/Lが好ましい。
【0050】
セパレータとしては、例えば、樹脂製の多孔質膜、織布、不織布等を用いることができる。多孔質膜を構成する樹脂としては、例えばポリプロピレンやポリエチレン等のポリオレフィン樹脂、ポリエステル樹脂、アクリル樹脂、スチレン樹脂、またはナイロン樹脂等が挙げられる。特にポリオレフィン系の微多孔膜は、イオン透過性と、正極と負極とを物理的に隔離する性能に優れているため好ましい。また、必要に応じて、ポリオレフィン等の樹脂層へ異種素材を含む層を形成してもよく、異種素材としては、フッ素化合物や無機粒子、アラミド層が挙げられる。
【0051】
外装容器には可撓性フィルムからなるケースや缶ケース等を用いることができ、電池の軽量化の観点からは可撓性フィルムを用いることが好ましい。
可撓性フィルムには、基材となる金属層の表裏面に樹脂層が設けられたものを用いることができる。金属層には、電解液の漏出や外部からの水分の浸入を防止する等のバリア性を有するものを選択することができ、アルミニウム、ステンレス鋼等を用いることができる。金属層の少なくとも一方の面には、例えば、変性ポリオレフィン等の熱融着性樹脂層が設けられる。可撓性フィルムの熱融着性樹脂層同士を対向させ、電極積層体を収納する部分の周囲を熱融着することで外装容器が形成される。熱融着性の樹脂層が形成された面と反対側の面となる外装体表面にはナイロンフィルム、ポリエステルフィルム等の樹脂層を設けることができる。
【0052】
電極の作製において、集電体上に活物質層を形成するための装置としては、ドクターブレードや、ダイコータ、グラビアコータ、転写方式、蒸着方式等の様々な塗布方法を実施する装置や、これらの塗布装置の組み合わせを用いることが可能である。
活物質の塗布端部を精度良く形成するためには、ダイコータを用いることが特に好ましい。ダイコータによる活物質の塗布方式としては、大別して、長尺の集電体の長手方向に沿って連続的に活物質を形成する連続塗布方式と、集電体の長手方向に沿って活物質の塗布部と未塗布部を交互に繰り返して形成する間欠塗布方式の2種類があり、これらの方式を適宜選択することができる。
【0053】
以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
以下、実施形態の例を付記する。
1. 正極用集電体と、前記正極用集電体上に設けられた正極活物質層と、を備えるリチウムイオン二次電池用正極であって、
前記正極活物質層は、正極活物質と、導電助剤と、バインダーとを含み、
前記導電助剤は平均厚さが0.5μm以下である薄片状黒鉛を含み、
前記正極活物質の平均粒径を活材D
50
としたとき、前記薄片状黒鉛の平均粒径が(3×活材D
50
/5)以上(9×活材D
50
/10)以下であるリチウムイオン二次電池用正極。
2. 1.に記載のリチウムイオン二次電池用正極において、
前記導電助剤が1次粒子の平均粒径が5nm以上500nm以下であるカーボンブラックをさらに含むリチウムイオン二次電池用正極。
3. 1.または2.に記載のリチウムイオン二次電池用正極において、
正極活物質がリチウム複合酸化物を含むリチウムイオン二次電池用正極。
4. 3.に記載のリチウムイオン二次電池用正極において、
前記リチウム複合酸化物が、層状結晶構造を有するリチウムニッケル複合酸化物を含むリチウムイオン二次電池用正極。
5. 3.または4.に記載のリチウムイオン二次電池用正極において、
前記リチウム複合酸化物が、下記式(1)で表される化合物を含むリチウムイオン二次電池用正極。
Li
a
Ni
1-x
M
x
O
2
(1)
(式中、Mは、Li、Co、Mn、Mg、およびAlから選ばれる少なくとも一種であり、0<a≦1、0<x<0.7である)
6. 1.乃至5.いずれかに記載のリチウムイオン二次電池用正極において、
正極活物質層の密度が3.30g/cm
3
以上であるリチウムイオン二次電池用正極。
7. 1.乃至6.いずれかに記載のリチウムイオン二次電池用正極において、
前記正極活物質の平均粒径(D
50
)が0.5μm以上20μm以下であるリチウムイオン二次電池用正極。
8. 1.乃至7.いずれかに記載のリチウムイオン二次電池用正極と、負極と、非水系電解液とを備えるリチウムイオン二次電池。
【実施例】
【0054】
以下に本発明を、以下の実施例および比較例を用いて説明する。なお、本発明は、以下の実施例に限定されるものではない。
【0055】
(実施例1)
正極活物質に層状結晶構造を有するリチウムニッケル複合酸化物(LiNi0.8Co0.1Mn0.1O2)(平均粒径(活材D50):8μm)、導電助剤に薄片状黒鉛1(平均厚さ:0.2μm、平均粒径D50:7μm)およびカーボンブラック(アセチレンブラック、2次粒子径D50=2.5μm、1次粒子径D50=150nm)、バインダーにポリフッ化ビニリデン(PVDF)を用い、質量比が正極活物質:導電助剤(薄片状黒鉛:カーボンブラック):バインダー=93:4(1:3):3となるようにこれらを混合して有機溶媒中に分散させたスラリーを調製した。これを正極用集電体(アルミニウム箔)に塗布し、乾燥し、正極活物質層1を形成した。得られた正極を、ローラープレス機を用いてある線圧で圧延し、このときの正極活物質層の密度を計測した(変形性の評価)。
また、所定の正極活物質層の密度に圧延し、厚さ140μmの特性評価用の正極を得た。
【0056】
負極活物質として表面を非晶質炭素で被覆した黒鉛を用い、バインダーとしてPVDFを用い、これらを混合して有機溶媒中に分散した負極スラリーを調製した。これを負極用集電体(銅箔)に塗布し、乾燥し、負極活物質層2を形成して、負極を得た。
【0057】
作製した特性評価用正極と負極とを、厚さ25μmのポリプロピレンからなるセパレータを介して交互に積層した。これに負極端子と正極端子を取り付け、アルミラミネートフィルムからなる外装容器に収容し、リチウム塩が溶解した電解液を加え、封止して、積層型リチウムイオン二次電池を得た。得られたリチウムイオン二次電池について、電荷移動抵抗の測定(正極の評価)および容量維持率の測定(サイクル特性の評価)を行った。
なお、電解液の溶媒としてECとDECの混合液(EC/DEC=3/7(体積比))を用い、この混合溶媒にリチウム塩としてLiPF6を1mol/L溶解させた。
【0058】
(実施例2)
薄片状黒鉛1の代わりに薄片状黒鉛2(平均厚さ:0.3μm、平均粒径D50:6μm)を適用した以外は実施例1と同様にして変形性の評価をし、特性評価用正極を用いて実施例1と同様にしてリチウムイオン二次電池を作製した。得られたリチウムイオン二次電池について、電荷移動抵抗の測定(正極の評価)および容量維持率の測定(サイクル特性の評価)を行った。
【0059】
(実施例3)
薄片状黒鉛1の代わりに薄片状黒鉛3(平均厚さ:0.4μm、平均粒径D50:6μm)を適用した以外は実施例1と同様にして変形性の評価をし、特性評価用正極を用いて実施例1と同様にしてリチウムイオン二次電池を作製した。得られたリチウムイオン二次電池について、電荷移動抵抗の測定(正極の評価)および容量維持率の測定(サイクル特性の評価)を行った。
【0060】
(比較例1)
薄片状黒鉛1の代わりに薄片状黒鉛4(平均厚さ:0.6μm、平均粒径D50:6μm)を適用した以外は実施例1と同様にして変形性の評価をし、特性評価用正極を用いて実施例1と同様にしてリチウムイオン二次電池を作製した。得られたリチウムイオン二次電池について、電荷移動抵抗の測定(正極の評価)および容量維持率の測定(サイクル特性の評価)を行った。
【0061】
(比較例2)
薄片状黒鉛1の代わりに薄片状黒鉛5(平均厚さ:1.0μm、平均粒径D50:6μm)を適用した以外は実施例1と同様にして変形性の評価をし、特性評価用正極を用いて実施例1と同様にしてリチウムイオン二次電池を作製した。得られたリチウムイオン二次電池について、電荷移動抵抗の測定(正極の評価)および容量維持率の測定(サイクル特性の評価)を行った。
【0062】
(比較例3)
薄片状黒鉛1の代わりに薄片状黒鉛6(平均厚さ:0.3μm、平均粒径D50:4μm)を適用した以外は実施例1と同様にして変形性の評価をし、特性評価用正極を用いて実施例1と同様にしてリチウムイオン二次電池を作製した。得られたリチウムイオン二次電池について、電荷移動抵抗の測定(正極の評価)および容量維持率の測定(サイクル特性の評価)を行った。
【0063】
(比較例4)
薄片状黒鉛1の代わりに薄片状黒鉛7(平均厚さ:0.3μm、平均粒径D50:9μm)を適用した以外は実施例1と同様にして変形性の評価をし、特性評価用正極を用いて実施例1と同様にしてリチウムイオン二次電池を作製した。得られたリチウムイオン二次電池について、電荷移動抵抗の測定(正極の評価)および容量維持率の測定(サイクル特性の評価)を行った。
【0064】
(比較例5)
薄片状黒鉛1の代わりに薄片状黒鉛8(平均厚さ:1.0μm、平均粒径D50:11μm)を適用した以外は実施例1と同様にして変形性の評価をし、特性評価用正極を用いて実施例1と同様にしてリチウムイオン二次電池を作製した。得られたリチウムイオン二次電池について、電荷移動抵抗の測定(正極の評価)および容量維持率の測定(サイクル特性の評価)を行った。
【0065】
<評価>
(正極活物質層の密度の決定)
正極活物質層の密度とは、正極活物質層の単位体積あたりの正極活物質層の質量を意味する。よって、正極活物質層の厚さと、単位面積あたりの質量から、以下の式に従って求めた。
【0066】
正極活物質層の密度(g/cm3)=(正極活物質層の質量)/(正極活物質層の見かけの体積)
【0067】
(電荷移動抵抗の測定)
得られたリチウムイオン二次電池を4.15Vまで充電し、周波数応答アナライザおよびポテンショ/ガルバノスタットを用いてインピーダンス測定を行い、電荷移動抵抗を算出した。
【0068】
(容量維持率の測定)
得られたリチウムイオン二次電池について次の条件でサイクル試験を行った。
条件:CC-CV充電(上限電圧4.15V、電流1C、CV時間1.5時間)、CC放電(下限電圧2.5V、電流1C)、充放電時の環境温度:45℃
1サイクル目の放電容量に対する500サイクル目の放電容量の割合を容量維持率とした。
【0069】
【0070】
比較例1、2、5では、薄片状黒鉛の平均厚さが0.5μm以上であるため、薄片状黒鉛の変形性が乏しく、実施例と比較して正極活物質層の密度が上がらず、正極活物質と薄片状黒鉛との接触点も少ないため電荷移動抵抗が高く容量維持率も低いことがわかる。
【0071】
比較例3、4、5では、薄片状黒鉛の平均粒径が(3×活材D50/5)以上(9×活材D50/10)以下を外れているため、実施例より電荷移動抵抗が大きく容量維持率も低いことがわかる。
【0072】
特定の平均厚さ(0.5μm以下)を有する薄片状黒鉛が変形することによって高電極密度の正極が得られ、さらに正極活物質の平均粒径(D50)によって示される特定の平均粒径((3×活材D50/5)以上(9×活材D50/10)以下)を有する薄片状黒鉛が正極活物質表面を良好に覆うため、電荷移動抵抗が低減された正極を得ることができる。このような正極を用いることにより、エネルギー密度が高く、良好なサイクル特性を有するリチウムイオン二次電池を提供できる。
【0073】
この出願は、2016年3月3日に出願された日本出願特願2016-040757号を基礎とする優先権を主張し、その開示の全てをここに取り込む。