(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2021-12-20
(45)【発行日】2022-01-17
(54)【発明の名称】マイクロ流体装置中の不要な粒子の対流クリアランスを増大させるためのシステム
(51)【国際特許分類】
A61M 1/00 20060101AFI20220107BHJP
【FI】
A61M1/00
(21)【出願番号】P 2015552743
(86)(22)【出願日】2014-01-08
(86)【国際出願番号】 US2014010684
(87)【国際公開番号】W WO2014110133
(87)【国際公開日】2014-07-17
【審査請求日】2017-01-06
【審判番号】
【審判請求日】2019-12-19
(32)【優先日】2013-01-11
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】502362426
【氏名又は名称】ザ チャールズ スターク ドレイパー ラボラトリー, インク.
【氏名又は名称原語表記】THE CHARLES STARK DRAPER LABORATORY, INC.
(74)【代理人】
【識別番号】100102978
【氏名又は名称】清水 初志
(74)【代理人】
【識別番号】100102118
【氏名又は名称】春名 雅夫
(74)【代理人】
【識別番号】100160923
【氏名又は名称】山口 裕孝
(74)【代理人】
【識別番号】100119507
【氏名又は名称】刑部 俊
(74)【代理人】
【識別番号】100142929
【氏名又は名称】井上 隆一
(74)【代理人】
【識別番号】100148699
【氏名又は名称】佐藤 利光
(74)【代理人】
【識別番号】100128048
【氏名又は名称】新見 浩一
(74)【代理人】
【識別番号】100129506
【氏名又は名称】小林 智彦
(74)【代理人】
【識別番号】100114340
【氏名又は名称】大関 雅人
(74)【代理人】
【識別番号】100121072
【氏名又は名称】川本 和弥
(72)【発明者】
【氏名】ハージェス ダニエル アイ.
(72)【発明者】
【氏名】ディビアシオ クリストファー
(72)【発明者】
【氏名】チャレスト ジョセフ エル.
(72)【発明者】
【氏名】フィンリー バイオレット
(72)【発明者】
【氏名】ソーング リッキー
(72)【発明者】
【氏名】ボレンステイン ジェフリー ティー.
【合議体】
【審判長】佐々木 一浩
【審判官】井上 哲男
【審判官】加藤 啓
(56)【参考文献】
【文献】国際公開第2011/059786(WO,A1)
【文献】特開昭55-134604(JP,A)
【文献】米国特許第5730712(US,A)
【文献】特開平11-394(JP,A)
【文献】特開平8-192031(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61M 1/14-1/22
A61M 1/34
A61M 1/36
(57)【特許請求の範囲】
【請求項1】
それぞれが約50ミクロン~約500ミクロンの範囲の高さ、約50ミクロン~約900ミクロンの範囲の幅および約3センチメートル~約20センチメートルの範囲の長さを有する、第一の基材層中に画定された少なくとも二つの第一の流路を有する、流路のネットワークと、
第二の基材層中に画定された少なくとも二つの第二の流路であって、該少なくとも二つの第二の流路の長さに沿って、該少なくとも二つの第二の流路のそれぞれが、該少なくとも二つの第一の流路のうちの一つまたは複数に対して補完的であり、かつ流体連絡しており、それぞれの第二の流路が、第二の基材層中に画定された、または第二の基材層に結合された少なくとも一つの加圧機構を含み、該少なくとも一つの加圧機構が、該第二の流路の、該加圧機構よりも上流の部分において高い圧力を生じさせ、かつ該第二の流路の、該加圧機構よりも下流の部分において低い圧力を生じさせるように構成されている、少なくとも二つの第二の流路と、
該少なくとも二つの第一の流路を該少なくとも二つの第二の流路から分離する、第一の基材層および第二の基材層に結合された濾過膜と
を含み、流体が該第一および第二の流路に通して流されるとき、該少なくとも二つの第二の流路の長さに沿って非線形圧力プロファイルが存在し、かつ該少なくとも二つの第一の流路を補完的な第二の流路から分離する該膜をはさんで圧力勾配が存在するように、それぞれの第二の流路の入口と、補完的な第一の流路の出口とが、該濾過膜をはさんで隣接している、
マイクロ流体装置
であって、
該少なくとも二つの第一の流路のそれぞれが第二の加圧機構を含み、該第二の加圧機構が、該第一の流路の、該第二の加圧機構よりも上流の部分において高い圧力を生じさせ、かつ該第一の流路の、該第二の加圧機構よりも下流の部分において低い圧力を生じさせるように構成されている、
該マイクロ流体装置。
【請求項2】
少なくとも二つの第二の流路の長さに沿った非線形圧力プロファイルが、実質的に階段関数である、請求項1記載のマイクロ流体装置。
【請求項3】
加圧機構が、少なくとも二つの第二の流路中の流体流量を制限するように構成された部分的な壁を含み、該少なくとも二つの第二の流路の上流部分において高い圧力を生じさせ、かつ該少なくとも二つの第二の流路の下流部分において低い圧力を生じさせる、請求項1記載のマイクロ流体装置。
【請求項4】
加圧機構が、流路の一部分の断面積を減らすように先細りしている少なくとも二つの第二の流路の区分を含み、該少なくとも二つの第二の流路の上流部分において高い圧力を生じさせ、かつ該少なくとも二つの第二の流路の下流部分において低い圧力を生じさせる、請求項1記載のマイクロ流体装置。
【請求項5】
加圧機構が、曲がりくねった経路に沿って流体を送るように構成された少なくとも二つの第二の流路の区分を含み、該少なくとも二つの第二の流路の上流部分において高い圧力を生じさせ、かつ該少なくとも二つの第二の流路の下流部分において低い圧力を生じさせる、請求項1記載のマイクロ流体装置。
【請求項6】
加圧機構が、少なくとも二つの第二の流路に挿入された多孔性プラグ、第二の膜、およびゲルの少なくとも一つを含み、該少なくとも二つの第二の流路の上流部分において高い圧力を生じさせ、かつ該少なくとも二つの第二の流路の下流部分において低い圧力を生じさせる、請求項1記載のマイクロ流体装置。
【請求項7】
加圧機構が、少なくとも二つの第二の流路に結合されかつ該少なくとも二つの第二の流路中の流体の流量を制御するように構成された絞り装置を含み、それにより、該少なくとも二つの第二の流路の上流部分において高い圧力を生じさせ、かつ該少なくとも二つの第二の流路の下流部分において低い圧力を生じさせる、請求項1記載のマイクロ流体装置。
【請求項8】
絞り装置が弁を含む、請求項
7記載のマイクロ流体装置。
【請求項9】
少なくとも二つの第二の流路が可撓性材料から形成され、加圧機構が、断面積を減らすように圧縮することができる該少なくとも二つの第二の流路の部分を含み、それにより、該少なくとも二つの第二の流路の上流部分において高い圧力を生じさせ、かつ該少なくとも二つの第二の流路の下流部分において低い圧力を生じさせる、請求項1記載のマイクロ流体装置。
【請求項10】
加圧機構が、少なくとも二つの第二の流路中に所望の圧力プロファイルを提供するように構成可能である、請求項1記載のマイクロ流体装置。
【請求項11】
少なくとも二つの第一の流路および少なくとも二つの第二の流路中の流量および流体圧の少なくとも一つを測定するための流量センサおよび圧力センサの少なくとも一つをさらに含む、請求項1記載のマイクロ流体装置。
【請求項12】
測定された流量または流体圧に応答して加圧機構を制御するように構成されたプロセッサをさらに含む、請求項
11記載のマイクロ流体装置。
【請求項13】
少なくとも二つの第二の流路中に約200mmHg~約2000mmHgの範囲の最大圧力差を維持するように構成されている、請求項1記載のマイクロ流体装置。
【請求項14】
膜が約5μm~約300μmの範囲の厚さを有する、請求項1記載のマイクロ流体装置。
【請求項15】
膜の孔径が、約60kDa以下の分子量の粒子のクリアランスを可能にするように選択される、請求項1記載のマイクロ流体装置。
【請求項16】
少なくとも二つの第一の流路の内面に抗凝血コーティングをさらに含む、請求項1記載のマイクロ流体装置。
【請求項17】
少なくとも二つの第一の流路が、血液が該少なくとも二つの第一の流路に通して運ばれるとき、約200逆数秒~約2000逆数秒の範囲の壁剪断速度を維持するように構成されている、請求項1記載のマイクロ流体装置。
【請求項18】
少なくとも二つの第一の流路および少なくとも二つの第二の流路が、流体を反対方向に流すように構成されている、請求項1記載のマイクロ流体装置。
【発明の詳細な説明】
【技術分野】
【0001】
関連特許出願の相互参照
本出願は、参照により全体として本明細書に組み入れられる、2013年1月11日に出願されたSYSTEMS AND METHODS FOR INCREASING CONVECTIVE CLEARANCE OF UNDESIRED PARTICLES IN A MICROFLUIDIC DEVICEと題する米国特許出願第13/739,701号への優先権を主張する。
【背景技術】
【0002】
背景
透析装置は、透過膜によって分離された一連の流路を含む。装置中における血液からの溶質の対流クリアランスは、装置中の膜間圧によって決まる。一般に、膜間圧は、流路の長さにわたって線形に変化する。そのような装置において対流クリアランスを増すためには、流路の長さを増す必要があり、その結果、より大きな装置全体サイズの必要性に起因して、患者の可動性の低下を招く。したがって、コンパクトな透析装置内で対流クリアランスの量を増すことが望ましい。
【発明の概要】
【0003】
本開示の局面および態様は、透析システム内における血液中の溶質の対流輸送を増大させるための装置に関する。
【0004】
少なくとも一つの局面はマイクロ流体装置に関する。本マイクロ流体装置は、複数の第一流路を有する第一の流路ネットワークを含む。各第一の流路は、約50ミクロン~約500ミクロンの範囲の高さ、約50ミクロン~約900ミクロンの範囲の幅および約3センチメートル~約20センチメートルの範囲の長さを有する。マイクロ流体装置は、一つまたは複数の第一の流路に対して補完的な少なくとも一つの第二の流路を有する第二の流路ネットワークを含む。少なくとも一つの第二の流路は少なくとも一つの加圧機構を含み、加圧機構は、少なくとも一つの第二の流路の、加圧機構よりも上流の部分において高い圧力を生じさせ、少なくとも一つの第二の流路の、加圧機構よりも下流の部分において低い圧力を生じさせるように構成されている。マイクロ流体装置は、一つまたは複数の第一の流路を少なくとも一つの第二の流路から分離する濾過膜を含む。流体が第一および第二の流路に通して流されるとき、少なくとも一つの第二の流路の長さに沿って非線形圧力プロファイルが存在し、一つまたは複数の第一の流路を少なくとも一つの補完的な第二の流路から分離する膜をはさんで圧力勾配が存在するように、少なくとも一つの第二の流路の上流部分は、一つまたは複数の補完的な第一の流路の下流部分とは反対側に位置している。
【0005】
いくつかの態様において、少なくとも一つの第二の流路の長さに沿った非線形圧力プロファイルは実質的に階段関数である。加圧機構は、少なくとも一つの第二の流路中の流体流量を制限するように構成された部分的な壁を含むことができ、少なくとも一つの第二の流路の上流部分において高い圧力を生じさせ、少なくとも一つの第二の流路の下流部分において低い圧力を生じさせる。加圧機構はまた、流路の一部分の断面積を減らすように先細りしている少なくとも一つの第二の流路の区分を含むことができ、少なくとも一つの第二の流路の上流部分において高い圧力を生じさせ、少なくとも一つの第二の流路の下流部分において低い圧力を生じさせる。加圧機構はまた、曲がりくねった経路に沿って流体を送るように構成された少なくとも一つの第二の流路の区分であることができ、少なくとも一つの第二の流路の上流部分において高い圧力を生じさせ、少なくとも一つの第二の流路の下流部分において低い圧力を生じさせる。加圧機構はまた、少なくとも一つの第二の流路に挿入された多孔性プラグ、第二の膜またはゲルであることができ、少なくとも一つの第二の流路の上流部分において高い圧力を生じさせ、少なくとも一つの第二の流路の下流部分において低い圧力を生じさせる。いくつかの態様において、加圧機構は、流体流から被処理物を抜き出す任意の装置、たとえば少なくとも一つの第二の流路内に位置するリバースポンプまたはタービンであることができ、少なくとも一つの第二の流路の上流部分において高い圧力を生じさせ、少なくとも一つの第二の流路の下流部分において低い圧力を生じさせる。加圧機構はまた、絞り装置、たとえば少なくとも一つの第二の流路に結合された弁であることができ、少なくとも一つの第二の流路の上流部分において高い圧力を生じさせ、少なくとも一つの第二の流路の下流部分において低い圧力を生じさせる。一つまたは複数の第一の流路もまた、少なくとも一つの第二の加圧機構を含むことができる。
【0006】
いくつかの態様において、加圧機構は、少なくとも一つの第二の流路中に所望の圧力プロファイルを提供するように構成可能である。マイクロ流体装置はまた、一つまたは複数の第一の流路および少なくとも一つの第二の流路中の流量および流体圧を測定するための流量センサおよび圧力センサを含むことができる。マイクロ流体装置はまた、測定された流量または流体圧に応答して加圧機構を制御するように構成されたプロセッサを含むことができる。いくつかの態様において、マイクロ流体装置は、少なくとも一つの第二の流路中に約200mmHg~約2000mmHgの範囲の最大圧力差を維持するように構成されている。
【0007】
いくつかの態様において、膜は約5μm~約300μmの範囲の厚さを有する。膜は、約60kDa以下の分子量の粒子のクリアランスを可能にするように選択することができる。
【0008】
いくつかの態様において、マイクロ流体装置は、一つまたは複数の第一の流路の内面に抗凝血コーティングを含むことができる。一つまたは複数の第一の流路はまた、血液が一つまたは複数の第一の流路に通して運ばれるとき約200逆数秒~約2000逆数秒の範囲の壁剪断速度を維持するように構成されることができる。いくつかの態様において、一つまたは複数の第一の流路および少なくとも一つの第二の流路は、流体を反対方向に流すように構成されている。
【0009】
少なくとも一つの局面は、分析対象物を含有する第一の液体を濾過して、第一の液体よりも少ない分析対象物を含有する濾過済み液を提供する方法に関する。方法は、第一の液体を、それぞれが約50ミクロン~約500ミクロンの範囲の高さ、約50ミクロン~約900ミクロンの範囲の幅および約3センチメートル~約20センチメートルの範囲の長さを有する一つまたは複数の第一の流路を有する流路のネットワークの入口に導入する工程を含む。方法は、濾液を、一つまたは複数の第一の流路に対して補完的な少なくとも一つの第二の流路の入口に導入する工程を含む。方法は、濾液を、少なくとも一つの第二の流路中の少なくとも一つの加圧機構に通して流す工程を含む。第一の液体の分析対象物の少なくともいくらかが一つまたは複数の第一の流路から膜を通して少なくとも一つの第二の流路の中に運ばれるように、加圧機構は、少なくとも一つの第二の流路の、加圧機構よりも上流の部分において高い圧力を生じさせ、少なくとも一つの第二の流路の、加圧機構よりも下流の部分において低い圧力を生じさせ、かつ少なくとも一つの第二の流路の長さに沿って非線形圧力プロファイルを生じさせるように構成されている。方法はまた、一つまたは複数の第一の流路の出口から濾過済み液を捕集する工程を含む。一つまたは複数の第一の流路の出口は、少なくとも一つの対応する第二の流路の入口とは反対側に位置し、一つまたは複数の第一の流路の入口は、少なくとも一つの補完的な第二の流路の出口とは反対側に位置する。
【0010】
いくつかの態様において、濾液を少なくとも一つの加圧機構に通して流す工程は、実質的に階段関数である圧力プロファイルを少なくとも一つの第二の流路の長さに沿って生じさせる。いくつかの態様において、方法は、一つまたは複数の第一の流路および少なくとも一つの第二の流路中の流量および圧力の少なくとも一つを測定する工程を含む。方法はまた、流量および圧力の測定値に応答して、加圧機構、一つまたは複数の第一の流路中の流量または少なくとも一つの第二の流路中の流量を調節する工程を含むことができる。
【0011】
いくつかの態様において、第一の液体を導入する工程は血液を導入する工程を含む。血液は患者から抜き出すことができ、濾過済み血液を患者に戻すことができる。いくつかの態様において、一つまたは複数の第一の流路はその壁に抗凝血コーティングを含む。
[本発明1001]
それぞれが約50ミクロン~約500ミクロンの範囲の高さ、約50ミクロン~約900ミクロンの範囲の幅および約3センチメートル~約20センチメートルの範囲の長さを有する一つまたは複数の第一の流路を有する、流路のネットワークと、
一つまたは複数の第一の流路に対して補完的な少なくとも一つの第二の流路であって、少なくとも一つの加圧機構を含み、該少なくとも一つの加圧機構が、該少なくとも一つの第二の流路の、該加圧機構よりも上流の部分において高い圧力を生じさせ、かつ該少なくとも一つの第二の流路の、該加圧機構よりも下流の部分において低い圧力を生じさせるように構成されている、少なくとも一つの第二の流路と、
該一つまたは複数の第一の流路を該少なくとも一つの第二の流路から分離する濾過膜と
を含み、流体が該第一および第二の流路に通して流されるとき、該少なくとも一つの第二の流路の長さに沿って非線形圧力プロファイルが存在し、かつ該一つまたは複数の第一の流路を該少なくとも一つの補完的な第二の流路から分離する該膜をはさんで圧力勾配が存在するように、該少なくとも一つの第二の流路の該上流部分が、該一つまたは複数の補完的な第一の流路の下流部分とは反対側に位置している、
マイクロ流体装置。
[本発明1002]
一つまたは複数の第一の流路が少なくとも一つの第二の加圧機構を含み、該少なくとも一つの第二の加圧機構が、該一つまたは複数の第一の流路の、該加圧機構よりも上流の部分において高い圧力を生じさせ、かつ該一つまたは複数の第一の流路の、該加圧機構よりも下流の部分において低い圧力を生じさせるように構成されている、本発明1001のマイクロ流体装置。
[本発明1003]
少なくとも一つの第二の流路の長さに沿った非線形圧力プロファイルが、実質的に階段関数である、本発明1001のマイクロ流体装置。
[本発明1004]
加圧機構が、少なくとも一つの第二の流路中の流体流量を制限するように構成された部分的な壁を含み、該少なくとも一つの第二の流路の上流部分において高い圧力を生じさせ、かつ該少なくとも一つの第二の流路の下流部分において低い圧力を生じさせる、本発明1001のマイクロ流体装置。
[本発明1005]
加圧機構が、流路の一部分の断面積を減らすように先細りしている少なくとも一つの第二の流路の区分を含み、該少なくとも一つの第二の流路の上流部分において高い圧力を生じさせ、かつ該少なくとも一つの第二の流路の下流部分において低い圧力を生じさせる、本発明1001のマイクロ流体装置。
[本発明1006]
加圧機構が、曲がりくねった経路に沿って流体を送るように構成された少なくとも一つの第二の流路の区分を含み、該少なくとも一つの第二の流路の上流部分において高い圧力を生じさせ、かつ該少なくとも一つの第二の流路の下流部分において低い圧力を生じさせる、本発明1001のマイクロ流体装置。
[本発明1007]
加圧機構が、少なくとも一つの第二の流路に挿入された多孔性プラグ、第二の膜、およびゲルの少なくとも一つを含み、該少なくとも一つの第二の流路の上流部分において高い圧力を生じさせ、かつ該少なくとも一つの第二の流路の下流部分において低い圧力を生じさせる、本発明1001のマイクロ流体装置。
[本発明1008]
加圧機構が、少なくとも一つの第二の流路中の流体流から被処理物を抜き出す装置を含み、それにより、該少なくとも一つの第二の流路の上流部分において高い圧力を生じさせ、かつ該少なくとも一つの第二の流路の下流部分において低い圧力を生じさせる、本発明1001のマイクロ流体装置。
[本発明1009]
前記装置が、少なくとも一つの第二の流路内に位置するリバースポンプおよびタービンの一つである、本発明1008のマイクロ流体装置。
[本発明1010]
加圧機構が、少なくとも一つの第二の流路に結合されかつ該少なくとも一つの第二の流路中の流体の流量を制御するように構成された絞り装置を含み、それにより、該少なくとも一つの第二の流路の上流部分において高い圧力を生じさせ、かつ該少なくとも一つの第二の流路の下流部分において低い圧力を生じさせる、本発明1001のマイクロ流体装置。
[本発明1011]
絞り装置が弁を含む、本発明1010のマイクロ流体装置。
[本発明1012]
少なくとも一つの第二の流路が可撓性材料から形成され、加圧機構が、断面積を減らすように圧縮することができる該少なくとも一つの第二の流路の部分を含み、それにより、該少なくとも一つの第二の流路の上流部分において高い圧力を生じさせ、かつ該少なくとも一つの第二の流路の下流部分において低い圧力を生じさせる、本発明1001のマイクロ流体装置。
[本発明1013]
加圧機構が、少なくとも一つの第二の流路中に所望の圧力プロファイルを提供するように構成可能である、本発明1001のマイクロ流体装置。
[本発明1014]
一つまたは複数の第一の流路および少なくとも一つの第二の流路中の流量および流体圧の少なくとも一つを測定するための流量センサおよび圧力センサの少なくとも一つをさらに含む、本発明1001のマイクロ流体装置。
[本発明1015]
測定された流量または流体圧に応答して加圧機構を制御するように構成されたプロセッサをさらに含む、本発明1014のマイクロ流体装置。
[本発明1016]
少なくとも一つの第二の流路中に約200mmHg~約2000mmHgの範囲の最大圧力差を維持するように構成されている、本発明1001のマイクロ流体装置。
[本発明1017]
膜が約5μm~約300μmの範囲の厚さを有する、本発明1001のマイクロ流体装置。
[本発明1018]
膜の孔径が、約60kDa以下の分子量の粒子のクリアランスを可能にするように選択される、本発明1001のマイクロ流体装置。
[本発明1019]
一つまたは複数の第一の流路の内面に抗凝血コーティングをさらに含む、本発明1001のマイクロ流体装置。
[本発明1020]
一つまたは複数の第一の流路が、血液が該一つまたは複数の第一の流路に通して運ばれるとき、約200逆数秒~約2000逆数秒の範囲の壁剪断速度を維持するように構成されている、本発明1001のマイクロ流体装置。
[本発明1021]
一つまたは複数の第一の流路および少なくとも一つの第二の流路が、流体を反対方向に流すように構成されている、本発明1001のマイクロ流体装置。
[本発明1022]
第一の液体を、それぞれが約50ミクロン~約500ミクロンの範囲の高さ、約50ミクロン~約900ミクロンの範囲の幅および約3センチメートル~約20センチメートルの範囲の長さを有する一つまたは複数の第一の流路を有する流路のネットワークの入口に導入する工程;
濾液を、該一つまたは複数の第一の流路に対して補完的な少なくとも一つの第二の流路の入口に導入する工程;
該濾液を、該少なくとも一つの第二の流路中の少なくとも一つの加圧機構に通して流す工程であって、第一の液体の分析対象物の少なくともいくらかが、該一つまたは複数の第一の流路から膜を通して該少なくとも一つの第二の流路の中に運ばれるように、該少なくとも一つの加圧機構が、該少なくとも一つの第二の流路の、該加圧機構よりも上流の部分において高い圧力を生じさせ、該少なくとも一つの第二の流路の、該加圧機構よりも下流の部分において低い圧力を生じさせ、かつ該少なくとも一つの第二の流路の長さに沿って非線形圧力プロファイルを生じさせるように構成されている、工程;および
該一つまたは複数の第一の流路の出口から濾過済み液を捕集する工程であって、該一つまたは複数の第一の流路の該出口が、少なくとも一つの対応する第二の流路の入口とは反対側に位置し、かつ該一つまたは複数の第一の流路の入口が、該少なくとも一つの補完的な第二の流路の出口とは反対側に位置する、工程
を含む、第一の液体よりも少ない分析対象物を含有する濾過済み液を提供するために、該分析対象物を含有する第一の液体を濾過する方法。
[本発明1023]
濾液を少なくとも一つの加圧機構に通して流す工程が、実質的に階段関数である圧力プロファイルを少なくとも一つの第二の流路の長さに沿って生じさせる、本発明1022の方法。
[本発明1024]
一つまたは複数の第一の流路および少なくとも一つの第二の流路中の流量および圧力の少なくとも一つを測定する工程をさらに含む、本発明1022の方法。
[本発明1025]
流量および圧力の測定値に応答して、加圧機構、一つまたは複数の第一の流路中の流量、および少なくとも一つの第二の流路中の流量の少なくとも一つを調節する工程をさらに含む、本発明1024の方法。
[本発明1026]
第一の液体を導入する工程が血液を導入する工程を含む、本発明1022の方法。
[本発明1027]
患者から血液を抜き出す工程および濾過済み血液を該患者に戻す工程をさらに含む、本発明1026の方法。
[本発明1028]
一つまたは複数の第一の流路がその壁に抗凝血コーティングを含む、本発明1022の方法。
【図面の簡単な説明】
【0012】
添付図面は一定の拡大縮小率で描かれたものではない。様々な図面における類似の参照番号は類似の要素を示す。明確に示すために、各図面のすべての構成要素が標識されているわけではない。
【0013】
【
図1A】例示的態様のマイクロ流体対流クリアランス装置の図である。
【
図1B】例示的態様の、
図1Aのマイクロ流体対流クリアランス装置における使用に適した血液基材層の図である。
【
図2】例示的態様の、
図1Aのマイクロ流体装置における使用に適した第一の流路二重層構成の図である。
【
図3】
図2に示す二重層構成の流路に沿った流体圧のグラフである。
【
図4】例示的態様の、
図1Aのマイクロ流体装置における使用に適した代替的な流路二重層構成の図である。
【
図5】
図4に示す二重層構成の流路に沿った流体圧のグラフである。
【
図6】例示的態様の、
図1Aのマイクロ流体装置における使用に適した代替的な流路二重層構成の図である。
【
図7】例示的態様の、
図1Aのマイクロ流体装置における使用に適した代替的な流路二重層構成の図である。
【
図8】例示的態様の、
図1Aのマイクロ流体対流クリアランス装置を組み込んだ流体浄化システムの図である。
【
図9】
図9Aは、例示的態様の、
図8の流体浄化システムにおける使用に適した代替的な流路二重層構成の第一の状態の図である。
図9Bは、例示的態様の、
図9Aの代替的な流路二重層構成の第二の状態の図である。
【
図10】例示的態様の、
図1Aの流体浄化システムにおける使用に適した代替的な流路二重層構成の図である。
【
図11】例示的態様の、分析対象物を含有する液体を濾過する方法の流れ図である。
【発明を実施するための形態】
【0014】
特定の例示的態様の説明
以下、透析システム内で血液中の溶質の対流輸送を増大させるための装置に関する様々な概念およびその装置の態様をより詳細に説明する。先に紹介し、以下さらに詳細に説明する様々な概念は、任意の特定の具現化方法に限定されないため、数多くの方法の任意のものによって具現化され得る。具体的な態様および適用の例は、主として例示目的のために提供される。
【0015】
図1Aはマイクロ流体対流クリアランス装置100の図である。装置100は、二重層102によって例示されるような二重層8枚で構成されている。各二重層102は、透過膜、たとえば透過膜108によって分離された血液基材層、たとえば血液基材層104、および濾液基材層、たとえば濾液基材層106からなる。血液基材層104および濾液基材層106内の流路のネットワークにより、流体(すなわち血液または濾液)が運ばれることが可能になる。マイクロ流体対流クリアランス装置100はまた、血液入口マニホルド110および血液出口マニホルド112を含み、それらはいずれも血液基材層104に結合されている。同様に、濾液入口マニホルド114および濾液出口マニホルド116が濾液基材層106に結合されている。血液は、血液入口マニホルド110を通って血液基材層104に入り、血液出口マニホルド112を通って出る。濾液は、濾液入口マニホルド114を通って濾液基材層106に入り、濾液出口マニホルド116を通って出る。
【0016】
各二重層102は他の各二重層102に対して平行である。血液基材層104および濾液基材層106はそれぞれ約10ミクロン~約10ミリメートルの範囲の厚さを有し、膜108は約500ナノメートル~約1ミリメートルの範囲の厚さを有する。いくつかの態様において、隣接する二重層102は互いに接触していることができる。他の態様において、二重層102は、
図1Aに示すように、約500ミクロン以上離れていることができる。
【0017】
装置100は血液濾過における使用のために設計されている。血液基材層104および濾液基材層106内の流路のネットワークが、各流体の相対的に大きな表面積が透過膜108に曝露されるように流体(すなわち血液および濾液)を分割する。血液基材層104の各流路が濾液基材層106の対応する流路と整合して、対応する流路が透過膜108によって分離されるようになっている。血液が血液基材層104の流路中を移動するとき、濾液は濾液基材層106中を反対方向に移動し、廃物および水は、透過膜108を通る拡散および対流により、血液から除去され濾液基材層106に入る。健全な血液が血液基材層104中に残り、続いてそれを患者の体の中に再循環させることができる。
【0018】
血液基材層104および濾液基材層106は、熱可塑性樹脂、たとえばポリスチレン、ポリカーボネート、ポリイミドもしくは環式オレフィンコポリマー(COC)、生分解性ポリエステル、たとえばポリカプロラクトン(PCL)または軟質エラストマー、たとえばポリグリセロールセバケート(PGS)でできていることができる。または、基材層104および106は、ポリジメチルシロキサン(PDMS)、ポリ(N-イソプロピルアクリルアミド)またはたとえば炭素もしくは酸化亜鉛から形成されたナノチューブもしくはナノワイヤでできていてもよい。基材104および106は、温度安定性を維持するために断熱材でできている。いくつかの態様において、流路は、流路中の細胞、たとえば血管内皮細胞の増殖を促進または阻害するために親細胞性または疎細胞性材料でコートされることができる。血液基材層104中の流路はまた、血液基材層104中で血液の凝固を防ぐように働く抗凝血剤でコートされてもよい。
【0019】
図1Bは、
図1Aのマイクロ流体対流クリアランス装置における使用に適した血液基材層104の図である。血液基材層104は、血液が装置100内の相対的に大きな表面積に分散されることを可能にする。血液基材層104は、一次流路118、二次流路、たとえば流路120、三次流路、たとえば流路122、四次流路、たとえば流路124、および出口流路126を含む流路のネットワークを有する。
【0020】
図2は、
図1Aのマイクロ流体対流クリアランス装置における使用に適した第一の流路二重層構成200の図である。
図1Aに示す装置100のそれぞれ血液基材層104、濾液基材層106および膜108として使用するための、血液基材層201および濾液基材層202が透過膜204によって分離されている。透過膜204は細孔206を含む。いくつかの態様において、膜204は約5ミクロン~約300ミクロンの範囲の厚さを有し、細孔206は、約60kDa以下の分子量を有する粒子のクリアランスを可能にするようにサイズ決めされている。いくつかの他の態様において、膜は、約10ミクロン~約200ミクロン、約20ミクロン~約100ミクロンまたは約30ミクロン~約50ミクロンの範囲の厚さを有することができる。一つの態様において、膜は、厚さ6ミクロンのトラックエッチング膜である。血液基材層201は血液流路208を含み、濾液基材層202は濾液流路210を含む。矢印212および214が、それぞれ血液流路208および濾液流路210中の流体流の方向を示す。矢印212および210は、血液流路208および濾液流路210中を反対方向に流れる流体を示すが、いくつかの態様において、血液流路208中の流体が濾液流路210中の流体と同じ方向に流れることもできる。
【0021】
濾液流路210はまた、傾斜路216を含む。傾斜路216は、濾液流路210の下面に設けられ、流路長の相対的に小さな部分にかけて濾液流路210の断面積を減らすように構成されている。流体流量は断面積の減少によって制限され、その結果、傾斜路216よりも上流(
図2の濾液流路210の左側に向かって)では高い圧力が生じ、傾斜路216よりも下流(濾液流路210の右側に向かって)では低い圧力が生じる。傾斜路216は濾液流路210の小さな部分しか占有しないため、圧力は、濾液流路210の上流部分から濾液流路210の下流部分へと急速に低下する。
【0022】
図3は、
図2に示す二重層構成の流路に沿った流体圧のグラフ300である。ライン318は濾液流路210中の流体圧を表し、ライン320は血液流路208中の流体圧を表す。傾斜路216は、濾液流路210の底に沿って、
図3の位置軸上で322と印された点と324と印された点との間に位置する。図示するように、傾斜路216は、濾液流路210の長さに沿って非線形圧力プロファイルを生じさせる。点322の左では、傾斜路216によって課される流量制限のせいで、濾液流路210中の流体圧は高く、相対的に一定である。流体が傾斜路216を越えて流れると、圧力は低下し、最後に、濾液流路210が相対的に広い断面を有する傾斜路216の端部で最小レベルに達する。
【0023】
傾斜路216のサイズおよび形状は、所望の圧力プロファイルを達成するように選択することができる。たとえば、濾液流路210中の圧力低下の実質的にすべてが傾斜路の長さにわたって起こるため、傾斜路216の角度または長さの変化が圧力プロファイルの変化を生じさせる。いくつかの態様において、一つよりも多い傾斜路216が濾液流路210内に含まれることもできる。また、所望の圧力プロファイルを達成するための他の特徴を濾液流路210に加えることができる。いくつかの例示的な特徴を以下さらに詳述する。
【0024】
血液流路208中の圧力は、ライン320によって示されるように、血液流路208の長さに沿って線形に変化する。血液流路208は血液を運ぶため、血液の健全さを促進するために、血液流路208内の圧力の急激な増減を回避することが望ましい。血液流路208中の圧力プロファイルはその断面積によって決まる。血液流路208が均一な断面を有し、いかなる追加の制限も有しない限り、
図3に示すような、血液流路208の上流部分における相対的に高い圧力が血液流路208の下流部分における相対的に低い圧力へと線形に遷移する圧力プロファイルを維持することができる。
【0025】
流路208と流路210とは、流体およびいくらかの粒子が流路208および210の間で交換されることを可能にする多孔性膜204によって分離されている。移送される流体の量は、流路208と流路210との間の圧力差に比例する。
図3は、血液を運ぶ血液流路208中の圧力が濾液を運ぶ濾液流路210中の圧力を超えるグラフ正濾過領域326を示す。
図2の流路正濾過領域226に対応するこの領域において、血液流路208中のより高い圧力により、血液中の流体の一部分が、細孔206の直径よりも小さい直径の粒子とともに、膜を通して濾液流路210の中に運ばれる。上述したように、細孔206の孔径は、たとえば、血液細胞および血小板を血液流路208中に保持しながらも血液中の病原体、毒素、汚染物質または他の不要な物質を濾別するために、約60kDa未満の分子量の粒子のクリアランスを可能にするように選択することができる。
【0026】
図3はまた、濾液を運ぶ濾液流路210中の圧力が血液を運ぶ血液流路208中の圧力を超えるグラフ逆濾過領域328を示す。
図2の流路逆濾過領域228に対応するこの領域において、濾液流路210中のより高い圧力により、流体が濾液流路210から膜204を通して血液流路208の中に運ばれる。グラフ300のグラフ正濾過領域326およびグラフ逆濾過領域328中、血液流路208と濾液流路210との間の圧力差を増すことが望ましい。理由は、この差が血液からの粒子の対流クリアランスの量に比例するからである。圧力差は、
図3中、318と印されたラインと320と印されたラインとの間の面積によって示されている。いくつかの態様において、装置200は、ライン318の最大垂直高と最小垂直高との間の差によってグラフ300上に示される濾液流路210中の最大圧力差を約200mmHg~約2000mmHgの範囲内に維持することができるように構成されている。
【0027】
図2および3に示すように、濾液流路210への傾斜路216の付加が、グラフ逆濾過領域328においてより高い圧力を維持し、グラフ正濾過領域326においてより低い圧力を維持することにより、グラフ領域326および328によってグラフ300中に示されるように、血液流路208と濾液流路210との間の圧力差を増大させる。傾斜路216なしでは、濾液流路210中の圧力は、濾液流路210の長さに沿って左から右に線形に低下し、グラフ正濾過領域326およびグラフ逆濾過領域328両方のサイズが縮小するであろう。理想的には、正濾過領域326において血液流路208から失われる血液の量はグラフ逆濾過領域328中の濾液によって置き換えられる。この理由のため、正濾過中に失われる血液の量が逆濾過中に置き換えられる濾液の量に等しくなるように流路を構成することが望ましい。これは、グラフ300上、グラフ正濾過領域326とグラフ逆濾過領域328との実質的に等しい面積によって示されている。グラフ300上に示された正濾過領域328および逆濾過領域326のサイズが必ずしも装置200の物理的寸法に対応しないことが当業者によって理解されよう。
【0028】
それぞれ矢印212および214によって示される血液流路208中と濾液流路210中とで反対の流れ方向は、血液から濾過された不要な粒子が血液流路208に戻らないことを保証する。粒子は、血液流路208の上流部分(
図2の右側)に対応する正濾過領域において血液流路208から濾液流路210に運ばれる。したがって、粒子は、矢印214の方向への濾液の流れによって濾液流路210から直接的に運び出される。血液流路208の下流部分(
図2の左側)に対応する逆濾過領域326において、濾液流路210中には、あるとしてもずっと少ない粒子しか存在しない。その結果、濾液流路210からの新鮮な濾液が逆濾過領域326において血液流路208に入り、血液流路208から濾過された粒子が再び血液流路208に再び入ることはない。
【0029】
図2は、長方形の断面を有するものとして流路208および210を示す。しかし、他の断面形状を使用することもできる。たとえば、各血液流路208および210は実質的に半円形の断面を有することができる。他の態様において、流路208および210は正方形または台形の断面を有してもよい。さらに他の態様において、流路208および210の断面は不規則な形状であることができる。たとえば、流路208および210は、角を丸めた、またはカットした略長方形であってもよいし、流路内の流体の流量を制限するように働く機構(たとえば傾斜路216)を含んでもよい。各血液流路208および210は、エッチング、ミリング、スタンピング、プレイティング、直接機械加工または射出成形によって形成される。いくつかの態様において、濾液流路210は、濾液流路210の幅を先細りさせることによって(たとえば、
図2に示すように、濾液流路210の幅を先細りさせてその下面に傾斜路216を形成することによって)傾斜路216が形成されるように製造される。他の態様において、濾液流路210は、その長さにわたって均一な断面積を有するように製造され、傾斜路216は、別個に形成されたのち濾液流路210に挿入される。
【0030】
図2は、濾液流路210の下壁に設けられた傾斜路216を示すが、傾斜路216について他の位置が可能である。たとえば、傾斜路216は、濾液流路210の側壁に配置されることもできる。いくつかの態様において、傾斜路216に代えて、またはそれとともに、他の加圧機構が用いられてもよい。たとえば、加圧機構は、流体を濾液流路210の外に運び、加圧機構に通し、濾液流路210の中に戻すバイパス流路を含み得る。いくつかの代替的な加圧機構を以下に説明する。
【0031】
図4は、
図1Aのマイクロ流体対流クリアランス装置における使用に適した代替的な流路二重層構成400の図である。血液基材層401は血液流路408を有し、濾液基材層402は濾液流路410を有する。流路408および410は膜404によって分離され、流体は、流路408および410中を、矢印412および414によって示される方向に運ばれる。濾液流路410はまた、濾液流路410中の流体流量を制限するように構成された部分的な壁416を含む。
【0032】
図2および3に関連して上述したように、濾液流路410中の非線形圧力プロファイルが、血液流路408中の粒子の対流クリアランスの量を増すように働くことができる。部分的な壁416を使用してそのような非線形圧力プロファイルを生じさせることができる。部分的な壁416は、濾液流路210の全幅にかけて延び、膜404に向かって上に延びている。部分的な壁416は濾液流体に対して不浸透性であるため、流体が通過する濾液流路410の断面積を減らす。したがって、部分的な壁416によって加えられる制限が、濾液流路410の上流部分において高い圧力を生じさせ、濾液流路410の下流部分において低い圧力を生じさせる。濾液流路410内の圧力低下の実質的にすべてが部分的な壁416をはさんで起こる。
【0033】
部分的な壁416の寸法は、所望の圧力プロファイルを達成するように選択することができる。たとえば、部分的な壁の高さが増すとともに、部分的な壁416によって流体流量に課される制限は増す。したがって、濾液流路410の上流部分におけるより高い圧力は、部分的な壁410の高さを増すことによって生じさせることができる。同様に、濾液流路410の上流部分におけるより低い圧力は、部分的な壁416の高さを減らすことによって生じさせることができる。
【0034】
濾液流路410中の圧力低下は、流体が部分的な壁416の上を横切るときに起こるため、部分的な壁416の長さ(濾液流路410の長さ方向の)もまた、圧力プロファイルに影響することができる。たとえば、部分的な壁416の長さの増大は、圧力低下が濾液流路410のより長い部分にかけて起こるため、圧力をよりゆっくりと低下させる。部分的な壁416のより短い長さは圧力をより急速に低下させる。部分的な壁416の任意の短い長さの場合、濾液流路410中の圧力プロファイルは、実質的に、段が部分的な壁416で起こる階段関数である。いくつかの態様において、圧力プロファイルは、部分的な壁416の高さを調節することによって調節することができる。たとえば、部分的な壁416は、濾液流路410の底に調節可能に挿入することができる。部分的な壁416を濾液流路410の中にさらに延ばすと、事実上、部分的な壁416の高さを増すことができる。
【0035】
図5は、
図4に示す二重層構成の流路に沿った流体圧のグラフ500である。ライン518は濾液流路410中の流体圧を表し、ライン520は血液流路408中の流体圧を表す。部分的な壁416は、濾液流路410の底に沿って、
図5の位置軸上で522と印された点と524と印された点との間に位置する。図示するように、部分的な壁416は、濾液流路410の長さに沿って非線形圧力プロファイルを生じさせる。点522の左では、部分的な壁416によって課される流量制限のせいで、濾液流路410中の流体圧は高く、相対的に一定である。流体が部分的な壁416を越えて流れると、圧力は低下し、最後に、濾液流路210が相対的に広い断面を有する部分的な壁416の端部で最小レベルに達する。この態様においては、部分的な壁416の相対的に狭い幅が濾液流路410中に急激な圧力低下を生じさせる。その結果、濾液流路410中の圧力プロファイルは、実質的に、ライン518によって示される階段関数である。
【0036】
図6は、
図1Aのマイクロ流体対流クリアランス装置における使用に適した代替的な流路二重層構成600の図である。血液基材層601は血液流路608を有し、濾液基材層602は濾液流路610を有する。流路608および610は膜604によって分離され、流体は、流路608および610中を、矢印612および614によって示される方向に運ばれる。濾液流路610はまた、濾液流路610中の流体流量を制限するように構成された、細孔618を有する第二の膜616を含む。
【0037】
膜616は、濾液流路610の長さに沿って所望の圧力プロファイルを達成するように選択することができる。たとえば、細孔618の孔径は、流体流量をさらに制限して膜616よりも上流の圧力を高めるように減らすこともできるし、上流の圧力を下げるために減らすこともできる。また、細孔618の数および細孔618の間隔を変更することもできる。
【0038】
膜604の細孔606と、第二の膜616の細孔618との相対的孔径は、
図6では、必ずしも一定の拡大縮小率で描かれていない。いくつかの態様において、細孔606は、細孔618とは異なる孔径を有し得る。粒子は、正濾過領域においてのみ、血液流路608から膜606を通して濾液流路610の中へと移送されるが、それは、濾液流路610の下流部分(
図6に示すように、濾液流路610の右側)で起こる。したがって、細孔606を通って移動する粒子は細孔618を通過する必要がないため、細孔618は細孔606よりも小さくすることができる。
【0039】
いくつかの態様において、膜618は、同様な目的に役立つ別の機構によって置き換えられてもよい。たとえば、濾液流路610中の濾液の流量を制限するための多孔性プラグまたはゲルを濾液流路610に挿入して、それにより、濾液流路610の上流部分において高い圧力を生じさせ、流路610の下流部分において低い圧力を生じさせてもよい。
【0040】
図7は、
図1Aのマイクロ流体対流クリアランス装置における使用に適した代替的な流路二重層構成700の図である。濾液基材層702が濾液流路710を有する。濾液流路710は、入口750、出口752および曲がりくねった領域754を含む。また、
図7には、濾液流路710の下に位置する血液流路708が示されている。血液流路708は入口756および出口758を含む。血液流路708は、濾液基材層702の下で血液基材層内に含まれることができる。流路708および710は、
図7には示されない透過膜によって分離されている。
【0041】
流路708および710中の流体が反対方向に流れることを可能にするために、濾液流路710の入口750は血液流路708の入口756とは反対側にある。濾液流路710の入口750と出口752との間の距離は血液流路708の入口756と出口758との間の距離に概ね等しい。しかし、曲がりくねった領域754のせいで、濾液流路710の全長は血液流路208の全長よりも実質的に長い。加えて、曲がりくねった領域754の長さ760は濾液流路710の入口750と出口752との間の距離よりも実質的に短い。この結果、濾液流路710の長さに沿って、曲がりくねった領域754をはさんでの大きな圧力低下を含み、曲がりくねった領域754よりも上流の濾液流路710中に高い圧力を生じさせ、曲がりくねった領域754よりも下流で低い圧力を生じさせる非線形圧力プロファイルが得られる。曲がりくねった経路754の特性、たとえば長さ760またはターンの数は、濾液流路710中に所望の圧力プロファイルを達成するように選択することができる。非線形圧力プロファイルは、血液流路708から透過膜を通して濾液流路710への粒子の対流クリアランスの量を増す。
【0042】
図2、4、6および7に関連して上述した加圧機構、たとえば傾斜路216、部分的な壁416、膜616または曲がりくねった領域754が一つの態様へと組み合わされてもよい。また、他の加圧機構を使用してもよい。たとえば、流路中を流れる流体から被処理物を抜き出す任意の機構、たとえばリバースポンプまたはタービンを加圧機構として使用することもできる。
【0043】
図8は、
図1Aのマイクロ流体対流クリアランス装置100を組み込んだ流体浄化システム800の図である。システム800は、複数の流体圧センサ804および複数の流量センサ806から入力を受けるプロセッサ802を含む。プロセッサ802はまた、加圧機構808、血流ポンプ810および濾液ポンプ812と連絡している。いくつかの態様において、圧力センサ804および流量センサ806は装置の流路内に位置することができる。したがって、プロセッサ804は、圧力および流量をモニタすることができ、かつ加圧機構808またはポンプ810および812の押出し量を調節することによって応答することができる。たとえば、プロセッサは、加圧機構808またはポンプ810および812を調節して、血液の健全さを維持する場合に安全である血液流路内の圧力を維持することができる。
【0044】
図9Aは、
図8の流体浄化システムにおける使用に適した代替的な流路二重層構成900の第一の状態の図である。
図2、4、6および7それぞれの流路二重層構成200、400、600および700と同様に、流路二重層構成900は血液基材層901および濾液基材層902を含む。血液基材層901は血液流路908を有し、濾液基材層902は濾液流路910を有する。流路908および910は膜904によって分離され、流体は、流路908および910中を、矢印912および914よって示される方向に運ばれる。濾液流路910はまた、上流圧力センサ804a、下流圧力センサ804b、上流流量センサ806aおよび下流流量センサ806bを含み、これらは、
図8に関連して上述したように、プロセッサ802と連絡している。プロセッサ802はまた、濾液流路910を通過する流体の流量を制限するように構成された、濾液流路910内の弁916と連絡している。この例において、弁916は
図8の加圧機構808に対応する。
【0045】
弁916は、
図9Aに、ロータリーアクチュエータ918に接続されたバタフライ弁として示されているが、他のタイプの弁を含む任意のタイプの絞り装置を使用することもできる。弁916は濾液流路910と同じ幅および高さを有する。
図9Aにおいて、弁916は、濾液流路910内の流体の流量を実質的に制限する部分閉位置で示されている。ロータリーアクチュエータ918の回転が弁916をその中心軸を中心に回転させて、弁916を開閉することを可能にする。
【0046】
図9Bは、
図8の流体浄化システムにおける使用に適した代替的な流路二重層構成900の第二の状態(すなわち、弁916が全開位置にある)の図である。開位置において、弁916の相対的に小さな厚さは流体流量に対して最小限の制限しか呈しない。図示されないが、弁の他の位置が可能である(すなわち、弁は様々な角度に回され得る)。
【0047】
図2、4、6および7に関連して上述したように、濾液流路910内の制限は、濾液流路910の長さに沿って非線形圧力プロファイルを生じさせることができる。非線形圧力プロファイルは、血液流路908から膜904を通過する粒子の対流クリアランスの増加を生じさせることができる。たとえば、ほぼ全閉になるような弁916の配置は少量の流体しか弁を通過させず、その結果、弁916よりも上流に高い圧力を生じさせ、弁916よりも下流に低い圧力を生じさせ、弁916をはさんで急激な圧力低下を生じさせる。この位置からの弁916の開放は、弁916によって課される流体制限を減らす。弁916が全開になると、濾液流路910中の圧力プロファイルは、上流部分よりも下流部分まで、実質的に線形の低下になる。
【0048】
濾液流路910はまた、流体圧を測定するための圧力センサ804aおよび804bならびに流体流量を測定するための流量センサ806aおよび806bを含む。いくつかの態様において、これらのセンサは、高さが低くてもよいし、または濾液流路910中の流体流量に対して最小限にしか干渉しないように他のやり方で設計されてもよい。濾液流路910中の圧力および流量は流量制限(すなわち弁916)の両側でかなり異なることができるため、二つの圧力センサ804aおよび804bならびに二つの流量センサ806aおよび806bが含められ、各タイプのセンサの一方が濾液流路910の上流部分に設置され、各タイプのセンサの他方が下流部分に設置される。
【0049】
圧力センサ804aおよび804bならびに流量センサ806aおよび806bはプロセッサ802に通信的に結合されることができる。プロセッサ802はまた、ロータリーアクチュエータ918にも通信的に結合されることができる。この構成は、濾液流路910内の圧力および流量の計測された変化に応答して弁916の位置を時間とともに変化させることを可能にする。たとえば、濾液流路910の上流部分と下流部分との間の圧力差が最大しきい値を超えるならば、プロセッサ802は、ロータリーアクチュエータ918を回転させて弁916をより開いた位置に置き、それにより圧力を下げることによって応答することができる。同様に、プロセッサ802は、下流の流量検出器806bからの計測値に基づいて、弁916よりも下流の流量が最大しきい値を超えていると判定することができる。プロセッサ802は、この状態に対し、流量を減らすために、ロータリーアクチュエータ918を制御して弁916をより閉じた位置に置くことによって応答することもできる。プロセッサ802はまた、ポンプなどの流体導入装置と通信して、濾液が濾液流路910に導入されるときの流量を増減することもできる。他の態様において、ロータリーアクチュエータ918または流体導入装置は(たとえば医師または患者によって)手動で操作されることもできる。
【0050】
他の態様において、濾液基材層902は可撓性材料から作られることができ、非線形圧力プロファイルは、濾液流路910中、濾液基材層902の材料の一部分を膜904に向けて内方に変形させることによって生じさせることができる。たとえば、濾液基材層902の一部分の変形は濾液流路910の一部分の断面積を減らすことができる。断面積の減少は濾液流路902中の流体流量を制限することができ、その結果、濾液流路902の変形部分よりも上流で高い圧力を生じさせ、濾液流路902の変形部分よりも下流で低い圧力を生じさせる。一例において、濾液基材層902の変形は、プロセッサ802によって制御することができ、圧力センサ804aおよび804bならびに流量センサ806aおよび806bによって実施される計測に応答して調節することができる。
【0051】
いくつかの態様において、血液流路908はまた、プロセッサ902に通信的に結合されることができる圧力および流量センサを含むことができる。圧力および流量センサは、血液流路908中の流体特性が、血液の健全さを保持する範囲内に維持されることを保証するために使用することができる。たとえば、圧力センサが血液流路908中に許容不可能に高い圧力を検出するならば、プロセッサ802は、ロータリーアクチュエータ918を回転させて弁916をより開いた位置に置き、濾液流路910中、弁916よりも上流の圧力を下げることによって応答することができる。これが、濾液流路910から血液流路908に移送される流体の量を減らし、それによって血液流路908中の圧力を下げる。圧力および流量特性はまた、壁剪断速度を血液にとっての許容範囲に維持するように調節することもできる。いくつかの態様において、圧力および流量特性は、血液流路908からの粒子の対流クリアランスの所望のレベルを達成するように調節することができる。たとえば、
図2および3に関連して上述したように、濾液流路910中の圧力を高めると、その結果、対流クリアランスのレベルを高めることができ、濾液流路910中の圧力を下げると、その結果、対流クリアランスのレベルを下げることができる。したがって、プロセッサ802は、ロータリーアクチュエータ918を制御して弁916をより閉じた位置に置き、それによって濾液流路910中の圧力を高め、対流クリアランスの量を増すことができる。または、プロセッサ802は、ロータリーアクチュエータ918を制御して弁916をより開いた位置に置くことができ、それが濾液流路910中の圧力を下げ、ひいては対流クリアランスの量を減らす。
【0052】
図10は、例示的態様の、
図1Aの流体浄化システムにおける使用に適した代替的な流路二重層構成1000の図である。
図9の流路二重層構成900と同様に、流路二重層構成1000は血液基材層1001および濾液基材層1002を含む。血液基材層1001は血液流路1008を有し、濾液基材層1002は濾液流路1010を有する。流路1008および1010は膜1004によって分離され、流体は、流路1008および1010中を、矢印1012および1014よって示される方向に運ばれる。濾液流路1010はまた、上流圧力センサ804a、下流圧力センサ804b、上流流量センサ806aおよび下流流量センサ806bを含み、これらは、
図8に関連して上述したように、プロセッサ802と連絡している。プロセッサ802はまた、
図9Aおよび9Bに関連して上述したように、濾液流路1010を通過する流体の流量を制限するように構成された、濾液流路1010内の弁916と連絡している。
【0053】
図9の二重層構成900とは対照的に、
図10に示す二重層構成1000は血液流路1008中にさらなる加圧機構を含む。具体的には、
図10において、血液流路1008中の加圧機構は、第二のロータリーアクチュエータ1018に接続された第二の弁1016の形態をとる。弁916と同様に、第二の弁1016は血液流路1008と同じ幅および高さを有する。
図10において、第二の弁1016は全開位置で示されている。ロータリーアクチュエータ1018の回転が第二の弁1016をその中心軸を中心に回転させて、第二の弁1016を開閉することを可能にする。いくつかの態様において、第二の弁1016は、弁916から独立して制御することができる。たとえば、
図10に示すように、弁916が部分的に閉じているとき、第二の1016は全開であることができる。第二の弁1016は、ロータリーアクチュエータ1018の手動作動によって制御することもできるし、またはプロセッサ802によって電子的に制御することもできる。いくつかの態様において、圧力センサ804aおよび804bならびに流量センサ806aおよび806bに類似したセンサが血液流路1008中に位置することができ、第二の弁1016は、それらのセンサによって実施される計測に応答して作動することができる。
図10にはバタフライ弁1016が示されているが、上述した流路制限のいずれかを含む、任意の他のタイプの流路制限が血液流路1008内に位置することができる。いくつかの態様において、一つよりも多い流路制限が血液流路1008中に位置することができる。
【0054】
図11は、分析対象物を含有する第一の液体を濾過して、第一の液体よりも少ない分析対象物を含有する濾過済み液を提供する方法1100の流れ図である。方法1100は、第一の液体を導入する工程(工程1102)、濾液を導入する工程(工程1104)、濾液を加圧機構に通して流す工程(工程1106)、圧力および流量を測定する工程(工程1108)、圧力および流量を調節する工程(工程1110)および濾過済み液を捕集する工程(工程1112)を含む。
【0055】
方法1100は、第一の液体を、一つまたは複数の第一の流路を有する流路のネットワークに導入する工程(工程1102)を含む。いくつかの態様において、流体は、濾過するために患者から抜き出された血液である。血液中の分析対象物は、尿素、尿酸またはクレアチニンであることができる。第一の流路は、約50ミクロン~約500ミクロンの範囲の高さ、約50ミクロン~約900ミクロンの範囲の幅および約3センチメートル~約20センチメートルの範囲の長さを有することができる。血液が第一の流路に導入されるのならば、第一の流路は、その内壁に抗凝血コーティングを含むことができる。
【0056】
方法1100は、少なくとも一つの第二の流路の入口に濾液を導入する工程(工程1104)を含む。第二の流路は一つまたは複数の第一の流路に対して補完的であり、第二の流路に導入された濾液が第一の流路中の第一の液体の方向とは反対の方向に流れるように、第二の流路の入口は、第一の流路の入口に対して流路の反対側端にある。第二の流路は、分析対象物のいくらかが第一の流路から第二の流路に移送されることを可能にする透過膜によって一つまたは複数の補完的な第一の流路から分離されている。
【0057】
方法1100は、濾液を第二の流路中の加圧機構に通して流す工程(工程1106)を含む。第二の流路の加圧機構は、第二の流路の加圧機構よりも上流の部分において高い圧力を生じさせ、第二の流路の加圧機構よりも下流の部分において低い圧力を生じさせ、かつ第二の流路の長さに沿って非線形圧力プロファイルを生じさせるように構成されている。たとえば、加圧機構は、流体の流量を制限するために第二の流路中に挿入された障害物、たとえば上記の傾斜路、部分的な壁、膜または弁であることができる。加圧機構はまた、
図7に関連して説明したような、第二の経路がその長さの一部分にわたってたどる曲がりくねった経路であることもできる。第二の流路は一つよりも多い加圧機構を含み得る。いくつかの態様において、加圧機構は、実質的に階段関数である圧力プロファイルを第二の流路中に生じさせるように構成されている。非線形圧力プロファイルは、第一の流路から透過膜を通して第二の流路への分析対象物の対流クリアランスの増大を生じさせる。
【0058】
方法1100は、第一および第二の流路中の圧力および流量を測定する工程(工程1108)を含む。これは、圧力および流量センサを第一の流路および第二の流路の一方または両方の中に配置することによって達成することができる。第二の流路中の圧力プロファイルは非線形であるため、第二の流路は、加圧機構の各側に圧力センサおよび流量センサを含むことができる。いくつかの態様において、圧力および流量センサは電子プロセッサと通信することができる。
【0059】
方法1100は、第一または第二の流路の圧力または流量を調節する工程(工程1110)を含む。圧力および流量は、工程1108で測定された圧力および流量に応答して調節することができる。たとえば、第二の流路中の圧力は、第二の流路の加圧機構の特性を変化させることによって、たとえば第二の流路中の弁を開閉することによって調節することができる。圧力または流量はまた、第一の流路または第二の流路に導入される流体の量を制限することによって、たとえば各流路のための流体導入装置を制御することによって調節することができる。上述したように、圧力および流量センサは電子プロセッサに通信的に結合されることができる。あるいはプロセッサは、加圧機構または流体導入装置に結合されて、第一の流路および第二の流路中の圧力および流量を制御することができる。または、人間オペレータが、工程1108で圧力および流量センサによって計測された圧力および流量に応答して、加圧機構または流体導入装置を手動で制御することもできる。いくつかの態様において、圧力および流量は、第一の流路中を流れる血液の健全さを保持するように調節することができる。
【0060】
方法1100はまた、第一の流路の出口から濾過済み液を捕集する工程(工程1112)を含む。上述したように、補完的な第一の流路および第二の流路は、流体が流路中を反対方向に流れるように構成されている。したがって、濾過済み液が捕集される第一の流路の出口は第二の流路の入口の近くに位置する。第二の流路中の加圧機構は、第二の流路中の加圧機構よりも下流で、第一の流路の対応する区分における圧力よりも低い圧力を生じさせる。これにより、分析対象物が第一の流路から透過膜を通して第二の流路に運ばれることが可能になる。第二の流路中の加圧機構はまた、第二の流路中の加圧機構よりも上流で、第一の流路の対応する区分における圧力よりも高い圧力を生じさせ、これにより、濾液のいくらかが第二の流路から透過膜を通して第一の流路に運ばれる。その結果、第一の流路から分析対象物および流体が除去され、濾液が第一の流路中の失われた流体に置き換わり、したがって、第一の流路の出口で捕集される液体は、第一の流路の入口における液体よりも低い濃度の分析対象物を含有する。
【0061】
いくつかの例示的態様を説明してきたが、前記説明が例示的であり、限定的ではなく、実例として提示されたものであることが明らかである。特に、本明細書に提示される例の多くは方法行為またはシステム要素の特定の組み合わせを含むが、そのような行為およびそのような要素を他の方法において組み合わせて同じ目的を達成してもよい。一つの態様に関連してのみ説明される行為、要素および特徴は、他の態様における類似の役割から排除されることを意図したものではない。
【0062】
本明細書に記載されるシステムおよび方法は、それらの特性を逸脱することなく、他の特定の形態に具現化され得る。前記態様は、記載されたシステムおよび方法を例示するものであり、限定するものではない。したがって、本明細書に記載されるシステムおよび方法の範囲は、前記詳細な説明ではなく、特許請求の範囲によって示され、特許請求の範囲の意味および均等範囲内に入る変更が本明細書に含まれる。