IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

6996882自動運転支援システム、自動運転支援方法、及び自動運転用のデータの地図データ構造
<>
  • -自動運転支援システム、自動運転支援方法、及び自動運転用のデータの地図データ構造 図1
  • -自動運転支援システム、自動運転支援方法、及び自動運転用のデータの地図データ構造 図2
  • -自動運転支援システム、自動運転支援方法、及び自動運転用のデータの地図データ構造 図3
  • -自動運転支援システム、自動運転支援方法、及び自動運転用のデータの地図データ構造 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2021-12-20
(45)【発行日】2022-01-17
(54)【発明の名称】自動運転支援システム、自動運転支援方法、及び自動運転用のデータの地図データ構造
(51)【国際特許分類】
   G09B 29/00 20060101AFI20220107BHJP
   G08G 1/16 20060101ALI20220107BHJP
【FI】
G09B29/00 Z
G08G1/16 C
【請求項の数】 2
(21)【出願番号】P 2017127604
(22)【出願日】2017-06-29
(65)【公開番号】P2019012130
(43)【公開日】2019-01-24
【審査請求日】2020-03-26
(73)【特許権者】
【識別番号】597151563
【氏名又は名称】株式会社ゼンリン
(73)【特許権者】
【識別番号】517207875
【氏名又は名称】ダイナミックマップ基盤株式会社
(74)【代理人】
【識別番号】100079108
【弁理士】
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【弁理士】
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100117189
【弁理士】
【氏名又は名称】江口 昭彦
(74)【代理人】
【識別番号】100134120
【弁理士】
【氏名又は名称】内藤 和彦
(72)【発明者】
【氏名】竹川 道郎
(72)【発明者】
【氏名】都丸 優樹
(72)【発明者】
【氏名】中島 務
(72)【発明者】
【氏名】星 政臣
【審査官】宇佐田 健二
(56)【参考文献】
【文献】特開2017-090548(JP,A)
【文献】特開2016-045144(JP,A)
【文献】工藤貴宏+ノオト,3次元データ、誤差は10cm以内-自動運転時代に求められる道路地図とは,GAZOO,日本,トヨタ自動車株式会社,2016年12月13日,全文,全図(pp.1-7),https://gazoo.com/mobility/feature/future/16/12/13/,[2020年12月15日検索](特に、「誤差は最大10cm」の項)
(58)【調査した分野】(Int.Cl.,DB名)
G09B 29/00,29/10
G08G 1/16
(57)【特許請求の範囲】
【請求項1】
区画線を含む地図データを記憶した記憶装置と、
車両の周辺情報を検出する外部センサと、
前記外部センサが検出した周辺情報と、前記地図データとに基づいて、前記車両と前記区画線との相対的な位置関係を算出しつつ、前記車両の走行を制御する制御ユニットと、
を備え、
前記地図データは、
車線の中心をとおる点列を結んで生成されたレーンネットワークと、
前記レーンネットワークに関連付けられた複数の区画線データと、
を備え、
前記複数の区画線データのうち、前記レーンネットワーク上の任意の基準点から一定範囲内に位置する任意の2つの区画線データの水平横断面における位置間の距離の誤差について、当該誤差の分布の標準偏差が12.5cm以内である、
自動運転支援システム。
【請求項2】
車両が備える外部センサによって、前記車両の周辺情報を検出するステップと、
記憶装置に記憶された区画線を含む地図データと、前記外部センサが検出した周辺情報とに基づいて、前記車両と前記区画線との相対的な位置関係を算出しつつ、前記車両の走行を制御するステップと、
を実行する車両の自動運転支援方法であって、
前記地図データは、
車線の中心をとおる点列を結んで生成されたレーンネットワークと、
前記レーンネットワークに関連付けられた複数の区画線データと、
を備え、
前記複数の区画線データのうち、前記レーンネットワーク上の任意の基準点から一定範囲内に位置する任意の2つの区画線データの水平横断面における位置間の距離の誤差について、当該誤差の分布の標準偏差が12.5cm以内である、
車両の自動運転支援方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、自動運転支援システム、自動運転支援方法、及び自動運転用のデータの地図データ構造等に関する。
【背景技術】
【0002】
近年、運転者の運転負荷を軽減することを目的として、車両を自動で運転するシステムが開発されている。
【0003】
例えば、特許文献1には、周辺車両と通信して手動運転車両を検出し、手動運転車両が存在する場合には、手動運転車両が存在しない場合よりも、自車両の運転者に対する注意喚起の頻度が高くなるように、自動運転の態様を変更するシステムが記載されている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2017-30748号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、特許文献1に記載されるような自動運転のシステムでは、高精度な地図が必要になる。高精度な地図として、例えば公共測量地図を自動運転のシステムに用いることが考えられるが、公共測量地図は製作コストが高いことに加え、地物間の関連付けがされていないため、自動運転システムに適さない。
【0006】
そこで、本発明は、上記事情に鑑み、自動運転に適した地図データを提供可能にすることを目的とする。
【課題を解決するための手段】
【0007】
本発明の一実施形態による、自動運転支援システムは、区画線を含む地図データを記憶した記憶装置と、車両の周辺情報を検出する外部センサと、外部センサが検出した周辺情報と、地図データとに基づいて、車両と区画線との相対的な位置関係を算出しつつ、車両の走行を制御する制御ユニットと、を備え、地図データは、車線の中心をとおる点列を結んで生成されたレーンネットワークと、レーンネットワークに関連付けられた複数の区画線データと、を備え、複数の区画線データのうち、レーンネットワーク上の任意の基準点から一定範囲内に位置する任意の2つの区画線データの水平横断面における位置間の距離の誤差について、当該誤差の分布の標準偏差が12.5cm以内である。
【0008】
なお、本明細書等において、「部」とは、単に物理的構成を意味するものではなく、その構成が有する機能をソフトウェアによって実現する場合も含む。また、1つの構成が有する機能が2つ以上の物理的構成により実現されても、2つ以上の構成の機能が1つの物理的構成により実現されてもよい。
【発明の効果】
【0009】
本発明によれば、自動運転に適した地図データを提供可能にする。
【図面の簡単な説明】
【0010】
図1】自動運転支援システムの構成の一例を示す構成図である。
図2】本発明の一実施形態における地図データの構造を模式的に示す図である。
図3】MMSの構成の一例を示す図である。
図4】本発明の一実施形態における地図データが自動運転に利用可能であることを示す模式図である。
【発明を実施するための形態】
【0011】
[実施形態]
以下、本発明の実施の形態の1つについて詳細に説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明をその実施の形態のみに限定する趣旨ではない。また、本発明は、その要旨を逸脱しない限り、さまざまな変形が可能である。さらに、当業者であれば、以下に述べる各要素を均等なものに置換した実施の形態を採用することが可能であり、かかる実施の形態も本発明の範囲に含まれる。また、以下においては、理解を容易にするべく、情報処理装置を利用して本発明が実現される実施の形態を例にとって説明するが、上述の如く、本発明はそれに限定されない。
【0012】
<1.システムの概要>
図1は、本実施形態に係る自動運転支援システム1の構成の一例を示している。図1に示すように、自動運転支援システム1は、運転制御ユニット(ECU)11と、検出部12と、記憶装置13と、アクチュエータ14とが互いに接続されて構成されている。自動運転支援システム1は、例えば自動車や電車等の車両に搭載され、運転者の運転を支援する。このとき、運転制御ユニット11は、ネットワークを介して外部システムと通信し、記憶装置13に記憶された地図データ130を構成することも可能である。なお、記憶装置13は車両に搭載されない構成でもよい。この場合、運転制御ユニット11は、ネットワークを介して記憶装置13と通信を行うことで自動運転を実行する。
【0013】
検出部12は、自動運転を行う際に必要な車両周辺の情報を取得する機能を有しており、例えば、車載カメラ121と、GPS測位部122と、センサ123とを含む。
【0014】
車載カメラ121は、例えば車両のフロントガラスの裏側等に設けられ、車両の前方を撮影する。車載カメラ121が撮影した画像や動画は運転制御ユニット11へと送信される。
【0015】
GPS測位部122は、GPS衛星から信号を受信し、それにより自車両の位置情報(例えば緯度、経度の情報)を検出する。GPS測位部122は、検出した位置情報を運転制御ユニット11へと送信する。
【0016】
センサ123は、車両の走行状態を検出するものであり、図には示さないが、例えば車速センサ、加速度センサ、及びヨーレートセンサ等から構成される。車速センサは、車両の速度を検出する検出器である。加速度センサは、例えば、車両の前後方向の加速度を検出する検出器である。ヨーレートセンサは、車両の重心の鉛直軸周りの回転角速度を検出する検出器である。これら車速センサ、加速度センサ、およびヨーレートセンサにより検出された情報は運転制御ユニット11へと送信される。
【0017】
アクチュエータ14は、車両の走行制御を行うために設けられており、図には示さないが、例えばアクセルアクチュエータ、ブレーキアクチュエータ、及び操舵アクチュエータ等から構成される。アクセルアクチュエータは、運転制御ユニット11からの制御信号に応じてスロットル開度を制御することによって車両の駆動力を制御する。ブレーキアクチュエータは、運転制御ユニット11からの制御信号に応じてブレーキペダルの踏み込み両を制御することにより、車両の車輪に対する制動力の制御を行う。操舵アクチュエータは、運転制御ユニット11からの制御信号に応じて電動パワーステアリングシステムの操舵アシストモータの駆動を制御して、車両の操舵作用の制御を行う。
【0018】
記憶装置13には本実施形態に係る地図データ130が記憶されている。地図データ130には、例えば道路の3次元の位置情報、道路の形状の情報(例えばカーブの曲率等)、交差点及び分岐点の情報、看板や信号機等の地物の3次元の位置に関する情報等が記憶されている。
【0019】
図2を参照して、本実施形態に係る地図データ130のデータ構造について、説明する。図2(A)は地物データA1(図2(A)の例では道路脇に設置された標識である。)、地物データA2(図2(A)の例では道路上の看板である。)、地物データAL、AR(図2(A)の例では区画線である。)と、レーンネットワークA3との関係を模式的に示す図である。図2(A)に示すように、地図データ130において、地物データA1、A2、区画線データAL、ARはいずれもレーンネットワークA3に関連付けられて記憶されている。
【0020】
まず、レーンネットワークA3の生成方法について説明する。レーンネットワークA3は、区画線により車線が定義された区間において生成される。レーンネットワークA3は、道路における区画線データAL、ARよって区切られた位置の中央を示す点(以下、「構成点」という。)列の緯度経度、及び高度を取得することによって生成される。構成点は、数m間隔で取得されることが好ましい。また、車線が定義される区間の始点と終点とは構成点とされることが好ましい。
【0021】
次に、各地物データA1、A2、AL、ARと、レーンネットワークA3との対応関係について説明する。まず図2(B)を参照して区画線データAL、ARについて説明する。図2(B)に示すように、レーンネットワークA3を構成する構成点のうち、連続する2点から成る線分(図2(B)の例では点P1,P2)の中点から法線方向にある直近の区画線が、当該レーンネットワークA3と関連付けられる。他方で、看板や標識等の地物データA1、A2は、水平横断方向における直近のレーンネットワークA3に関連付けられる。なお、レーンネットワークA3に関連付けられて記憶されている地物として、路肩縁、道路標示、道路標識、信号機、トンネル境界線、交差点領域等が挙げられる。地物データがレーンネットワークA3に関連付けられて記憶されていることによって、レーンネットワークA3上を走行する車両は、地物の存在の有無や、地物の種類、位置を推測することができるため、車載カメラ121が撮影した画像と地物データとの画像マッチング処理の負荷を低減することができ、この結果、自車両の現在位置の推定処理を効率的に行うことができる。また、レーンネットワークA3上を走行する車両は、自車両の進行方向前方に、停止線や交差点, カーブ進入口等の自動運転による制御を行う上で把握が必要な地物の存在の有無や、その地物との相対的な距離を予め把握しておくことが可能となり(いわゆる、地物の先読み処理)、車載カメラ121による地物の把握を効率的に行うことができる。このように、レーンネットワークを基準とした地図データ130を用いることで、より精度の高い自動運転を行うことが可能になる。
【0022】
次に、地図データ130の精度について説明する。本実施形態に係る地図データ130の精度は、レーンネットワークA3上の任意の基準点から一定範囲(例えば道路内の前後10mの範囲)に位置する任意の2つの区画線データの水平横断面における、当該区画線データ間の距離の誤差(以下、「相対誤差」ともいう。)で定義されている。具体的には、本実施形態に係る地図データ130は、その相対誤差の分布の4σが50cm(すなわち、標準偏差σが12.5cm)程度以内の精度を有している。この精度は言い換えると、ある区画線A、B間の実際の距離に対する地図データ上の区画線データA,B間の距離の誤差(相対誤差)が、50cm以内である確率が99%以上、12.5cm以内である確率が68%以上であることを意味している。本実施形態に係る地図データ130がこのような相対誤差で規定されることによって、地図データ130を用いる自動運転支援システム1において、より精度の高い自動運転が可能になる。
【0023】
図1に戻り、自動運転支援システム1の構成の続きについて説明する。
運転制御ユニット11は、記憶装置13に記憶された地図データ130を参照して自動運転を行う。まず、運転制御ユニット11は、地図データ130上にマップマッチングを行う。このとき運転制御ユニット11は、まずGPS測位部122から送信される位置情報に基づいて自車両の現在位置の緯度及び経度(初期座標)を検出する。
【0024】
次に、運転制御ユニット11は、センサ123が検出した情報に基づいて、自車両の進行方位などの走行状態を検出して、自車両位置の初期座標からの車両の走行軌跡(推測軌跡)を作成する。運転制御ユニット11は、初期座標と推測軌跡の情報とに基づいてマップマッチングを行う。また、運転制御ユニット11は、車載カメラ121により撮影された画像と地物データとの画像マップマッチングにより、地物データとの相対的な位置関係を算出し、自車両の現在位置の推定処理を行う。
【0025】
さらに運転制御ユニット11は、上述の画像マップマッチングによって得られた自車両の現在位置から所定の範囲内の地図データについて、記憶装置13から読み出しを行う。そして、運転制御ユニット11は、読み出した地図データを参照して、自車両の進行方向前方に、停止線や交差点, カーブ進入口等の自動運転による制御が必要な地物が存在するときは、測位した自車両の位置と地図データ130に格納されているその目標地物の位置との関係に基づいて、自車両からその目標地物までの距離を算出することで、どのような地物がどれくらい先に存在するかを予め把握することができる(地物の先読み処理)。運転制御ユニット11は、算出した地物までの距離を考慮に入れつつ、実際には車載カメラ121にて撮影した画像に基づいて地物を検出して、アクチュエータ14を制御して、レーンネットワークに沿って両側の区画線(いわゆる、車線)からはみ出ることなく車両が走行するように、自動運転を実行する。
なお、運転制御ユニット11は、種々の従来技術を用いて構成することができる。
【0026】
次に、本実施形態に係る地図データ130の作成方法について説明する。
本実施形態に係る地図データ130は、既存のMMS(Mobile Mapping System)を用いて測量を行うことで作成される。MMSは、図3に示す計測車両2で計測地域を走行し、走行した道路周辺の地物の三次元の座標値を計測するシステムである。計測車両2は、図3に示すように、GNSS受信機21と、IMU(Inertial Measurement Unit)22と、レーザスキャナ23と、カメラ24とを備える。これらの機器は、計測車両2の天部に設けられた天板20に取り付けられている。また、計測車両2の車輪には走行距離計25が取り付けられている。
【0027】
GNSS受信機21は、GNSS(Global Navigation Satellite Systems)の衛星から測位信号を受信するアンテナを有している。GNSS受信機21は、アンテナによって受信した測位信号に基づいて衛星との疑似距離、測位信号を搬送した搬送波の位相および三次元の座標値を算出する。
【0028】
IMU22は、3軸方向の角速度を計測するジャイロセンサと、加速度を計測する加速度センサを有している。IMU22は、これらのセンサによって自車両の姿勢データを取得する。
【0029】
レーザスキャナ23は、計測車両2の幅方向において、放射角度を変更させながらレーザ光を放射し、放射先に位置する地物に反射したレーザ光を受光する。レーザスキャナ23は、レーザ光を放射してから受光するまでの時刻を計測し、地物との距離を算出する。
【0030】
カメラ24は、計測車両2の前方を撮像する。また、走行距離計25は、計測車両2の走行距離を計測する。
【0031】
従来においては、GNSS受信機21の測位データに基づいてGCP(Ground Control Points)を特定し、計測車両2において計測したデータをそのGCPを用いて位置補正を行うことで、地図データの絶対誤差の精度を向上させ、それを公共測量地図として使用していた。これに対し、自動運転システムにおいては、自車両の現在位置の推定処理にしても、地物の先読み処理にしても、地図データを車両と地物の相対的な位置関係を把握する目的で使用するため、絶対誤差の精度よりも、地図データにおける地物間の相対距離の精度が重要となる。本実施形態に係る地図データ130は、絶対誤差ではなく相対誤差が所定の値(標準偏差σが12.5cm程度以下)に収まるように作成されている。そのため、GNSS受信機21が受信した観測データに基づいて補正を行う処理を省略することができ、これによって、地図データの作成に係るコストを低減しつつ、自動運転が可能な精度を担保している。
【0032】
次に、図4を参照して地図データの標準偏差σが12.5cm程度以下であれば両側の区画線(すなわち、車線)をはみ出すことなく車両の自動運転が可能である理由について説明する。道路法上において、道路を通行可能な車両の最高限度は、幅W1が2.5m、長さL1が12mとして規格されている。また、道路法(道路構造令)上において、高速道路の幅W2(図4(A)における実際の区画線AL、AR間の距離)の最小値は3.5mとして定められている。
【0033】
仮に地図データ上の区画線データAL-AR間の相対誤差が+50cm(レーンネットワークA3を中心として実際より左右に25cm大きい)だった場合について想定する。この場合、地図データ上において、区画線データAL,ARの位置から所定の距離(例えば50cm)をとって内側を走行する車両は、自車両の現在位置の推定処理において誤差が生まれ、その誤差を補正しないまま運転制御ユニット11がアクチュエータ14を制御した場合、実際には片側の区画線(例えば区画線AR側)に25cm寄って走行してしまうおそれがある。しかし、車両が直線道路を走行している場合(図4(A))には、最高限度の車幅W1(2.5m)に対する道路幅W2(3.5m)は左右に50cmずつ余裕がある。したがって、仮に車両が区画線AR側に25cm寄ってしまった場合でも、実際に区画線AL,ARからはみ出すことなく走行できる。他方、車両がカーブに差し掛かっている場合(図4(B))においては、長さ方向における中心(先端から6mの地点)Mは、車両の後端部Bよりも、所定の幅xcm分だけ、カーブの内側に位置する区画線(図4(B)では区画線AR)側に寄ってしまう。この場合でも、車両の側面Nが区画線ARをはみ出すことなくカーブを走行するには、カーブの曲率半径r、と上記のxとが、以下の式(1)を満たす必要がある。
【0034】
(数1)
6002+(r-x)2=r2・・・式(1)
【0035】
ここで、出願人が全国の高速道路のカーブの曲率について調査したところによると、高速道路のカーブの曲率半径は89m以上であった。したがって、仮にrを72mとして上記の式(1)をxについて解くと、xは約25.0cmとなる。上述のとおり、最高限度の車幅W1(2.5m)に対する道路幅W2(3.5m)は左右に50cmずつ余裕がある。したがって、余裕分の50cmから、最小曲率のカーブにおいて車両の中心Mがカーブの内側に寄ってしまう幅25.0cmを減じた値である約25cmが、カーブ走行中においても区画線をはみ出すことなく走行するためにレーンネットワークA3を中心とした片側に許容される相対誤差の最大値であることがわかる(両側に換算すると約50cmとなる)。
【0036】
本実施形態に係る地図データは、相対誤差の分布の4σが50cm(すなわち、標準偏差σが12.5cm)以内という精度を有しているため、相対誤差の99%以上が上述したレーンネットワークA3を中心とした片側に許容される最大値である25cm以内に収まることになる。このため、本実施形態に係る地図データは、両側の区画線(すなわち、車線)をはみ出すことなく車両を自動的に走行させる上で十分な精度を持っていると判断できる。
【0037】
このように本実施形態に係る地図データが、相対誤差の分布の標準偏差σが12.5cm以内である場合には、生成コストを低減しつつ、自動運転に必要な精度を担保することができる。
【0038】
以上説明した各実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るととともに、本発明にはその等価物も含まれる。また、各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換または組み合わせが可能であることは言うまでもなく、これらも本発明の特徴を含む限り本発明の範囲に包含される。
【符号の説明】
【0039】
1 システム
11 運転制御ユニット
12 検出部
13 記憶装置
14 アクチュエータ
130 地図データ
図1
図2
図3
図4