(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2021-12-20
(45)【発行日】2022-01-17
(54)【発明の名称】半導体処理装置及び半導体処理流動体の計測方法
(51)【国際特許分類】
G01N 21/49 20060101AFI20220107BHJP
G01N 15/06 20060101ALI20220107BHJP
G01N 21/65 20060101ALI20220107BHJP
H01L 21/304 20060101ALI20220107BHJP
【FI】
G01N21/49 Z
G01N15/06 C
G01N21/65
H01L21/304 648G
(21)【出願番号】P 2017064146
(22)【出願日】2017-03-29
【審査請求日】2020-01-31
(73)【特許権者】
【識別番号】000001096
【氏名又は名称】倉敷紡績株式会社
(74)【代理人】
【識別番号】100142022
【氏名又は名称】鈴木 一晃
(72)【発明者】
【氏名】立花 慎
(72)【発明者】
【氏名】平木 哲
(72)【発明者】
【氏名】塩見 元信
【審査官】田中 洋介
(56)【参考文献】
【文献】特開平09-312277(JP,A)
【文献】特公平07-050119(JP,B2)
【文献】特開平07-094459(JP,A)
【文献】特開2003-166937(JP,A)
【文献】米国特許出願公開第2011/0242534(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 21/00-21/958
G01N 15/00-15/14
H01L 21/00-21/98
JSTPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
内部の流動体にウエハを浸漬可能な処理槽と、
前記処理槽の外部から面状のレーザー光を前記流動体に照射するレーザー発振器と、
前記レーザー発振器を前記レーザー光の面に交差する方向に移動させる、移動ユニットと、
前記レーザー光が前記流動体
内の散乱粒子により散乱し
て生じた散乱光を
受光して、前記散乱粒子の粒子径と前記レーザー光の波長との関係により決定される前記散乱光の種類に応じたデータを取得可能な光検出器と、
前記光検出器が
取得した散乱光
の種類に応じたデータ及びレーザー光の照射位置の情報に基づいて、前記処理槽内の特定領域における流動体の性状を計測演算する計測演算部と、
を備えることを特徴とする、半導体処理装置。
【請求項2】
前記処理槽は、レーザー光を透過させる透明壁が前記レーザー光の移動範囲にわたって設けられていることを特徴とする、請求項1に記載の半導体処理装置。
【請求項3】
前記移動ユニットは、前記処理槽の外部に設けられた案内部材と、前記レーザー発振器を搭載し前記案内部材に案内され前記案内部材に沿って移動可能な第1駆動部とを備えることを特徴とする、請求項1又は2に記載の半導体処理装置。
【請求項4】
前記移動ユニットは、前記光検出器を搭載し前記案内部材に案内され前記案内部材に沿って移動可能な第2駆動部を備えることを特徴とする、請求項3に記載の半導体処理装置。
【請求項5】
前記移動ユニットの案内部材は、前記処理槽の周囲に設けられた環状のレールであり、
前記第1駆動部及び第2駆動部は、独立して前記レールを移動可能であることを特徴とする、請求項4に記載の半導体処理装置。
【請求項6】
前記第1駆動部及び第2駆動部は、前記レール上の位置において、互いになす角度を変更可能であることを特徴とする、請求
項5に記載の半導体処理装置。
【請求項7】
前記処理槽は、円筒形状であり、
前記レーザー発振器は、前記レーザー光が前記処理槽の中心点を通過するように設けられていることを特徴とする、請求項4から6のいずれか1つに記載の半導体処理装置。
【請求項8】
処理槽の内部に貯留されウエハを浸漬可能な流動体の性状を計測する方法において、
前記処理槽の外部に配置されたレーザー発振器を、面状のレーザー光を前記流動体に照射しつつ前記レーザー光の面に交差する方向に移動させ、
前記レーザー発振器の個々の位置において、前記レーザー光が前記流動体
内の散乱粒子により散乱し
て生じた散乱光を受光して、前記散乱粒子の粒子径と前記レーザー光の波長との関係により決定される前記散乱光の種類に応じたデータを取得可能な光検出器を用いて、前記散乱光
の種類に応じたデータを
取得し、
前記光検出器が
取得した個々の位置における前記散乱光
の種類に応じたデータに基づいて、前記処理槽内の特定領域における流動体の性状を演算することを特徴とする、半導体処理流動体の計測方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体材料を収容する槽の内部の処理液などの流動体の状態を検出するための半導体処理装置及び槽内の処理流動体の性状を計測する方法に関するものである。
【背景技術】
【0002】
槽の内部に処理液等の流動体を貯留し、槽内部に処理物を収容して当該処理物の製造や処理を行うにあたり、槽の外部から槽内に光を照射し、当該光の散乱光を撮像することで、槽内部の処理物の状態を検査計測する技術が知られている。これらの装置としては、例えば、特許文献1(特許第5928146号公報)、特許文献2(特開2007-171012号公報)、特許文献3(特開2015-195270号公報)等が知られている。
【0003】
特許文献1は、フォトリフレクタンス法を半導体製造技術に利用したものであり、半導体デバイスのエッチングを行いながら、槽外から槽内の半導体に光を当てその反射光であるプローブ光の反射率を測定し、当該プローブ光のエネルギーと反射光の変化量の振動波形を計測することで、半導体表面に関する表面再結合速度などの多種の詳細な情報を計測する装置が開示されている。
【0004】
また、特許文献2には、大気中の限られた空間に浮遊する特定の物質からなるエアロゾルまたは特定の物質を含むエアロゾルの個数またはそのエアロゾルに含まれる量を遠隔かつリアルタイムで計測するために、エアロゾルにレーザー照射を施し、その結果、レーザー光と特定の物質による相互作用により、その特定の物質が照射するレーザー光と波長が異なるレーザー光励起で発光する蛍光、りん光、またはフォトルミネッセンス等の特定の物質が発生する特有の光を可視化して画像計測し、画像処理により計数する技術が開示されている。
【0005】
特許文献3は、半導体処理液であるリン酸溶液中のリン酸濃度を測定するために処理槽にリン酸溶液を供給する供給路の途中にラマン分光器を設けたリン酸濃度計測部を備えた基板処理装置が開示されている。
【先行技術文献】
【特許文献】
【0006】
【文献】特許第5928146号公報
【文献】特開2007-171012号公報
【文献】特開2015-195270号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかし、特許文献1の技術は、半導体の表面性状を検査計測するものであるが、槽内の流動体の状態を計測することはできないという問題があった。すなわち、槽内に流動体を貯留して半導体材料を流動体に浸漬した状態で処理を行う場合、半導体表面の性状計測と同様に流動体の状態を検知することが重要であるが、特許文献1の技術では流動体の性状計測は不可能であるという問題があった。
【0008】
特許文献2の技術は、空気中に浮遊する粒子群に特定の物質を付加しての濃度計測するにあたり、レーザー照射によるエアロゾルの発光を検出するものであり、槽内の半導体材料に前記特定の物質が影響を与えるという問題もあり、また、半導体材料がレーザー照射の障害となるため、半導体処理装置に使用することが困難であるという問題があった。
【0009】
また、特許文献3の技術は、エッチングを行う処理槽であるリン酸溶液浴槽へリン酸溶液を供給又は排出する配管にリン酸濃度計測部が設けられているため、処理槽内での処理液の状態を直接的にリアルタイムで計測することができないという問題を有していた。
【0010】
したがって、本発明が解決しようとする技術的課題は、半導体材料に影響を与えることなく、槽内に貯留された流動体の性状を直接的にリアルタイムで計測することができる半導体処理装置を提供することである。
【課題を解決するための手段】
【0011】
本発明は、上記技術的課題を解決するために、以下の構成の半導体処理装置を提供する。
【0012】
本発明の第1態様によれば、内部の流動体にウエハを浸漬可能な処理槽と、
前記処理槽の外部から面状のレーザー光を前記流動体に照射するレーザー発振器と、
前記レーザー発振器を前記レーザー光の面に交差する方向に移動させる、移動ユニットと、
前記レーザー光が前記流動体内の散乱粒子により散乱して生じた散乱光を受光して、前記散乱粒子の粒子径と前記レーザー光の波長との関係により決定される前記散乱光の種類に応じたデータを取得可能な光検出器と、
前記光検出器が取得した散乱光の種類に応じたデータ及びレーザー光の照射位置の情報に基づいて、前記処理槽内の特定領域における流動体の性状を計測演算する計測演算部と、
を備えることを特徴とする、半導体処理装置を提供する。
【0013】
本発明の第2態様によれば、前記処理槽は、レーザー光を透過させる透明壁が前記レーザー光の移動範囲にわたって設けられていることを特徴とする、第1態様の半導体処理装置を提供する。
【0014】
本発明の第3態様によれば、前記移動ユニットは、前記処理槽の外部に設けられた案内部材と、前記レーザー発振器を搭載し前記案内部材に案内され前記案内部材に沿って移動可能な第1駆動部とを備えることを特徴とする、第1又は2態様の半導体処理装置を提供する。
【0015】
本発明の第4態様によれば、前記移動ユニットは、前記光検出器を搭載し前記案内部材に案内され前記案内部材に沿って移動可能な第2駆動部を備えることを特徴とする、第3態様の半導体処理装置を提供する。
【0016】
本発明の第5態様によれば、前記移動ユニットの案内部材は、前記処理槽の周囲に設けられた環状のレールであり、
前記第1駆動部及び第2駆動部は、独立して前記レールを移動可能であることを特徴とする、第4態様の半導体処理装置を提供する。
【0017】
本発明の第6態様によれば、前記第1駆動部及び第2駆動部は、前記レール上の位置において、互いになす角度を変更可能であることを特徴とする、第5態様の半導体処理装置を提供する。
【0018】
本発明の第7態様によれば、記処理槽は、円筒形状であり、
前記レーザー発振器は、前記レーザー光が前記処理槽の中心点を通過するように設けられていることを特徴とする、第4から第6態様のいずれか1つに記載の半導体処理装置を提供する。
【0019】
本発明の第8態様によれば、処理槽の内部に貯留されウエハを浸漬可能な流動体の性状を計測する方法において、
前記処理槽の外部に配置されたレーザー発振器を、面状のレーザー光を前記流動体に照射しつつ前記レーザー光の面に交差する方向に移動させ、
前記レーザー発振器の個々の位置において、前記レーザー光が前記流動体内の散乱粒子により散乱して生じた散乱光を受光して、前記散乱粒子の粒子径と前記レーザー光の波長との関係により決定される前記散乱光の種類に応じたデータを取得可能な光検出器を用いて、前記散乱光の種類に応じたデータを取得し、
前記光検出器が検出した個々の位置における前記散乱光の種類に応じたデータに基づいて、前記処理槽内の特定領域における流動体の性状を演算することを特徴とする、半導体処理流動体の計測方法を提供する。
【発明の効果】
【0020】
本発明によれば、レーザー光を照射し、これにより発生した散乱光を光検出器で検出することにより、洗浄液等の流動体の性状をリアルタイムで計測することができる。また、レーザー発振器をレーザー光の面に沿って交差する方向に移動させつつ、光検出器による計測を行うため、処理槽の内部を走査して計測することができ、処理槽内部の三次元空間内における流動体の性状を予測することができる。
【図面の簡単な説明】
【0021】
【
図1】本発明の半導体処理装置の第1実施形態にかかるウエハ洗浄装置の構成を模式的に示す斜視図である。
【
図2】レーザー光の照射により生じる散乱光の計測を説明する図である。
【
図3】洗浄液中のトレーサ粒子による散乱光の発生原理を説明する図である。
【
図4】処理液膜の性状変化に伴うラマンスペクトルの変化例を模式的に示す図であり、(a)は濃度が高くなる場合、(b)は温度が高くなる場合を示す。
【
図5】
図1の半導体処理装置が行う洗浄液の計測手順を示すフロー図である。
【
図6】本発明の半導体処理装置の第2実施形態にかかるウエハ洗浄装置の構成を模式的に示す斜視図である。
【
図7】光検出器とレーザー発振器との移動状態を示す模式図である。
【
図8】光検出器が検出する散乱光の光路を示す模式図である。
【
図9】光検出器とレーザー発振器とがなす角度の変化を説明する模式図である。
【
図10】
図6の半導体処理装置が行う洗浄液の計測手順を示すフロー図である。フローチャートである。
【発明を実施するための形態】
【0022】
以下、本発明の実施形態に係る半導体処理装置について、図面を参照しながら説明する。
【0023】
図1は、本発明の半導体処理装置の実施形態にかかるウエハ洗浄装置の構成を模式的に示す斜視図である。
【0024】
本実施形態にかかるウエハ洗浄装置1は、ウエハ30を洗浄するための洗浄液100を収容する洗浄槽2と、洗浄槽2に向けてレーザー光Lを照射するレーザー発振器3と、洗浄槽2の内部から発せられた光を検出可能な光検出器4と、光検出器が検出した情報及び後述するレーザー光Lの照射位置に基づいて演算処理を行う制御演算部5とを備えている。
【0025】
洗浄槽2は、洗浄対象となるウエハ30に影響を及ぼさないような材料が用いられることが好ましく、透明材料である石英等やテフロン(登録商標)などで構成された直方体形状の槽である。洗浄槽2は、少なくとも、レーザー光Lが照射される側の側壁2a(以下、第1側壁という。)と光検出器4に対向した槽内検出を行なう側壁2b(以下、第2側壁という。)は透明壁で構成されており、外部から槽内部が光学的に確認可能な状態となっている
【0026】
洗浄槽内には、ウエハ30を洗浄するために使用される洗浄液100が貯留される。洗浄液100は、純水及び薬液とを混合して所定の濃度に調整されたものであり、例えば、洗浄槽2の底面から槽内に供給され、レーザー発振器3や光検出器4が対向しない側面などからオーバーフローさせることで、槽の内外を循環するようになっている。なお、洗浄液については、洗浄槽の内部又は外部で必要に応じて加熱することができる。
【0027】
洗浄対象となるウエハ30は、槽内に、単一又は複数枚が洗浄液100に浸漬されるように配置される。ウエハ30を槽内に配置するには、図示しないウエハ支持部材を用いる。
【0028】
洗浄槽2の外側に設けられたレーザー発振器3は、面状のレーザー光Lを照射する。本実施形態では、レーザー発振器3に対向する洗浄槽の高さ方向に広がりを持ち、第1側壁2aに対して直交する方向からレーザー光Lが照射される。
【0029】
レーザー発振器3は、レーザー光の発光部3aに、レンズなどの光学部材を設けて、レーザー光が面状に広がるように構成してもよいし、線状のレーザー光を高速で往復移動させることにより面状のレーザー光となるように構成してもよい。この場合は、面状のレーザー光の出力が弱くなるため、後述する散乱光のレベルが低くなる可能性がある。一方で、複数のレーザー発振器を並列配置させて、面状のレーザー光としてもよく、この構成によれば、レーザー光の出力低下を防止することができる。
【0030】
レーザー発振器3は、移動ユニット6により移動可能となっている。移動ユニット6は、レーザー光Lが照射される第1側壁2aと平行に伸びるガイドレール7と、ガイドレール7に案内され、ガイドレール7に沿って移動可能な駆動部8とを備える。駆動部8は、モーターなどの駆動源を内蔵しており、後述するように制御演算部5によってその動作が制御され、移動、停止、移動速度、ガイドレール7上での位置などが制御されている。
【0031】
駆動部8には、レーザー発振器3が搭載されており、駆動部8がガイドレール7に沿って移動することで、レーザー発振器3が矢印90に示すように、処理槽2の第1側壁2aに沿って移動する。すなわち、レーザー光Lは、その面方向に直交する方向に移動することとなる。
【0032】
ガイドレール7は、本発明の案内部材の一例に相当するものであり、レーザー発振器3の移動に伴いレーザー発振器3から照射されるレーザー光Lが、第1側壁2aの全域に到達できることができるように構成されていることが好ましい。
【0033】
レーザー発振器3から発光されたレーザー光Lは、第1側壁2aを透過して洗浄槽2内へ導かれ、槽内に貯留された洗浄液100中を通過する。
【0034】
槽内に到達したレーザー光Lは、
図2に示すように、洗浄液100中の散乱粒子によって散乱し、散乱光Rが生じる。散乱光Rは、レーザー光の波長と洗浄液100中の散乱粒子によって種々のものが生じる。具体的には、幾何学散乱、レイリー散乱、ミー散乱、ラマン散乱などが含まれる。これらの散乱は、洗浄液100中の散乱粒子の粒子径とレーザー光Lの波長との関係により決定される。
【0035】
例えば、洗浄液100には、当該散乱光Rを発生させるために、
図3に示すように散乱粒子としてのトレーサ粒子40は、レーザー光Lの波長よりも大きい粒子径を有するため、粒子に到達したレーザー光は、幾何学散乱を生じさせる。
【0036】
また、レーザー光Lの波長が、散乱粒子である洗浄液100の分子粒子と同程度の場合は、ミー散乱を生じさせ、分子粒子径が波長より小さい場合は、レイリー散乱を生じさせる。
【0037】
さらに、波長よりも散乱粒子である分子の粒子径が小さい場合は、入射光が振動する分子に衝突することにより、入射光のエネルギーの一部が分子の振動エネルギーと授受されることにより入射光と異なる波長の散乱光となるラマン散乱を生じさせる。ラマンスペクトルには、波長が短くなるアンチストーク散乱光、波長が長くなるストーク散乱光が含まれる。このラマンスペクトルを解析することにより、洗浄液100の濃度や温度を計測することができる。ラマンスペクトルは、洗浄液100の分子粒子のスペクトル波長の近傍の波長を有するレーザー光Lとすることにより大きくなる。
【0038】
なお、ラマンスペクトルの強度の増強のために、角振動数の異なる2つのレーザー光(ポンプ光とストークス光)を併用してもよく、レーザー発振器3として、補助光源を備えていてもよい。
【0039】
これらの散乱光Rは、洗浄槽2の第2側壁2bを透過して洗浄槽2の外部に設けられた光検出器4に到達し、検出される。光検出器4は、検出しようとする散乱光Rを受光して、その輝度、波長などを検出することができる検出器であり、散乱光の特性に応じた任意のものを用いることができる。例えば、幾何学散乱を検出したい場合などの場合は可視光カメラが好適に使用でき、隙間に焦点を合わせ、カメラを用いることで、隙間の洗浄液100による散乱光を検出することができる。また、ラマンスペクトルを検出したい場合は、ラマン散乱用の検出器等を用いることができる。ラマン散乱においては、測定したい物質固有の検出波長が存在しており、測定したい物質固有の波長を計測することで、当該物質の性状を計測することができる。
【0040】
また、光検出器4は、散乱光の特性に応じた複数種類のものを備えていてもよい。例えば、ラマン散乱用の検出器と可視光カメラとをそれぞれ備えることも可能である。
【0041】
本実施形態において、光検出器は、洗浄液の側壁2bに対して直交する方向に配置されている。すなわち、レーザー光Lに対して直交する方向から散乱光Rを検出することとなる。
【0042】
光検出器4により検出された散乱光は、制御演算部5によって、洗浄液100の性状特定に用いられる。前記検出された散乱光は、用いる光検出器4に応じて異なり、例えば、幾何学散乱の場合は、撮像した画像データ等が該当し、ラマン散乱の場合は検出した生スペクトルや位置情報が該当する。また、散乱光の特性により計測可能な洗浄液100の性状も決定され、例えば、画像データの場合は、複数枚の経時的に比較することで、洗浄液100の流速を計測することができる。
【0043】
また、検出器が生スペクトルを検出した場合は、生スペクトルを校正したラマンスペクトルを用い、洗浄液100の濃度や洗浄液100の温度によってスペクトルの強度変化やスペクトルのシフトなどの特性を用いて、洗浄液100の濃度や温度を計測することが可能である。さらに位置情報を用いてそれらの性状をマッピングすることができる。
【0044】
図4は、液膜の性状変化に伴うラマンスペクトルの変化例を模式的に示す図であり、(a)濃度が高くなる場合、(b)は温度が高くなる場合をそれぞれ示している。
図5のグラフは、いずれも実線が変化前の状態、破線が性状変化に伴いラマンスペクトルが変化した状態を示している。
【0045】
これらのラマンスペクトルのシフトについては、温度及び濃度に応じて変化する波長と強度が特定される。なお、
図4において、符号50で示されるスペクトルのピークは水由来のもの、符号51,52で示されるスペクトルのピークは薬液由来のものをそれぞれ示している。
【0046】
濃度が高くなる場合は、
図4(a)に示すように、処理液膜中の薬液の割合が大きくなり、水の割合が小さくなるため、水由来のピーク50は減少し、薬液由来のピーク51,52は増加する。逆に濃度が低くなる場合は、水由来のピーク50が増加し、薬液由来のピーク51,52は減少する。
【0047】
処理液膜の温度が高くなる場合は、
図4(b)に示すように、温度に応じたピーク位置のシフトが生じまた、スペクトルの強度が増加する。また、温度が低くなる場合は、逆の挙動を示し、スペクトルの強度が減少する。
【0048】
これらの濃度及び温度によるスペクトルのシフトについては、温度及び濃度に応じて変化する波長と強度が特定されるため、予めこれらの既知のデータに基づいて作成された検量データを準備しておくことが必要である。そして、ラマンスペクトルと検量データとを比較することにより、洗浄液の濃度及び温度が演算される。
【0049】
図5は、半導体処理装置が行う洗浄液の計測手順を示すフロー図である。
図5に示すように、まず、洗浄槽2へ薬液と純水を供給して洗浄液の循環を開始する(S1)。次いで、洗浄条件を設定する(S2)。洗浄条件としては、洗浄液の温度や濃度などが挙げられる。また、駆動部8をガイドレール7に沿って初期位置へ移動させる(S3)。初期位置は、洗浄槽2の計測範囲に基づいて決定することができる。
【0050】
次いで、ウエハを洗浄槽2内へ移動させ洗浄を開始する(S4)。洗浄中は、洗浄液100が所定の条件を満たしているかをリアルタイムで計測するために上記の通りレーザー光Lと散乱光Rの計測により、洗浄液の性状を計測する(S5,S6)。
【0051】
制御演算部5は、上述した光検出器4による散乱光Rに基づいて洗浄液の性状について演算を、移動ユニット6により移動するレーザー光Lの発光位置ごとに行う。すなわち、制御演算部は、移動ユニット6の駆動部8の位置制御を行っており、レーザー発振器3により決定されるレーザー光Lの発光位置ごとの洗浄液の性状が演算可能である。
【0052】
具体的には、レーザー光Lの照射位置が最終位置となるまで、レーザー光Lの照射、散乱光Rの計測、駆動部8の移動の各処理が、所定の位置ごとに行われる(S5~S8)。なお、駆動部8の移動幅は特に限定されるものではなく、計測の精度に応じて適宜決定することができる。
【0053】
本実施形態にかかる半導体処理装置では、面状のレーザー光Lを洗浄槽2に照射し、レーザー光Lにより照射された部分について、洗浄液100の性状を計測することができる。また、レーザー光Lは、移動ユニット6によりレーザー光の面に直交する方向に移動するため、レーザー光Lの照射位置における洗浄槽内の洗浄液の性状を計測することができる。
【0054】
また、レーザー光Lの透過面である第1側壁2a、光検出器による散乱光Rの透過面である側壁2b共に、これらの光と直交するように構成されているため、洗浄槽の透過に際して、屈折の影響がなく、制御演算部5での演算を容易にすることが可能である。
【0055】
これらの動作を繰り返すことにより、レーザー光Lの照射位置と当該位置での洗浄液の性状を対応づけてマッピングすることで、洗浄槽2内の特定の領域に存在する洗浄液100の状態を測定することができる(S9)。
【0056】
なお、洗浄条件を変更して、洗浄液について再度計測を行う場合は、駆動部8を初期位置に移動させ(S11)、S5~S8の動作を繰り返し行うことができる。
【0057】
本実施形態にかかる半導体処理装置によれば、面状のレーザー光Lが洗浄液により散乱した散乱光Rを測定することで、レーザー光Lが照射された面における洗浄液の性状を測定することができる。また、レーザー光Lをその面方向に直交する方向に移動させることにより、処理槽内部の三次元空間内における洗浄液の性状を予測することができる。
【0058】
(第2実施形態)
図6は、本発明の半導体処理装置の第2実施形態にかかるウエハ洗浄装置の構成を模式的に示す斜視図である。なお、第2実施形態にかかるウエハ洗浄装置は、第1実施形態にかかるウエハ洗浄装置1と多くの共通した構成を有するため、両者の比較により異なる点を中心に説明する。
【0059】
本実施形態にかかるウエハ洗浄装置11は、ウエハ30を洗浄するための洗浄液100を収容する洗浄槽12と、洗浄槽12に向けてレーザー光Lを照射するレーザー発振器13と、洗浄槽12の内部から発せられた光を検出可能な光検出器14と、光検出器が検出した光の情報及び後述するレーザー光Lの照射位置に基づいて演算処理を行う制御演算部15とを備えている。
【0060】
洗浄槽12は、少なくとも側面12aが透明体材料で構成された有底円筒形状の容器であり、底面などから洗浄液が供給され内部で洗浄液100が循環できるように構成されている。洗浄対象となるウエハ30は、槽内に、単一又は複数枚が洗浄液100に浸漬されるように配置される。
【0061】
洗浄槽12の外側に設けられたレーザー発振器13及び光検出器14は、移動ユニット16により移動可能となっている。移動ユニット16は、洗浄槽12と同心配置された環状のガイドレール17と、
図6の矢印90に示すように、ガイドレール17に案内され、ガイドレール17に沿って移動可能な第1駆動部18及び第2駆動部19とを備える。
【0062】
ガイドレール17は、洗浄槽12の周形状と同じ起動を有するレールであり、洗浄槽12と同心に配置されている。これにより、ガイドレール17に沿って移動可能な第1駆動部18及び第2駆動部19は、常に、洗浄槽12の周壁12aと同じ離間距離を持って移動することとなる。
【0063】
第1及び第2駆動部18,19は、モーターなどの駆動源を内蔵しており、後述するように制御演算部15によってその動作がそれぞれ独立して制御され、移動、停止、移動速度、ガイドレール17上での位置などが制御されている。
【0064】
レーザー発振器13は、第1駆動部18に固定されており、洗浄槽12の高さ方向に広がりを持った面状のレーザー光Lを洗浄槽12の中心方向に向けて照射する。
図7に示すように、本実施形態では、レーザー発振器13は、レーザー光Lが洗浄槽12の中心を通るように配置されており、これにより、洗浄槽12内の広い範囲をレーザー光Lが透過するようになっている。第1駆動部18がガイドレール17に沿って移動することで、レーザー発振器13が矢印91に示すように、処理槽12の周りを移動する。すなわち、レーザー光Lは、常に洗浄槽12の中心を通過する。
【0065】
また、光検出器14は、第2駆動部19に固定されており、その光軸は洗浄槽12の中心を向くように配置されている。第2駆動部19がガイドレール17に沿って移動することで、光検出器14が処理槽12の周りを移動する。すなわち、レーザー光Lは、
図7の矢印92に示すように、洗浄槽12の中心の周りを周回する。
【0066】
上記実施形態では、第1駆動部18及び第2駆動部19は同じガイドレール上を移動するが、それぞれ独立したガイドレールに沿って移動するように構成することもできる。
【0067】
レーザー発振器13から発光されたレーザー光Lは、周壁12aを透過して洗浄槽12内へ導かれ、槽内に貯留された洗浄液100中を通過する。槽内に到達したレーザー光Lは、洗浄液100中の散乱粒子によって散乱し、散乱光Rが生じる。
【0068】
これらの散乱光Rは、洗浄槽12の周壁12aを透過して洗浄槽12の外部に設けられた光検出器14に到達し、検出される。光検出器14は、検出しようとする散乱光Rを受光して、その輝度、波長などを検出することができる検出器であり、散乱光の特性に応じた任意のものを用いることができる。
【0069】
光検出器14には、必要に応じて散乱光Rの分光手段を併用することが好ましい。分光手段としては、分光器又は干渉フィルタなどが使用可能である。
【0070】
光検出器14により検出された散乱光Rは、制御演算部15によって、洗浄液100の性状特定に用いられる。制御演算部15では、散乱光Rの屈折の影響についても補正する。すなわち、光検出器14の受光方向が、洗浄槽の周壁12aと直交しない場合には、散乱光の透過時に屈折するため、当該屈折の影響を考慮して補正することが好ましい。
【0071】
図8は、光検出器が検出する散乱光の光路を示す模式図である。上述のとおり光検出器14の光軸は、洗浄槽12の中心軸方向であるため、中心軸上から発光した散乱光R1については、周壁12aを直交して透過するため、屈折の影響は生じない。一方、洗浄槽の両端に向かうにつれて、発光する散乱光R2は、周壁12aを透過する際に入射角が直角ではなくなるため、当該周壁12aの透過時に屈折の影響が生じる。このため、制御演算部15では、当該両端側に位置する散乱光について、散乱光の周壁12aへの入射角度を考慮して、その位置に関する補正を行うものである。
【0072】
散乱光Rの屈折の補正は、散乱光Rと光検出器14とがなす角度に基づいて、散乱光Rが周壁12aへ入射する角度を演算し、当該角度に応じて洗浄液100と周壁12aの屈折率に基づき、演算することができる。
【0073】
図10は、本実施形態にかかる半導体処理装置が行う洗浄液の計測手順を示すフロー図である。
図10に示すように、まず、洗浄槽12へ薬液と純水を供給して洗浄液の循環を開始し、洗浄条件を設定する(S21,S22)。なお、本実施形態では、ガイドレール17は環状に構成されており、第1駆動部18を初期位置へ移動させる必要はなく、計測時にある位置から検出を始めることができる。ただし、検出に先だち第1駆動部18を初期位置に移動させてもよい。
【0074】
次いで、ウエハを洗浄槽2内へ移動させ洗浄を開始する(S23)。洗浄中は、洗浄液100が所定の条件を満たしているかをリアルタイムで計測するために上記の通りレーザー光Lと散乱光Rの計測により、洗浄液の性状を計測する(S25)。
【0075】
本実施形態では、第2駆動部19を動作させて、光検出器14の角度を光強度が最大となる位置に調整する(S26)。
【0076】
制御演算部15は、上述した光検出器14による散乱光Rに基づいて洗浄液の性状について演算を、第1検出部18により照射されるレーザー光Lの発光位置ごとに行う。すなわち、制御演算部15は、移動ユニット6の第1駆動部18の位置制御を行っており、第1駆動部が位置するガイドレール17において、レーザー光Lにより照射される洗浄液100の位置を特定して演算することができる。
【0077】
制御演算部15は、レーザー光Lの照射位置が予め設定した特定の領域を照射する最終位置となるまで、レーザー光Lの照射、散乱光Rの計測などの処理を、所定の位置ごとに行う(S27~S28)。
【0078】
なお、洗浄条件を変更して、洗浄液について再度計測を行う場合は、第1駆動部18を初期位置に移動させ(S31)、S26~S28の動作を繰り返し行うことができる。
【0079】
レーザー発振器13は、上記の通り、ガイドレール17に沿って移動する第1駆動部18に設けられているため、第1駆動部18が動くことによって、レーザー光Lが到達する洗浄液100の位置を変化させることができる。また、光検出器14は、ガイドレール17に沿って移動する第2駆動部19に設けられているため、第1駆動部18の移動に追従して、第2駆動部19を駆動させることにより、レーザー光Lの移動に伴って光検出器14の受光方向を一定にすることができる。
【0080】
また、本実施形態によれば、レーザー発振器13によりレーザー光Lにより照射される洗浄液の場所が変化したとしても、光検出器14も同時に移動するため、レーザー光Lによる照射位置と光検出器14との距離は常に一定とすることができる。すなわち、照射位置と光検出器14との距離が変化しないため、光路中の洗浄液100などによる散乱光Rの減衰などが一定であり、制御演算部15による洗浄液100の性状の演算に与える影響を少なくすることができる。
【0081】
なお、光検出器14の受光方向は、レーザー光Lが直接入射されることなく、かつ、散乱光Rの角度依存性により、散乱光が大きく発生する方向に向ければよい。例えば、レイリー散乱の場合は、入射光に対して直角な方向に散乱する散乱光が少ないため、第1駆動部と第2駆動部とがなす角度が鈍角となるように、両者の位相を調整することができる。
【0082】
なお、光検出器14の受光方向は、第1駆動部18と第2駆動部19とがなす角度を変更することにより自由に変更することができる。すなわち、
図9に示すように、第1駆動部18に対する第2駆動部19の角度を異ならせることにより、両者がなす角度α、βを任意に設定することができ、散乱光Rの強度が最も強く出る任意の位置において光検出器14による検出をすることができる。
【0083】
以上説明したように、本実施形態にかかる半導体処理装置によれば、レーザー光を照射し、これにより発生した散乱光を光検出器で検出することにより、洗浄液等の流動体の性状をリアルタイムで計測することができる。また、レーザー発振器をレーザー光の面に沿って交差する方向に移動させつつ、光検出器による計測を行うため、処理槽の内部を走査して計測することができ、洗浄槽内部の三次元空間内における流動体の性状を予測することができる。また、これらの洗浄液100の性状は、槽内における状態を直接的に計測することができるため、洗浄槽の状態制御などに用いることが可能である。
【0084】
なお、本発明は上記実施形態に限定されるものではなく、その他種々の態様で実施可能である。例えば、上記実施形態は、ウエハの洗浄装置であったが、エッチングやメッキ等の処理を行うための半導体製造装置にも適用可能である。また、流動体は液体に限定されるものではなく、例えば、蒸着工程やスパッタ工程など、気体を流動体とする場合にも適用可能である。
【0085】
また、上記実施形態は、いずれもレーザー光Lを側方から照射しているが、洗浄槽の上方位置や下方位置から照射するように構成してもよい。
【符号の説明】
【0086】
1 ウエハ洗浄装置
2,12 洗浄槽
2a,2b,12a 槽壁
3,13 レーザー発振器
4,14 光検出器
5,15 制御演算部
6,16 移動ユニット
7,17 ガイドレール
8 駆動部
18 第1駆動部
19 第2駆動部
30 ウエハ
L レーザー光
R 散乱光
100 洗浄液