(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2021-12-17
(45)【発行日】2022-01-17
(54)【発明の名称】ワークピース処理用の低粒子容量結合成分
(51)【国際特許分類】
H01J 37/20 20060101AFI20220107BHJP
H01J 27/16 20060101ALI20220107BHJP
H01J 37/08 20060101ALI20220107BHJP
H01J 37/305 20060101ALI20220107BHJP
H01J 37/317 20060101ALI20220107BHJP
H01L 21/3065 20060101ALI20220107BHJP
【FI】
H01J37/20 H
H01J27/16
H01J37/08
H01J37/305 A
H01J37/317 E
H01J37/317 B
H01J37/317 Z
H01L21/302 101C
(21)【出願番号】P 2020532968
(86)(22)【出願日】2018-10-24
(86)【国際出願番号】 US2018057315
(87)【国際公開番号】W WO2019125598
(87)【国際公開日】2019-06-27
【審査請求日】2020-07-20
(32)【優先日】2017-12-20
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】500239188
【氏名又は名称】ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド
(74)【代理人】
【識別番号】100147485
【氏名又は名称】杉村 憲司
(74)【代理人】
【識別番号】230118913
【氏名又は名称】杉村 光嗣
(74)【代理人】
【識別番号】100134577
【氏名又は名称】石川 雅章
(72)【発明者】
【氏名】モルガン ディー エヴァンス
(72)【発明者】
【氏名】アーネスト イー アレン ジュニア
(72)【発明者】
【氏名】タイラー バートン ロックウェル
(72)【発明者】
【氏名】リチャード ジェイ ヘルテル
(72)【発明者】
【氏名】ジョセフ フレデリック ソマーズ
(72)【発明者】
【氏名】クリストファー アール キャンベル
【審査官】後藤 大思
(56)【参考文献】
【文献】特表2017-510932(JP,A)
【文献】特表2012-518267(JP,A)
【文献】特表2014-527685(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 37/00-37/36
(57)【特許請求の範囲】
【請求項1】
ワークピース処理システムにおいて、
複数のチャンバ壁、及び抽出開孔付きの抽出プレートを有するイオン源と、並びに
前記抽出開孔の近傍に配置したワークピースホルダーであって、
ワークピースホルダーは、ワークピースを保持するプラテン、及び
前記ワークピースを包囲するシールドを有し、
ワークピースバイアス電源は、前記イオン源からのイオンを引き寄せるようパルス状DC電圧を前記シールドに印加
する、該ワークピースホルダーと、を備え、
前記シールド及び前記抽出プレートを導電材料で構成し、また前記シールド及び前記抽出プレートのうち少なくとも一方
は誘電材料でコーティング
されている、ワークピース処理システム。
【請求項2】
請求項1記載のワークピース処理システムにおいて、前記シールド及び前記抽出プレートの双方を誘電材料でコーティングする、ワークピース処理システム。
【請求項3】
請求項1記載のワークピース処理システムにおいて、前記誘電材料は希土類酸化物を有する、ワークピース処理システム。
【請求項4】
請求項3記載のワークピース処理システムにおいて、前記誘電材料はイットリアを有する、ワークピース処理システム。
【請求項5】
請求項1記載のワークピース処理システムにおいて、前記誘電材料でコーティングされる前記導電材料の熱膨張係数(CTE)は、前記誘電材料のCTEの30%以内である、ワークピース処理システム。
【請求項6】
請求項5記載のワークピース処理システムにおいて、コーティングされる前記導電材料はチタン又はモリブデンを有する、ワークピース処理システム。
【請求項7】
請求項1記載のワークピース処理システムにおいて、前記DC電圧は、5~50kHzの間における周波数でパルス化される、ワークピース処理システム。
【請求項8】
ワークピース処理システムにおいて、
イオン源であって、
複数のチャンバ壁、
抽出開孔付きの抽出プレート、及び
前記イオン源内で前記抽出開孔の近傍に配置したブロッカーを有する、該イオン源と、並びに
前記抽出開孔の近傍に配置したワークピースホルダーであって、
ワークピースホルダーは、ワークピースを保持するプラテン、及び
前記ワークピースを包囲するシールドを有し、
前記イオン源の内部からのイオンを、前記ブロッカーによって規定される角度で前記プラテンに向けて引き寄せるように
する、該ワークピースホルダーと、を備え、
前記シールド及び前記抽出プレートを導電材料で構成し、また前記シールド及び前記抽出プレートのうち少なくとも一方
は誘電材料でコーティング
されている、ワークピース処理システム。
【請求項9】
請求項8記載のワークピース処理システムにおいて、
ワークピースバイアス電源は、パルス状DC電圧を前記シールド及び前記プラテンに印加し、また前記DC電圧は、5~50kHzの間における周波数でパルス化される、ワークピース処理システム。
【請求項10】
請求項8記載のワークピース処理システムにおいて、前記誘電材料でコーティングされる前記導電材料の熱膨張係数(CTE)は、前記誘電材料のCTEの30%以内である、ワークピース処理システム。
【請求項11】
請求項10記載のワークピース処理システムにおいて、コーティングされる前記導電材料はチタン又はモリブデンを有する、ワークピース処理システム。
【請求項12】
ワークピース処理システムにおいて、
複数のチャンバ壁、抽出開孔付きの抽出プレートを有するイオン源と、並びに
前記抽出開孔の近傍に配置したワークピースホルダーであって、
ワークピースホルダーは、ワークピースを保持するプラテン、及び
前記ワークピースを包囲するシールドを
有する、該ワークピースホルダーと、
を備え、
前記シールド及び前記抽出プレートを導電材料で構成し、及びそれら各々を誘電材料でコーティングし、前記導電材料の熱膨張係数(CTE)は、前記誘電材料のCTEの30%以内であ
る、ワークピース処理システム。
【請求項13】
請求項12記載のワークピース処理システムにおいて、
ワークピースバイアス電源は、パルス状DC電圧を前記シールド及び前記プラテンに印加する、ワークピース処理システム。
【請求項14】
請求項13記載のワークピース処理システムにおいて、前記DC電圧は、5~50kHzの間における周波数でパルス化される、ワークピース処理システム。
【請求項15】
請求項14記載のワークピース処理システムにおいて、前記誘電材料はイットリウムを有し、また前記導電材料はチタン又はモリブデンを有する、ワークピース処理システム。
【発明の詳細な説明】
【技術分野】
【0001】
低粒子成分を含むウェハー処理用のシステムに関し、またより具体的には、誘電コーティングした電気的バイアス印加成分を含むシステムに関する。
【背景技術】
【0002】
半導体デバイスの作製は複数の個別で複雑な処理を伴う。このようなプロセスはイオン源から抽出することができるイオンビームを利用することができる。イオン源において、イオンを形成するため供給ガスが活性化される。これらイオンは、次に抽出プレートに配置される抽出開孔経由でイオン源から抽出される。これらイオンは、抽出開孔に対して走査されるワークピースに引き寄せされる。ワークピース(加工材)にドーパントを注入する、ワークピースをエッチングする、ワークピースにコーティングを堆積させる、又はワークピースをアモルファス(非晶質)化するのにこれらイオンを使用することができる。
【発明の概要】
【発明が解決しようとする課題】
【0003】
イオンを引き寄せるため抽出プレート及びワークピースは異なる電圧でバイアス印加することができる。例えば、ワークピースを抽出プレートよりも陰性が多い電圧でバイアス印加する場合、イオン源内からの陽イオンをワークピースに引き寄せる。
【0004】
多くの実施形態において、抽出プレートは金属のような導電材料で形成する。同様に、ワークピースは、一般的にプラテンと称される第2導電材料上に配置する。一般的にシールド又はハロー(halo)と称される他の導電素子は、ワークピースを包囲するよう構成することができ、イオンビーム衝突による悪影響から隣接エリアを保護する、例えば、粒子及び金属がワークピース上に堆積するのを防止するよう構成することができる。シールド又はハローは、ワークピースを均一に処理するための、ワークピースと極めて類似する電位表面及び電流経路を付与する。
【0005】
この構成に関連する1つの問題は、粒子、とくに最終的にワークピースに堆積することになる粒子の発生である。とくに、イオンがイオン源から出てくるとき、イオンエネルギーは抽出プレートによって粒子を放出させることができる。加えて、シールドに衝突するイオンは、さらに、シールドによって粒子を放出させることができる。これら粒子は、ワークピース上に堆積することになり、またワークピースの性能を劣化させる。
【0006】
したがって、発生する粒子の量を減少するようワークピース内にイオン注入するシステムがある場合、有用である。さらに、システムの動作パラメータが悪影響を受けない場合、有利である。
【課題を解決するための手段】
【0007】
粒子発生を最小限にしてイオンをワークピースに注入するシステムを開示する。このシステムは、抽出開孔付きの抽出プレートを有するイオン源を備える。この抽出プレートは、電気的にバイアス印加し、また誘電材料でコーティングすることができる。ワークピースは、プラテン上に配置され、また電気的にバイアス印加されるシールドによって包囲される。シールドも誘電材料でコーティングすることができる。動作にあたり、パルス状DC電圧をシールド及びプラテンに印加し、このパルス印加中イオン源からイオンを引き寄せる。パルス状電圧を使用するため、薄い誘電性コーティングのインピーダンスは減少し、システムを適正に機能させることができる。
【0008】
第1実施形態によれば、ワークピース処理システムを開示する。このワークピース処理システムは、複数のチャンバ壁、及び抽出開孔付きの抽出プレートを有するイオン源と、並びに前記抽出開孔の近傍に配置したワークピースホルダーであり、ワークピースを保持するプラテン、及び前記ワークピースを包囲するシールド
を有し、前記イオン源からのイオンを引き寄せるようパルス状DC電圧を前記シールドに印加し、及び前記シールド及び前記抽出プレートを導電材料で構成し、また前記シールド及び前記抽出プレートのうち少なくとも一方を誘電材料でコーティングする、該ワークピースホルダーと、を備える。若干の実施形態において、前記シールド及び前記抽出プレートの双方を誘電材料でコーティングする。若干の実施形態において、前記誘電材料は希土類酸化物を有し、この希土類酸化物はイットリアからなるものとすることができる。幾つかの実施形態において、前記誘電材料でコーティングされる導電材料の熱膨張係数(CTE)は、前記誘電材料のCTEの30%以内である。若干の実施形態において、前記導電材料はチタン又はモリブデンを有する。若干の実施形態において、前記DC電圧は、5~50kHzの間における周波数でパルス化される。
【0009】
他の実施態様において、ワークピース処理システムを開示する。このワークピース処理システムは、イオン源であって、複数のチャンバ壁、抽出開孔付きの抽出プレート、及び前記イオン源内で前記抽出開孔の近傍に配置したブロッカーを有する、該イオン源と、並びに前記抽出開孔の近傍に配置したワークピースホルダーであって、ワークピースを保持するプラテン、及び前記ワークピースを包囲するシールド
を有し、前記イオン源の内部からのイオンを、前記ブロッカーによって規定される角度で前記プラテンに向けて引き寄せるようにし、及び前記シールド及び前記抽出プレートを導電材料で構成し、また前記シールド及び前記抽出プレートのうち少なくとも一方を誘電材料によりコーティングする、該ワークピースホルダーと、を備える。若干の実施形態において、パルス状DC電圧を前記シールド及び前記プラテンに印加し、また前記DC電圧は5~50kHzの間における周波数でパルス化することができる。
【0010】
他の実施形態によれば、ワークピース処理システムを開示する。このワークピース処理システムは、複数のチャンバ壁、抽出開孔付きの抽出プレートを有するイオン源と、並びに前記抽出開孔の近傍に配置したワークピースホルダーであって、ワークピースを保持するプラテン、及び前記ワークピースを包囲するシールドを有し、前記シールド及び前記抽出プレートを導電材料で構成し、及びそれら各々を誘電材料でコーティングし、前記導電材料の熱膨張係数(CTE)は、前記誘電材料のCTEの30%以内である、該ワークピースホルダーと、を備える。若干の実施形態において、前記誘電材料はイットリウムを有し、また前記導電材料はチタン又はモリブデンを有する。
【0011】
本開示をよりよく理解するため、参照により本明細書に組み入れられる以下の添付図面につき説明する。
【図面の簡単な説明】
【0012】
【
図4】後に手作業クリーニング処理が行われる多くのエッチングにわたる粒子減少を説明するグラフを示す。
【
図5】イオン源からビーム角度の関数として放出されるイオンビーム電流を説明するグラフを示す。
【発明を実施するための形態】
【0013】
上述したように、イオンがイオン源から抽出されている間に、活力的イオンは種々のコンポーネントに衝突し、粒子を金属コンポーネントから放出させ、ワークピースに堆積することとなり得る。
図1はこの問題を克服するシステムの実施形態を示す。
【0014】
システム1はイオン源2を備える。イオン源2は複数のチャンバ壁101からなるイオン源チャンバ100を有する。若干の実施形態において、これらチャンバ壁101のうち1つ又はそれ以上の壁は、石英のような誘電材料で構成することができる。RFアンテナ110を第1誘電壁102の外表面に配置することができる。RFアンテナ110はRF電源120によって給電することができる。RFアンテナ110に送給されるエネルギーはイオン源チャンバ100内で放射され、ガス入口130を介して導入される供給ガスをイオン化する。
【0015】
抽出プレート140と称される1つのチャンバ壁は、イオンをイオン源チャンバ100から放出することができる抽出開孔145を有する。この抽出プレート140は、チタン、タンタル又は他の金属のような導電材料で構成することができる。抽出プレート140正面図を
図2に示す。抽出プレート140は300ミリメートルを超える幅とすることができる。さらに、抽出開孔145は、ワークピース10の直径よりも広い幅とすることができる。抽出プレート140は、例えば、抽出電圧電源141を使用することによる抽出電圧にバイアス印加することができる。他の実施形態において、抽出プレート140は接地することができる。
【0016】
イオン源チャンバ100内にはブロッカー150を配置することができる。このブロッカー150は、抽出開孔145の近傍におけるプラズマシースに影響を及ぼすのに使用される誘電材料とすることができる。例えば、若干の実施形態においては、ブロッカー150は、イオンがワークピース10に対して直交しない抽出角度で抽出開孔145を出ていくよう配置する。若干の実施形態において、
図1に示すように、イオンは2つの異なる抽出角度で抽出することができる。この実施形態において、第1ビームレット190及び第2ビームレット191はワークピース10に向かうよう指向される。他の実施形態において、イオンは単一抽出角度で抽出される。イオン源チャンバ100内におけるブロッカー150の抽出開孔145に対する配置は、イオンがワークピース10に突き当たる角度を規定する。
【0017】
可動のワークピースホルダー155は、ワークピース10が配置されるプラテン160を有する。このプラテン160は、方向171にプラテン160を移動させる走査モータ170を使用して走査する。他の実施形態において、ワークピースホルダーは移動不能のものとすることができる。例えば、ワークピースホルダーは不動とするとともに、イオン源チャンバ100を移動させるものとすることができる。他の実施形態において、ワークピースホルダー及びイオン源チャンバ100の双方を不動とすることができる。
【0018】
ハローとも称し得るシールド165はワークピース10を包囲している。シールド165の正面図を
図3に示す。シールド165は、ワークピース10を包囲し、またワークピース10の位置に対応して中央に開口166を有する。シールド165は、金属のような導電材料で構成する。
【0019】
シールド165及びプラテン160はワークピースバイアス電源180を使用してバイアス印加することができる。若干の実施形態においては、ワークピースバイアス電源180からの出力は、5kHz~50kHzの間における周波数及び100~5,000ボルトの大きさのパルス状DC電圧である。
【0020】
上述した開示はワークピースバイアス電源180からの出力がパルス状DC電圧であるとして説明したが、ワークピースバイアス電源180は一定であり、抽出電圧電源141がパルス状DC出力を供給するものとすることもできると理解されたい。
【0021】
パルス状であるときのプラテン160及びシールド165に印加される電圧は、抽出プレート140に印加される電圧よりも陰性を大きくする。換言すれば、抽出プレート140は接地する場合、ワークピースバイアス電源180は負のパルスを発生する。これら負のパルス印加中、陽イオンがイオン源チャンバ100の内部からワークピース10に引き寄せられる。抽出プレート140が正にバイアス印加される場合、ワークピースバイアス電源180は陽性又は陰性が少ないパルスを発生し、これによりこれらパルス印加中に陽イオンがイオン源チャンバ100の内部からワークピース10に引き寄せられる。
【0022】
抽出プレート140及びシールド165のうち少なくとも一方は誘電材料によりコーティングする。イオンビームの衝突を受ける面域をコーティングするのが好ましいが、他の表面も化学反応を防止するようコーティングすることができる。この誘電材料は、イットリア(Y2O3)のような希土類酸化物とすることができる。他の実施形態において、誘電材料は、アルミナ(Al2O3)、ジルコニア(ZrO2)、炭化ケイ素(SiC)、若しくは他の材料、及び例えば、イットリア安定化ジルコニアを含めて希土類酸化物と上述した他の材料の組合せのような、材料の組合せとすることができる。すべての実施形態において、材料は、双方の活力的イオン又は「物理的エッチ」に対し、並びにフッ素及び塩素の反応ガス組合せのような化学的エッチに対してエッチ耐性があるものとする。
【0023】
図1は、シールド165の前面に配置したコーティング167を示す。
図1は、さらに、抽出プレート140の外面に配置したコーティング142及び抽出プレート140の内面に配置したコーティング143も示す。抽出プレート140の内面はイオン源チャンバ100の内部である表面として画定される。これらコーティングの厚さは、約100ナノメートル~約1ミリメートル又はそれ以上のものとすることができる。これらコーティングのうち1つ又はそれ以上を特別な実施形態において存在させることができる。例えば、若干の実施形態において、コーティング142及び167を塗布する。他の実施形態において、コーティング142、143及び167を塗布する。
【0024】
さらに、通常動作中、抽出プレート140及びシールド165は活力イオンによって加熱され、したがって、熱膨張を受けることがあり得る。例えば、通常動作中に、抽出プレート140及びシールド165の温度は摂氏数100度にも上昇し得る。さらにまた、通常動作中シールド165が移動するため、シールド165を水又は液体で冷却するのはコストがかかり、また困難である。
【0025】
したがって、これらコンポーネントを構成するのに使用される金属は、誘電性コーティングと同一又は同様の熱膨張係数(CTE)を有するのが好ましい。例えば、イットリア及びアルミナの双方は約7μm/mの熱膨張係数を有する。チタンは、誘電性コーティングのCTEの30%以内である約9μm/mの熱膨張係数を有する。これと比較して、アルミニウムは、誘電性コーティングのCTEよりも300%大きい約23μm/mを超えるCTEを有する。若干の実施形態において、誘電材料でコーティングされるコンポーネントは、チタン又はモリブデンで構成する。勿論、コンポーネントは誘電性コーティングのCTEの50%以内であるCTEを有する任意な金属又は金属合金から構成することができる。
【0026】
予想外にも、抽出プレート140の電圧とは異なる電圧でシールド165をパルス状印加するとき、アーク発生を生じない。このことは、これらコンポーネントのうち少なくとも1つを誘電材料でコーティングする事実にも係わらず、である。実際、シールド165と抽出プレート140との間の電圧差が5kVであった試験においてアーク発生が観測されなかった。
【0027】
特別な理論に限定されないが、これらコーティングされたコンポーネントは容量的に結合されると考えられる。とくに、シールド165に印加されるパルス状DC電圧は、一連の増加する周波数の正弦波の合計である。換言すれば、パルス状DC電圧は、実際的に異なる複数の周波数を有するAC電圧である。誘電材料はキャパシタとして挙動し、またしたがって、これら誘電材料のインピーダンスは増加する周波数とともに減少する。この結果として、誘電性コーティングのインピーダンスはより高い周波数で比較的低いためアーク発生を生じないと考えられる。したがって、パルス状DC電圧のAC的性質に起因して、シールド165及び抽出プレート140は容量的に結合される。
【0028】
さらに、試験は、抽出開孔145から出ていくイオンの抽出角度は誘電性コーティングによって悪影響を受けないことも示した。
【0029】
システム1は、反応性イオンエッチング装置(RIE)とすることができる。他の実施形態において、システム1は、堆積、注入又は非晶質化用に使用することができる。
【0030】
本明細書記載のシステム及び方法は多くの利点を有する。第1に、動作中に発生する粒子の個数は、抽出プレート140及びシールド165を誘電材料でコーティングするとき大幅に減少する。
図4は、実施した実際の試験を示す。中実ドットは45ナノメートルより大きい直径を有する粒子を示す。中空ドットは30ナノメートルより大きい直径を有する粒子を示す。エッチサイクルの増加する回数とともに、発生する粒子の個数は減少することが分かる。90回のエッチプロセス後、発生する粒子個数は50未満である。実際、発生する粒子の平均個数は、70回のエッチプロセス後に約33である。これに比して、伝統的なエッチングマシンは、しばしば相当大きい直径の数100又は数1000個の粒子を発生する。
【0031】
加えて、誘電性コーティングをシールド165及び/又は抽出プレート140に塗布することによって粒子個数を大幅に減少するとともに、システム性能が損なわれない。例えば、抽出角度平均値及び分散は、誘電性コーティングを組み込むことによって比較的影響を受けない。
図5は、
図1のシステムに関するビーム電流とビーム角度との間における関係性を説明するグラフを示す。ライン500は、抽出開孔145から抽出される第1ビームレット190に関連する電流を示すとともに、ライン510は第2ビームレット191に関連する電流を示す。ライン520はこれら電流の合計を示す。図から分かるように、各ビームレットの電流は約22°でピークになる。さらに、2つのビームレットの電流プロファイル曲線は、鏡対称であるがほぼ同一である。第1ビームレット190及び第2ビームレット191のそれぞれは、約19°の平均ビーム角度、及び約13.5°のビーム角度分散を有する。このことは、伝統的システムで得られるグラフと比較可能である。
【0032】
本発明は、本明細書記載の特別な実施形態によって範囲を限定されない。実際、本明細書記載の実施形態に加えて、本発明に対する他の様々な実施形態又は変更例は、当業者には上述した説明及び添付図面から明らかであろう。したがって、このような他の実施形態及び変更例は本発明の範囲内に納まることを意図する。さらにまた、本発明は、特別な目的のための特別な環境における特別な実施形態の文脈で説明したが、当業者であれば、その有用性はそれに限定されない、及び本発明は任意な数の目的のための任意な数の環境でも有利に実施できることを理解するであろう。したがって、特許請求の範囲は、本明細書記載の本発明の全範囲及び精神の観点で解すべきである。
【符号の説明】
【0033】
1 システム
2 イオン源
10 ワークピース
100 イオン源チャンバ
101 チャンバ壁
102 第1誘電壁
110 RFアンテナ
120 RF電源
130 ガス入口
140 抽出プレート
141 抽出電圧電源
142 コーティング
143 コーティング
145 抽出開孔
150 ブロッカー
155 ワークピースホルダー
160 プラテン
165 シールド
166 開口
167 コーティング
170 走査モータ
180 ワークピースバイアス電源
190 第1ビームレット
191 第2ビームレット